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INTRODUCTION GENERALE 
 

Les options sur actions ont fait leur apparition, dès la fin du 17ème siècle en 

Grande-Bretagne, et au 18ème siècle aux Etats-Unis, mais les contrats négociés 

n’étaient pas standardisés, les marchés n’étaient pas réglementés, de plus ces 

marchés n’ont consisté jusqu’en 1973, qu’en des marchés primaires ; les opérateurs 

étant pratiquement privés de la possibilité de se défaire, à tout moment, de leur 

contrat sur un marché secondaire actif. 

Depuis les années 90, actions et options sur actions sont devenues 

fréquemment des éléments de rémunération pour les dirigeants et, de plus en plus 

pour les collaborateurs. Les stock-options sont des options d’achat (ou calls) 

d’actions d’une entreprise, accordées à des dirigeants, des cadres dirigeants et 

parfois à des catégories plus larges de personnel œuvrant dans cette entreprise [2]. 

Les options octroyées ont une certaine valeur, et cette valeur peut être 

significative pour les bénéficiaires, au regard de leur rémunération salariale annuelle 

et au regard de leur patrimoine existant. La valeur des stock-options peut alors 

également être non négligeable au regard de la capitalisation des entreprises dans 

lesquelles ils ont été octroyés. 

La définition des modalités de rémunération des dirigeants des entreprises 

s’inscrit de façon plus générale dans un cadre de gouvernance d’entreprise. Dès lors 

que des sociétés ne sont plus dirigées par leurs actionnaires, des conflits d’intérêts 

surgissent inévitablement entre dirigeants et actionnaires. Les différends peuvent 

concerner les prélèvements opérés par les dirigeants pour leur compte, les dépenses 

somptuaires, les recrutements de proximité, mais aussi les politiques 

d’investissement, ou encore les stratégies d’enracinement des dirigeants, qui 

tenteront de rendre leur révocation la plus coûteuse possible. Il s’agit alors, par une 

politique incitative, d’influencer les dirigeants afin qu’ils agissent dans l’intérêt de leurs 

mandants, les actionnaires. Cette politique incitative se fonde notamment sur les 

modalités de rémunération. Une manière de faire converger les intérêts des 

dirigeants vers ceux des actionnaires consiste à leur assurer une rémunération 

fondée sur la valeur pour les actionnaires, le cours de l’action. Le dirigeant sera en 
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permanence sensible à l’évolution de l’indicateur clé pour l’actionnaire, et est supposé 

agir dans l’intérêt de celui-ci. Un instrument est principalement utilisé pour assurer 

cette convergence d’intérêt : les stock-options [44].  

La distribution de stock options se traduirait par une meilleure correspondance 

entre la valeur de l’entreprise, et la rémunération de ses dirigeants et partant, selon 

cette « hypothèse d’incitation », par davantage d’investissement et d’endettement. En 

fait, tout contrat qui cède une part du capital aux dirigeants serait de ce point de vue 

optimal : à la limite, cette approche incite à ce que le dirigeant soit aussi le 

propriétaire de l’entreprise. Toutefois, cette conclusion, qui pourrait être valable pour 

une petite entreprise, ne l’est pas pour une grande que le dirigeant n’a pas les 

moyens de posséder ; en outre, l’aversion au risque du dirigeant l’incite à ne pas 

placer tout l’aléa de sa rémunération sur le même risque, celui de son entreprise [45]. 

Le contrat optimal concilie donc incitations, et partage des risques [45]. Hall et 

Liebman (1998)  [46] partent de cette conclusion pour évaluer les formes de 

rémunérations des dirigeants d’entreprises. Selon eux, ces rémunérations sont 

effectivement sensibles aux résultats de l’entreprise ; elles le sont de plus en plus 

grâce à la diffusion aux dirigeants d’options sur actions. 

Une motivation supplémentaire serait de signaler au marché la confiance des 

actionnaires, qui distribuent les stock-options, et celle des dirigeants, qui acceptent 

cette forme de rémunération, dans la croissance de leur entreprise. Selon cette 

théorie, dite du signal, la distribution de stock options témoignerait, à l’intention des 

investisseurs, d’une éventuelle sous-évaluation boursière de la firme. Plus encore, la 

détention de stock options inciterait les cadres à annoncer plus systématiquement les 

informations qu’ils possèdent dans la mesure où ces annonces feront varier le niveau 

de l’actif qu’ils possèdent [47]. Du point de vue des actionnaires, le salarié devrait 

prendre des décisions et faire certains efforts qui lui coûtent et qui sont difficiles à 

observer pour les actionnaires: dans cette situation d’aléa moral, le salarié a de 

l’information privée sur ses efforts, et leurs effets que des contrats à base de stock 

options permettent de révéler [45]. 

Même si l’octroi d’options ne transfère pas de valeur de l’entreprise vers les 

bénéficiaires, comme le ferait un salaire, mais des actionnaires de l’entreprise vers 

les bénéficiaires, les nouvelles normes comptables IFRS2 [1] imposent aujourd’hui, 

de valoriser les options accordées et d’enregistrer cette valeur en charge. Une 

évaluation correcte des stock-options est donc devenue importante du point de vue 
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de la gestion des entreprises. En effet, il s’agit d’évaluer à leur juste valeur, tous les 

paiements fondés sur des actions, comme les plans de stock-options ou les « Stock 

Appreciation Rights ». C’est l’objectif ultime du présent mémoire. 

Evaluer à leur juste valeur les stock-options, c’est construire un modèle 

mathématique permettant de les valoriser. Trouver un bon modèle conduit aux 

origines de la mathématisation de la finance moderne. Il s’agit de la thèse de Louis 

Bacheliers intitulée « Théorie de la spéculation » soutenue à la Sorbonne en 1900 

[27]. Cette approche fut oubliée durant près de trois quart de siècle, jusqu’en 1973 

avec la parution des travaux de Black & Scholes [4]. Ces travaux marquent la 

naissance des processus stochastiques à temps continu d’une part, et celle des 

stratégies à temps continu pour couverture de risque d’autre part. 

Une des caractéristiques d’un modèle pour l’évaluation des options est que le 

prix de l’action est une fonction continue de temps. Or certains événements rares 

peuvent entraîner des variations brutales des cours. Pour mieux modéliser les risques 

associés à ces variations soudaines des prix de marché, on utilise les processus à 

trajectoires continues. Ce qui a permis de choisir le thème y afférent intitulé : 

« MODELISATION STOCHASTIQUE POUR L’EVALUATION DES S TOCK-

OPTIONS ». 

Le but de ce travail est justement l’étude de ces processus afin de trouver une 

formule d’évaluation pour la valorisation à sa juste valeur des plans de stock-options. 

Pour cela, on introduira les notions et concepts tels que : le calcul stochastique, la 

chaîne de Markov, le mouvement Brownien, le processus de Lévy et bien entendu le 

processus d’Itô. 

Deux questions peuvent être posées à ce niveau : 

a) Quel est, parmi les modèles proposés, le meilleur modèle de couverture pour une 

évaluation des ESO ? 

b) Ce modèle considéré comme valable aujourd’hui le serait-il encore demain ? 

         Ce mémoire est composé de trois chapitres : 

Le premier chapitre, constitué de trois sections, est consacré à l’analyse des 

fondements de la détermination de la valeur d’une option. La première section est 
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consacrée à des généralités sur les options, aux déterminants de sa valeur ainsi qu’à 

ses limites d’arbitrage. La deuxième section porte sur les différents fondements du 

calcul stochastique. La troisième section est consacrée à la définition d’un indice 

boursier et d’un tracker, et traite les différents risques spécifiques à une option sur 

indice boursier. 

Le second chapitre traite de l’évaluation d’une option par le modèle de Black & 

Scholes. Il comporte deux parties : la première est consacrée au modèle de Black & 

Scholes, et la seconde est consacrée au calcul de la volatilité, aussi bien dans sa 

forme implicite que historique. 

Le dernier chapitre répond à la problématique posée sous forme des questions, mais 

également avec les apports personnels de l’étudiant. Cette partie est constituée à son 

tour de cinq sections : la première section étudie l’état de l’art ; la deuxième section 

traite de l’approche analytique ; la troisième porte sur à l’approche par la simulation 

de Monte-Carlo ; la quatrième concerne les résultats et commentaires, et la dernière 

section est consacrée aux limites du modèle et aux améliorations possibles. 

Le succès des stock-options outre en Atlantique et la mise en application des 

nouvelles normes comptables ont favorisé l’émergence d’une littérature abondante 

dans le domaine. Cependant, il n’existe que peu de documents scientifiques qui 

traitent spécifiquement de l’évaluation de telles options dans l’esprit de la norme 

IFRS2 [1]. On peut citer l’article de Fréderic Planchet et Pierre Therond (2003) [18] 

qui pose les bases réglementaires et fiscales des plans de stock-options, et évalue 

l’engagement « fair value » de l’entreprise à l’aide d’un modèle simple et l’article de 

Didier Maillard (2005) [26] qui traite de la valorisation des stock-options. 

Un grand nombre d’auteurs ont tenté de faire une synthèse numérique de 

l’ensemble des facteurs fondamentaux qui influencent le prix de toute option sur un 

marché financier, et de calculer la valeur théorique d.une prime de risque.  Dans ce 

contexte, il existe  deux démarches  essentielles  qui  sont  respectivement le modèle 

de Black & Scholes [4] et le modèle binomial. 

A  l'origine,  la formule  binomiale d’évaluation s.intéresse aux options européennes 

dont le support ne verse pas de dividendes, puis elle est ensuite étendue 

successivement aux options  sur  titres  versant des revenus [42], aux options sur 

contrats  « futures » [43], aux options sur devises étrangères [29]  et  aux options 
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américaines [28]. Cette formule   repose sur une hypothèse fondamentale qui est une  

condition  d’équilibre imposée aux  actifs, connue sous le nom d’absence 

d’opportunité d’arbitrage (qui permet de trouver le prix d’équilibre partiel d’un actif par 

rapport  aux  valeurs  de  marché  d’autres actifs) : les prix des actifs sont tels qu’ils 

doivent rendre impossible la réalisation d’un profit d’arbitrage sans risque. Dans ce 

contexte, la formule d’évaluation binomiale permet d’évaluer une option par rapport 

au prix de son support en supposant que le prix de l’action reflète toute l’information 

pertinente à l’évaluation d’un put ou d’un call puisque les calls et les puts sont 

évalués par rapport à une seule variable d’état qui est le prix de l’action  sous-jacente.  

Ce faisant, cette formule d’évaluation des calls et des puts permet d’exhiber les 

paramètres ayant une influence directe sur les prix de ces options.  

Cependant,  le  modèle  binomial pose un problème dans la mesure où l’évolution du 

prix d’une action est caractérisée par une dynamique en temps discret. Or, d’un point 

de vue pratique, une évolution en temps discret semble peu  réaliste  en  vertu  de  la  

fréquence  des cotations sur le marché qui est telle que le prix d’une action se 

présente comme une donnée continue. La réponse à cette objection prônant une 

évolution continue du prix de l’action est donnée  par  le modèle d’évaluation des 

options de Black & Scholes [4]. Ce modèle  est d’ailleurs considéré comme un  cas 

limite du modèle binomial (lorsque l’on fait tendre le nombre de périodes d’ici à 

l’échéance vers l’infini, auquel cas la loi binomiale caractéristique de l’évolution du 

prix de l’action converge, d.après le théorème  central  limite,  vers une  loi 

gaussienne). 

Robert C. Merton et Myron S. Scholes, en collaboration avec Fisher Black,  ont 

développé une formule révolutionnaire pour l’évaluation des options sur actions (« les 

stock options »). En 1973, Black & Scholes ont publié  une formule simple 

d’évaluation du juste prix d’un call européen sur une action, formule que Merton 

déduisait  et clarifiait dans  la  même année par application d’une autre méthode  

analogue, en  physique,  à  la  résolution  de l’équation de diffusion de la chaleur dans 

un univers unidimensionnel. Sur sa lancée, Merton généralise  cette formule dans 

plusieurs directions (c.-à-d. : à  plusieurs  types  d’instruments financiers), montrant 

ainsi que cette approche s’applique à tout actif  contingent versant une certaine 

somme à la date d’échéance du contrat. 

Le standard de la valorisation des options sur actions est la méthode de Merton, qui 

consiste en une adaptation de la méthode de Black & Scholes [4] pour tenir compte 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 

 

ANDRIAMANANTENA  Philibert 
6 

Mémoire de DEA, ENI 

  

de la distribution de dividendes. La méthode d’évaluation repose sur l’hypothèse que 

l’évaluation future de la valeur de l’action est aléatoire, et que la variation de sa valeur 

sur une courte période suit une distribution normale. Il en résulte que  la valeur future 

de l’action suit une loi log-normale. Cependant, la méthode de Merton [42] peut être 

remise en cause, et doit souvent l’être, pour tenir compte d’écarts entre les 

hypothèses sur lesquelles la méthode repose et la réalité. La source de ces écarts 

peut tenir à des facteurs généraux, liés à la nature des stock-options, ou à des 

facteurs particuliers, liés à l’action sur laquelle les options sont basées ou sur les 

clauses particulières des contrats les établissant. Ainsi, le modèle de Merton peut être 

adapté pour tenir compte de la variabilité, et du caractère stochastique des taux 

d’intérêt dans une perspective de long terme [26]. 

Les méthodes de Merton [42] et de Black & Scholes [4] reposant sur une 

hypothèse de distribution normale des rendements, et de volatilité constante ne 

permettent pas d’évaluer correctement les options [26]. C’est pourquoi ce présent 

mémoire opte au choix  de modèle stochastique. 
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Les modèles paramétriques d’évaluation des options se basent sur un certain 

nombre d’hypothèses, et font appel à la théorie  des actifs conditionnels ainsi qu’à 

des outils de mathématiques financières, et à des propriétés des variables d’états qui 

les déterminent.  

Le but du présent chapitre est de présenter ces propriétés et ces outils qui vont 

servir de base pour les modèles paramétriques développés dans le cadre de ce 

travail. Cette présentation va jusqu’au développement des démonstrations des 

résultats les plus utiles pour le présent mémoire. 

Ce chapitre, composé de trois sections, traite l’analyse des fondements de la 

détermination de la valeur d’une option. La première section est consacrée à des 

généralités sur les options, des déterminants de sa valeur, ainsi que des limites 

d’arbitrage. Elle est également consacrée d’une part aux fondements des hypothèses  

relatives au marché sur lesquelles reposent les modèles d’évaluation des options. 

Cette section traite aussi des conditions aux limites liées à l’évaluation d’une option 

ainsi qu’à la relation de parité call-put. 

La deuxième section porte sur les différents fondements du calcul 

stochastique. De la définition de la propriété de Markov, jusqu’à l’élaboration de 

l’équation de Fokker-Planck relative à une variable d’état, en passant par les 

propriétés des processus stochastiques, utilisés dans le présent mémoire, le lemme 

d’Itô dans le cas général et par l’évaluation avec un raisonnement risque-neutre. 

L’équation de Fokker-Planck est appliquée au processus empirique, au 

processus d’Ornstein Uhlenbeck et au mouvement brownien pour étudier leurs 

propriétés à long terme. Cette deuxième section se termine par l’élaboration de 

l’équation générale d’évaluation d’une option (Garman, 1976) [29], dans le cas où la 

valeur de celle-ci dépend de n variables d’états. 

La troisième section est consacrée à la définition d’un indice boursier  et d’un 

tracker, et traite les différents  risques spécifiques à une option sur un indice boursier. 

Elle se termine par l’élaboration du processus suivi par un indice boursier compte 

tenu des processus des actions le composant. 
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Section 1 : FONDEMENTS POUR L’EVALUATION D’UNE OPTI ON 

1-1 Valeur d’une option et ses déterminants 

1-1-1 Définition et généralités sur les contrats d’ options 

Une option est un contrat qui confère à son détenteur le droit d’acheter ou de 

vendre une certaine quantité d’actif sous-jacent à un prix prédéterminé, et ce pendant 

une période de temps donné. Un tel contrat représente un droit et non une obligation 

pour son détenteur. En d’autres termes, l’investisseur n’est pas contraint d’acheter ou 

de vendre l’actif financier. Pour une option européenne, la décision d’exercer ou de 

ne pas exercer ce droit aura lieu à l’échéance du contrat. Par contre, pour une option 

de type américain, cette décision peut avoir lieu à n’importe quel moment de la vie du 

contrat. La plupart des options standardisées négociées aujourd’hui sur l’ensemble 

de la planète sont des options américaines. La plupart des options européennes sont 

aujourd’hui négociées sur le marché de gré à gré des options sur action, ainsi que sur 

le marché interbancaire de change [18]. 

Il existe deux types d’options : les options d’achat (call) et les options de vente 

(put) [18]: 

Un call est un contrat qui confère à son détenteur le droit (et non l’obligation) 

d’acheter l’actif sous-jacent à un prix fixé d’avance durant une période de temps 

donné. 

Un put est un contrat qui confère à son détenteur le droit (et non l’obligation) 

de vendre l’actif sous-jacent à un prix prédéterminé durant une période donnée. 

Autant l’acheteur d’un contrat d’option a le choix d’exercer ou non son droit, 

autant, le vendeur d’un contrat d’option est totalement soumis à la décision de 

l’acheteur d’option. En contrepartie, le vendeur du contrat d’option reçoit de l’acheteur 

une somme égale au prix de marché de l’option, appelée prime de l’option. 

Les options se distinguent également par l’actif sur lequel elles portent,  

autrement dit l’actif sous-jacent. Celui-ci peut être une action, une obligation un 

tracker, … 
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1-1-2 Les déterminants exogènes de la valeur d’une option 

La valeur d’une option dépend du prix de l’actif support, du prix d’exercice, de 

taux d’intérêt sans risque, de l’échéance et de la volatilité du prix de l’action. 

1-1-2-1 Cours du sous-jacent 

De manière classique, la valeur de l’option se décompose en valeur 

intrinsèque ou valeur minimale et une valeur marchande (c.-à-d. la prime) qui est 

établie par le truchement de l’offre et de la demande. La valeur marchande d’une 

option d’achat ne peut être inférieure à sa valeur intrinsèque car elle correspond à la 

valeur intrinsèque plus la valeur-temps ou sur cote. 

La valeur intrinsèque d’une option représente ce que serait la valeur du contrat 

si son échéance intervenait immédiatement. Elle correspond donc à la différence 

entre le prix de l’action et le prix d’exercice de l’option. Elle est donc positive ou nulle, 

selon que l’option pourrait ou non être exercée par son détenteur [20]. 

                  

V� � �S � K, si S �  �0, si S �  K � 
                                                         

                                 Où    Valeur intrinsèque �  max �S � K, 0� 
            Où S : prix de l’action ordinaire 

                  K : prix d’exercice ou de levée de l’option d’achat 
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Considérons un contrat d’option portant sur 100 actions dont le prix d’exercice 

est de 60 Ar. 

 

 Figure 01 : Relation entre valeur intrinsèque et valeur 

marchande d’une option d’achat 

Comme l’indique la figure 01, la valeur intrinsèque d’une option d’achat (call) 

est nulle lorsque le cours de l’action S est inférieur, on dit de l’option d’achat qu’elle 

est « en dehors ou hors jeu » (out of the money) ou égal, l’option est dite « au milieu 

ou à parité » (at the money), au prix d’exercice K de l’option. Elle devient positive 

lorsque le cours de l’action excède le prix d’exercice, on dit de l’option qu’elle  est 

« en dedans ou en jeu » (in the money). 
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En ce qui concerne l’option de vente (put), la valeur intrinsèque n’est différente 

de zéro que si le cours de l’action est inférieur au prix d’exercice (en dedans). Elle est 

donc égale au prix d’exercice diminué du cours de l’action [20]:            

 V� � �K � S, si S �  �0,       si S   K � 
    Où !" � max �� � #, 0� 
 La valeur temps ou sur cote d’une option représente le surplus de la valeur de 

cette dernière par rapport à sa valeur intrinsèque, étant donné le temps qui lui reste à 

courir. Tant qu’il existe une probabilité de pouvoir exercer l’option à l’échéance et, 

par-là même de réaliser un bénéfice, les investisseurs sont prêts à payer une valeur 

sur cote pour détenir le contrat d’option. 

Dans le cas de l’option d’achat, lorsque le cours de l’action est largement 

inférieur au prix d’exercice, la probabilité d’exercer l’option d’achat est faible, et la 

valeur sur cote aura une valeur proche de zéro puisque aucun investisseur ne sera 

intéressé par ce type de contrat [26]. Par contre, dès que le cours de l‘action s’élève, 

et se rapproche du prix d’exercice, la probabilité que la hausse continue dans le 

temps augmente, et donc les chances de pouvoir exercer l’option s’accroissent. Les 

investisseurs seront intéressés par ce contrat d’option et acceptent de payer 

progressivement une valeur sur cote de plus en plus importante. La valeur sur cote 

atteint sa valeur maximale lorsque le cours de l’action égalise le prix d’exercice. 

Lorsque le cours de l’action dépasse le prix d’exercice, la valeur sur cote commence 

à décroître. En effet, plus le cours de l’action augmente, plus il devient probable, et 

même certain que l’option sera exercée à l’échéance. Les investisseurs ne sont pas 

disposés à payer une valeur sur cote pour la détention d’une telle option dont la 

valeur est jugée très élevée. 

1-1-2-2 Taux d’intérêt à court terme 

Dans la mesure où l’achat d’une option d’achat nécessite un investissement 

initial inférieur à celui de l’achat ferme du sous-jacent, le détenteur d’une option 

d’achat peut placer les capitaux provisoirement épargnés au taux d’intérêt sans 

risque pendant toute la durée du contrat  d’option. Ainsi, plus le taux d’intérêt sans 

risque est élevé, plus l’avantage de l’achat d’une action par le biais de l’option sur 

achat ferme de cette même action est important, et par conséquent plus la valeur de 

l’option est élevée [28].  
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Sous un angle mathématique, un taux d’intérêt élevé implique une valeur de 

l’option d’achat représentée par la différence  S � Ke$%&'$() [19] plus élevée. Où r, T, t 

représentent respectivement le taux de rendement de l’option, l’échéance de l’option 

et l’instant duquel l’exercice est possible ou non. 

L’achat d’une option de vente, en comparaison avec la vente ferme des actions 

entraîne, outre le décaissement de la prime, un retard dans l’encaissement du 

montant de la vente des actions qui n’intervient qu’au moment de l’exercice de 

l’option. La valeur de l’option de vente représentée par  Ke$%* � S [19] est donc 

d’autant plus faible que le taux d’intérêt sans risque est élevé. 

1-1-2-3 Durée de vie de l’option 

Le pari sur l’évolution du cours de l’action, fait par l’acheteur d’une option  (à la 

hausse ou à la baisse), a d’autant plus de chances d’être gagné que l’échéance est 

lointaine. En effet, l’éloignement de l’échéance augmente les possibilités de variation 

du cours de l’action et donc la probabilité d’exercice de l’option. 

Les options peuvent être classées en fonction de leurs échéances, en options 

à court terme et en options à long terme. Les premières ont des échéances qui sont 

très rarement supérieures à 6mois à l’inverse des dernières et, plus particulièrement 

des warrants dont l’échéance peut atteindre 18 mois, 2 ans, voire 5 ans et plus [22]. 

1-1-2-4 Prix d’exercice de l’option 

Une option d’achat a une probabilité d’autant plus forte de finir en dedans et 

donc d’être exercée que son prix d’exercice est faible. Sa valeur est alors une 

fonction décroissante de son prix d’exercice. A l’inverse, la probabilité d’exercer une 

option de vente est d’autant plus importante que son prix d’exercice est élevé. La 

valeur de l’option de vente est par conséquent une fonction croissante de son prix 

d’exercice [36]. 

1-1-2-5 Volatilité de l’action 

La volatilité de l’action est représentée par l’écart type annualisé des 

rendements déterminés à partir des variations relatives des prix de l’actif support de 

l’option, à savoir le sous-jacent [29]. 

L’acheteur d’une option est un spéculateur à la hausse (option d’achat) ou à la 

baisse (option de vente) du titre support. Il est disposé à payer une prime d’autant 

plus élevée que l’amplitude des fluctuations du cours de l’action est importante, et 
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donc que son option a des chances de finir en dedans. En fait, plus la volatilité est 

forte, plus la probabilité que le cours de l’action soit supérieur ou inférieur au prix 

d’exercice de l’option est élevée. 

Ainsi, la valeur de l’option (d’achat ou de vente) est une fonction croissante de 

la volatilité du sous-jacent. Celle-ci peut être estimée soit à partir des rendements des 

actions sur une période précédant la date d’émission des options, soit à partir des 

prix des options observés sur le marché. Ces deux méthodes d’estimation sont 

connues respectivement par la volatilité historique et la volatilité implicite [29].  

1-2 Equilibre arbitrage et efficience d’un marché f inancier  

Dans cette sous section, on se réfère à l’œuvre de Fama  E. [30]. 

1-2-1 Equilibre 

Un marché est dit en équilibre si l’offre du produit financier considéré égalise 

sa demande. Cette égalité s’obtient grâce à l’ajustement des prix. Dès lors sur un 

marché financier en équilibre et suffisamment liquide, tout operateur trouvera une 

contrepartie acceptant de traiter au prix du marché. L’équilibre est dit compétitif si 

aucun agent n’a un poids relatif suffisant pour peser les prix. Il s’ensuit que sur un 

marché financier en équilibre compétitif, tout opérateur peut acheter ou vendre des 

quantités arbitraires au prix du marché alors qu’il ne trouvera aucun vendeur 

acceptant un prix inférieur. 

1-2-2 Absence d’opportunités d’arbitrage 

L’arbitrage est une opération qui n’implique aucune mise de fonds et qui 

n’engendre que des flux de trésorerie positifs ou nuls. L’existence d’opportunité 

d’arbitrage sur un marché est incompatible avec l’équilibre de celui-ci. En effet, 

l’opportunité d’arbitrage déclenche une offre sur les produits « surcotés » et une 

demande sur les produits sous-cotés. En revanche, un marché exempt d’opportunité 

d’arbitrage n’est pas nécessairement en équilibre. La condition d’équilibre est donc 

plus forte que celle d’absence d’arbitrage, bien que cette dernière conduise dans de 

nombreux contextes, à des modèles importants et constitue la pierre angulaire de la 

théorie financière moderne et notamment dans l’évaluation des options. 
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1-2-3 Efficience 

L’équilibre d’un marché financier peut éventuellement résulter d’offres et de 

demandes émanant d’opérateurs irrationnels et/ou mal informés. Dans telles 

conditions, le prix d’équilibre n’incorpore pas nécessairement toutes les informations 

potentiellement disponibles et joue mal son rôle dans l’allocation des ressources.  

D’après Fama (1970) [30], un marché est efficient quand à chaque instant, les 

prix incorporent toute l’information pertinente et disponible. 

Quand cette condition d’efficience est satisfaisante, les prix du marché à 

l’instant précédent l’instant présent incorporent correctement toute l’information 

disponible pertinente à la prévision des prix futurs et les rendements sont dits 

normaux. 

Selon le système d’information, présumé disponible à l’instant précédent 

l’instant présent, on considère trois formes d’efficiences : l’efficience faible, l’efficience 

semi-forte, et l’efficience forte. 

L’efficience faible est celle d’un marché dont les prix incorporent à chaque 

instant le seul historique des prix passés. Dans ce cas, les opérateurs ne peuvent 

tirer parti de la connaissance de la chronique des prix passés  pour réaliser des 

profits anormaux et systématiques. 

L’efficience semi-forte est celle d’un marché dont les prix incorporent à chaque 

instant non seulement la chronique des prix passés, mais également toutes les 

informations pertinentes rendues publiques. Dans ce cas, les opérateurs ne peuvent 

tirer parti d’informations rendues publiques pour réaliser des profits anormaux car les 

prix s’ajustent quasi instantanément dès qu’une information pertinente est annoncée. 

Enfin, l’efficience forte est celle qui caractérise un marché dont les prix 

incorporent toute l’information disponible, qu’elle ait été rendue publique ou non. Sur 

un tel marché, l’information privilégiée est très rapidement incorporée dans les prix 

d’équilibre et les profits d’initiés sont pratiquement inexistants. 
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1-3 Limites d’arbitrage et relation call-put 

1-3-1 Limites d’arbitrage de la valeur d’une option  négociable 

Pour respecter le principe d’absence d’opportunités d’arbitrage sans risque, 

une option doit vérifier un certain nombre de conditions qui correspondent à des 

valeurs limites de l’option considérée. 

1-3-1-1 Aucune distribution de dividendes de l’acti f sous-jacent 

Dans le cas où l’actif sous-jacent ne verse pas de dividendes, les conditions 

que doit vérifier la valeur d’une option d’achat sont [37]: 

 

Condition 1  : 

Une option est un actif financier qui procure une responsabilité limitée. La perte 

maximale que peut supporter l’acheteur d’un call est la valeur de l’option. De ce fait, 

la valeur de l’option ne peut être négative : C  0. 

Condition 2  : 

Si à l’échéance, le prix du sous-jacent  S' est supérieur au prix d’exercice K, 

l’option d’achat est exercée, et sa valeur est  &S' –  K)-. Par contre, si à l’échéance le 

prix du sous-jacent est inférieur  ou égal au prix d’exercice de l’option, la valeur de 

l’option d’achat est nulle : soit C &S', 0, K) �  Max &0, S'  � K). 
Condition 3 :  

De toute évidence, le prix d’une  option d’achat est une fonction  décroissante 

du prix d’exercice de l’option : C&S, τ, K0)  � max&S, τ, K1)si K0  K1   
 Condition 4  : 

Le prix d’un call ne peut être  supérieur à celui de l’actif sous-jacent. En effet, si 

c’était le cas, un investisseur achètera le sous-jacent et jamais l’option. On a donc : C&S, τ, K)  �  S. 
Comme la valeur de l’option ne peut être négative (condition 1), si la valeur  du 

sous-jacent est nulle, la valeur de l’option sera également nulle et on aura : C &0, τ, K)  � 0. 
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Condition 5  : 

Cette condition s’énonce : C&S, τ, K)    S � Ke$%τ    
Où τ �  T � t est la durée de vie résiduelle de l’option, t étant la date courante 

et T la date d’échéance. Cette condition peut être démontrée en considérant deux 

portefeuilles PF1 et PF2. Le portefeuille PF1 est constitué d’un call sur un actif sous-

jacent ne payant pas de dividende, et d’un emprunt qui aura une valeur égale au prix 

d’exercice du call à son échéance. Le portefeuille PF2 est constitué d’une unité de 

l’actif sous-jacent. 

Le tableau suivant donne les pay-off de ces deux portefeuilles dans le cas où 

l’option finit en dedans, et dans le cas où l’option finit en dehors. 

Tableau 01 : Pay-off des portefeuilles PF1 et PF2 

A l’échéance S' �  � S'    K 

PF1 � &S' –  K)  3  K �  S' 

PF2 S' S' 

Valeur à l’échéance V450  V 451 V450 � V 451 

 

A l’échéance, la valeur du portefeuille PF1 est au moins égale à celle de PF2. 

Dans l’hypothèse d’absence d’arbitrage, à chaque instant situé entre l’instant présent 

et la date d’échéance, la valeur du portefeuille PF est au moins égale à celle du 

portefeuille PF2. On peut  donc écrire :  

V450&6)  V 451&6) ⤇ C&S, τ, K)  3 Ke$%τ  S   ⤇ C&S, τ, K)    S �  Ke$%τ   
1-3-1-2  Avec distribution de dividendes de l’actif  sous-jacent 

Le versement de dividendes engendre une baisse du prix de l’actif sous-jacent.  

Dans un marché efficient, où il n’existe pas d’opportunités d’arbitrage gagnant sans 

risque, la baisse du prix de l’actif sous-jacent est égale au montant des dividendes 

[4]. 
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Si l’on suppose que le montant D des dividendes ainsi que sa date de 

versement sont connus, la condition 5 devient dans ce cas : C&S, τ, K)    S �
 Ke$%τ – D  . Ceci peut être démontré en considérant les deux portefeuilles suivants :  

PF1 : achat d’un call C, et emprunt d’une somme qui aura la valeur K à 

l’échéance. 

PF2 : achat d’une unité du sous-jacent S et emprunt d’une somme égale au 

dividende D à l’instant présent. 

La valeur du portefeuille PF2, à l’échéance, sera égale à ST  puisque l’emprunt 

au moment D sera remboursé dès la réception des dividendes. A l’échéance, la 

valeur du portefeuille PF1 est supérieure à la valeur du portefeuille PF2. Dans 

l’hypothèse d’absence d’arbitrage, à chaque instant situé entre l’instant présent et la 

date d’échéance, la valeur du portefeuille PF1 est au moins égale à celle du 

portefeuille PF2. On peut donc écrire : 

 V450&6)  V 451&6) ⤇ C&S, τ, K)  3 Ke$%τ  S � D  ⤇ C&S, τ, K)    S �  Ke$%τ – D   
1-3-2 Relation de parité call-put [19] 

Si P désigne le prix d’un put, et C celui d’un call ayant le même sous-jacent S, 

la même échéance T, et le même prix d’exercice K. Soit le portefeuille constitué de la 

vente d’un put et de l’achat d’un call. 

1-3-2-1 Aucune distribution de dividendes de l’acti f sous-jacent 

Si l’on considère le portefeuille constitué, à l’instant t, par l’achat d’une unité de 

l’actif sous-jacent, l’achat d’un put P, et la vente d’un call C. Ainsi, le portefeuille 

désigné par π aura à l’instant t une valeur égale à : 

Π&t)  �  S&t)  3  P&t) –  C&t) 

La valeur de ce portefeuille à l’échéance est tel que :  

Si S   K : Π&t)  �  S&t)  3  0 – &S&t) – K)  �  K    le call est exercé et le put n’est 

pas exercé. 

Si  S �  � : ;&6)  �  #&6)  3  &� –  #&6))  �  0 �  �     le call n’est pas exercé et le 

put est exercé. 
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La valeur du portefeuille à l’échéance est donc égale au prix d’exercice quelle 

que soit la valeur du sous-jacent à l’échéance. Ce qui est important de savoir est 

quelle est la valeur du portefeuille <&6) à l’instant considéré t ? 

La valeur actualisée de la valeur du portefeuille  à l’échéance est      Ke$%τ avec τ �  T � t. En supposant qu’on ne peut pas réaliser un profit d’arbitrage 

sans risque, on peut écrire que <&6) � Ke$%τ  d’où la relation de parité call-put dans le 

cas où le sous-jacent ne paye pas de dividendes : 

S&t) 3 P&t) �  C&t)   � Ke$%τ , Pour tout t, 0 �  t �  T. 

Soit C&t) –  P&t)  �  S&t)  �  Ke$%τ  (1-1.1) 

Ce raisonnement peut être illustré dans le tableau suivant : 

Tableau 02 : Pay-off du portefeuille π 

 Valeur à t Valeur à l’échéance T 

 S' �  � S'    K 

Achat du sous-

jacent 

�S&t) S' S' 

Achat d’un put �P&t) K �  S' 0 

Vente d’un call C&t) 0 S' �  K 

Emprunter Ke$%τ �K �K 

Total = C&t) –  S&t) –  P&t)  3 Ke$%τ   0 0 

 

Cette relation est très importante puisqu’elle permet de déduire la valeur d’un 

put à partir de celle d’un call et vice versa. 

1-3-2-2 Avec distribution de dividendes de l’actif sous-jacent 

En présence de dividendes, dans le cas discret, la relation de parité put-call 

(1.1-1) devient : C&t) –  P&t)  �  S&t) �  D �  Ke$%τ . Ceci peut être démontré, en 

considérant les portefeuilles suivants :  

Le 1er portefeuille PF1 est constitué de l’achat d’un call d’une position cash 

d’un montant égal à D 3  Ke$%( et de la vente d’une unité de l’actif sous-jacent. Le 
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montant cash D est destiné à compenser la baisse du prix du sous-jacent due au 

versement des dividendes. 

Le 2ème portefeuille PF2 est constitué uniquement d’un put de même prix 

d’exercice et de même échéance que le call du portefeuille PF1. 

A l’échéance des options, les deux portefeuilles auront la même valeur : 

max&K � S' ;  0). 

D’où la relation suivante : P&t)  � C&t)  � S&t) 3  D 3 Ke$%τ  ⤇ C&t)–  P&t) �S&t) � D �  Ke$%τ  .  
1-4 Les stock-options 

1-4-1 Définition [18] 

Une stock-option est un droit, accordé par une entreprise à un salarié ou à un 

dirigeant, d’acquérir dans le futur un nombre fixé à  l’avance d’actions de la société ou 

d’une entreprise de son groupe [26]: 

a) A un prix fixé lors de l’attribution du droit, 

b) Entre deux dates futures. 

Financièrement, les stock-options sont des options comme les autres, c.-à-d. 

un droit qui a été accordé à son bénéficiaire de réaliser une opération ; droit mais non 

pas obligation. L’opération faisant l’objet du droit consiste à acquérir une certaine 

quantité d’actions de l’entreprise à un prix normalement convenu une fois pour toutes, 

fixé au moment où l’option est octroyée [26]. 

L’option peut être exercée (on dit aussi « levée »), c.-à-d. que l’opération 

d’acquisition peut être réalisée à l’intérieure d’une certaine période de validité [18]. 

En règle générale, les options du type européen ne peuvent pas être exercées 

avant que quatre ou cinq années se soient écoulées depuis leur octroi, pour des 

raisons de pénalisation fiscale du bénéficiaire, et de l’entreprise. Et il existe un terme 

au-delà duquel l’option ne peut plus être exercée, auquel elle expire. Ce terme est 

souvent de huit ans en Europe aujourd’hui. Dans d’autres pays, comme aux Etats-

Unis, les stock-options peuvent souvent être exercées à une échéance sensiblement 

plus proche, dans un délai de trois ans par exemple, sans que cela  fasse encourir 

une pénalité fiscale excessive [15]. 
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 Le détenteur rationnel d’une option qui souhaite exercer celle-ci ne le fera que 

si, au moment de la levée, le prix de l’action est supérieur au prix convenu pour 

l’exercice. En effet, s’il ne le fera avec profit  que si le prix de vente est supérieur au 

prix d’achat. S’il ne souhaite pas revendre l’action acquise, il n’a pas non plus intérêt 

à exercer l’option si le prix de l’action est inférieur au prix d’exercice, car il est plus 

avantageux alors d’acheter directement l’action sur le marché plutôt que par 

l’exercice de l’option. 

Il existe en pratique deux types de stock-options [26]: 

Les options de souscription qui, lorsqu’elles sont exercées, conduisent à la 

création de nouvelles actions, c.-à-d. à une augmentation de capital. 

Les options d’achat qui, lorsqu’elles sont exercées, conduisent à un transfert 

d’actions entre la société et le détenteur de l’option. 

1-4-2 Cadre réglementaire et fiscal [45] 

1-4-2-1 Mise en place d’un plan de stock-options 

Qu’elles soient cotées ou non, les sociétés anonymes, les sociétés par actions 

simplifiées et les sociétés en commandite par actions peuvent consentir à leurs 

salariés, et dirigeants des stock-options. 

L’objet de ce paragraphe est de décrire les formalités auxquelles doit se 

soumettre la société qui souhaite octroyer cet avantage à ses employés. 

1-4-2-1-1 Obligations administratives 

La décision d’octroyer des options est de la compétence de l’assemblée 

générale extraordinaire (AGE), statuant sur rapport du conseil d’administration (CA) 

et sur rapport spécial des commissaires aux comptes, et qui autorise le CA à 

consentir les options. 

Dans le cadre de l’autorisation donnée par l’AGE, le CA fixe les conditions 

dans lesquelles sont consenties les options. Il peut aussi, s’il l’estime opportun, 

différer l’octroi des options, voire y renoncer. 

Lorsque le CA envisage d’offrir des options d’achat, il doit préalablement à 

l’ouverture de celles-ci, faire acheter par la société les actions qui seront attribuées 

aux bénéficiaires s’ils lèvent leurs options. Ce point est  particulièrement important 
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dans l’optique de l’évaluation de l’engagement. La société est expressément 

autorisée à racheter ses propres actions pour garantir les options d’achat, mais les 

options  doivent être consenties dans le délai d’un an à compter de la date 

d’acquisition des actions, sous peine d’une amende. La société doit toutefois 

respecter les limitations quant à la détention par une société de ses propres actions : 

en effet une société ne peut détenir plus de 10% de ses propres titres. 

1-4-2-1-2 Caractéristiques des options 

Le prix de souscription ou d’achat des actions 

Le prix de souscription ou d’achat des actions est fixé par le CA au jour où 

l’option est consentie, selon les modalités déterminées par l’assemblée générale 

extraordinaire sur le rapport des commissaires aux comptes. 

Si les actions de la société sont admises aux négociations sur un marché, le 

prix de souscription ou d’achat ne peut pas être inférieur à 80% de la moyenne des 

cours cotés aux vingt séances de bourse précédant  ce jour. En outre, dans le cas 

d’options d’achat, le prix de l’action, au jour où l’option est consentie, ne peut pas être 

inférieur à 80% du cours moyen d’achat des actions détenues par la société. 

Si les actions ne sont pas cotées, l’AGE détermine librement les modalités 

selon lesquelles le CA fixera le prix de souscription ou d’achat (en fonction de critères 

objectifs tels que le chiffre d’affaires, la marge brute d’autofinancement, les bénéfices 

ou le montant des capitaux propres). 

Le prix fixé pour la souscription ou l’achat des actions ne peut pas être modifié 

pendant la durée de l’option, sous réserve de la survenance de certaines opérations 

exceptionnelles : augmentation de capital, émission d’obligations convertibles ou 

réduction de capital. 

Le nombre maximal d’actions qui peuvent être acheté es ou souscrites 

Le CA détermine librement le nombre maximal des actions qui pourront être 

souscrites  ou achetées par chacun des bénéficiaires sous réserve que  les options 

ouvertes et non encore levées ne donnent pas droit à un nombre d’actions excédent 

le tiers du capital social. 
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Le délai d’exercice 

Il est fixé par l’AGE. Il est possible de prévoir une période de blocage pendant 

laquelle les options ne peuvent être exercées. A cette période de blocage, peut 

s’ajouter une clause, limite dans le temps, d’interdiction de cession des actions. 

1-4-2-1-3 Charges pour l’entreprise 

Pendant la période qui s’étend de l’attribution à la levée des options, la société 

émettrice supporte : 

Les frais d’acquisition des actions destinées à être remises aux bénéficiaires ; 

Les frais de gestion des actions ainsi achetées  ou de celles émises en vue de 

faire face aux offres de souscription. 

1-4-3 Exercice des options et ventes des actions 

1-4-3-1 Conditions d’exercice des stock-options  

Sauf clause contraire expresse, les titulaires des options peuvent exercer leurs 

droits même s’ils ont quitté la société depuis l’attribution des options, et ce quelle que 

soit la cause de leur départ. La société est en effet irrévocablement engagée par son 

offre et n’a pas le pouvoir d’en modifier ultérieurement les conditions d’exercice. C’est 

pourquoi il est très fréquemment stipulé dans le règlement du plan que les intéressés 

devront, pour exercer leurs droits, faire partie avec possibilité des salariés qui partent 

en retraite  ou qui doivent cesser leur activité pour cause d’invalidité [7]. 

En cas de décès du bénéficiaire, ses héritiers peuvent exercer l’option dans un 

délai de six mois à compter du décès. 

1-4-3-2 Ventes des actions 

Dès qu’ils ont levé leurs options, et qu’ils sont inscrits en compte, les 

bénéficiaires peuvent exercer tous les droits attachés aux actions qui leur sont 

attribués : droit de participer aux assemblées, et d’y voter, droit aux dividendes, droit 

de communication. Toutefois rien n’interdit de prévoir dans le plan un différé de 

jouissance [2]. 
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Indisponibilité 

Les titres issus de la levée de stock-options sont frappés d’une période de 4 

ans à partir de la date d’attribution, pendant laquelle elles ne peuvent être vendues. 

Cette indisponibilité est levée dans les cas suivants [6]: 

a) Invalidité du titulaire 

b) Décès du titulaire 

c) Licenciement ou mise à la retraite du titulaire, à condition que les 

options aient été levées au moins trois mois avant la date de 

l’événement invoqué, c.-à-d. dans le premier cas, au moins trois mois 

avant la date à laquelle le salarié a reçu la notification de son 

licenciement et, dans le second cas, trois mois au moins avant la date 

de cessation du contrat de travail. 

1-4-3-3 Fiscalité pour le bénéficiaire [45] 

Il est important de bien cerner les aspects fiscaux des stock-options pour le 

bénéficiaire puisque ce sont eux qui vont déterminer en grande partie le 

comportement de celui-ci vis-à-vis de l’exercice de l’option ou de la vente des actions 

par exemple. 

Pour calculer l’impôt sur le gain résultant de l’exercice des stock-options, le fisc 

le décompose en trois parties : le « rabais », la « plus-value d’acquisition», et la 

« plus-value de cession ». Chacune de ces parties sera grevée d’un impôt différent : 

Le rabais est la différence entre le prix d’acquisition et le cours de l’action au 

moment de l’attribution. 

La plus-value d’acquisition est la différence entre le cours d’acquisition et le 

prix d’acquisition. 

La plus-value de cession est la différence entre le cours de cession et le cours 

d’acquisition. 

L’imposition est différente selon la date d’attribution des stock-options. 
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1-4-3-4 Charges pour l’entreprise [45] 

La levée des options est susceptible d’entrainer les charges ou pertes ci-

après : 

La rémunération des intermédiaires qui enregistrent les levées d’option et les 

frais d’inscription des actions sur le registre des transferts. 

En cas d’offre d’achat, la moins-value correspondant à la différence entre le 

prix auquel la société a acquis les actions proposées et le prix acquitté par les 

bénéficiaires. 

Dans certaines situations, la charge des cotisations de sécurité sociale et des 

participations sur salaires ayant la même base de calcul. 

Section 2 : CALCUL STOCHASTIQUE ET EVALUATION DES P RODUITS 

DERIVES 

2- 1 Propriété de Markov [41]  

Le processus de Markov est un type particulier de processus stochastique où 

seulement la valeur présente de la variable en question est déterminante dans la 

détermination de sa valeur future. L’historique de la variable, et la manière dont le 

présent a émergé du passé n’ont aucune influence sur la valeur future de la variable. 

La propriété de Markov pour le prix d’un actif financier va de paire avec l’efficience du 

marché sous sa forme faible. Cette forme d’efficience peut s’énoncer sous la forme : 

« le cours actuel d’un titre contient toute l’information disponible sur ce titre ». 

L’espérance de la variable aléatoire conditionnée par les événements passés 

dépend uniquement de la valeur précédente X($0. C’est un processus sans mémoire 

du passé. 

Ceci peut être formalisé comme suit : si l’instant présent est t, 

L’événement ? � @ XA; B � 6C  représente le futur du processus X(. 
L’événement D � @ XA; B � 6C représente le passé du processus X(. 
Le processus  X( est dit Markovien si et seulement si : P &A X(⁄ , D) � G&? HI⁄ ), 

pour tout t. 

Connaissant le présent, le passé et le futur du processus sont indépendants. 

Ainsi, la connaissance du passé d’un processus Markovien ne fournit aucune 
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information sur son évolution à venir, en dehors de celle contenue dans la valeur 

présente qui seule détermine la distribution future des cours, en l’absence de 

nouvelles informations. 

La propriété de Markov a une importance capitale dans la modélisation 

financière, en particulier dans l’évaluation des options, comme c’est le cas dans le 

présent mémoire. 

2-2 Mouvement Brownien (ou processus de Wiener) [16 ] 

Le mouvement Brownien avec un drift est un processus stochastique  @ X(; 6  0C  qui vérifie les propriétés suivantes : 

Chaque variation &X(-A � XA)  du processus @ X(; 6  0C, entre les instants s et 

s+t, suit la loi normale de moyenne µt et de variance σt
2
 où µ et σ sont des 

paramètres constants. 

Pour les instants & 60<61<…<6J), les variations &X(K � X(L), MX(N � X(KO, … , MX(Q �
X(QRL) sont indépendantes et suivent la loi normale, comme précisé au précédent. 

XS � 0 et @ X(; 6  0C est continue par rapport au temps. 

Il est à noter, avec ces propriétés, que la variation &X(-A � XA) est 

indépendante de l’histoire du processus  X(, car la connaissance de  X'&T � #) n’a 

aucun effet sur la distribution de probabilité de X(-A � XA . C’est précisément le 

caractère Markovien du mouvement Brownien. 

Il est à noter également que dans le cas où µ = 0 et, le mouvement Brownien 

est appelé mouvement Brownien standard dont la distribution de probabilité en 

continue est : 

P &Z( � V/Z(X  �  ZS)  �  P &Z( � Z(X � V � ZS)  �  1Z2<&6 � 60) \ ] µK1&I$IS)^$^X
$∞   du 

Le processus {  X(; t≥0} peut s’écrire en fonction de {Z( ; t≥0} sous la forme :  

dx( � µdt 3 σdZ(. 
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Ainsi, dZ( est une variable aléatoire suivant une loi normale centrée. 

L’espérance mathématique de dZ(  est `&dZ() � 0. La variance de dZ(  est  !ab&dZ() �
c6. 

Les valeurs de dZ( relatives à des intervalles de temps courts dt quelconque 

sont indépendantes. 

Le drift réel µ et la volatilité σ sont des paramètres qu’on peut estimer à partir 

de l’historique du prix de l’actif dont le prix suit le processus X(. 
Le processus dZ( peut s’écrire sous la forme : dZ( � d√c6, où U est une 

variable aléatoire suivant une loi normale centrée réduite. La variable aléatoire U2 suit 

donc une loi du Khi-deux de degré 1 (d1 f g1&1)), tel que son espérance 

mathématique est E&U1) � 1, et sa variance est var &U1) �  2. 

Comme le carré du processus dZ(  est : dZ(1 � U1dt, on déduit de ce qui 

précède que l’espérance du processus dZ(1est E (dZ(1) � E&U1)dt � dt, alors que sa 

variance est de var (dZ(K) = var &U1)dt1 �  2dt1  . 

On peut donc affirmer que, quand dt tend vers 0, à l’ordre de dt le processus 

dZ(1 devient équivalent à dt, soit dZ(1 k dt. 
L’hypothèse selon laquelle le cours d’une action est un mouvement Brownien 

n’était pas réaliste car le prix de l’action ne peut pas prendre des valeurs négatives. 

D’où l’idée de modéliser par un mouvement Brownien géométrique. 

2-3 Mouvement Brownien géométrique [16] 

Soit le processus {HI; 6  0C suivant un mouvement Brownien avec un drift µ≥0 

et une variance constante égale à σ2. Le processus stochastique, défini par : {lI  � ]mn;  t  0C est appelé mouvement Brownien géométrique. Ce processus {lI;  t  0C est donc toujours positif. On dit qu’il suit, à chaque instant t, une loi log-normale 

dont les paramètres dépendent du temps t. L’espérance et la variance de ce 

processus peuvent être déduites de celles de la loi log-normale et on a :  

E (lI/lS � oS) � oS]&µp-σpKK ) et Var (lI/lS � oS)� oS1]&1qn-rnK)(]rnK � 1) 
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La fonction de densité de lIest g&y)  � 0ur√1vI ]$&wxyRzn)KK{nK  ; y>0. 

Ainsi, pour les instants 60<61<…<6J, les variables (lI1/lI0), (lI|/lI1), …, 

(lIJ/lIJ$0)  sont indépendantes et suivent la loi log-normale. 

En continue, un mouvement Brownien géométrique s’écrit en fonction du 

mouvement Brownien standard {VI ; t≥0}, sous la forme : 
}~n~n � µc6 3 �cVI. 

2-4 Processus d’Ornstein Uhlenbeck [40] 

Le processus d’Ornstein Uhlenbeck est un processus gaussien et markovien. Il 

est de la forme : dX( � K &ф � X()dt 3 qdZ(  (1.2-1), où dZI � U√c6 est un processus 

de Wiener-levy : U étant une variable aléatoire normale centrée réduite. 

La valeur à long terme de ce processus est égale à ф. En effet, l’espérance de 

ce processus, à un instant t, s’écrit :E &dX( )  �  E &dX(-�( ) � E &X( )  �  K &ф �E &X( ))dt. Or, à long terme (quand t ⤇3∞), on aura : E &X( ) k E &X(-�( )  ⤇   E &X( ) k
ф. La variable d’état X(  a donc tendance à osciller autour de la moyenne à long 

terme, avant de converger vers celle-ci à long terme. Si la valeur de X(  est plus petite 

que celle de la moyenne à long terme ф, alors le drift réel de ce processus est positif 

ce qui veut dire que sa moyenne a tendance à augmenter. Alors que dans le cas 

contraire, la moyenne du processus X aura tendance à retrouver sa moyenne à long 

terme ф. La vitesse de retour à la moyenne est déterminée par le taux de retour à la 

moyenne K. Plus la valeur de K est grande, plus le retour à la moyenne  est  rapide, 

et vice versa. 

L’expression de X(  peut être déterminée à partir de son équation de diffusion, 

par changement de variable  Y( � ]�IX( . Si le processus X(  prend la valeur XS  à 

l’instant initial t=0, alors on a  YS � XS. 

En appliquant le lemme d’Itô au processus  Y( �  f &t ;  X( )  �  ]�IX( , on aura :  

dY( � � ���mn �&ф � X( ) 3 ���I 3 01 �K��mnK �1� c6 3 ���mn �cVI. 

Avec  
���mn �  ]�I 
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��
�I � �]�IX(  

           
�K��mnK � 0 

On a donc  � cl�IS � � &�&ф
IS � H�)]�� 3 �]��H�)cB 3 � �]��cV�IS . 

Soit  lI � lS � ф � ke�Ads(S 3 q � e�AdZA(S . 

Comme  YS � XS, on a : ]�IX( � XS � ф &]�I � 1) 3 � � ]��cV�IS  

⤇ X( � XSe$�( 3 фe$�( &]�I � 1) 3 �e$�( \ ]��cV�
I

S  

Alors son expression explicite est : X( � ф 3 &XS � ф)e$�( 3 �e$�( � ]��cV�IS  

Le processus X(  est donc gaussien. Comme E &dZA) �  0 et var &dZA) �  1 �B  
et, l’espérance, et la variance du processus X(  sont les suivantes : 

                           E &X( )  � ф � &XS � ф)]$�I   (1.2-2) 

Var &X( )  �  q1]$1�I \ ]1���ab&cV�)I
S  

      � q1]$1�I \ ]1��cBI
S   

                                            �  q1]$1�I��K��
1� � IS  

                                            �  q1 �RK�n
1� &]1�I � 1)    

     Soit Var &X( )  �  q1 01� &1 � ]$1�I)  (1.2-3) 

Comme limIf-�&1 � ]$1�I) � 1, ainsi on vérifie bien qu’à long terme, le 

processus reste gaussien avec une moyenne ф et une variance égale à  �11�. 
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2-5 Lemme d’Itô [32] 

Le prix d’une option est fonction du prix du sous-jacent, et du temps. La 

connaissance de la fonction de variables suivant des processus stochastiques est, à 

cet effet, très importante pour l’évaluation des options. Le lemme d’Itô (1951) est la 

base du calcul stochastique. 

2-5-1 Cas d’une seule variable stochastique 

Supposons que X est une variable stochastique suivant le processus d’Itô 

défini par : 

 dx � a&x, t)dt 3 b&x, t)dz, avec dz suivant un processus de Wiener-Levy et a et 

b sont des fonctions de X et du temps t. Ce processus peut s’écrire également sous 

la forme :  

dx �  a&x, t)dt 3 b&x, t)√c6d. Où U est une variable aléatoire normale centrée 

réduite MU �  � &0, 1)O. 
Soit G (x, t) une fonction de x et du temps t. Soit le développement en série de 

Taylor de la fonction G par rapport à x et au temps t : 

c� � ���� c� 3 ���I c6 3 01 �K���K c�1 3 �K����I c�c6 3 01 �K��IK c61 3 �  

A l’ordre dt, on a: 

dx1  �  �a &x, t)dt 3 b &x, t)√c6d �1  k  b1dtU1   , avec   U1  �  χ 10 

On a donc  E &U1)  �  1 et Var &U1)  �  2.  

D’où on a : E &dX1)  k  b1dt et var &dX1)  k  2b dt1. 

A l’ordre dt, on peut considérer que  var &dX1)  k 0, et que dX1 se comporte 

comme une constante tel que : dX1  k  b1dt. 
Par ailleurs, le produit de dx  par dt est donné par l’équation suivante : 

dxdt �  �a &x, t)dt 3 b &x, t)√c6d� dt �  adt1 3 bdt| 1⁄ . On peut donc considérer 

qu’à l’ordre dt ce produit est nul : dxdt �  0. Par conséquent, la différentielle de la 

fonction G peut donc s’écrire sous la forme :  
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 c� � ���� c� 3 ���I c6 3 01 �K���K ¡1c6 3 �  

Soit, en remplaçant dx   par son expression, dans cette équation, on obtient 

l’expression de la différentielle d’une fonction G du temps et d’une variable d’état x 

suivant le processus prédéfini. 

c� � ¢£�£� a 3 £�£6 3 12 £1�£�1 ¡1¤ c6 3 £�£� ¡c¥ 

 

Cette équation est donc l’application du lemme d’Itô à une fonction du temps, 

et d’une seule variable d’état. 

2-5-2 Cas de deux variables stochastiques 

Dans le cas d’une fonction du temps et de deux variables d’état, x1 et x2, on 

suppose que celles-ci suivent des processus stochastiques, décrits par les équations 

suivantes : 

                         dx0  �  a0&x0, x1, t)dt 3 b0 &x0, x1, t)dz0dx0, et    

dx1  �  a1&x0, x1, t)dt 3 b1 &x0, x1, t)dz1dx1 

Avec dz0 ,et  dz1 suivant un processus de Wiener-Levy, et  a1, a2, b1, et b2 sont 

des fonctions des deux variables d’états (x1, x2), et du temps t. Ces processus 

peuvent s’écrire également sous la forme : 

          dx0  �  a0&x0, x1, t)dt 3 b0 &x0, x1, t)√c6d0, et  

dx1  �  a1&x0, x1, t)dt 3 b1 &x0, x1, t)√c6d2 

Où U1, et U2 sont des variables aléatoires normales centrées réduites tel que 

leur coefficient de corrélation est notée : ρ � ρ &U0, U1). 

Soit G (x, t) une fonction des variables aléatoires d’états (x1, x2), et du temps. 

Le développement en série de Taylor de la fonction G par rapport à (x1, x2), et du 

temps s’écrit : 
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dG �
 ����0 c�0 3 ����1 c�1 3 ���I c6 3 01 �K���LK c�01 3 01 �K��KK c�11 3 01 �K��IK c61 3 �K���L��K dx0c�1 3

�K���L�I dx0dt 3 �K���K�I dx1dt. 
Comme dans le cas d’une seule variable stochastique, on a: dx01 k¡01c6  et dx11 k ¡11c6. 

De même, on a : dx0dx1 � a0a1dt1 3 &b0a1U0 3 b1a0U1)dt| 1⁄ 3 b0b1U0U1dt. 
A l’ordre dt, on peut écrire : 

E &dx0dx1)  k  b0b1E &U0U1)dt �  b0b1dtcov &U0U1)  �  b0b1dt. 
Var &dx0dx1)  k  ¡01¡11dt1E &U0U1 � E &U0U1))1  �  ¡01¡11dt1E &U0U1 � ρ)1. 

Comme U0U1 © ρ, à l’ordre dt, on peut faire l’approximation :dx0dx1  k  b0b1ρdt . 
Ainsi, à l’ordre dt, on aura :  

dG �  ����L c60 3 ����K c�1 3 ���I c6 3 01 �K���LK ¡01c6 3 01 �K���KK ¡11c6 3 �K���L��K b0b1ρdt 3 �  

Soit: 

dG � ¢ £�£�0 a0 3 £�£�1 a1 3 £�£6 3 12 £1�£�01 ¡01 3 12 £1�£�11 ¡11 3 £1�£�0£�1 b0b1ρ¤ dt 
3 £�£�0 ¡0c¥0 3 £�£�1 ¡1c¥1 3 � 

 

Cette équation constitue donc l’application du lemme d’Itô à une fonction du 

temps, et de deux variables d’états. 

2-5-3 La version générale du lemme d’Itô 

Soit C une fonction du temps t, et de n variables stochastiques (des variables 

d’états) x0, x1, x|, … , xª, … , x« suivant chacune un processus d’Itô. Les drifts réels 

instantanés de ces variables sont respectivement  a0, a1, a|, … , aª, … , a« . Leurs écarts 

types instantanés sont respectivement  b0, b1, b|, … , bª, … , b« . Ainsi, on peut écrire : cxª � aªdt 3 bªdzª, 1 � i � n.   
Où les  dzª, 1 � i � n, sont des processus de Wiener. Les drifts réels sont des 

fonctions du temps, et des n variables d’états : aª � aª&x0, x1, x|, … , xª, … , x« , t)ai. Les 
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écarts types sont également des fonctions du temps, et des n variables d’états : 

bª � bª&x0, x1, x|, … , xª, … , x« , t). 

On peut écrire également : cxª � aªdt 3 bªUª√dt, 1 � i � n. Où les Uª sont des 

variables aléatoires normales centrées réduites. Le coefficient de corrélation entre 

deux variables Uª et  U¬est noté : ρ­® � ρ &Uª, U¬). 

Le développement en série de Taylor de la fonction C �  C&x0, x1, x|, … , xª, … , x« , t). s’écrit : 

dC �  ¯ £°£�­
J
­±0 dxª 3 £°£6 c6 3 12 ¯ ¯ £1°£�­£�®

J
®±0

J
­±0 dxªc�® 3 12 ¯ £1°£�­£6J

­±0 dxªdt 3 � 

En se référant aux calculs relatifs à la démonstration du lemme d’Itô, dans le 

cas d’une variable, et dans le cas de deux variables stochastiques, nous pouvons 

écrire, à l’ordre dt :  

dxª1 k ¡­1c6 

 dxªc�® k bªb¬ρª¬dt 
 dxªdt k  0. 

Ces équivalences sont d’autant plus vraies que dt est proche de zéro. Lorsque 

dt tend vers zéro, tous les termes d’un ordre supérieur à dt sont négligés, et la 

différentielle de la fonction C peut s’écrire : 

 dC �  ∑ �³��´
J­±0 dxª 3 �³�I c6 3 01 ∑ ∑ �K³��´��µ

J®±0J­±0 bªb¬ρª¬dt . 
Soit en remplaçant dxª par son expression, nous obtenons la forme générale 

du lemme d’Itô : 

dC � ¶∑ �³��´
J­±0 aª 3 �³�I 3 01 ∑ ∑ �K³��´��µ

J®±0J­±0 bªb¬ρª¬· dt 3 ∑ �³��´
J­±0 c�­c¥­     (1.2-4) 

Cette équation constitue alors la forme la plus générale du lemme d’Itô. 

2-5-4 Raisonnement risque-neutre 

Si l’on considère que le prix du sous-jacent, et la valeur de l’option suivent des 

mouvements Brownien géométriques, tel que :
}¸̧ � ¹�dt 3 σAdZ   et  }³³ � ¹ºdt 3 σ»dZ. 
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Le drift du prix de l’option, ainsi que sa volatilité peuvent être déterminés, à 

partir du lemme d’Itô. 

La valeur de l’option est indépendante du comportement de l’investisseur face 

au risque puisque celle-ci ne figure pas dans l’équation d’évaluation. Aucun des 

paramètres relatifs à l’attitude de l’investisseur vis-à-vis du risque ne figure dans 

l’équation d’évaluation. Ainsi, pour simplifier l’évaluation des options, celle-ci se fera 

dans uns monde risque-neutre, où la rentabilité espérée de l’option et celle du sous-

jacent sont égales au taux d’intérêt sans risque. En d’autres termes, le drift de la 

valeur de l’option et celui de la valeur du sous-jacent sont égaux au taux d’intérêt 

sans risque. 

Si l’on suppose que ce taux est constant, le raisonnement risque neutre peut 

s’écrire : 

E &#¼#I /#I)  �  ]½&¼$I) 

E &°¼°I /°I)  �  ]½&¼$I) 

Comme  °¼  �  Max &#¼ � X ;  0), on a  °I �  ]$½&¼$I)E &max &#¼  � X ;  0))  (1.2-

5) 

L’opérateur espérance est relatif à une distribution de probabilité 

correspondante à la neutralité du risque. Celle-ci est log-normale avec un drift égal au 

taux d’intérêt sans risque. 

Si f&#¼ , #I) désigne la fonction densité de probabilité de transition du prix du 

sous-jacent sachant le prix du sous-jacent  #I   à l’instant t, l’équation (1.2-5) s’écrit :  

Ct �  ]$½&¼$I) � max &#¼  � X;  0)f&#¼ , #I, ρA)-∞S dS'.  

Où f&#¼ , #I, ρA) est la function densité de transition du prix du sous-jacent 

correspondant au drift  ρA. 

Le prix de l’option est actualisé au taux   ρ». 

Les valeurs espérées du sous-jacent, et de l’option sont données par les 

équations : 
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EA&
#¼
#I
/#I)  �  ]¿�&¼$I) 

E»&°¼°I /°I)  �  ]¿À&¼$I) 
Où EA et  E»  sont les espérances en considérant les drifts respectivement ρA , 

et   ρ». Ces paramètres ne sont pas faciles à estimer, et le raisonnement risque neutre 

résout ce problème puisqu’on peut écrire :ρA   �   ρ» � r. Le raisonnement risque 

neutre est basé sur l’égalité du prix du risque du marché du sous-jacent et de 

l’option : 
ρÁ$½�� � ρÂ$½�À � Ã. Comme on considère que   ρA   �   ρ» � r, ceci implique que 

le prix du marché du risque est considéré comme nul : λ �  0. 

En considérant cette égalité, et en considérant la distribution de probabilité 

correspondante aux taux d’intérêt sans risque r, on peut écrire que : E &]$½&¼$I) ¸Ä̧
n /

#I)  �  #I. Ceci veut dire que la quantité ]$½&¼$I)#¼ est une martingale qui a donc un 

drift égal à zéro. Cette propriété implique que la connaissance de l’historique des 

cours ne permet pas de prévoir leurs évolutions dans l’avenir. Une martingale 

apparait comme un processus pour lequel l’anticipation rationnelle coïncide avec 

l’anticipation naïve. 

Section 3 : OPTIONS SUR INDICES BOURSIERS  

Les idées de base pour cette section s’appuient sur  Quitard-Pinon [19], Fama 

E. [30], et sur Janvresse, S. Pergamenchtchikov, P. R. de Fitte [37].  

3-1 Les options sur indices 

3-1-1 Historique  

Les options sur indices boursiers sont apparues en 1983 sur les marchés 

d’options négociables de Chicago, le Chicago Board Options Exchange (CBOE), et le 

Chicago Mercantile Exchange (CME). 

Ce type d’option a connu un énorme succès suite au développement de la 

théorie, et de la pratique financière, et suite à l’essor des marchés d’options 

négociables dès 1973 à Chicago. Ce succès est également une conséquence de 

l’attention croissante des praticiens à la gestion indicielle, et au risque du marché. 

Certains chercheurs ont contribué, par leurs travaux, au succès de ces marchés en 
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démontrant que des marchés financiers complets pouvaient être engendrés par 

contrats d’options sur un portefeuille représentatif du marché financier dans son 

ensemble. 

Le succès des options sur indices aux Etats-Unis a été suivi par la création de 

marchés de ce type en Asie, et en Europe. Ainsi, les gestionnaires de portefeuilles 

disposent d’une large gamme d’options sur indices, et peuvent gérer le risque des 

principaux marchés boursiers du monde avec plus de flexibilité. 

Ce type d’option concerne uniquement le marché des actions qui soulève le 

plus d’intérêt en matière de gestion des risques, et des activités spéculatives, et qui 

reflète le mieux le potentiel de croissance d’une économie à moyen, et long terme. 

Les options sur indices permettent la répartition des risques dans l’économie, 

et la contribution à la complétude des marchés. De plus, elles ont un rôle 

informationnel : information-volatilité anticipée-prix des options sur indices-couverture 

qui se base sur un prix de couverture connu. 

3-1-2 Indice boursier : définition et méthodologie de calcul 

Un indice boursier est une mesure statistique de la performance d’un marché 

d’action ou d’un segment de marché d’action. 

Un indice boursier ne comprend pas tous les titres du marché. Il doit être 

conçu de manière à ce que l’échantillon des titres sélectionnés fournisse une bonne 

approximation du marché à analyser. Il doit refléter la performance et le risque du 

marché, dans son ensemble, afin de servir comme point de repère dans la mesure 

des performances des portefeuilles boursiers. 

Outre le nombre de titres qui composent l’indice, et sa bonne correspondance 

avec l’indice de marché, la méthode de calcul de l’indice est aussi déterminante. Il 

existe principalement trois méthodes de calcul : la moyenne arithmétique simple, la 

moyenne géométrique, et la moyenne arithmétique pondérée. 

C’est donc la troisième méthode, à savoir celle de la moyenne arithmétique 

pondérée par les capitalisations boursières des titres qui composent l’indice, qui est la 

plus utilisée pour le calcul des indices boursiers des marchés financiers. 

La formule permettant de calculer l’indice est la suivante : 
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Indice pondéré par le prix  

Un indice pondéré par le prix mesure en quelque sorte la performance d’un 

portefeuille constitué d’une action de chaque entreprise incluse dans l’indice. 

L’importance attribuée à une compagnie dans l’indice est proportionnelle au prix de 

son action plutôt qu’à la valeur marchande totale de ses actions en circulation. 

La valeur au temps t d’un indice pondéré par le prix se calcule à partir de 

l’expression suivante : 

I&t) � ∑ G­IJ­±0∑ G­SJ­±0 Æ Ç&0)  
Où I&t): valeur de l’indice au temps t 

        G­I: Prix du titre i au temps t 

        G­S: Prix du titre i le jour de base t=0 

       N : nombre de titres inclus dans l’indice 

      Ç&0): Base ou valeur initiale attribuée à l’indice au temps t=0. 

 

Indice pondéré par le nombre d’actions en circulati on 

Avec cette méthode de calcul, l’importance de chaque compagnie dans l’indice 

est fonction de la valeur marchande de l’ensemble de ses actions. Par ailleurs, des 

ajustements sont habituellement faits pour tenir compte des blocs de contrôle 

d’actions. 

La valeur au temps t d’un indice tenant compte de la capitalisation se calcule 

ainsi : 

I&t) � ∑ G­IÈ­IJ­±0�I ∑ G­SJ­±0 È­S Æ Ç&0)  
Où I&t) : valeur de l’indice au temps t 

       G­I : Prix du titre i au temps t 

       G­S : Prix du titre i l’instant t=0 

       È­I: Nombre de titres  en circulation de la compagnie i à l’instant t 

        È­S: Nombre d’actions en circulation de la compagnie i à l’instant t=0 

       G­IÈ­I: Capitalisation boursière du titre i à l’instant t 

       G­SÈ­S: Capitalisation boursière du titre i le jour de base 

        Ç&0): Base ou valeur initiale attribuée à l’indice au temps t=0. 
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      �I: Coefficient d’ajustement de la base qui tient compte des admissions, et 

des radiations de l’échantillon, ainsi que des opérations modifiant le capital des 

entreprises de l’échantillon. 

Les indices boursiers, tel que le CAC40, sont ajustés lors d’opération affectant 

la capitalisation boursière d’un titre ou la modification de la composition de l’indice. 

La formule précédente peut être réécrite pour faire apparaitre le caractère de 

moyenne arithmétique pondérée. 

Ç&6) � Ç&0) ∑ É­ "´n"´X
J­±0   Où É­ � "´XÊ´n�n ∑ "´Xx́ËL Ê´n  : coefficient de pondération du titre i. 

Le CAC40 (Cotation Assistée en Continu) a été lancé en juin 1988. Il est 

calculé à partir d’un échantillon de 40 valeurs parmi les valeurs les plus liquides du 

marché. Ces valeurs sont choisies selon des critères boursiers, et économiques. 

Elles doivent figurer parmi les cent premières capitalisations boursières de la place de 

Paris, et doivent avoir un flottant important de l’ordre de 65%. Une valeur de 

l’échantillon qui ne répond plus à ces critères sort de l’échantillon, et sera remplacée 

par une autre valeur. 

L’indice CAC40 est calculé en permanence, et à chaque nouveau cours coté 

de l’une des valeurs de l’échantillon. Il est diffusé toutes les 30 secondes, en temps 

réel. 

 

3-1-3 Spécificité du contrat d’option sur indice et  les risques inhérents 

Les caractéristiques d’une option sur indice sont semblables à celles d’une 

option sur action. La principale différence réside dans les modalités d’exercice. Le 

détenteur d’une option sur action reçoit ou livre l’action en question en cas d’exercice. 

Ce ne peut être le cas du détenteur d’une option sur indice boursier, puisque ce sous-

jacent est fictif, non négociable, et ne peut faire l’objet d’une transaction. 

La bourse d’option attribue une valeur monétaire à l’indice afin de pouvoir 

l’utiliser comme sous-jacent d’une option. Il n’y aura pas de livraison du sous-jacent, 

mais le paiement de la différence, entre la valeur de l’indice, et le prix d’exercice. 

Dans le cas d’une option d’achat, si la taille d’un contrat d’option sur le CAC40 est de 

N, si le prix d’exercice est K et que la valeur de l’indice est I, le jour de l’exercice de 

l’option, le détenteur de l’option encaisse la somme : 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 

 

ANDRIAMANANTENA  Philibert 
39 

Mémoire de DEA, ENI 

  

�È&Ç � �)      BÌ Ç  �0                    BÌ Ç � � � 
La non-négociabilité des indices boursiers engendre trois difficultés, pour les 

détenteurs d’options sur indices, à savoir :  

a) Risque de réplication de l’indice 

b) Risque d’exercice 

c) La multiplicité des dividendes 

Ces trois risques sont sources de difficultés pour l’évaluation des options par 

les modèles traditionnels basés sur l’hypothèse d’absence d’opportunité d’arbitrage. 

3-1-4 Tracker 

Le tracker constitue une réponse aux problèmes précités liés aux options sur 

indices boursiers. Le tracker (ou Exchange Traded Fund, « ETF ») est un fonds 

(OPCVM) indiciel négociable en bourse de la même manière qu’une action. Il est 

conçu pour répliquer la performance d’un indice boursier ou d’un panier d’actions. On 

dit alors qu’il traque l’indice d’où son nom tracker.  

Négociés aussi facilement que des actions, ils constituent un investissement 

diversifié qui limite les risques inhérents à un investissement important en actions 

individuelles. L’achat ou la vente d’un tracker est plus avantageux que l’achat ou la 

vente de l’ensemble des actions constitutives du panier sous-jacent. En effet, l’achat 

(la vente) de l’ensemble des actions composant le tracker génère nécessairement 

plus d’ordres donc davantage de coûts de transaction, et peut impliquer des frais de 

courtage, des droits de gestion administrative plus importants. 

Le tracker, comme sous-jacent d’un produit dérivé, présente un avantage par 

rapport à un indice boursier, car il est négociable, et qu’il a des performances qui sont 

quasiment les mêmes que celles de l’indice boursier. De ce fait, les risques liés à la 

gestion de produits dérivés sur indice disparaissent complètement lorsque le sous-

jacent est un tracker. 
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Chapitre II : MODELE DE BLACK & SCHOLES 
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Le modèle de Black & Scholes [4] servant de référence pour les praticiens 

dans la cotation des options est un modèle populaire. Il a le mérite d’être un modèle 

paramétrique qui débouche sur une « closed form solution » facile d’utilisation.  

Le modèle de Black & Scholes est basé sur une logique d’absence 

d’opportunité d’arbitrage, appliqué d’une manière continue dans le temps,  et en 

supposant l’absence de cout de transaction, d’impôt, de compte de marge, et de 

toutes sortes de friction. 

Dans le présent mémoire, le modèle de Black & Scholes sert de référence pour 

juger les performances des modèles paramétriques à volatilité stochastique aussi 

bien au niveau de l’évaluation qu’au niveau de la couverture. 

Ce chapitre comporte deux parties dont la première commence par présenter 

les hypothèses du modèle de Black & Scholes. Ensuite, l’équation de Black & 

Scholes est établie en se basant, dans un premier temps, sur l’hypothèse d’absence 

d’opportunité d’arbitrage, et dans un second temps sur un raisonnement risque-

neutre, appliqués d’une manière continue dans le temps. 

Une fois établie l’équation de Black & Scholes, on procède à sa résolution, en 

considérant des changements de variables adéquates qui la ramène sous la forme 

canonique de l’équation de la chaleur. Connaissant la solution de cette dernière 

équation, on procède aux changements de variables, inverses à ces précités pour 

trouver la formule de Black & Scholes. 

La 2ème partie de ce chapitre porte sur  la volatilité que ce soit historique et/ou 

implicite. 
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Section 1 : EVALUATION D’UNE OPTION AVEC LE MODELE DE BLACK & 

SCHOLES 

1-1 Hypothèses et raisonnement d’arbitrage 

L’étude des principaux déterminants du prix d’une option permet d’aborder les 

modèles d’évaluation des options, et essentiellement le modèle en temps continu de 

Fisher Black & Myron Scholes (1973) [4]. Ce dernier constitue le modèle de référence 

en matière d’évaluation des options. 

Ce modèle a été développé en l’absence de dividendes pour l’évaluation des 

options sur actions. Il repose sur les hypothèses suivantes : 

Il est admis que le marché est parfait, et est sans frictions. En d’autres termes, 

il n’existe pas de coût de transaction, ni d’asymétrie d’information, ni d’impôt. Les 

transactions peuvent prendre place de façon continue sans qu’elles soient 

pénalisées. Il est possible d’emprunter, et de prêter sans limitation à un taux sans 

risque ; 

Les ventes à découvert sont autorisées ; 

Le taux d’intérêt est supposé connu, et constant au cours du temps ; 

La volatilité est supposée connue, et constante ; 

Le cours de l’action suit un mouvement Brownien géométrique ; 

Le titre sous-jacent ne paye pas de dividende pendant la vie de l’option ; 

L’arbitrage n’est pas possible : l’intégration est parfaite entre le marché des 

options, et celui de leurs sous-jacent de manière à ce que tous les portefeuilles sans 

risque rapportent le même taux ; 

Les titres sont divisibles. 

Il convient de mentionner que la formule de Black & Scholes ne tient pas 

compte des préférences des investisseurs face au risque, car l’actif sous-jacent est 

négociable. 

1-2 Marche au hasard du prix d’un sous-jacent (acti f financier) [39] 

La marche au hasard d’un actif financier, et d’une manière générale du prix du 

sous-jacent est due à l’hypothèse d’efficience du marché financier. L’efficience du 

marché, comme précisé dans le chapitre I, peut prendre trois formes qui sont 

l’efficience faible, l’efficience semi-forte, et l’efficience forte. 

L’efficience, quelque soit sa forme, engendre les deux points suivants : 
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Les prix présents des actifs financiers reflètent leur historique ; 

Le marché financier incorpore immédiatement toute nouvelle information 

concernant un actif financier. 

         Ainsi, la connaissance du passé du processus du cours du prix de l’actif 

ne  fournit aucune information sur son évolution à venir, en dehors de celle contenue 

dans la valeur présente qui seule détermine la distribution future des cours, en 

l’absence de nouvelles informations. Il s’agit d’un processus markovien typique. 

En cas d’absence de frictions, le rendement instantané du sous-jacent : 
}¸
¸ . Où 

S est le prix de l’actif sous-jacent, et dS est la variation de son prix pendant un 

intervalle de temps infinitésimal dt. Ce rendement instantané 
}¸
¸ � µc6 3 �c¥  est dû à 

deux contributions : la première est déterministe, et prévisible : µdt (où µ est une 

constante), et la deuxième représente  la variation aléatoire du prix de l’actif (σdz), 

due à des effets extrêmes, comme des nouvelles inattendues, σ étant la volatilité du 

rendement de l’actif, et dz est un processus de Wiener-Levy.     

1-3 Equation de Black & Scholes (couverture delta-n eutre et absence 

d’arbitrage) 

1-3-1 Processus stochastique du prix de l’option[41 ] 

On considère une option de type quelconque, à la date courante t, émise à la 

date t = 0, et arrivant à échéance à la date T, sur un actif sous-jacent, dont le prix S, 

suit un mouvement Brownien géométrique : dS �  µAdt 3  σAdz    
(2.1-1) 

 

D’une manière générale, le prix d’une option C est fonction du prix de l’actif 

sous-jacent S qui suit un processus stochastique, et du temps t : C (S, T). 

 

En appliquant le lemme d’Itô, on trouve l’équation du processus suivi par le prix 

de l’option. Ainsi, la variation infinitésimale de la valeur d’une option est c° tel que : 
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c° � �µA �³�¸ 3 �³�I 3 01 �1#1 �K³�¸K� c6 3 �³�¸ σAc¥    (2.1-2) 

 

Cette équation donne l’équation de la marche au hasard suivi par la valeur 

d’une option C qui doit avoir une dérivée  d’ordre 1 par rapport au temps, et deux 

dérivés d’ordre 1 et 2 par rapport au cours du sous-jacent S. 

1-3-2 Elimination du risque couverture Delta-neutre  [17] 

Si on considère le portefeuille constitué de l’achat d’une option, et de la vente 

de l’actif sous-jacent, sa valeur est donc : < � ° � ∆#      (2.1-3) 

Pendant un intervalle de temps infinitésimal dt, la quantité ∆ reste inchangée, 

et la variation de la valeur du portefeuille est donc c< � c° � ∆c#. En remplaçant dS, 

et dC par leurs expressions dans les équations (2.1-1) et (2.1-2), il vient :  

c< � �µA �³�¸ 3 �³�I 3 01 �1#1 �K³�¸K � μ∆#� c6 3 &�³�¸ �∆)σAc¥  

 

La marche au hasard de la valeur du portefeuille π est due à la partie 

aléatoire : &�³�¸ �∆)σAc¥. Si on veut éliminer cette partie aléatoire, on choisira : ∆�
�³�¸    (2.1-4) 

La variation c< devient : c< � ��³�I 3 01 �1#1 �K³�¸K� c6     (2.1-5) 

1-3-3 Absence d’arbitrage [17] 

Les variations du portefeuille π sont donc déterministes si, à chaque instant, la 

condition (2.1-4) est vérifiée. Le portefeuille π se comporte donc comme un actif sans 

risque. Ainsi, le placement d’un montant d’argent π  rapportera pendant un intervalle 

de temps dt, la somme  σπdt. En effet,  

Si  ��³�I 3 01 �1#1 �K³�¸K� c6 �  b<c6     un arbitragiste peut faire un profit sans risque 

en empruntant une somme π qu’il investit dans le portefeuille, et inversement. 

Si  ��³�I 3 01 �1#1 �K³�¸K� c6 �  b<c6     l’arbitragiste peut faire un profit en vendant le 

portefeuille, et en plaçant la somme correspondante dans l’actif sans risque. 

D’après l’hypothèse d’absence d’opportunité d’arbitrage, et d’absence de cout 

de transaction, nous avons l’égalité : ��³�I 3 01 �1#1 �K³�¸K� c6 �  b<c6. 
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En remplaçant π par sa valeur, à partir des équations (2.1-3) et (2.1-4), on 

obtient la fameuse équation de Black & Scholes : 
�³
�I 3

0
1�

1#1 �
K³
�¸K 3 b#

�³
�¸ � b° � 0         

(2.1-6). 

1-4 Equation de Black & Scholes avec la méthode ris que-neutre 

L’équation de Black &Scholes peut être établie suivant l’approche risque 

neutre (Cox-Ross, 1976) [28]. Dans ce contexte, le prix du sous-jacent S, et le prix de 

l’option C suivent des mouvements Browniens géométriques décrits par les équations 

suivantes : 

                
}¸̧ � µAdt 3 σAdZ      ⤇     dS �   µASc6 3  σASc¥  (2.1-7) 

}³³ � µ»dt 3 σ»dZ      ⤇     dC �   µ»Cc6 3  σ»Cc¥  (2.1-8) 

 

Où µs et µc sont des drifts réels, respectivement, de l’actif sous-jacent et de 

l’option, alors que σs et σc sont leurs volatilités respectives. 

Comme la valeur de l’option C = C (S, t) est fonction de la valeur du sous-

jacent et du temps, en appliquant le lemme d’Itô, il vient : c° � �µAS �³�¸ 3 �³�I 3
01 �1#1 �K³�¸K� c6 3 �³�¸ SσAc¥   (2.1-9) 

Par identification entre les équations (2.1-8) et (2.1-9), on obtient les 

égalités suivantes : 

 µ» � µÁ¸ÒÓÒÔ-ÒÓÒn-LKrK¸KÒKÓÒÔK³     (2.1-10)  et      σ» � ¸ÕÁÒÓÒÔ³      (2.1-11) 

En  réarrangeant l’équation (2.1-10), on obtient l’équation suivante :   

       
�³�I 3 01 �1#1 �K³�¸K 3 µA# �³�¸ � µ»C � 0 (2.1-12) 

 

Il s’agit d’une équation qui dépend des drifts réels du sous-jacent, et de l’option 

µs et µc. Pour résoudre un tel problème, il faut, dans un premier temps, déterminer 

ces deux paramètres. 

Ceci peut se faire en formant un portefeuille sans risque de l’option C, et du 

sous-jacent S. Soit, en considérant les équations  (2.1-7) et (2.1-8), on a :  

π �  &σ»C)S – &σAS)C �  SC &σ» – σA)    (2.1-12). 
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Etant donné que le terme risqué est éliminé, il vient : c< � SC &µAσ» – µ»σA)dt.      
(2.1-13) 

D’autre part, comme π est sans risque, et en supposant l’absence 

d’opportunité d’arbitrage, on peut écrire : dπ �  SC &µAσ» – µ»σA)dt �  rπdt �
 r SC &σ» – σA)dt.  (2.1-14) 

Soit en simplifiant par la quantité  SCdt, on a :& µA–  r)σ»  �  &µ» –  r)σA    (2.1-15). 

On peut écrire cette équation sous la forme : 

& µÁ– %)ÕÁ �  &µÂ – %)ÕÂ � ÖbÌ� c× ØabÙÚé c× bÌB�×].     
On en déduit que l’option et l’action ont donc le même prix de risque du 

marché. La relation (2.1-15) peut s’écrire :
µÂ – %µÁ– % � ÕÂÕÁ.     (2.1-16) 

Soit, en remplaçant µc et σ» par leurs valeurs, on obtient l’équation suivante : 

µÁ¸ÒÓÒÔ-ÒÓÒn-LKrK¸KÒKÓÒÔK³ � b � ÔÜÁÒÓÒÔÓr� &µ» –  r). (2.1-17)  qui peut se mettre sous la forme :  

 

µA# �³�¸ 3 �³�I 3 01 �1#1 �K³�¸K � rC � Mµ» –  rO# �³�¸. Soit, en simplifiant, on obtient 

l’équation de Black & Scholes: �³�I 3 01 �1#1 �K³�¸K 3 r# �³�¸ � rC � 0. Cette équation ne 

dépend ni de µs ni de µc. Elle est identique à l’équation (2.1-11) si on remplace µs et 

µc par r.  

Ainsi, on peut conclure que la valeur de l’option est indépendante du choix de 

l’investisseur puisque les drifts réels n’apparaissent pas dans cette équation. Donc, 

n’importe quel comportement de l’investisseur peut être utilisé pour trouver la valeur 

de l’option. Pour la simplicité, l’évaluation se fait dans un monde risque-neutre. Dans 

un monde risque-neutre, les valeurs espérées des rendements de l’action, et de 

l’option sont égales au taux d’intérêt sans risque. 

1-5 Conditions aux limites 

L’option d’achat (call) considérée est de type quelconque, dont la valeur est 

notée  C&S, t)  �  C. Dans ce cas, pour que l’équation de Black & Scholes admette une 

solution unique, il faut avoir trois conditions aux limites. Une condition sur le temps t, 

et deux conditions sur le prix du sous-jacent.  
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Les conditions aux limites, pour une option d’achat sont les suivantes : la 

valeur de l’option à l’échéance &t � T) est C &S, T)  �  max &S � K ;  0). En effet, à 

l’échéance, la valeur de l’option est égale à sa valeur intrinsèque. 

Les conditions aux limites, pour le prix du sous-jacent S sont les suivantes : 

Pour S=0 : C (0, t)=0, en effet, pour une valeur du sous-jacent nulle, la valeur 

de l’option est nulle car la valeur de l’option ne peut excéder la valeur du sous-jacent. 

Pour # f 3∞ : Ý�³�¸Þ¸±-� � 1, en effet, quand la valeur du sous-jacent tend vers 

l’infini, la probabilité d’exercer l’option converge vers l’unité. Par conséquent, la valeur 

temps tend vers zéro et, la valeur de l’option converge vers sa valeur intrinsèque. 

Comme pour un call, en dedans, la valeur intrinsèque est représentée, dans le plan 

(S, C), par une droite parallèle à là première bissectrice et, donc de rente égale à 

l’unité, alors la dérivée de la valeur de l’option par rapport à celle du sous-jacent, tend 

vers l’unité.  

1-6 Résolution de l’équation de Black & Scholes 

Compte tenu des conditions aux limites précitées, l’équation de Black & 

Scholes admet une solution analytique unique. Cette solution peut être déterminée 

analytiquement à partir de la solution de l’équation de la chaleur sous sa forme 

canonique. 

1-6-1 Changements de variables 

Pour être résolue, l’équation de Black & Scholes doit être mise sous la forme 

canonique de l’équation de la chaleur. Pour ce faire, nous posons, dans un premier 

temps :  

# � �]� ⤇ £#£� � �]� ⤇ £�£# � ]$��  

6 � T � 2 Æ ß�1 ⤇ £6£ß � � 2�1 ⤇ £ß£6 � � �12  

° � �É&�, ß) ⤇ £°£� � � £É£� ⤇ £°£ß � � £É£ß  

Ainsi, les dérivées du prix de l’option par rapport au temps, et par rapport au 

prix du sous-jacent, ainsi que sa dérivée seconde par rapport au prix du sous-jacent 

sont les suivantes : £°£6 � £°£ß£ß£6 � � �1�£É2£ß  
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£°
£# � £°£� £�£# � ]$�` � £É£� � ]$� £É£�  

La dérivée seconde de la valeur de l’option par rapport à la valeur du sous-

jacent est donnée par l’équation suivante : 

�K³�¸K � ��¸ ��³�¸� � ��¸ �]$� �à�� � � ��� &]$� �à�� ) ���¸. 

 

Soit, en remplaçant la dérivée de x par rapport à S, et en développant la 

dérivée du terme de la parenthèse par rapport à x, nous obtenons : 

�K³�¸K � �Rá
� &�]$� �à�� 3 ]$� �Kà��K ). Soit, après simplification, cette équation devient : 

 �K³�¸K � �RKá
� &�Kà��K � �à�� ). Soit, en remplaçant les expressions de ces dérivées dans 

l’équation de Black & Scholes, on obtient l’équation différentielle en W suivante : 

� 01 �1K �à�â 3 01 �1�1]1� �RKá
� ��Kà��K � �à�� � 3 ��]�]$� �à�� � b�É � 0 

Soit, après simplification et en divisant par E, on aura :  

01 �1 �Kà��K 3 �b � rK
1 � �à�� � rK

1 �à�â � bÉ � 0. En divisant par 
rK
1  et en posant  � � ½{KK

, 

il vient :   �Kà��K 3 &� � 1) �à�� � �à�â � bÉ � 0. 

Comme : quand # � 0 ⤇ � f �∞ 

                  Quand # f 3∞ ⤇ � f 3∞ 

                  Quand 6 � T ⤇ ß � 0 

Les conditions aux limites deviennent : C &0, t) � 0    ⤇  W &�∞, τ)  �  0 

Ý�³�¸Þ¸±-� � 1  ⤇ &�à�� )å±-� � &]�)å±-� � 3∞ 

° &#, T) � max&# � �; 0) ⤇ É&�, 0) � max & ]� � 1; 0). 

 

Pour arriver à la forme canonique de l’équation de la chaleur, un deuxième 

changement de variable est nécessaire. Ainsi, on pose : W &x, τ) � ]æ�-çâd&�, ß) et, 

on peut écrire : 

£É£ß � ]æ�-çâ&èd 3 £d£ß ) 

                                       
�à�� � ]æ�-çâ&éd 3 �ê��) 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 

 

ANDRIAMANANTENA  Philibert 
49 

Mémoire de DEA, ENI 

  

£1É
£�1 � ]æ�-çâ&α1U 3 2 Æ é £d£� 3 £1d£�1 ) 

 

Après simplification, l’équation devient :  

α1U 3 2 Æ é �ê�� 3 �Kê��K 3 &� � 1)& éd 3 �ê��) �  �èd 3 �ê�â� � �d � 0. 

En réarrangeant les termes de cette équation, on obtient l’équation suivante : 

�Kê��K 3 &2 Æ é 3 � � 1) �ê�� 3 & α1 3 é&� � 1) � è � �)d � �ê�â . 

 

Pour trouver la forme canonique de l’équation de la chaleur, il suffit de choisir α 

et β suivant le système 

ì 2é 3 � � 1 � 0 ⤇ é � � 01 &� � 1)
α1 3 é&� � 1) � è � � � 0 ⤇ è � � 0  &� � 1)1 � � � � 0  &� 3 1)1 � 

Le changement de variables est donc : 

W &x, τ) �  ]$LK&�$0)�$ Lí&�-0)1âU&x, τ)   , avec   � � 1½rK 

Soit U&x, τ)  � ]LK&�$0)�-Lí&�-0)1âW &x, τ). 

L’équation prend donc la forme canonique de l’équation de la chaleur : 

�Kê��K � �ê�â. 

Les conditions aux limites deviennent : °&0, 6) � 0 ⤇ W &�∞, τ)  �  0 ⤇ d&�∞, ß) � 0  

Ý�³�¸Þî±-�  � 1   ⤇ &�à�� )å±-� =&]�)å±-�  � 3∞   

⤇  &�ê�â)å±-∞ � �]LK&�$0)�-Lí&�-0)1â&01 &� � 1)W &x, τ) 3 �à�� �å±-∞   

                                 � �01 &� � 1)]LK&�$0)�-Lí&�-0)1â�å±-∞
 

                                � 3∞ 

°&#, T) � max&# � �; 0) ⤇ É&�, 0) � max&]� � 1; 0) 

⤇ U&x, 0)  �  ]LK&�$0)� max&]� � 1; 0) ⤇ U&x, 0)  �  max �]LK&�-0)� � ]LK&�$0)�; 0� or, 

On a: ]LK&�-0)� � ]LK&�$0)� � 0 ⤇ ]LK&�-0)� � ]LK&�$0)� ⤇ � � �� ⤇ 2 Æ � � 0 ⤇ � � 0 
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Ainsi, la fonction U(x, 0) est définie comme suit :  

Si x � 0 ⤇  d&�, 0)  � ]LK&�-0)� � ]LK&�$0)�  (2.1-18) 

Si  x � 0 ⤇  U&x, 0) � 0                             (2.1-19) 

1-6-2 Résolution de l’équation de la chaleur sous s a forme canonique 

On a vu que l’équation de la chaleur, sous sa forme canonique s’écrit : 

�Kê��K � �ê�â , τ � 0 ]6 �єð. 

Pour résoudre une telle équation, il faut déterminer sa solution générale ainsi 

qu’une solution particulière. Si U (x, t) est une solution de cette équation, alors à 

l’instant t= 0, la solution de cette équation est notée : U&x, 0) � US&x). D’après les 

équations (2.1-18) et (2.1-19), cette solution s’écrit : US&x) �  max �]LK&�-0)� �
]LK&�$0)�; 0O. La solution générale de cette équation est :  

d&�, ß) � 01√vâ � US&#)]R&áRÔ)Kíñ c#-�$� . 

Si on pose y � &¸$�)√1â  ⤇  S �  x 3 y√2ß  
U (x, τ) devient : d&�, ß) � 01√v � US&x 3 y√2ß)]$LKuKco-�$� . 

Si S � 0 ⤇  US&S) � ]LK&�-0)¸ � ]LK&�$0)¸ et donc si y � $�√1â  
⤇ USMx 3 y√2ßO � ]LK&�-0)&�-u√1â) � ]LK&�$0)&�-uZ1â) 
Si  S � 0 ⤇  US&S) � 0 et donc si y � $�√1â  ⤇ USMx 3 y√2ßO � 0.  
Ainsi, la solution de l’équation de la chaleur s’écrit : 

U &x, t) � 0√1v � ]LK&�-0)&�-u√1â)-∞$ á√Kñ ]$LKuKco � 0√1v � ]LK&�$0)&�-u√1â)-∞$ á√Kñ ]$LKuKco � I0 � I1. 
Elle se calcule comme la différence des quantités I1 et I2. L’intégrale I1 se 

calcule comme suit :  

I0 � 0√1v � ]LK&�-0)&�-u√1â)-∞$ á√Kñ ]$LKuKco   

Comme 
$01 &o � 01 &� 3 1)√2ß)1 � � 01 o1 3 01 &� 3 1)o√2ß � 0  &� 3 1)1τ   

 ⤇ 
01 &� 3 1)o√2ß � 01 o1 � � 01 �o � 01 &� 3 1)√2ß�1 3 0  &� 3 1)1τ  Soit donc : 
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I0 � �LK&�òL)áòLí&�òL)Kñ
√1v � ]$LK�u$LK&�-0)√1â�K-∞$ á√Kñ co  . Si nous posons z �  o � 01 &� 3

1)√2ß  ⤇dz �  dy, on aura : 

I0 � �LK&�òL)áòLí&�òL)Kñ
√1v � ]$LK&^)K-∞$ á√Kñ$LK&�-0)√1â c¥  La fonction à intégrer étant paire, 

l’intégrale I1 peut s’écrire : 

I0 � �LK&�òL)áòLí&�òL)Kñ
√1v � ]$LK&^)Ká√Kñ-LK&�-0)√1â$∞ c¥. 

La fonction intégrable f (z) suit une loi normale centre réduite et si on désigne 

par N (.) sa fonction de répartition, on peut écrire : 

 I0 � ]LK&�-0)�-Lí&�-0)KâÈ&c1),  avec  d0 � �√1â 3 01 &� 3 1)√2ß.   

Le calcul de I1 est analogue à celui de I0, il suffit de remplacer (k+1) par (k-1). 

Ainsi, l’intégrale I1  s’écrit : I1 � ]LK&�$0)�-Lí&�$0)KâÈ&d1)  avec d1 � �√1â 3 01 &� � 1)√2ß �
d0 � √2ß.   

Etant donné que la fonction U &x, τ)est la différence des intégrales  I0et I1, on 

peut l’écrire sous la forme : 

 U &x, τ) �  I0 � I1  �  ]LK&�-0)�-Lí&�-0)KâÈ& d0) � ]LK&�$0)�-Lí&�$0)KâÈ& d1)   

1-6-3 Solution de l’équation de Black & Scholes 
En considérant l’expression de W en fonction de U, on peut écrire :  

W &x, τ) �   ]$LK&�$0)�$ Lí&�-0)Kâ&I0 � I1)  

              � ]$LK&�$0)�$ Lí&�-0)Kâ Ý]LK&�-0)�-Lí&�-0)KâÈ& d0)   �  ]LK&�$0)�-Lí&�$0)KâÈ& d1)Þ 
             � ]� È& d0) � ]$�âÈ& d1) 

Soit en remplaçant la valeur de l’option C, par son expression en fonction de 

W, on a: 
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C &S, t)  �  KW &x, τ)  �  K]� È& d0) � �]$�âÈ& d1). Comme, on a : ]� � ó̧  

et � � 1½rK, on obtient : °&#, 6) � #È& d0) � �]$Kñ{K½È& d1). Or, on a : 2τ �  &T � t)�1, 

d’où, en conjuguant ces deux dernières équations, on obtient l’expression définitive 

de la valeur de l’option qui correspond à la formule de Black & Scholes : °&#, 6) �#È& d0) � �]$½&¼$I)È& d1). Où  

d0 � �√1â 3 01 &� 3 1)√2ß  , avec  x � ln �̧   et � � 1½rK  donc  

 d0 � 0√1â &ln �̧   3 �1½rK 3 1� ß) = 
0ZrK&¼$I) &ln �̧ 3 �b 3 01 �1� &T � 6)). En définitive, 

on a :  

d0 � ô«Ôõ-�½-LKrK�&¼$I)r√¼$I , alors que   d1 � d0 � �√T � 6. 

La solution de l’équation de Black & Scholes, pour une option d’achat, en 

l’absence de distribution de dividendes, est la suivante :  

°&#, 6) � #È& d0) � �]$½&¼$I)È& d1).            (2.1-20) 

 

avec   d0 � ô«Ôö-�½-LKrK�&¼$I)r√¼$I                            (2.1-21) 

 

et   d1 � d0 � �√T � 6.                                 (2.1-22) 

 

D’après cette formule, il s’avère bien que cinq variables suffisent pour 

déterminer la valeur d’une option. Trois d’entre elles sont directement définies, à 

savoir, le cours du titre S, le prix d’exercice K, et la durée de vie T. Les deux autres 

variables restantes, le taux d’intérêt  r, et la volatilité σ, sont plus délicates à définir. 

En ce qui concerne le taux d’intérêt, il peut être observé sur le marché ou 

estimé implicitement à partir d’un modèle d’évaluation d’options. Quant à la volatilité, 

elle exige une estimation puisqu’elle n’est pas directement observable sur le marché. 
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1-7 Formule de Black & Scholes par raisonnement ris que neutre 

La formule de Black & Scholes peut apparaitre énigmatique au prime abord, 

son interprétation est facilitée par le recours à un argument de neutralité par rapport 

au risque découvert par Cox et Ross (1976) [28]. 

Cet argument part de la constatation suivante : le drift µ n’apparait nulle part, ni 

dans l’équation différentielle ni dans la formule. Or, ce paramètre n’est autre que la 

rentabilité espérée, qui à l’équilibre, dépend des anticipations des investisseurs, et de 

leurs préférences. Ces préférences se traduisent sur les marchés par un niveau de 

prime de risque déterminé, c’est- à- dire un surplus de rentabilité réclamé à tout 

investissement risqué par rapport à un investissement non risqué. 

Dans une telle économie, tous les actifs doivent offrir, par définition, la même 

rentabilité, celle du taux sans risque. Donc le titre aura, dans cette économie neutre 

au risque, une rentabilité espérée µ, égale à r, et sa valeur à l’échéance ST suivra une 

loi log-normale. 

L’option, pour sa part, aura aussi une rentabilité espérée égale au taux sans 

risque. Soit sur la période de vie résiduelle, on peut écrire :  

E&C')  �  C(]$½â. Ce qui s’inverse, sous la forme :  C( �  ]½â E&C'). 
Pour calculer la valeur de l’option Ct, à un instant t, il suffit donc de savoir 

calculer l’espérance de la valeur de l’option à l’échéance  E&C'). Or à l’échéance on a 

 C' �  max &S'  � K ;  0) qui peut s’écrire sous la forme : C' � ÷S' � �      BÌ S' � �0                 BÌ S' � �� 
Donc E&C') est l’espérance mathématique de &S' � K) pondérée par la 

probabilité que S' soit supérieur au prix d’exercice, à l’échéance, dans l’économie 

neutre au risque considérée. Le passage de la probabilité réelle, pour laquelle S' 

atteigne une certaine valeur x, à la probabilité risque neutre, pour laquelle S' atteigne 

cette même valeur x, s’effectue simplement en remplaçant le drift µ par le taux de 

l’actif sans risque r dans la fonction densité de S', et dans les formules d’espérance, 

et de variance. 

Cette procédure d’évaluation, dite en risque neutre, découle uniquement de la 

condition d’absence de stratégies d’arbitrage non gagnantes. 

 c#I �  r#Idt 3  σ#Idz  Soit   }¸n¸n � bc6 3 �c¥. 

En appliquant le lemme d’Itô, il vient  dln #6 � �b � rK
1 � c6 3 �c¥. 
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En intégrant membre à membre l’équation s’écrit : � c ln #I¼
I � � �b � rK

1 � c6¼I 3
�d � √c6¼I   avec U � �&0,1). Le logarithme du prix du sous-jacent à l’échéance est 

donc donné par l’équation suivante : ln S' � ln #I 3 �b � rK
1 � &T � 6) 3  �d√T � 6. En 

posant, on déduit que ce logarithme suit une loi normale de moyenne a, et d’écart 

type b : ln #T � �&a, ¡), tel que a � ln #I 3 �b � rK
1 � ß  et ¡ � �√ß. 

Si l’on désigne par f&S)la fonction densité de probabilité du prix du sous-jacent, 

à l’échéance, on peut écrire : E&C') � � &# � �)ø&#)c#-∞� . Vu la distribution de  ln S', la 

variable aléatoire d � ô« îù$úû  suit une loi normale centrée réduite. On peut écrire : 

S' � ]ú-ûê. 

Si l’on désigne par g&u) la fonction de densité de probabilité de U, on peut 

écrire : 

ü&×) � 0√1v ]$LKýK
. Par ailleurs, on a g&u) � f&S)dS  et si on pose H � ô« �$úû , on 

aura : E&C') � � &]ú-ûê-�m � �)ü&×)c×. Soit en remplaçant g(u) par son expression, 

on obtient :E&C') � 0√1v � ]ú-ûê-�m ]$LKýKc× � � � ü&×)-�m c×.  En considérant la 

fonction de répartition N (.) de la loi normale centrée réduite (loi de U), cette équation 

peut s’écrire sous la forme :E&C') � �þ
√1v � ]$LK&ýK$1ûý)-�m c× � �M1 � È&H)O. En 

considérant l’égalité  u1 –  2bu �  &u –  b)1 – b1, l’équation devient  

E&C') � �þò�KK√1v  � ]$LK&ý$û)1-�m c× � �M1 � È&H)O. 

Si on pose  v �  u –  b  ⤇   dv �  du  ⤇   X f X –  b, l’équation devient : 

 E&C') � �þò�KK√1v � ]$LK&�)K-�m$û c� � �]$½âM1 � È&H)O. 

Soit, en considérant la fonction de répartition N (.) de la loi normale centrée 

réduite une nouvelle fois, l’équation peut s’écrire : C' � �R�ñòþò�KK√1v M1 � È&H � ¡)O �
�]$½âM1 � È&H)O.   (2.1-23) 

Or, d’une part, on a :�rτ 3  a 3  ûK
1 � �bß 3 ln #I 3 �b � rK

1 � ß 3 Mr√âOK
1 � ln #I  et 

donc on a : ]$½â-ú-�KK � #I. D’autre part, on a :  
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H � ô« �$úû � ô« �$ô« ¸n$¶½${KK ·â
r√â � ô«Ônö -¶½${KK ·â

r√â � �c2  et   
 H � ¡ � �c1 � ¡ � �&c1 3 ¡). 

La dernière équation peut s’écrire :  

H � ¡ � � ô«Ônö -¶½${KK ·â-rKâ
r√â � � ô«Ônö -¶½-{KK ·â

r√â � �c0. 

Ainsi, l’équation (2.1-23) devient :  C' � #IM1 � È&�c0)O � �]$½âM1 � È&�c1)O.  

En simplifiant, on obtient la formule de Black & Scholes :  C' � #IÈ&c0) � �]$½âÈ&c1).  

Avec c0 � ô«Ôö-�½-LKrK�&¼$I)r√¼$I    et   c1 � c0 � �√T � 6. 

1-8 Valeur d’une option sur un sous-jacent payant d es dividendes 

Dans le cas de distribution de dividendes, l’hypothèse à retenir est celle qui 

stipule que les versements de dividendes pendant la durée résiduelle de l’option soit 

une fonction continue du temps, et/ou du prix du sous-jacent. Dans le cas contraire, 

une autre source d’incertitude vient s’ajouter aux variations du prix du sous-jacent, et 

le prix de l’option s’en trouve affecter. 

1-8-1  Versements des dividendes connus 

Sous cette hypothèse, aussi bien le montant des dividendes à verser pendant 

la durée de vie résiduelle de l’option que les dates auxquelles ils seront versés ne 

sont soumis à aucune source d’incertitude. 

Dans ce cas, pour déterminer la valeur de l’option, il suffit d’appliquer la 

formule de Black & Scholes en soustrayant au prix de l’action la valeur actualisée des 

dividendes qui seront versés d’ici à l’échéance de l’option. Ceci est cohérent avec le 

fait que le détenteur d’un call n’a aucun droit sur les dividendes qui seront versés d’ici 

à l’échéance de son option, puisque la valeur d’une telle option est toujours inférieure 

à celle d’une option identique dont le sous-jacent ne paie pas de dividendes. 

Si on suppose que le dividende est d’un montant D, et qu’il est payé 

en  60,&avec t � 60 � T) le prix de l’option est donné par les formules suivantes : C �  &S �  D]$½â0)È&c0) � �]$½âÈ&c1)  avec 

 c0 � ô«&ÔR��R�ñLö )-�½-LKrK�&¼$I)r√¼$I    , et  c1 � c0 � �√T � 6, ß0 � 60 � 6.  
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1-8-2 Versements des dividendes inconnus 

Lorsque ni le montant, ni la date de versement des dividendes ne sont connus, 

on suppose qu’ils sont une fonction connue du prix de l’action sous-jacente. Les 

modèles d’évaluation d’option dont la sous-jacente paie des dividendes reposent sur 

l’hypothèse d’un rendement en dividendes constant. Autrement dit, on suppose que le 

dividende versé par unité de temps représente une fraction  δ&S, t)  �  δ. 

Sous cette hypothèse, il suffit pour évaluer un call de soustraire au prix du 

sous-jacent la valeur actualisée du flux du dividende qui sera versé  durant la vie de 

l’option. Cet ajustement est nécessaire car les détenteurs d’une option n’ont aucun 

droit sur les dividendes payés par l’action sous-jacente à leur option. Par conséquent, 

le prix d’un call dont le sous-jacent a un rendement en dividendes instantanés, égal à 

δ, est donné par les équations suivantes :  C �  &S ]$�â)È&c0) � �]$½âÈ&c1)  , avec 

c0 � ô«Ôö-�&½$�)-LKrK�&¼$I)r√¼$I    , et   c1 � c0 � �√T � 6 

1-9 Evaluation des options sur indices boursiers 

Evaluer une option sur indice revient à évaluer une option sur un tracker de cet 

indice. Le tracker est un portefeuille constitué des actions composant l’indice dans 

des proportions    xª &1 � i � n). Pour chaque action   Aª, la proportion     xª 
correspondante est égale à sa capitalisation boursière divisée par la capitalisation de 

l’ensemble des actions composant l’indice. Soit :  xª � ³	
∑ ³	
x́ËL � �
î
∑ �
î
x́ËL . 

Le tracker traque l’indice, en d’autres termes, sa valeur reproduit quasiment le 

mouvement de la valeur de l’indice. 

On suppose que le prix du tracker suit une loi log-normale. C’est une 

hypothèse qui découle du fait que tous les prix des actions constituant le tracker sont 

supposés suivre  chacun un processus log-normal.   

Il faut cependant tenir compte des dividendes versés par les différentes actions Aª &1 � i � n)  composant l’indice pendant la durée de vie résiduelle de l’option. Si on 

suppose qu’une action Aª&1 � i � n)   verse des dividendes  Dª¬, à l’instant t¬&1 � j �
m)    et qu’il lui reste une durée Tª¬ jusqu’au versement des dividendes  à la date  t¬, 
alors le montant global des dividendes versés par les différentes actions constituant 

l’indice est la somme pondérée par les proportions xi des dividendes actualisées à la 

date t de l’ensemble des actions composant l’indice. 
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Soit 
 � ∑ ∑  xªDª¬, ]$½â´µ�®±0J­±0  

Si on considère que la distribution des dividendes est continue dans le temps, 

la somme pondérée des dividendes actualisés D sera donnée par la formule 

suivante : 
 � � &∑  xªDªA)]$½&¼$I)J­±0 cB¼I .  

Avec  DªA : montant du dividende versé par l’action de rang i à l’instant s>t. 

S’il y a versement de dividende à l’instant s, alors :  DªA © 0 ; 

S’il n’ya pas versement de dividende à l’instant s, alors :  DªA � 0. 

Si on désigne par I la valeur de l’indice, à l’instant t, et par I* la valeur de cet 

indice diminué du montant des dividendes, alors la formule de la valeur d’une option 

d’achat sur indice boursier est la suivante : ° � IÆÈ&c0) � �]$½&¼$I)È&c1)  avec 

IÆ � Ç � 
  et  c0 � ô«&�Æö)-�&½$�)-LKrK�&¼$I)r√¼$I    et  c1 � c0 � �√T � 6. 

En général, il est difficile de connaitre le montant, et la date de distribution du 

dividende de chacune des actions qui composent l’indice. Cette formule est donc 

difficile à utiliser. 

 

Section 2 : VOLATILITE 

Dans le calcul de la valeur d’une option, la volatilité, et le taux d’intérêt sont 

deux paramètres inobservables. La volatilité est un paramètre déterminant dans le 

calcul de la valeur d’une option. C’est un paramètre stochastique contrairement à 

l’hypothèse de Black & Scholes qui le considère comme constant. Les principaux 

estimateurs de ce paramètre sont la volatilité historique, et la volatilité implicite. 

2-1 Volatilité historique 

La volatilité historique est mesurée par l’écart type du rendement RI du sous –

jacent, durant la période qui précède l’émission des options. Si on fait abstraction des 

dividendes, si on désigne par #I � dt , et #I le cours du sous-jacent respectivement au 

début, et à la fin de période, ce rendement s’écrit : RI � ¸n$¸nR�n¸nR�n � }¸̧ � dln #. 

Le rendement instantané du sous-jacent est supposé suivre un mouvement 

Brownien géométrique suivant l’équation : 
}¸̧ � µc6 3 �c¥. Où dz est un processus de 

Wiener-Levy suivant une loi normale centrée de variance dt. Il est équivalent 

d’affirmer que RI  suit une loi log-normale ou que ln&1 3 RI) suit une loi normale, ou 
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encore ln& ¸n
¸nR�n

)  suit une loi normale. Avec des observations du cours du sous-jacent, 

il est possible d’estimer la volatilité instantanée σ. Suivant l’hypothèse de constance 

de la volatilité de Black & Scholes, la meilleure estimation de la volatilité, pour des 

données journalières est la racine carrée de la variance empirique sans biais (��2) 

donnée par les formules suivantes : 

��1 � 0J$0 ∑ &ln � ¸n¸nRL� � µ�)1J­±0  Où    µ� � 0J ∑ ln& ¸n¸nRL)J­±0 . 

Avec  n le nombre de jours ouvrables passés, et par conséquent, le nombre 

d’observations à considérer pour le calcul de la volatilité. 

Dans la formule de Black & Scholes, l’unité de temps pour mesurer les 

paramètres est,  par convention, l’année. Ceci est vrai particulièrement pour la 

volatilité. Ainsi, si on considère un nombre de jours ouvrables de 250 par an, la 

volatilité annualisée est donnée par la formule suivante : 

σ	� � ���1�S∆I   

L’hypothèse de Black & Scholes concernant la stationnarité du prix du sous-

jacent n’est pas conforme à la réalité. D’ailleurs la volatilité historique ne peut être 

que stochastique, rien qu’en considérant une période de calcul, sous la forme d’une 

fenêtre coulissante dans le temps. 
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2-2 Volatilité implicite  

La volatilité implicite de Black & Scholes est définie comme la valeur de la 

volatilité σ qui égalise le prix de l’option donnée par la formule de Black & Scholes, et 

le prix de l’option observé sur le marché. Le calcul de la volatilité implicite nécessite 

donc  l’inversion de la formule d’évaluation, en l’occurrence celle de Black & Scholes, 

tout en considérant la valeur de l’option sur le marché. Cette inversion est possible 

dans la mesure où la valeur du marché fonction de la volatilité est une bijection. 

Pour calculer la volatilité implicite, on va utiliser un algorithme récursif. Pour cet 

algorithme, le calcul se fait d’une manière itérative, suivant une boucle en considérant 

4 étapes. D’abord, on note que les quantités d1 et d2 de la formule de Black & 

Scholes peuvent se mettre sous la forme : 

c0 � �r 3 D�   , et   c1 � �r � D�    

Où ? � ô«& Ôö�R�ñ)√â    et  D � 01 √ß. 

Les 4 étapes de calcul sont les suivantes : 

� � �S la volatilité est initialisée avec une valeur �S d’où N&c0) 

c0 � �r 3 D�      

N&c1) � ¸Ê&}L)$³��R�ñ   d’où c1 

� �   }L$}K√â    puis retour à la case 1. 
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Le calcul se fait jusqu’à ce que la différence des volatilités implicites 

correspondantes à deux itérations successives soit inférieure à un seuil donné ζ. La 

valeur de l’option Ct est stockée, après le calcul de la volatilité. La valeur minimale de 

l’écart ε( � |°I � °| correspondra à la volatilité implicite recherchée. Cet algorithme 

est représenté par la figure suivante [28]: 

 

 

 

 

 

 

 Non 

 Oui 

 

 

 

 

 

 

Figure 02 : Logigramme pour le calcul de la volatilité implicite 
 

 

 

 

 

Initialiser avec une valeur 

quelconque de la volatilité �S 

Calcul de c0,J$0 : 

c0,J$0 � ô«Ôö-�½-LKrxRLK �&¼$I)rxRL√¼$I     

Incrémentation � f � 3 1 

Calcul de È&c0,J$0) Si |�J � �J$0| � �  �I,­���­º­I� k �J 

È&c1,J) � °I � #È&È&c0,J$0))�]$½&¼$I)  

Calcul de È&c1,J) :  

�J �   c0,J$0 � c1,J$0T � 6  

Calcul de la volatilité  °I-0   est calculée à 

partir de �I,­���­º­I� 

Calcul de c1,J 
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Conclusion 

D’abord, la couverture delta-neutre nécessaire pour éliminer le risque est 

supposée continue dans le temps. Si cette couverture n’est pas continue, et qu’ils 

existent des intervalles de temps entre les différentes révisions du portefeuille, alors il 

y a un risque qui subsiste ; ce qui est en contradiction avec le modèle de Black & 

Scholes.  

Ensuite, les couts de transaction relatifs à la couverture du portefeuille sont 

supposés nuls. Ceci n’est pas du tout réaliste, car sur toutes les places du monde, il y 

a des coûts supports à la vente de produits financiers. Si ces coûts sont élevés, ceci 

va à l’encontre d’une couverture du portefeuille en continu. 

Enfin, le modèle de Black & Scholes suppose que la volatilité du sous-jacent 

est, non seulement connue mais aussi constante. Or, la volatilité ne peut être 

directement observable, et sa mesure est très difficile. De plus, il est difficile de 

modeler une variable qu’on ne peut pas observer. 
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CHAPITRE 3 : VALORISATION DES STOCK-OPTIONS 
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Dans cette partie, on se focalise sur les options de type américain. Comme son 

nom l’indique, les « Employées Stock-options »(ESO) attribuées dans le cadre d’une 

rémunération complémentaire des salariés sont des options américaines qui 

possèdent les caractéristiques suivantes : période d’indisponibilité (delayed vesting), 

non négociabilité, exercice anticipé, dilution, sans compter les éléments que la norme 

met à l’écart pour la valorisation. Ces options représentent un engagement pour 

l’entreprise qu’il faut désormais évaluer le plus justement possible, et à la date 

d’attribution. 

Ce chapitre est organisé en quatre sections dont la première section traite 

l’état de l’art où on met en exergue l’état des lieux des travaux effectués sur le sujet 

d’une part, et on met l’accent sur le modèle retenu d’autre part. 

La seconde section concerne l’approche analytique. Dans cette section, on 

décrit le modèle d’une ESO, et on calcule la valeur de l’option en question. 

La troisième section est consacrée à l’approche par simulation de Monte-Carlo. 

Primo, on présente ce que la méthode de Monte-Carlo, après quoi on procède au 

choix des méthodes de simulation, et pour terminer avec cette partie, on effectue des 

simulations au cas par cas. 

La quatrième section est destinée aux résultats des analyses, et 

commentaires. Et enfin, la cinquième section est consacrée aux limites, et aux 

améliorations possibles du modèle. 

Section 1 : ETAT DE L’ART 

1-1 Etat des lieux des travaux effectués sur le suj et 
A l’origine, les stock-options étaient valorisées par leur valeur intrinsèque à la 

date d’attribution (APB 25), ce qui rendait inexistant tout modèle d’évaluation, d’autant 

plus que ces options étaient en général attribuées « at-the-money ». Les nouvelles 

normes SFAS 123 (du coté américain) et IFRS 2 (du coté européen) imposent de 

prendre en compte à la fois le comportement d’exercice anticipé des bénéficiaires, qui 

diminue significativement la valeur des options et les classes de risques différentes 

suivant les individus. Il est alors préconisé le recours au modèle de Black & Scholes 

(1973) [4] appliqué à des groupes de bénéficiaires de caractéristiques différentes, la 

maturité étant ramenée à la durée de vie attendue des options correspondant à 
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chaque classe de risque. Cependant, même si ce modèle est très avantageux d’un 

point de vue pratique (compréhensible, maniable, mise en œuvre simple et rapide), il 

surestime la valeur des options. Le modèle de Black & Scholes repose sur certaines 

hypothèses comme la continuité du processus de diffusion ou une volatilité constante 

et connue. Et la réalité, par l’évolution dans le temps de la volatilité d’une action, s’en 

éloigne sensiblement [26]. 

Le grand succès des stock-options dans les années 90 d’une part, et 

l’avènement des nouvelles normes comptables d’autre part ont conduit de nombreux 

analystes, et chercheurs à se pencher sur le problème de l’évaluation. En particulier, 

Rubinstein (1995) [22] a effectué une étude générale sur les caractéristiques 

spécifiques aux stock-options, les paramètres qui impactent la valorisation, et leur 

sensibilité. Pour cela, en utilisant un modèle d’arbre binomial, l’influence de chaque 

paramètre est analysée par comparaison du résultat avec celui obtenu par Black & 

Scholes dans le cas d’options classiques. De par leur flexibilité, les modèles 

binomiaux ont été employés par un grand nombre de chercheurs dans une optique 

d’évaluation mais, aussi d’analyse comparative des paramètres. Parmi eux, 

Carpenter (1998) [7] compare une approche d’utilité attendue avec le départ 

prématuré du bénéficiaire (valorisation du point de vue de la firme). De plus, il 

effectue une étude empirique minutieuse sur le comportement d’exercice des 

bénéficiaires.  

On peut noter qu’il existe en fait deux façons de voir le pricing des stock-

options : Hall-Murphy (2002) [13] se fonde sur l’étude de Carpenter pour conclure que 

la valeur  des options est bien différente selon qu’il s’agit du point de vue du dirigeant 

ou celui de la firme. Chance, et Yang (2004) [9] s’attachent particulièrement à la 

valeur des options du coté de l’employé en étudiant l’effet des dividendes sur la 

valorisation. De façon générale, les employés ont plutôt une aversion pour le risque, 

et ne peuvent pas, de surcroît, diversifier ce risque sur le marché. A l’opposé, 

l’entreprise via ses actionnaires a la possibilité de se couvrir face à ce risque : les 

options possèdent alors une valeur plus importante au point de vue de la firme. Cette 

dernière mise donc sur l’aspect stimulant de ce mode de rémunération pour 

compenser la perte en valeur (et même espérer mieux) liée à l’attribution des options. 

La norme IFRS 2 concerne la valorisation de l’engagement de l’entreprise, c’est donc 

l’approche liée à la firme qui  intéresse. Pour finir avec les modèles binomiaux, on 

peut citer Hull et White (2004) [14] qui se placent du point de vue de l’entreprise,   et 
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modélisent l’exercice anticipé des bénéficiaires par deux facteurs supposés 

indépendants : le taux de départ (« exit rate ») relatif au départ volontaire ou non du 

salarié d’une part, et l’effet psychologique dû à la hausse du cours (exercice si 

dépassement d’une barrière) d’autre part. Ainsi, par rapport à cette dernière 

supposition, lorsqu’un employé possède une option fortement « in-the-money », il 

aura tendance à l’exercer par peur du risque de chute des cours, et la perte de la 

valeur temps de l’option. Cette approche est à la base des modèles analytiques les 

plus récents. 

En parallèle avec l’engouement rattaché au pricing des options exotiques, 

plusieurs auteurs ont élaboré des formules fermées dans le cadre plus particulier des 

ESO. La plupart de ces modèles utilisent un temps d’arrêt (le premier instant de saut 

d’un processus de Poisson) pour décrire l’exercice anticipé des options. Ces 

modèles, bien connus sous le nom de modèle à intensité, ont eu un énorme succès 

pour modéliser la structure par terme des taux d’intérêt  ou encore pour évaluer des 

dérivées de crédit en présence du risque de défaut : de nombreux résultats sont donc 

exploitables (voir [17]). Ainsi, Carr, et Linetsky (2000) [8] ont développé une formule 

fermée exclusivement basée sur le taux de départ, et élaborent deux approches : une 

intensité constante est plus importante dans le cas d’une option « in-the-money », et 

une intensité croissante en fonction de la valeur intrinsèque (plus l’option est « in-the-

money », plus elle aura tendance à être exercée rapidement). Les auteurs ne 

prennent en compte ni la période d’indisponibilité ni la possibilité  de départ brutal 

d’un salarié.  De plus, la mise en place du modèle nécessite une intégration 

numérique, trop coûteux pour des calculs actuariels effectués sur différentes classes 

de risque. Raupach (2003) [20] trouve une formule semi-fermée (nécessitant une 

double intégration numérique) dans le cas du modèle élaboré par Hull, et White 

(barrière exponentielle combinée avec un taux de départ à intensité constante). Enfin, 

Cvitanic, Wiener, et Zapatero (2004) [10] se basent sur le même modèle mais 

trouvent une formule fermée. 

L’évaluation analytique proposée dans ce document est l’adaptation de cette 

dernière approche aux contraintes de la norme IFRS 2. 

1-2 Le modèle retenu 
Avant de se lancer dans un choix définitif pour un modèle d’évaluation d’ESO, 

il est préférable d’étudier les avantages, et inconvénients des articles cités ci-dessus. 
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Comme on a pu le voir, deux voies principales ont été empruntées pour évaluer les 

ESO à leur juste valeur : les modèles analytiques, et les modèles à arbres binomiaux 

ou trinomiaux. On peut également utiliser des simulations de Monte-Carlo. 

La première approche consiste à trouver une formule pour évaluer le prix des 

ESO. Elle nécessite des restrictions dans le choix des paramètres pour des raisons 

pratiques de calcul. Sont souvent mis à l’écart : l’effet dilutif, la volatilité stochastique 

du sous-jacent, les considérations liées à la théorie de l’agence (il est clair que 

certains dirigeants peuvent affecter avec leurs actions le prix des ESO), les conditions 

de performance boursière. Toutefois, la richesse du calcul stochastique a permis 

d’obtenir des résultats intéressants pour le prix des ESO, la date d’exercice attendue, 

et la valeur attendue de l’action à l’exercice, cela en prenant en compte les 

caractéristiques principales des ESO (voir [8], [10], [20]). De plus, l’avantage évident 

est double : implémentation relativement simple et rapidité de calcul. 

La deuxième approche semble plus flexible dans le sens où elle permet de 

capter l’influence d’un plus grand nombre de facteurs. Cependant, certaines 

hypothèses plus complexes sur le comportement d’exercice des bénéficiaires 

paraissent difficiles à mettre en œuvre. Par exemple, un niveau de la barrière 

psychologique variable selon l’évolution plus ou moins récente du cours de l’action 

pose des difficultés à un modèle binomial puisque celui-ci ignore par quel chemin on 

a abouti à un nœud précis de l’arbre. De plus, comme expliqué Cvitanic, Wiener, et 

Zapatero, ces modèles convergent assez lentement, et la convergence n’est pas 

uniforme.   

 La troisième approche apparait complémentaire car elle permet souvent de 

comparer, et de vérifier les résultats obtenus dans les deux cas précédents. De plus, 

les simulations de Monte-Carlo offrent une grande flexibilité face à la complexité du 

modèle choisi. Cependant, le talon d’Achille de cette méthode reste le temps d’attente 

exorbitant des résultats dès qu’on cherche un minimum de précision.   

Définitivement, on n’a pas choisi de restreindre à une approche particulière : 

c’est plutôt la complémentarité de ces dernières qui a été retenue. En effet, même si, 

il faut le reconnaitre, le mémoire est centré sur l’obtention d’une formule fermée, des 

simulations de Monte-Carlo ont été développées en parallèle dans un but de 

comparaison de résultat, et de validation de formules. 
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Section 2 : APPROCHE ANALYTIQUE 
Le modèle analytique qu’on va développer s’appuie essentiellement sur J. 

Cvitanic, Z. Wiener et F. Zapatero [10] et P. Raupach [20] pour l’exercice anticipé des 

options, et sur P. Carr, et V. Linetsky [8], Nicole El Karoui, et Lionel Martellini [11], et 

sur D. Lando [17] pour les aspects mathématiques liés aux modèles à intensité d’une 

part, et, plus généralement, au pricing à horizon aléatoire d’autre part.  

2-1 Description du modèle 
Le modèle s’efforce de calculer la juste valeur du prix d’une ESO attribuée 

pour un individu donné sous une évaluation risque neutre du point de vue de la firme. 

En ce qui concerne ce risque, l’entreprise est moins pénalisée que l’employé par les 

problèmes de diversification du risque. En ayant une position courte sur les options 

attribuées, elle pourrait les racheter sous certaines conditions. De plus, les 

actionnaires qui autorisent l’attribution des ESO ont la possibilité d’échanger 

librement leurs actions, et d’investir dans l’actif sans risque. Les employés ne peuvent 

pas en général se couvrir à cause du caractère non négociable de ces options. Ainsi, 

d’autant plus qu’ils ont généralement une aversion pour le risque, on peut supposer 

que la firme est neutre au risque concernant son engagement. 

Cours de l’action et formule de Black & Scholes 

Comme dans le modèle de Black & Scholes [4], on suppose que le cours de 

l’action suive un processus log-normal :
}¸n
¸n

� �c6 3 �c�I. Sous la mesure risque 

neutre, la dynamique du cours de l’action dévient :
}¸n¸n � bc6 3 �c�I. (3.2-1), et peut 

se mettre sous la forme :#I � #S]�Ö Ý�b � 01 �1� 6 3 ��IÞ (3.2-2), avec µ le drift, σ la 

volatilité, r le taux sans risque. �I est un mouvement Brownien standard sur un 

espace de probabilité complet (Ω, ℱ, ℙ) que l’on munira de la filtration ! � &ℱI)(≥'X(1). 
  Dans l’univers risque neutre, le processus de prix des actions est une 

martingale. La valeur °I en t d’une option de maturité T peut se voir comme 

l’espérance actualisée de ses flux futurs : °I � `"]$½&¼$I)&#I � �)-/ℱ#  
 

 

 

 

(1) On se place directement dans l’univers risque neutre et ℙ représente la probabilité dans cet univers. 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 
 
ANDRIAMANANTENA  Philibert 

68 
Mémoire de DEA, ENI 

  

On obtient pour t = 0 la formule de Black & Scholes qui dans le cas de 

dividende continu δ s’écrit : C �  &S$]$�¼)È&c0) � �]$½¼È&c1)  , avec 

c0 � ô«Ôö-�&½$�)-LKrK�&¼)r√¼    , et   c1 � c0 � �√T    (3.2-3) 

 

L’exercice anticipé 

Rien de tel qu’un petit dessin aide pour introduire les idées sous-jacentes à la 

modélisation du comportement d’exercice anticipé des optionnaires. 

 

                                       Figure 03: Les scénarios d'exercice des  options 

On fixe dorénavant T% à 0. T% est la date d’attribution ou « grant date ». Il s’agit 

de la date du jour où le droit est accordé. Elle figure dans la lettre de notification 

individuelle reçue par le salarié. A cette date, la juste valeur des options doit être 

calculée individuellement, et placée en charge dans le compte résultat.  

 

L’intervalle  �T%, TS�, où TS est la date à laquelle commence l’exercice des 

options,  est la période d’indisponibilité ou « vesting period ». Ainsi,  entre T% et, TS 

les bénéficiaires ne peuvent pas exercer leurs options. Cela revient à imposer une 

durée minimale de service dans l’entreprise. De ce fait, dans le cas d’un départ 

volontaire du salarié, d’une démission ou d’un licenciement pendant cette période, 

les options détenues par le salarié sont définitivement perdues. Comme les options 

sont attribuées en 0, et comme elles ne peuvent être exercées avant la date TS, elles 

sont donc abandonnées dans la région Z si l’employé quitte la firme avant  TS. 
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On note &I � &]æ&I$¼X) l’équation de la courbe B. On suppose que L et α sont 

deux réels(2) tels que &I � � pour tout t dans  �TS, T�, ce qui impose L � � et α �
� 1¼$'X ln&'�). �TS, T� est la période d’exercice. C’est la période pendant laquelle les 

options peuvent être exercées, la date T étant la date d’échéance des options. 

Cependant, le conseil d’administration a le droit de suspendre le droit de lever les 

options pendant un délai qui ne peut excéder 3 mois en cas d’opération exigeant une 

connaissance exacte, et préalable du nombre d’actions composant le capital social 

(augmentation de capital ou émission de valeur mobilières ,donnant accès au capital, 

fusion ou scission, regroupement ou division d’actions par exemple). 

 

Dans l’intervalle   �TS, T�,  l’employé peut exercer ses options dans le cas des 

scénarios suivants : 

Scénario A : 

         En TS, si le cours de l’action se situe sur la demi-droite A, c’est-à-dire 

lorsque  #'X ( �&, 3∞�. Dans ce cas, il s’agit d’une option européenne d’échéance TS  

dont l’exercice est conditionné à une valeur intrinsèque (en TS) supérieure à  & � �.  

 

Scénario B : 

Entre TS et  T, si le scénario A ne s’est pas produit(3), les options sont exercées 

lorsque le cours de l’action dépasse pour la première fois la barrière exponentielle 

(courbe B) d’équation &I. Appelons   )û le premier instant de franchissement de &I.     
après TS.   )û � Ì�ø@6  TS, #I  &IC � Ì�ø*6  TS, #I]$æ&¼$¼X)  &+ (3.2-4) 

  )û est donc un temps d’arrêt adapté à la filtration ! car #I est continu(4). 

 

 

 

 

 

(2) dans le cas d’une barrière exponentielle décroissante, qui incite les employés à exercer à mesure du 

rapprochement de la maturité, on choisit α négatif. 

(3)Dans le cas où S'X � & 

(4)Voir [16] 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 
 
ANDRIAMANANTENA  Philibert 

70 
Mémoire de DEA, ENI 

  

Scénario C 

Entre TS et  T, si les scénarios A  et B ne se sont pas réalisés, au moment du 

premier instant   ), d’arrivée d’un processus d’intensité -!-prévisible : l’option pourra 

être exercée dans la région C en   ), si le pay-off est positif. Un lecteur non familier 

avec les processus à intensité, et plus particulièrement, les processus de Cox, pourra 

se reporter à l’Annexe B où une définition formelle est fournie, et plusieurs propriétés 

sont développées. 

 

  ), � Ì�ø .6  TS, \ Ã�cB  0̀
(

'X
/ 

Avec  0̀ est une variable aléatoire de loi exponentielle de paramètre 1 qu’on 

suppose indépendante de la filtration ! :   ), et  )û sont donc deux variables aléatoires 

indépendantes. 

A ce stade, il convient de préciser les filtrations utilisées pour le formalisme 

mathématique. On a vu que toutes les variables d’états étaient adaptées à la filtration 

!. Cependant, cette filtration est trop pauvre pour capter le flux d’informations relatif 

au temps d’arrêt  ),. On fixe ainsi un espace de probabilité (Ω, 0, 1, ℙ) suffisamment 

large pour supporter les processus S, -, et le temps d’arrêt  ),. La filtration 1 � &0I)I2S 

capture toute l’information relative à toutes les sources d’aléa au fur et à mesure que 

le temps s’écoule. On peut donc séparer les flux d’informations de la façon suivante : 

ℱI � 3@45, -5, 6 � 5 � 7C 
8I � 3*9@  ):;�C, 6 � < � 7+ 

                                      0I � ℱI = 8I. 
 

Avec ℱI qui représente l’information jusqu’au temps t relatif au processus (S, 

-) et 8I qui permet de dire si l’exercice a eu lieu avant t ou non (ℍ est la plus petite 

filtration pour laquelle   ), est un temps d’arrêt). On note également que la filtration ! 

ne fournit que l’information sur la tendance du taux d’exercice (l’évolution de  -7) mais, 

ne permet pas de décider à un instant t si l’exercice a eu lieu. Cette information est 

contenue dans la filtration 1 par rapport à laquelle - est un temps d’arrêt. En résumé, 

même en connaissant la perspective d’exercice d’un bénéficiaire, l’événement 
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d’exercice est perçu comme une surprise totale, il est totalement imprévisible (tandis 

que la tendance - l’est). Ce formalisme conduit à une grande maniabilité des 

processus à intensité. En effet, la fonction de survie conditionnelle et la densité 

conditionnelle de   ), s’écrivent : 

`"9@):?IC/ℱI# � ]$ � ,�}�nÄX 9@I2¼XC  (3.2-5) 

`"9@):?¼C/ℱI = 8I# � 9@@ª« &¼,  ):)2@%å &I,¼X)C]$ � ,�}�ÄABC &n,ÄX)   (3.2-6) 

��¸ `"9@):;¸C/ℱI = 8I# � 9@@ª« &¸,  ):)?@%å &I,¼X)CÃ¸]$ � ,D}ýÔABC &n,ÄX)   (3.2-7) 

 

Scénario D   

A la maturité T, si aucun des trois scénarios précédents ne s’est réalisé, 

l’option est exercée sur le segment D si, bien entendu,   � � #¼ � &]æ&¼$¼X). 
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La figure ci-après illustre un exemple concret d’une trajectoire du cours de 

l’action. On constate que on se situe soit dans le scénario B (#¼X � & et #I atteint &I 
avant T juste avant la 6ème année), soit dans le scénario C en cas d’interruption 

brutale du contrat de travail avant )û. 

 

Figure 04 : Trajectoire de S dans le cas où  4E6 � F66, r = 0.05, 3333 = 

0.2, E6 � G, T = 10, L = 200, et αααα = -0.02.  
On tient à préciser que cette trajectoire est la courbe représentative de la 

fonction du cours de l’action #I de l’équation (3.2-2). 

2-2 Calcul de la valeur de l’option 
Dans cette partie, on évalue à la juste valeur une ESO en t dans le cadre du 

modèle décrit précédemment, et en utilisant la méthode de l’espérance actualisée 

des flux futurs. Dans un premier temps, notre évaluation se situe dans un contexte 

très général : taux d’intérêt stochastique (r est un processus !-adapté), et intensité 

stochastique (- est un processus !-adapté aussi). En effet, dans l’optique d’une 

amélioration, et d’une extension future du modèle (Projet de Thèse que j’envisagerai 

de faire), on doit rester le plus large possible. On rétrécira ensuite le champ d’action, 

pour des raisons pratiques de calcul, à un taux d’intérêt, et une intensité constants. 

 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 
 
ANDRIAMANANTENA  Philibert 

73 
Mémoire de DEA, ENI 

  

De plus, les quatre classes de scénarios définis précédemment forment des 

ensembles disjoints d’événements : 

Scenario A: `ú � *#¼X  &+ 
Scenario B: `û � *#¼X � &+H@ )û � TCH@  ), �  )ûC 
Scenario C: º̀ � *#¼X � &+H@  ), � TCH@ )û �   ),C 
Scenario D: `} � *#¼X � &+H@  )û � TCH@ ), � TC. 
Si on note ) le temps d’arrêt correspondant à la réalisation d’un des scénarios 

précédents, on a : °I � ` Ý]$ � ½�}�Än &#¼ � �)-/0IÞ qui se décompose en quatre 

termes : 

 °I � °Iú 3 °Iû 3 °Iº 3 °I}  (3.2-8) 

     � ` Ý]$ � ½�}�ÄXn &#¼X � �)-9*¸ÄX2'+/0IÞ (3.2-9)    

     3` Ý]$ � ½�}� )�n &&]æ& )�$¼X) � �)9@ )�I¼C9@  ):? )�C/0IÞ  (3.2-10) 

     3` Ý]$ � ½�}�Än &# ): � �)-9@  ):I¼C9@ )�?  ):C9*¸ÄXI'+/0IÞ  (3.2-11) 

     3` Ý]$ � ½�}�Än &# Ä � �)-9@ )�?¼C9@  ):?¼C9*¸ÄXI'+/0IÞ   (3.2-12) 

Grace à (3.2-6) et (3.2-7), en conditionnant sur  ℱI = 8I, on obtient des 

expressions plus simples pour les  °I�  &� ( @a, ¡, Ù, cC), valeurs de l’option d’achat 

relatives aux quatre scenarios de la figure n°02. O n donne dans les sous-titres 

suivants les expressions générales(5) puis pratiques(6) des  °I� (r, - constants et t = 0). 

Calcul de J7K 

°Iú � ` Ý]$ � ½�}�ÄXn &#¼X � �)-9*¸ÄX2'+/0IÞ  
     L ` Ý]$½¼X&#¼X � �)-9*¸ÄX2'+Þ                (3.2-13) 

Calcul de J7M 

°Iû � ` Ý]$ � ½�}� )�n M&]æ& )�$¼X) � �O9@ )�I¼C9*¸ÄXI'+`�9@  ):? )�C/&ℱI = 8I)�/0IÞ 
      � ` N]$ � ½�}� )�n ]$ � ,�}� )�ÄX M&]æ& )�$¼X) � �O9@ )�I¼C9*¸ÄXI'+/0IO  
     L ],¼X` Ý]$&½-,) )�M&]æ& )�$¼X) � �O9@ )�I¼C9*¸ÄXI'+Þ                  (3.2-14) 

 

 

(5) Marqué par un « = » 

(6) Marqué par un « L » 
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Calcul de J7P  

°Iº � ` Ý9*¸ÄXI'+` Ý]$ � ½�}� ):n M# ): � �O-9@  ):I¼C9@ )�?  ):C/&ℱI = 8I)Þ /0IÞ 
         � ` Q9*¸ÄXI'+ Ý� Ãý¼¼X ]$ � ½�}�Dn ]$ � ,�}�DÄX &#ý � �)-9@ )�?ýCÞR  
         L -],¼X` Ý9*¸ÄXI'+ � ]$&½-,)ý¼¼X &#ý � �)-9@ )�?ýCc×Þ     (3.2-15) 

Calcul de J7S   

°I} � ` Ý]$ � ½�}�Än M# Ä � �O-9@ )�?¼C9*¸ÄXI'+`�9@  ):?¼C/&ℱI = 8I)�/0IÞ          
     � ` N]$ � ½�}�Än ]$ � ,�}�ÄÄX M# Ä � �O-9@ )�?¼C9*¸ÄXI'+/0IO  
    L ]$&½-,)¼],¼X` ÝM# Ä � �O-9@ )�?¼C9*¸ÄXI'+Þ                (3.2-16) 

Pour des raisons de clarté, les calculs sont développés en annexe A. A titre 

indicatif, il s’agit de conditionner dans un premier temps par rapport à ℱ¼X, et 

d’exploiter ensuite les résultats obtenus dans la littérature concernant la valorisation 

analytique des options à barrière. 

Section 3 : APPROCHE PAR SIMULATION DE MONTE-CARLO 
On va effectuer pour chaque sous-option les simulations de Monte-Carlo 

permettant de vérifier la cohérence des formules trouvées précédemment. Il a paru 

important d’exposer ici les problématiques rencontrées, et les solutions apportées lors 

de l’application des méthodes de Monte-Carlo au calcul des ESO, ne serait-ce que 

pour une extension future. 

3-1 Préliminaire [48] 
Les méthodes de Monte-Carlo reposent sur la loi des grands nombres : si &H­)­(T  est une suite de variables aléatoires indépendantes sur ð et g une fonction 

telle que `�ü&H­)� existe pour tout  Ì ( T, alors 
0J ∑ ü&H­)J­±0 f `�ü&H)�   (3.3-17) 

presque sûrement. 

Pour simuler les scenarios conduisant à la valeur des sous-options, il faut 

d’abord savoir simuler un mouvement Brownien géométrique. Pour cela, on a besoin 

de simuler une variable aléatoire de loi normale centrée réduite  �.La simulation d’un 

mouvement Brownien géométrique peut s’effectuer de deux manières : 
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Soit directement, si on veut simuler la valeur du cours d’une action à un instant 

précis connaissant sa valeur initiale #¼X, et toutes ses caractéristiques classiques : 

#I � #¼Xexp &�b � 01 �1� 6 3 �√6�) 

Soit pas à pas en simulant successivement toutes les valeurs du Brownien 

entre l’instant initial, et la date de fin de simulation en discrétisant l’équation 

différentielle stochastique (3.2-1) vérifiée par le processus S :  

. #¼X � ##I-∆I � #I&1 3 b∆6 3 £√∆6�)�. 
3-2 Choix des méthodes de simulation 

A première vue, la méthode directe paraît attrayante car elle ne nécessite 

qu’une seule réalisation de � pour générer la valeur d’une action à une date donnée. 

Mais, on a observé précédemment que la valeur de l’option dépendait de la totalité du 

chemin parcouru par le cours  de l’action. La seconde méthode s’avère alors plus 

adaptée au problème. Cependant, la connaissance des densités de  )û ]6  ),  a 

permis de simuler ces deux dernières sources d’aléa intervenant dans le calcul de 

l’option : la méthode directe n’a donc pas dit son dernier mot ! Ainsi, pour la deuxième 

méthode, les étapes du calcul du prix d’un call par la méthode de simulation de 

Monte-Carlo sont les suivantes [48] : 

a) Diviser la durée T de l’option en m pas ∆6 � ¼
�. ∆6 est défini sur une 

base annuelle car tous les paramètres du call sont exprimés sur une 

base annuelle. 

b) Générer un premier nombre aléatoire � et calculer #¼L à partir de 

#¼X(connu). 

c) Générer de façon séquentielle d’autres variables aléatoires et substituer 

dans (3.2-1). 

On obtient en bout de piste une trajectoire de S. On calcule alors sa moyenne 

sur la trajectoire : # V � ∑ ¸µ� . 

On calcule le cash-flow final de l’option pour cette trajectoire : °W­ � &# V­ � �). 

On effectue N itérations de la sorte que N doit être important pour réduire autant que 

possible #X, et on obtient un cash-flow respectif pour chaque itération.  
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On obtient finalement le prix du call : °X � ]$½&¼$I) ∑ ³Y´ÊÊ­±0 . L’écart type de cette 

estimation est le suivant : #X � 0√Ê$0 Z∑ &°­ � °X)1­ , avec °­ � ]$½&¼$I)°W­, i symbolise 

l’itération. 

A titre illustratif, voici les graphiques de la densité de  )û ]6  ), dans le cas où - 

est supposé constant. 

 

Figure 05 : Densité de    ZM  pour  4E6 � F66, r = 0.05, 3333 = 0.2, E6 � G, T 

= 15, L = 150, et αααα = -0.02. 

 

Figure 06 : Densité de    Z-  pour   E6 � G [7 \ � 6. ] 
On peut à partir de là, simuler une variable aléatoire de même loi que )û, en 

procédant par la méthode de rejet par exemple. Pour simuler  ),, il suffit de générer 
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une variable aléatoire 0̀ de loi exponentielle de paramètre 1. On a donc  ), �
Ì�ø@6  TS, Ã&6 � TS)  0̀C � TS 3 óL, . 

3-3 Simulations au cas par cas [49] 
Les simulations ont été réalisées à partir des formules suivantes :  

                                °Iú � ]$½¼X` Ý&#¼X � �)-9*¸ÄX2'+Þ  
                      °Iû � ` Ý]$½ )�M&]æ& )�$¼X) � �O9@ )�I¼C9@ ):? )�C9*¸ÄXI'+Þ 
                      °Iº � ` N]$½ ): �#  ): � ��- 9@ ):?¼C9@ )�?  ):C9*¸ÄXI'+O 
                                °I} � ]$½¼` N�#  ): � ��- 9@ )�?¼C9@ ):?¼C9*¸ÄXI'+O 
On remarque que °ú nécessite seulement la simulation de  #¼X, ce qui ne pose 

aucun problème. De plus, pour  °û, il faut d’abord simuler #¼X puis  )û ]6  ), et, en 

fonction du résultat des tests effectués, calculer le « pay-off » futur. Ainsi, la 

simulation de °û  permet d’obtenir le graphique suivant : 

 

Figure 07 : courbe de  JM à valeur dans ℂℂℂℂ pour  4E6 � F66, r = 0.05, 3333 

= 0.2, E6 � G, T = 10, L = 200, et αααα = -0.02.  
Cette courbe indique le moment opportun où la sous option °û peut être 

exercée. La figure met donc en évidence que, juste avant la 6ième année, la valeur de 
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la sous option °û est optimale. On entend ici par valeur optimale le fait que la valeur 

résiduelle de l’option &&I � �) dépasse la barrière exponentielle d’équation  &I. On 

remarque que la valeur résiduelle oscille dans l’intervalle  ��400; 400�. Cette valeur 

négative  est due à la simulation de la densité de  )û qui retourne de valeur complexe 

(dans ℂ, voir annexe A pour la densité de  )û ). En ne prenant que la valeur réelle, la 

figure se présente comme suit : 

 

Figure 08 : courbe de  JM à valeur réelle  pour  4E6 � F66, r = 0.05, 3333 = 

0.2, E6 � G, T = 10, L = 200, et αααα = -0.02.  
 

On constate alors que la figure 08 est beaucoup plus facile à interpréter que la 

précédente. En effet, elle met en exergue que si l’optionnaire rate le moment 

opportun d’exercice de l’option, il doit attendre une année, et plus pour exercer son 

option. Ce qui n’est pas tout à fait évident pour la figure précédente. La figure 08 

souligne également qu’il serait judicieux d’exercer l’option dès la levée de la date 

d’indisponibilité jusqu’à la 6ième année.  

La méthode directe est donc applicable dans ces deux premiers cas, et peut 

fournir des résultats plus rapidement si on utilise un algorithme efficace pour la 

simulation de  )û. 
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En ce qui concerne °Iº et °I}, on est contraint de procéder différemment dans la 

mesure où (respectivement)  #  ):  et  # Ä doivent être simulées. Dans se cas, la 

simulation de  )û et la connaissance de #  )�est corrélée avec les réalisations futures 

ou passées de #  ):  et # Ä. La simulation de  °º  donne le résultat suivant :  

 

Figure 09 : courbe de  JP  pour  4E6 � F66, r = 0.05, 3333 = 0.2, E6 � G, T 

= 10, L = 200, et αααα = -0.02.  
 

La figure 09 montre qu’à une certaine date le pay-off de sous option °º  ne 

cesse de monter. Cependant, plus le temps passe plus le pay-off tend vers une 

valeur constante. Ceci n’est pas étonnant puisque plus l’option atteint sa maturité, 

plus sa valeur temps se stabilise, et converge vers sa valeur intrinsèque. Quant à la 

simulation de  °}, elle est fortement semblable à celle de °º.   

Comme on peut le constater, les méthodes proposées ici sont très facilement 

exploitables(7). De plus, si nous souhaitons étendre ou modifier notre modèle, il suffit 

de rectifier légèrement les codes des simulations alors que, dans le même sens, une 

approche analytique se complexifierait très rapidement et deviendrait inutilisable.  

 

(7) un langage de programmation et un générateur aléatoire suffisent. 
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Cependant, l’implémentation de ces méthodes rencontre plusieurs limitations sur le 

plan de la précision et du temps de calcul. 

3-4 Vitesse de convergence  
En effet, même si, comme l’on a mentionné, les deux premières sous-options 

se calculent assez rapidement pour une certaine précision(8), les temps de calculs 

s’explosent très vite pour les deux autres. De façon générale, dès qu’on recherche 

une plus grande précision ou bien lorsque l’évaluation des ESO s’effectue suivant les 

caractéristiques de chaque employé, sur un échantillon de taille élevé(9), la durée 

d’attente pour l’obtention des résultats devient inacceptable. Une question qui semble 

naturelle est donc la vitesse de convergence des méthodes de Monte-Carlo.  

En reprenant les notations introduites pour (3.3-17), le Théorème Central 

Limite assure que si ��1 � �ab�ü&H)� : ∑ `&m´)$ó�`&m)�r�√JJ­±0 f l  en loi.  (3.3-18), où Y est 

une variable aléatoire de loi normale centrée réduite. Par conséquent, l’erreur 

d’estimation �J � a0J ∑ ü&H­)J­±0 � `�ü&H)�a satisfait :  �bx√Jr� � 1.96� e ℙ&|l| � 1.96) �
0.95. 

Ainsi, un intervalle de confiance pour `�ü&H)� au niveau 95% est alors : 

g1� ¯ ü&H­)J
­±0 � 1.96��√�      , 1� ¯ ü&H­)J

­±0 3 1.96��√�  h 
La vitesse de convergence est donc de l’ordre de 0√J. Il faut noter qu’elle soit 

également proportionnelle à �� et ce détail a bien souvent une influence considérable 

sur la qualité de l’approximation. A ce propos, la plupart des méthodes dites 

d’accélération de la convergence sont basées sur la minimisation de �� et la rapidité 

du générateur aléatoire. 

Ainsi, l’implémentation a toujours été accompagnée d’une estimation de 

l’erreur, quantité indispensable pour pouvoir apporter une signification aux résultats 

trouvés. En effectuant, à l’aide d’une boucle, 1000 itérations, l’histogramme des 

simulations, de même que les principales statistiques, sont répertoriés à la figure 09. 

 

 

 

(8) pour la plupart des applications une précision de 10$1 est acceptable. 

(9) une centaine personnes par exemple. 
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Valeur ESO   

Moyenne 91,0986084 

Erreur-type   0,508773493 

Écart-type 16,0888305 

Variance de 
l'échantillon 258,850467 

Kurstosis 
(Coefficient 
d'aplatissement) -1,100410926 

Coefficient 
d'asymétrie -0,313343266 

Minimum 59,0544 

Maximum 114,8255 

Somme 91098,6084 

Nombre 
d'échantillons 1000 

 

Figure 10 : Histogramme de distribution de la valeu r de l’ESO et 
principales statistiques 

Comme on peut le constater à la figure 10, le test d’hypothèse nulle de 

normalité est rejeté puisque le Chi-deux calculé est très grand par rapport à la valeur 

théorique. Ce qui est cohérent au fait que les pay-off d’une option n’obéissent pas à 

une distribution normale. Pour pallier à ce problème, on peut reprendre un grand 

nombre de fois la même simulation afin que la distribution des résultats doive tendre 

vers la normale. En outre, le coefficient d’aplatissement de Fisher qui est négatif 

indique que la distribution est plus aplatie que la courbe de Gauss, c’est-à-dire 

platikurtique . On remarque également que la courbe est étalée à gauche, et plus 

oblique à droite. Autrement dit, il y a asymétrie négative. Cet aspect est justifié par le 

coefficient d’asymétrie négatif de la figure 10. On constate également que, à hauteur 

de 16,0888305, l’écart-type des simulations est important. L’intervalle pour un niveau 

de confiance de 95% de la valeur de l’ESO est de �i6. F66iFG; i]. 6ijG6G� qui se 

révèle assez important. Ce qui implique que le résultat obtenu est moins fiable pour 

un nombre d’itérations de 1000. Pour le réduire davantage, on peut augmenter le 

nombre d’itérations mais ces opérations finissent par consommer beaucoup de 
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temps. En effet, il existe diverses techniques aptes à réduire cet intervalle dans un 

laps de temps raisonnable. La plus simple utilisée est la technique des variables 

antithétiques. Pour ce faire, on définit des variables dites antithétiques dont la 

corrélation est de -1. C’est-à-dire que pour chaque scenario du prix de l’action, on 

aura les deux équations suivantes : 

ì#I-∆I � #I]�½$01rK�∆I-rb√∆I
#I-∆I � #I]�½$01rK�∆I$rb√∆I � 

La même variable aléatoire k est d’abord introduite avec un signe positif pour 

calculer S puis avec un signe négatif. Il en résulte une corrélation de -1 entre les deux 

mouvements Browniens, ce qui accélère, pour un nombre d’itérations donné, la 

convergence vers la vraie valeur de l’ESO. 

Section 4 : RESULTATS ET COMMENTAIRES 

Cette partie du présent mémoire s’intéresse à l’estimation des paramètres liés 

au modèle, et élabore une étude de sensibilité  de ces derniers sur les résultats. 

4-1 Regroupement des individus par classes de risqu e 

Les bénéficiaires n’adoptent pas tous les mêmes comportements quant à 

l’exercice de leurs options. Comme le préconise la norme, il est préférable de 

regrouper les individus par classes de risque, et d’estimer la valeur des options pour 

chacune d’entre elles. En effet, on prend pour exemple les trois personnages 

suivants : 

Rakotovao a 27 ans, il est cadre informaticien dans une entreprise de service. 

Il travaille dans cette entreprise depuis un an, et il s’agit de son quatrième emploi. S’il 

se voyait attribuer des stock-options, il miserait sur la prudence, et exercerait le plus 

tôt possible ses options. 

Barivelo a 40 ans. Chef de projet dans le secteur automobile, il travaille pour la 

même entreprise depuis 10 ans. Il connaît bien son entreprise et ses activités 

boursières. A ce propos, il possède plusieurs de ses actions. Il nous a confié qu’il 

exercerait ses options si le cours de l’action atteignait une fois et demie le prix 

d’exercice.  

Ravelotsara a 55 ans. Il dirige le service commercial d’une société de transport 

aérien. Proche de la retraite, il compte 20 ans d’ancienneté dans cette entreprise. Le 

conseil d’administration lui a gracieusement attribué une grande quantité d’options. Il 
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a une excellente connaissance de l’activité de marché, et de son employeur. De plus, 

sa position lui permet de capter certaines informations qu’il pourra discrètement 

exploiter en sa faveur pour l’exercice de ses options. 

4-2 Estimation des paramètres pour l’exercice antic ipé 

Comme on va le voir, l’évolution des ESO pour Rakotovao, Barivelo ou 

Ravelotsara apporte des résultats bien différents. En effet, le modèle soutient que 

l’exercice provient de deux phénomènes supposés indépendants : 

Le premier concerne l’appréhension du risque par le bénéficiaire : paramètres 

L et α. 

Le second est la rupture de son contrat de travail par démission, par 

licenciement, ou par décès : paramètre -. On pourrait également inclure le départ en 

retraite mais il ne fait pas l’objet, en pratique, d’une perte du droit d’exercice. Il 

convient donc d’exclure son influence sur l’estimation de -. 

Ces paramètres conditionnent fortement le résultat de l’évaluation, et peuvent 

être naturellement « rapprochés » des caractéristiques de nos trois personnages. 

Rakotovao est en plein âge de jeunesse, mais reste quand même opportuniste : la 

probabilité qu’il décède pendant la période d’exercice est très faible mais son taux de 

turnover est relativement élevé. Il s’avère de plus avoir une aversion pour le risque. 

Barivelo, bien que dans la force de l’âge, possède une probabilité de décès un peu 

plus élevée que Rakotovao, et son taux de turnover reste faible. Il paraît déterminer 

quant à ses objectifs de gain. Enfin, Ravelotsara, quant à lui, il est le personnage 

possédant la probabilité de survie la plus petite, son ancienneté laisse présager un 

taux de turnover faible, et sa connaissance des marchés financiers lui confère une 

confiance certaine dans l’avenir du titre de sa société. A ce stade, il convient de se 

poser plusieurs questions : Quelles sont les caractéristiques suffisamment objectives 

et pertinentes pour être conservées ? Comment procéder pour intégrer ces dernières 

dans l’estimation des paramètres ? Par exemple, sur quels critères évaluer le 

comportement d’un individu face au risque ? 

Pour apporter des réponses à ces interrogations, il faut tout d’abord, savoir que 

les informations personnelles fournies sur les bénéficiaires se limitent en général aux 

éléments suivants : le nom du bénéficiaire (salarié), sa date de naissance, son 
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ancienneté, son statut, sa rémunération, le nombre d’enfants, ses différents 

avantages sociaux, et particulièrement le nombre de stock-options attribué. 

Le modèle analytique développé ici présente l’avantage de ne faire intervenir 

que trois paramètres « subjectifs », L, α et - qui, à première vue, paraissent difficiles 

à estimer que ce soit au niveau individuel ou que ce soit au niveau de la firme. 

Cependant, Carpenter [7] a effectué une étude statistique sur l’exercice des stock-

options à partir de 40 sociétés américaines d’où on a extrait dans le tableau ci-

dessous les principaux résultats(10).  

 

Tableau 03 : Résultats d’étude statistique sur l’ex ercice des stock-options 
Caractéristiques Valeur moyenne Ecart-type 

1- Durée d’attente moyenne à l’exercice (années) 5.83 2.25 

2- Ratio de performance moyen à l’exercice 2.75 1.42 

3- Taux d’annulation annuel moyen 5.6% 5.1% 

4- Volatilité moyenne 31% 10% 

5- Taux de dividende moyen 3% 2% 

Source : Carpenter, 1998. 

Ce tableau doit être exploité avec beaucoup de précaution. En effet, il ne 

donne que des valeurs moyennes qui caractérisent un panel d’entreprises 

hétérogènes(11). De plus, l’analyse se base exclusivement sur des sociétés 

américaines, et les données exploitées datent d’une petite dizaine d’années. 

Cependant, peu d’études se sont intéressées au comportement d’exercice des 

optionnaires, et les chiffres donnés ci-dessus permettent toutefois de fixer un ordre de 

grandeur quant aux paramètres du modèle liés à l’exercice anticipé. Ainsi, ces 

résultats servent de référence en ce qui concerne l’exercice anticipé des options pour 

les paramètres du modèle. 

Très subjectif, L et α pourront être choisis en fonction du ratio de performance 

moyen à l’exercice puis adaptés à la rémunération du salarié : un salarié bien 

rémunéré ayant généralement moins besoin de liquidité. Barivelo et Ravelotsara 

auront donc un paramètre L proportionnellement plus élevé que Rakotovao.  

 

(10) T0 = 3 ans et T = 10 ans 

(11) En plus de cela les écart-types sont assez importants, ce qui déprécie la fiabilité de l’estimateur moyenne. 
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En ce qui concerne -, le taux d’annulation annuel moyen, très volatile, pourra 

être ajusté par rapport au taux de turnover de la catégorie socio professionnelle du 

salarié, et à sa probabilité de décès. Ainsi, - sera plus faible pour Ravelotsara que 

Rakotovao et Barivelo. 

4-3 Résultats et commentaires 

Dans ce paragraphe, on a réalisé une étude de sensibilité des paramètres qui 

interviennent pour l’évaluation des ESO. Dans chaque cas, une analyse comparative 

avec le modèle de Black & Scholes a été effectuée. 

4-3-1 Les paramètres standards 
Comparaison des résultats avec Black & Scholes en f onction de  4E6, lorsque  r = 

0.05, 3 = 0.2, TS � 3, T = 15, L = 150, et α = -0.02, K=100, et -=0.04(12) 

Figure 11 : Comparaison des ESO et Black & Scholes en fonction de #¼X 

 

 
 Comme prévu, on remarque que Black & 

Scholes surestime la valeur de l’option, et lorsque le 

prix d’exercice reste fixé, l’écart entre les deux modèles n’augmente que très 

légèrement. Les deux valeurs augmentent avec  4E6, ce qui est cohérent : la plus 

value potentielle augmente lorsque  4E6 augmente.  

 

(12) valeurs recueillies dans [10] 

#¼X ESO Black & 

Scholes 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

39.77438 

45.83736 

51.43623 

56.59572 

61.33945 

65.68992 

69.66855 

73.29578 

76.59109 

79.57300 

82.25919 

41.37362 

51.08542 

60.79721 

70.50901 

80.22080 

89.93260 

99.64439 

109.3561 

119.0679 

128.7797 

138.4915 
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Cependant, on peut tenter, malgré la différence significative de ces deux 

modes d’évaluations, de faire un test d’égalité des moyennes. Ceci pour être sûr qu’il 

n’y a pas équivalence entre ces deux modèles. En posant comme hypothèse nulle 

que la valeur moyenne d’ESO est égale à la valeur moyenne de Black & Scholes, le 

test, au seuil de risque 5%, donne le résultat suivant : 

 

Tableau 04 : Test d’égalité des moyennes des modèle s d’évaluation 
 

Test d'égalité des espérances: 
observations pairées  ESO Black & Scholes 

 Moyenne 63,8236973 89,9325682 
Variance 199,202216 1037,50647 
Observations 11 11 
Différence hypothétique des 
moyennes 0   
Degré de liberté 10   
Statistique t -4,73557885   
P(T<=t) bilatéral 0,00079742   
Valeur critique de t (bilatéral) 2,22813884   

 

Il ressort de ce tableau qu’on rejette l’hypothèse nulle (égalité des moyennes) 

car le seuil calculé (valeur colorée en jaune dans le tableau) est largement inférieur 

au seuil de risque 5%. 
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Même comparaison, mêmes données sauf que nous faiso ns également 

évoluer K avec 4E6 en prenant L=250 (13). 

Figure 12 : Comparaison des ESO et Black & Scholes en fonction de 4E6 et K 

 

                                                                     

Ce cas illustre la situation réelle de l’attribution des stock-options « at-the-

money ». On constate que l’écart augmente avec #¼X et K. En effet, lorsque le prix 

d’exercice augmente  de la même façon que  #¼X, la probabilité d’exercice par 

franchissement de la barrière augmente (avec #¼X) alors que la plus-value potentielle 

de l’option diminue (lorsque K augmente). Ainsi, on constate ici à la fois une perte de 

plus-value, et une perte de time-value. 

 

 

 

 

 

 

 

 

(13) pour des raisons de calculs, il faut prendre Lt > K pour tout K et pour tout t, donc on a choisi L=250. 

#¼X ESO Black & 

Scholes 

100 

110 

120 

130 

140 

150 

160 

170 

180 

190 

200 

39.55449 

42.89572 

44.25644 

46.29544 

48.14183 

49.80645 

51.29960 

52.63112 

53.81036 

54.84622 

55.74716 

41.37362 

45.51098 

49.64835 

53.78571 

57.92307 

62.06439 

66.19780 

70.33516 

74.47252 

78.60988 

82.74725 
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Comparaison des résultats avec Black & Scholes en f onction de la volatilité, 

lorsque #¼X � 100, r = 0.05, TS � 3, T = 10, L = 150, et α = 0, K=100, et -=0.04 

Figure 13 : Comparaison des ESO et Black & Scholes en fonction de 3 

 

 

On voit que l’influence de la volatilité sur la valeur des ESO est aussi 

importante que pour le modèle de Black & Scholes, l’écart entre les deux 

valorisations restant à peu près constant. Plus généralement, la valeur d’une stock-

option pour les deux évaluations augmente sensiblement, et pratiquement 

linéairement avec la volatilité prévue. Il faudra insister donc sur la précision lors de 

l’estimation de 3. C’est-à-dire que ce paramètre doit donc faire l’objet d’un examen 

particulièrement soigné dans les évaluations de stock-options. Ainsi, le fait que la 

volatilité pour le modèle de Black & Scholes soit constante n’est pas réaliste, puisque 

les marchés bougent ; pas toujours dans les mêmes proportions, ni avec les mêmes 

rythmes. 

 

 

 

 

 

 

Volatilité 3 
ESO Black & 

Scholes 
0.05 

0.095 

0.14 

0.185 

0.23 

0.275 

0.32 

0.365 

0.41 

0.455 

0.5 

30.15965 

41.13021 

51.31043 

60.74170 

69.46350 

77.51349 

84.92754 

91.73990 

97.98316 

103.6884 

108.8852 

41.37362 

49.64835 

57.52307 

66.19780 

74.47252 

82.74725 

91.02197 

99.29670 

107.5714 

115.8461 

124.1208 
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Comparaison des résultats avec Black & Scholes en f onction du taux 

d’intérêt r,  #¼X � 100, TS � 3, T = 10, L = 150, et α = -0.02, K=100, 3 = 0.2 et -=0.04 

Figure 14 : Comparaison des ESO et Black & Scholes en fonction du taux 

d’intérêt r 

 

 

On remarque que, par rapport au modèle de Black & Scholes, l’évolution du 

taux d’intérêt a une influence assez faible sur la valeur des ESO. En d’autres termes, 

la valeur des ESO augmente modérément, et pratiquement linéairement, avec le taux 

d’intérêt sans risque. En outre, plus le taux d’intérêt augmente, plus l’écart s’élargit. 

Intuitivement, un exercice anticipé, et donc une maturité plus faible attendue diminue 

l’influence du taux d’intérêt. 

 

 

 

 

 

 

 

Taux 

d’intérêt r 

ESO Black & 

Scholes 

0.02 

0.028 

0.036 

0.044 

0.052 

0.06 

0.068 

0.076 

0.084 

0.092 

1 

18.04265 

19.55318 

21.19017 

22.96421 

24.88678 

26.97029 

29.22824 

31.67521 

34.32705 

37.20089 

40.31532 

21.87098 

27.65624 

32.73971 

37.92658 

42.47743 

46.67840 

50.55637 

54.13620 

57.44079 

60.49132 

63.30731 
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Comparaison des résultats avec Black & Scholes en f onction de la maturité, 

lorsque #¼X � 100, r = 0.05, TS � 3, T = 10, L = 150, et α = -0.02, K=100, 3 = 0.2 et 

-=0.04 

Figure 15 : Comparaison des ESO et Black & Scholes en fonction de la maturité T 

 

 

 

L’influence de la maturité sur le prix des ESO reste faible en comparaison avec 

celui de Black & Scholes. On constate, de plus que, lorsque la maturité se rapproche 

de la date de début d’exercice, le prix obtenu par les deux évaluations se diffère 

progressivement. En effet, lorsque T � TS, l’exercice anticipé est alors impossible, les 

ESO se comportent comme des options classiques. 

 

 

 

 

 

 

 

 

Maturité 

T 

ESO Black & 

Scholes 

3 

3.7 

4.4 

5.1 

5.8 

6.5 

7.2 

7.9 

8.6 

9.3 

10 

18.15683 

18.80351 

19.47334 

20.13172 

20.88532 

21.62925 

22.39968 

23.19755 

24.02384 

24.87956 

25.76576 

18.15893 

20.73376 

23.36097 

25.89781 

28.34739 

30.71273 

32.99671 

35.18046 

37.33170 

39.38802 

41.37362 
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4-3-2 Les paramètres relatifs aux ESO et à l’exerci ce anticipé 
 

Evolution de la date de début d’exercice possible «  o6 » 

 

 

Figure 16 : Comparaison des ESO et Black & Scholes en fonction o6 

 Avec #¼X � 100, r = 0.05, T = 10, L = 150, et α = -0.02, K=100, 3 = 0.2 et -=0.04 

 

L’évaluation des ESO ne prend pas en compte les départs précédant la date 

de début d’exercice. L’augmentation de cette dernière à donc un effet positif car elle 

préserve la valeur temps de l’option. De plus, lorsque la date d’exercice se rapproche 

de la maturité, le prix obtenu par les deux évaluations se rapproche. Autrement dit, 

pour les mêmes raisons que précédemment, lorsque TS � T, le prix est le même que 

pour le modèle de Black & Scholes.  
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Evolution de la hauteur de la barrière « L » 

 

 

Figure 17 : Comparaison des ESO et Black & Scholes en fonction L 

 Avec #¼X � 100, TS � 3, r = 0.05, T = 10, et α = 0, K=100, 3 = 0.2 et -=0.04 

Plus la barrière augmente, plus il est improbable que le cours de l’action la 

franchisse. On constate que le prix des ESO se stabilise pour des grandes valeurs de 

L, laissant de plus en plus de place aux options qui atteignent la maturité. 
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Evolution de l’inclinaison de la barrière « αααα»  

 

 

Figure 18 : Comparaison des ESO et Black & Scholes en fonction αααα 

 Avec #¼X � 100, TS � 3, r = 0.05, T = 10, L = 150, K=100, 3 = 0.2 et -=0.04 

Ici, on obtient le même effet  que pour la hauteur de la barrière, les deux 

paramètres étant totalement liés. Cependant, il semblerait que l’influence de α soit 

plus faible sur la valorisation. Lorsque α est négatif, on a vu que les bénéficiaires se 

pressaient d’exercer leurs options à l’approche de la maturité en perdant ainsi la 

valeur temps associée. 

Section 5 : LIMITES DU MODELE ET AMELIORATIONS POSS IBLES 

La réalisation d’un modèle, le plus sophistiqué qu’il soit, n’est jamais exempt 

de limitations, et de points à améliorer. Le tout est de pouvoir apporter des arguments 

pour une amélioration potentielle. Il s’agit soit de pistes non encore exploitées, soit, 

faute de temps, d’éléments permettant l’intégration de nouveaux facteurs. 

Ainsi, plusieurs éléments n’ont pas été pris en considération par le modèle. En 

voici les principaux : 

Les conditions de marché imposées par le conseil d’administration pour 

l’attribution des options aux employés ont été écartées de l’évaluation analytique. Ce 

qui n’est pas trop pénalisant en pratique car, comme l’on a vu, elles ne sont 
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employées que dans un nombre restreint  de pays. Pour palier à ce manque, il 

faudrait intégrer un nouveau temps d’arrêt )p correspondant au premier dépassement 

du Brownien au-delà d’une barrière horizontale  q:)p � Ì�ø@6  0, #I  qC. Alors, 

dans ce cas, les sous-options caractéristiques du comportement d’exercice à des 

dates particulières, auraient une valeur non nulle seulement si )p survient avant ces 

dates. Concrètement, le calcul analytique s’établirait de la même façon que pour le 

modèle précédent en rajoutant l’indicatrice : 9@ ¼X2  )rC pour le calcul de °Iú, 

9@ )�2  )rC pour le calcul de °Iû, 

9@ ):2  )rC pour le calcul de °Iº et 

9@¼2  )rC pour le calcul de °I}. 

De la même manière que pour )û, on connaît la loi de )p. Cependant, en 

gardant à l’esprit que ces deux dernières variables aléatoires sont étroitement 

corrélées, il faut donc établir la loi conditionnelle de  )û sachant  )p. Mais, même en 

disposant de cette dernière, les calculs deviendraient bien trop fastidieux. Pour 

introduire )p, on pourrait cependant alléger le modèle en supprimant le temps d’arrêt  )û et en développant un peu comme [8] la modélisation par processus à intensité. 

Si on connaît le taux de dividende annuel s, son intégration dans le modèle est 

immédiate puisqu’il suffit, comme le modèle de Black & Scholes, de remplacer le taux 

d’intérêt r par r-s. 

On a implicitement considéré que l’effet dilutif dû aux émissions d’actions à un 

prix inférieur à celui du marché a été intégré par ce dernier à l’annonce du plan de 

stock-option. Cependant, il se pourrait que cela ne fût pas toujours le cas, et que la 

dilution intervienne plus tard ou de façon progressive. Dans ce cas, c’est tout le 

modèle d’évolution de l’action qui est à revoir. Une solution serait de l’inclure dans le 

taux de dividende. 

Le modèle ne prend pas en compte l’évolution de la volatilité. Cependant, 

l’introduction d’un processus stochastique pour la volatilité compliquerait grandement 

le calcul analytique. On pourrait néanmoins avoir recours aux simulations de Monte-

Carlo. 

On pourrait également intégrer l’évolution possible de la barrière 

psychologique en fonction de l’évolution récente du cours de l’action. Là encore, il 

semblerait que seules des simulations de Monte-Carlo pourraient  porter secours. 
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Le modèle dans sa forme initiale intègre le caractère stochastique du taux 

d’intérêt, et de l’intensité d’exercice par départ anticipé du salarié. Cependant, pour 

exploiter cette voie, il est nécessaire d’introduire de nouveaux paramètres ne serait-

ce que pour décrire les lois suivies des variables aléatoires régissant les processus, 

ce qui complique davantage le calcul analytique, et l’estimation des paramètres. 

Néanmoins, comme l’on a vu, les stock-options ont une durée de vie parfois 

supérieure à 10 ans. Il serait alors légitime de ne pas figer ces deux grandeurs. 

Quant à l’estimation, et au choix des paramètres, il est clair que certaines 

solutions n’ont pas été envisagées. En effet, un calcul similaire à celui des sous-

options permet de trouver la durée de vie moyenne d’une option, la moyenne de 

cours de l’action à l’exercice, et les probabilités inhérentes aux réalisations des 

différents scenarios d’exercice. L’estimation empirique de ces valeurs paraît aisément 

réalisable, il serait alors possible d’exploiter ces dernières pour calibrer les 

paramètres L, α et -. Dans le cas où l’utilisateur ne souhaiterait employer qu’une 

partie de ces paramètres pour sa valorisation, leur influence peut être annihilée en 

choisissant, par exemple, une grande valeur pour L (ex : 100000), α=0, et -=0. On 

peut remarquer également que, bien souvent, très peu d’options atteignent la 

maturité. On pourra simplifier donc les calculs en faisant tendre cette dernière vers 

l’infini. 
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CONCLUSION GENERALE 

 

Ce document traite la comparaison de modèles d’évaluation de stock-options, 

à savoir le modèle de Black & Scholes, et le modèle analytique. Cette comparaison 

se situe au niveau des performances de l’évaluation à la juste valeur des plans de 

stock-options. 

Le modèle s’est efforcé d’intégrer les principales caractéristiques des stock-

options comme la période d’indisponibilité, et le phénomène d’exercice anticipé. On a 

ainsi développé, et implémenté une formule qui donne, dans ce contexte, la juste 

valeur des stock-options. De plus, on a eu recours aux simulations de Monte-Carlo 

pour, dans un premier temps, vérifier les calculs analytiques, puis pour élargir les 

hypothèses du modèle. C’est ainsi que le recours à son algorithme était 

indispensable, puisqu’il est fiable, et qu’il permet d’atteindre n’importe quel niveau de 

précision. 

Le modèle de Black & Scholes possède un énorme avantage grâce à sa 

simplicité de mise en œuvre. Un tableur, et quelques paramètres suffisent pour 

calculer le prix d’une stock-option. L’équivalence exacte entre la volatilité qui est le 

paramètre principale, et le prix permet de rapidement vérifier le résultat, et les 

hypothèses de l’évaluation. Ainsi, un prix d’option correspond sans équivoque à la 

volatilité dite implicite qui permet d’obtenir la valeur théorique identique. Cet aspect 

tend à assurer les auditeurs parce qu’il réduit un risque d’erreur ou de manipulation 

dans le calcul du prix par la société, à condition, bien sûr, de s’entendre sur le niveau 

de la volatilité implicite qui doit être utilisé. Mais le modèle n’évalue pas correctement 

les stock-options, et l’écart dépend de la position de la valeur de l’action par rapport 

au prix d’exercice. On a vu que le modèle de Black & Scholes  surestime fortement la 

valeur des options attribuées aux employés. Hormis la volatilité, les paramètres 

intervenant dans cette approche ont une influence réduite sur la valorisation à cause 

de l’exercice anticipé, et de la perte de valeur temps de l’option. 

Si le modèle de Black & Scholes est populaire grâce à sa simplicité, et à son 

niveau acceptable de précision, le modèle analytique est plus réaliste puisqu’ il 

considère que la volatilité est stochastique. Celle-ci implique la non normalité des 

rendements. Alors que dans le modèle de Black & Scholes les rendements suivent 
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une loi de distribution normale, et donc de distribution log-normale de la valeur future 

de l’action. C’est pourquoi, dans la pratique, les opérateurs n’utilisent 

qu’occasionnellement cette formule de Black & Scholes car elle ne répond pas aux 

spécificités de la plupart des options sur actions (caractéristiques d’exercice 

anticipé,…). 

La rapidité de calcul de la formule laisse libre recours à une évaluation au cas 

par cas : chaque bénéficiaire possède des caractéristiques qui lui sont propres en 

matière d’exercice anticipé. 

Les contributions personnelles de l’auteur se situent sur les points suivants : 

a) Développer et détailler les démonstrations qui mènent aux lemmes et 

aux équations qui constituent les fondements pour les modèles 

paramétriques d’évaluation des produits dérivés et plus particulièrement 

des options, 

b) Détailler l’enchainement des calculs qui mènent à la solution analytique 

de Black & Scholes, aussi bien par résolution de l’équation de Black & 

Scholes, que par un raisonnement risque-neutre, 

c) Faire des simulations et des comparaisons afin de tester la validité du 

modèle. 
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GLOSSAIRE 

A 

Action (share stock) : est un titre de propriété délivré par une société de 

capitaux (i.e. Une société anonyme ou Société en commandite par actions). Elle 

confère à son détenteur la propriété d’une partie du capital, avec les droits qui y sont 

associés : Intervenir dans la gestion de l’entreprise et en retirer un revenu appelé 

dividende. 

Arbitrage : est une opération financière assurant un gain positif ou nul de 

manière certaine. 

Absence d’opportunité d’arbitrage : 

On dit qu’il existe une opportunité d’arbitrage (arbitrage opportunity, free lunch) 

sur le marché financier lorsqu’il existe une stratégie sans risque d’achat et de vente 

de titres qui peut rapporter des gains strictement positifs. Ce qui n’existe en pratique 

que dans un temps très court. 

Arbitragistes : acteurs sur les marchés dont le rôle est de détecter ce type 

d’opportunités et d’en profiter 

Asset : actif financier, valeur. 

At the money : à la monnaie, à parité : se dit d’une option dont le prix 

d’exercice est égal au prix à terme de l’actif sous-jacent ; ce terme s’oppose à in the 

money  et à out of the money . 

B 

Bourse : C’est un marché financier avec un règlement spécifique choisi de 

manière à améliorer les conditions des transactions. 

C 

Call (option): option d’achat. 

Cash flow : flux de trésorerie, ou elle est souvent utilisée dans le sens de 

"capacité d’autofinancement ". 

Contingent claim (actif contingent) : ou actif conditionnel, il s’agit d’un contrat 

entre agents ou instituants spécifiant des conditions pour qu’une certaine transaction 

financière soit réalisée. 

Cours d’acquisition : Cours de l’action à la date d’acquisition. 
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Cours d’attribution : C’est la moyenne des cours de clôture de l’action des 20 

jours qui précèdent celui de l’attribution pour une société cotée. 

Cours de cession : Cours de l’action à la date de cession. 

Couverture (hedging) : protection contre le risque généré par une position. 

D 

Date d’attribution : Date du jour où le droit est accordé. Elle figure dans le 

règlement du plan de stock-options et dans la lettre de notification individuelle reçue 

par le salarié. 

Date d’acquisition : C’est la date à laquelle le salarié lève les stock-options et 

transforme celles-ci en actions. Il verse à ce moment-là le prix d’acquisition. 

Date de cession : Date à laquelle le salarié vend ses actions provenant des 

stock-options. 

Default risk : risque de défaut. 

Délai d’exercice : Délai prévu par le plan durant lequel l’exercice est possible. 

Discounted price : prix actualisé. 

Dividende : c’est le revenu tiré d’un placement en titres de capital (action, 

certificats d’investissement,...). 

Le dividende est généralement versé chaque année et varie en fonction des 

bénéfices réalisés par l’entreprise. 

E 

Equity : action, capital, fonds propres. 

Exchange : taux de change. 

F 

Fair price : juste prix. 

Fair value (juste valeur) : Le coût des options est mesuré à la date d’attribution 

en fonction de la valeur de l’octroi, et est actualisé sur la période de service soit, 

généralement, la période d’acquisition des droits. 

Forward price : prix à terme. 

Futures (contrat à terme) : le vendeur du contrat s’engage à acheter ou à 

vendre à l’échéance du contrat une quantité minimum (ou un multiple de ce minimum) 

à un cours négocié sur le marché organisé. 

I 

In the money : Une option est dite dans la monnaie (in the money) lorsque son 

exercice procure un gain à son détenteur. Elle est dite hors de la monnaie (out of the 
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money) dans le cas contraire. Enfin, si l’acheteur est indifférent, l’option est à la 

monnaie (at the money). 

M 

Marché financier : C’est un lieu (parfois virtuel) où l’on achète et vend des titres 

financiers (ou actifs financiers). 

Mark to market : évaluer au prix du marché.  

Maturity (maturité) : date d’échéance, date d’expiration (d’une option). 

Montant : c’est la quantité d’actifs sous jacent à acheter ou à vendre. 

O 

Obligation (bond) : un titre de dette remboursable, que l’émetteur du titre doit 

rembourser au détenteur du titre à une certaine échéance. 

Option : C’est un titre appelé option d’achat (call) ou option de vente (put). 

Option abandonnée : Si l’option n’a pas été exercée à la date d’échéance. 

Option américaine : Contrat qui donne à son détenteur le droit, non l’obligation, 

d’acheter ou de vendre une certaine quantité d’un actif financier à un prix, et jusqu’a 

une date fixé à l’avance. 

Option asiatique : La valeur à l’échéance d’une option asiatique découle du 

prix moyen du sous-jacent sur la durée de l’option. Elle coûte moins cher que l’option 

vanille car la valeur moyenne d’un sous-jacent est moins volatile que sa valeur à un 

instant donné. 

Option à barrière ou parisienne : 

L’option à barrière activante (Knock-in option) à une valeur à l’échéance 

dépendant du fait que les sous jacents atteignent ou non un certain niveau de cours 

dit barrière, pendant la durée de vie de l’option. L’option n’est active que si elle atteint 

la barrière, et, dans ce cas, à l’échéance sa valeur est la même qu’une option 

standard. En revanche elle coûte moins cher qu’une option vanille puisqu’elle est plus 

risquée. 

L’option à barrière désactivante (knock-out option) fonctionne de la même 

manière que l’option à barrière activante sauf que l’option à barrière est désactivée 

lorsque l’actif sous-jacent atteint un certain niveau. 

Option européenne : Contrat qui donne à son détenteur (celui qui achète le 

contrat) le droit, et non l’obligation, d’acheter ou de vendre une certaine quantité d’un 

actif financier (sous-jacent) à un prix fixé ou prix d’exercice (strike price) à une date 

fixée à l’avance (maturité). 
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Option simulable (ou réplicable) : une option est dite simulable si sa valeur à 

l’échéance est égale à la valeur finale d’une stratégie admissible. 

P 

Pay-off : Le résultat d’une option à son échéance (appelé couramment pay-off) 

ne dépend que du prix du sous-jacent, c’est la valeur terminale d’une option =gain. 

Période d’indisponibilité : Période à laquelle les bénéficiaires ne peuvent pas 

exercer leurs options. 

Plan de stock-options : C’est une politique incitative qui autorise toutes les 

sociétés par actions à offrir à certains salariés ou à l’ensemble du personnel des 

options de souscription ou d’achat d’actions. 

Portefeuille (portefilio) : ensemble des titres détenus par une personne. 

Prime (preminum) : C’est le droit d’acheter ou de vendre ou se négocie, sur un 

marché d’options spécialisé (géré par une bourse, ou au gré à gré), contre un certain 

prix, c’est le prix d’option elle même. 

Prix d’acquisition (ou d’achat ou de souscription) : C’est le prix d’exercice des 

stock-options, il est fixé à l’attribution des options. 

Prix d’exercice (Strike price) : le prix (fixé d’avance) auquel se fait la 

transaction en cas d’exercice de l’option. 

Produits dérivés (dérivative Product) : un titre dont la valeur dépend d’un autre 

titre, ce sont : contrats à terme, futures et options. 

Put (option) : option de vente. 

R 

Raisonnement risque neutre : C’est un raisonnement où les valeurs espérées 

des rendements de l’action et de l’option sont égales au taux d’intérêt sans risque.  

Risk assesment : évaluation du risque. 

Risk-neutral probability (probabilité risque -neutre) : est la probabilité sous 

laquelle le rendement instantané moyen de l’actif est égal à celui de l’actif sans 

risque. L’existence d’une telle probabilité est liée à l’une des hypothèses d’efficience 

du marché "l’absence d’opportunité d’arbitrage". 

S 

Scénario (scenario) : c’est une séquence d’actions qui illustrent un 

comportement. 

Settlement price: forward price. 

Share holder (actionnaire): détenteur des actions. 
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Short position selling (vendre à découvert) : vente par un agent d’un actif qu’il 

ne possède pas encore, l’agent espère que le prix de l’actif va baisser, ce qu’il 

permettra de l’acheter plus tard à un prix inférieur au prix de vente fixé. 

Short rate : taux à court terme. 

Simulation de Monte-Carlo : C’est une méthode visant à calculer une valeur 

numérique, et utilisant des procédés aléatoires, c'est-à-dire des techniques 

probabilistes. 

Stock-option : c’est un ensemble de titres qui donnent le droit d’acheter des 

actions à un prix spécifié, le prix d’exercice, pendant une durée déterminée. 

T 

Tracker : c’est un fonds indiciel négociable en bourse concevant pour répliquer 

la performance d’un panier d’actions.  

U 

Underlying asset (actif sous-jacent) : une quantité donnée d’un actif financier 

(action, obligation, indice boursier, devise, matière première, autre produit dérivé, 

etc.). 

Les sous-jacents : actions, taux de change, obligations et taux d’intérêt. 

V 

Valeur temps (time value) : La valeur temps d’une option est la survaleur que 

le marché lui attribue en sus de sa valeur intrinsèque.  

Valeur intrinsèque : La différence entre le prix d’exercice d’une option et la 

valeur de marché de l’actif sous-jacent. Les options qui sont dans la monnaie ou en 

dehors la monnaie n’ont pas de valeur intrinsèque. 

Plain vanilla : se dit d’un produit ordinaire (simple et standard). 

Vanilla option : option ordinaire (européenne ou américaine). 

Volatilité historique : c’est l’amplitude de variation d’un titre, d’un fonds, d’un 

marché ou d’un indice sur une période donnée. 

Volatilité implicite : Un chiffre dérivé du prix du marché d’une option. On peut 

analyser la volatilité implicite comme une mesure du risque d’un instrument ou d’un 

portefeuille au jour d’aujourd’hui, et non pas à un moment donné du passé (ce qui 

serait la volatilité historique). 

W 

Warrant : bon de souscription d’actions ; les warrants sont souvent émis par 

les compagnies sur leurs propres actions. 
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ANNEXE 

Annexe A : Calcul des sous-options 

Dans cette Annexe, l’expression des "sous-options" est reprise et le calcul 

analytique est achevé. Les démonstrations s’appuient essentiellement sur les 

propriétés de la gaussienne (dénotée par n(x)) et du mouvement brownien pour la loi 

du premier instant de passage du processus au-delà d’une barrière. De plus, on a 

placé en Annexe B, les éléments mathématiques structurellement indépendants mais 

utiles au calcul des ��. 

Les démonstrations évoquées sont parfois assez fastidieuses. C’est pourquoi, 

un lecteur pressé pourra sauter certaines d’entre elles lors d’une première lecture. En 

outre, les formules développées dans cette Annexe ont été validées par simulation de 

Monte Carlo. 

A.1 Calcul du prix de l’option dans le scénario A 

�� � � ��	
��
��� � ������������ 
                                      � �	
�� �� ������������� � ��
��� � ��� 

Car on a ��� � � sur l’ensemble ���� � �� puisque � � �. 

Si on note ��� � � et  ! �  � " avec d le taux de dividende continu. 

#� � ln ��&'() � � ! � 12 &,� '()&  

#�- � ln ��&'() � � ! . 12 &,� '()&  

(A-1) 

  On a : �
��� � �� � / 0123"2�4�5 � 1 � 61#�3 � 61�#�3 avec n la densité de la 

loi normale centrée réduite et N sa fonction de répartition. De plus :  

� ������������� � � 7 exp ;� ! � 12 &,� () . &2'()< 0123"2�4
�5  

� ��
=�� 7 1√2? �	@,
A	B'����4
�5 "2 

                                 �  ��
=��61�#�- 3  
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On a donc :  �� � ��	!��61�#�- 3 � ��	
��61�#�3 
(A-2) 

 

A-2 Calcul du prix de l’option dans le scénario B 

On procède d’abord par conditionnement sur C�� puis par calcul d’espérance 

s’appuyant sur la loi de DE :  
�AE � �F��� �e	1G�H3 DI
��J1 DI	��3 � ���K DIL�M�����L��� 

      � �F(0� ������L��
��	J(0EP�	1
	J�H3 DI�K DIL�M C��Q R � KEP�	1
�H3 DI�K DIL�M C��Q R�� 

Pour cela, il faut calculer : EP�	� DI�K DIL�M C��Q R                                           (A-3) 

Du paragraphe 3-5, p196 du livre de Karatzas et Shreves [16], on tire la loi de 

 DE conditionnellement à l’information recueillie jusqu’en () : 
T DU123 � 	�V

BW,X1A	(03Y exp �� 
�V�Zα1A	(03�[
,B[1A	(03 � �K2�(0M                                               (A-4) 

Avec  

\α �  ! � ] � &,
2  

�V � ln ��(0
� � 

    (A-5) 

 

Si on note   \� � '\J, . 2&,#                                                                (A-6) 

De (A-4), (A-5) et (A-6) un calcul assez simple permet de transformer (A-3) en : 

/ �	�A�
(0 T DU123"2 � �	�(0 / �	�A�

)  T DU12 . (03"2 

� ��#����V\#�\
α&2 7 ��̂

&'2?23 �� 1
2&221�V.\#232"2(���

0
 

                                                        

                                                                 @̀ 

@̀  peut se réécrire :  @̀ � / 	�V
BAY [⁄ 0 �@

B b√2\� . �V
√Ac� "2�	(0

)   
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Il faut alors exploiter les propriétés de la gaussienne pour calculer cette 

dernière intégrale. En effet, on a :  

�	�V[de
f[ 0 �@B b√2\� � �V√Ac� � 0 �@B b√2\� . �V√Ac�                                                 (A-7) 

Et donc: 

 
ggA �6 �@B b√2\� . �V√Ac� . �	�V[def[ 6 �@B b�√2\� . �V√Ac�� � 	�VBAY [⁄ 0 �@B b√2\� . �V√Ac� (A-8) 

Si on note:  

h1�, (, \3 � ����Z	ZαB[ 6 j1& k√2\ . ln ��√( lm . ����	1Z�Zα3B[ 6 j1& k�√2\ . ln ��√( lm 

(A-9) 

 

On trouve sur l’ensemble  ��(0 n �� : 
� ���# DU�K DUn(M/C(0� � �	�(0h
��� , ( � (0, \��                                               (A-10) 

D’après les notations (A-5), (A-9) et la formule  (A-10), on obtient alors: �E � ��	
(0� �h b��� , ( � (0, '\J, . 2&,1 � ] . p3c ���(0n��� 
                     �K�� ��� qh ��(0 , ( � (), W\]2 . 2&21 . p3� �����L��r                    (A-11) 

En reprenant la notation (A-1) et en notant : 

 

s1#3 � ���
=	J	B[, ����'���
 

(A-12) 

On a :  

�E � ��	
(0 7 h bs1#3, ( � (0, '\J, . 2&,1 � ] . p3c 01#3"#�5
	4  

                 ���	
(0 / h
s1#3, ( � (0, '\J, . 2&,1 . p3�01#3"#�5	4              (A-13) 
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A partir de (B-5)(1) et de (A-1), on peut écrire: 

t1(, \3 � 7 h1s1#3, (, \301#3"#�5
	4  

�
�	'(0�5dudαf v ;'(0 Z	ZαB , W(0� , √�B \ � W(0� #�< . �'(0�5dudαf v ;�'(0 Z�ZαB , W(0� , � √�B \ �
W(0� #��  

(A-14) 

 

De (A-14) et de l’expression de �E précédente (A-13), on obtient finalement : 

�E � ��	
(0t b( � (0, '\J, . 2&,1 � ] . p3c � ��	
(0t b( � (0, '\J, . 2&,1 . p3c 

(A-15) 

 

A-3 Calcul du prix de l’option dans le scénario D 

Le calcul de Cc est une extension de celui qui mène à �!. C’est pourquoi, dans 

un souci de cohérence, on a choisi de développer d’abord le chemin qui conduit à �! 

. On procède comme pour  �E par conditionnement sur w��. Puis on reconnaît une 

option à barrière de type "up-and-out" : 

 �! � �	1
�F3�F(0� �1�� � �3��K DUx(M���(0n��� 
� �	1
�F3�F(0� q���(0n��E �1�� � �3��K DUx(M C(0Q �r 

�
�	F1�	(03�	
(0�	!1�	(03� q���(0n��E �e�1
=	J31�	(03
���	J1�	(03 � ��	J1�	(03�.�K DUx(M C(0Q �r  

 

 

 

 

(1) Voir annexe B 
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On peut remarquer que �(0 est le prix vu de () d’un call « up-and-out » de 

barrière L dont les paramètres usuels  sont résumés dans le tableau suivant : 

Drift Volatilité  Maturité S(0) Strike 

 J �  ! � ] & ( � (0 ��� �J1( � (03 � ��	J1�	(03 
 (A-16) 

La formule fermée d’une telle option est bien connue (Voir [19]). A partir des 

notations introduites dans le tableau (A-16),  �(0 peut s’écrire : 

�(0 � y b�(0 , ( � (0, �J1( � (03c                                                                                   (A-17) 

Avec: 

y1�, (, �3 � �1�, (, �3 � �1�, (, �3 � ����z {� ;�,� , (, �< � � ;�,� , (, �<|, 
}~�� � � 2 J&, � 1 

(A-18) 

 

Où l’expression C1S, T, Y3 est proche du prix d’un call en 0 de maturité T, de 

prix d’exercice Y, de drift   J, de volatilité �. La différence réside dans l’actualisation 

du second terme qui se fait au taux r au lieu de   J. En effet : C1S, T, Y3 � SN
d@1Y3� � Ke	G�N
d,1Y3�, avec: 
d@1Y3 � ln SY . � J . &,2 � (σ√T  , d,1Y3 � ln SY . � J � &,2 � (σ√T  

(A-19) 

En reprenant les notations (A-1), (A-12), et (A-16), les formules (A-18) et (A-

19), on a :  �! � �	F1�	(03�	
(0�	!1�	(03 / y1s1#3,�5	4 ( � (0, �J1( � (033n1x3dx                        

(A-20) 

Il faut donc détailler y1s1#3, (, �3. En notant : 
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y1s1#3, (, �3 � �1s1#3, (, �3 � �1s1#3, (, �3 � �	zB'(0��zB'(0�5 �� b �[�1�3 , (, �c �
� b �[�1�3 , (, �c�                                                                                                         (A-21) 

 

A partir de (B-5)(1) et de la notation (A-1), on peut noter : 

�@1(, �3 � 7 �1s1#3,#�
�∞ (, �301#3"# 

� ���
=	 B[, ���v k&'(), �()( , 1&√( {ln SY . ; J � &,2 < () . ; ! . &,2 < (|l 

                        ���� "�v ;0, W��( , 1&√( �ln �� . b J � B[, c () . b ! � B[, c (�<                      

(A-22)  

 

Et: 

�,1(, �3 � 7 ���&'��##�
�∞ � � �2s1#3 , (, �� 01#3"#  

� �,� ��� "� &22 �(0v k�1� . 13&'(0, ��(0( , 1&√( {ln L2SY � ; ] � &22 < (0 . ; ] . &22 < (|l 

���	
=Tv k��&'(0, ��(0( , 1&√( {ln L2SY � ; ] � &22 < (0 . ; ] � &22 < (|l 

(A-23) 

 

De (A-21), (A-22), (A-23) et de l’expression de  �! précédente (A-20), on 

obtient enfin : 

�! � �	F1�	(03�	
(0�	!1�	(03 qP�1
( � (0, �J1( � (03� � �11( � (0, �3R �
�zB'(0�5P�2
( � (0, �J1( � (03� � �21( � (0, �3R�                                                                                 

(A-24) 
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A-4 Calcul du prix de l’option dans le scenario C 

On procède d’abord par conditionnement sur  C(0 puis on se ramène au calcul 

de l’intégrale du cas précédent : 

�� � ��p(0�����(0n�� 7 �	1
�F3A1�A � �3��K DUx2Mdt�T
(0  

                                    � ��p(0�����(0n��E �/ �	1
�F3A1�A � �3��K DUx2MdtT(0 C(0Q �  
 

                                                                                              �(0�  

�(0� � 7 E��	1
�F3A1�A � �3��K DUx2M C(0�QT
(0 "2 

� �	
(0 7 �	FA�	!1A	(03�
(0 � �e�1
=	J31A	(03
���	J1A	(03 � ��	J1A	(03�.�K DUx2M C(0Q � "2 

    � �	
=(0 / �	1
�F3A�(0 y b�(0 , 2 � (0, �J12 � (03c dt  
En utilisant les notations (A-16), (A-17) et (A-18), ainsi, �� se réécrit : �� � �	
(0� ����(0n�� / λe�λtT�(00 Q
�(0 , t, K�	JA�"2�                                                  (A-25) 

On va donc calculer : 

 1�, (3 � 7 λe�λtT
0 Q1S, t, K�	JA3"2 

(A-26) 

 

Où on rappelle que : 

Q1S, t, K��]23 � �1S, t, K��]23 � �1�, 2, �3 � ;��<� ¡� ��2� , (, K��]2� � � ��2� , (, ��¢, 
}~�� � � ,
£B[ �1                                                                                                   (A-27) 
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Et:  

�1S, t, K�	JA3 � �6 j1& kln ��√2 . ; . &22 < √2lm � ��	
A6 j1& kln ��√2 . ; � &22 < √2lm 

�1S, t, L3 � �6 j1& kln ��√2 . ; . &22 < √2lm � ��	
A6 j1& kln ��√2 . ; � &22 < √2lm 

(A-28) 

 

Introduisant les notations suivantes :  

}1�, �3 � ln �� 

U1 3 �  . &22  

U¤1 3 �  � &22  

UF1 3 � �; . &22 <, . 2&2� 

�F1¥,  3 � �; � &22 <, . 2&21� . ¦3 
(A-29) 

@̀1�, (, �,  3 � � 7 λe�λt�
) 6 j1& kln ��√2 . ; . &22 < √2lm "2 

`,1�, (, �, ¥,  3 � �� 7 λe�1λ.R3t�
) 6 j1& kln ��√2 . ; � &22 < √2lm "2 

(A-30) 
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A partir de (A-27), (A-28) et de (A-30),  1�, (3 peut s’écrire :  1�, (3 � @̀1�, (, �,  3 . `,1�, (, �, ¥,  3 � @̀1�, (, �,  J3 � �̈ `,1�, (, �, ¥,  J3 �
b��cz � @̀ b�[� , (, K,  c . `, b�[� , (, �,  ,  c � @̀ b�[� , (, L,  Jc . `, b�[� , (, �,  ,  Jc�            (A-31) 

 

Calcul de ©ª1«, ¬, ­, ®3 

En utilisant les notations (A-29) et en omettant par commodité les arguments 

des fonctions définies, on a : 

@̀1�, (, �,  3 � � / λe�λt�) 6 �@B b �√A . U√2c� "2 � �`̄@1�, (, �,  3 

Une intégration par partie donne : 

`̄@1�, (, �,  3 � �K�°¨M . 12 �K�±¨M � �	F�6 �1& � }√2 . U√(�� . `²1�, (, �,  3 

Avec  

`²1�, (, �,  3 � �£
I³uI�f[ / 12σ�) b EA´ [⁄ � �AY [⁄ c 0 �@B b �√A . UF√2c� "2                                     (A-32) 

On va pouvoir calculer cette dernière intégrale grâce à la remarque suivante : 

!!A 6 �@B b �√A . U√2c� � 12σ b EA´ [⁄ � �AY [⁄ c 0 �@B b �√A . UF√2c�                                               (A-33) 

Il faut également exploiter les notations (A-7) et (A-8) pour obtenir une 

expression analytique de `². Ainsi, on a : 

 

@̀1�, (, �,  3 � ���K�°¨M . @, �K�±¨M � �	F�6 b @B√� ln �̈ . E1
3√�B c . `²1�, (, �,  3         

(A-34) 
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`²1�, (, �,  3 � 12 ;1 . U1 3UF1 3< �	 E1
3	E³1
3B[ µ¶�̈ 6 ; 1&√( ln �� . UF1 3√(& <
. 12 ;1 � U1 3UF1 3< �	 E1
3�E³1
3B[ µ¶�̈ 6 ; 1&√( ln �� � UF1 3√(& <
� 12 ;1 . U1 3UF1 3< �	 E1
3	E³1
3B[ µ¶�̈ �K�°¨M
� 12 ;1 � U1 3UF1 3< �	 E1
3�E³1
3B[ µ¶�̈ �K�°¨M 

                                 � @, �	 I1·3uI³1·3f[ µ¶¹̧�K�±¨M  
(A-35) 

 

Calcul de ©º1«, ¬, ­, ¦, ®3 `,1�, (, �, ¥,  3 �
� F¨F�» ��K�°¨M . @, �K�±¨M � �	1F�»3�6 b @B√� ln �̈ . E¤1
3√�B c . `¼1�, (, �, ¥,  3                

(A-36) 

 

`¼1�, (, �, ¥,  3 � 12 ;1 . U¤1 3�F1¥,  3< �	 E¤1
3	�³1»,
3B[ µ¶�̈ {6 ; 1&√( ln �� . �F1¥,  3√(& < � �K�°¨M|
. 12 ;1 � U¤1 3�F1¥,  3< �	 E¤1
3��³1»,
3B[ µ¶�̈ {6 ; 1&√( ln �� � �F1¥,  3√(& < � �K�°¨M|
� 12 �	 E¤1
3	�³1»,
3B[ µ¶�̈ 12 �K�±¨M 

(A-37) 

 

On peut remarquer que les expressions de  `² et de `¼ sont très proches. En 

effet, pour passer de l’une à l’autre, il suffit de remplacer : U1 3 par U¤1 3 et UF1 3 

par�F1¥,  3.  
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Retour sur le calcul de ½¾ 

En reprenant les notations (A-1), (A-12) et les formules (A-25), (A-26), �� peut 

s’écrire : �� � �	
(0 /  1s1#3, ( ��5	4 (03n1x3dx                                                                            (A-38) 

A partir de (A-1), (A-27) et de (A-29), on peut noter:  

#Z � µ¶¿̧
B'(0 � b � &22 c '(0B  ,        �̄@ � ���
	&22 �(0,                  �̄, � ��1@�z3B'(0�5  

 

�̄² � �zB'(0�5,       d@1Y3 � ln �� . b J � B[, c ()  ,      d,1Y3 � ln �� � b J � B[, c () 

 

U�1 3 � Up1 3 . U1 3,       U	1 3 � Up1 3 � U1 3,       U¤�1¥,  3 � �F1¥,  3 . U¤1 3 

 

U¤	1¥,  3 � �F1¥,  3 � U¤1 3 

 

 

(A-39) 
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Calcul de ©ª1À1Á3, ¬, ­, ®3 sur l’ensemble KÁ Â Á­M 
@̀1s1#3, (, �,  3

� �̄@ Ã�B'(0��KÁ°Á­M � �	F��B'(0�6 k�(0( # . d11K3&√( . U1 3√(& l
. 12 U.1 3UF1 3 �d11K3U�1 3B[ �B'(0�@�U�1 3B[ ��6 k�(0( # . d11K3&√( . UF1 3√(& l
. 12 U�1 3UF1 3 �	 d11K3U.1 3B[ �B'(0�@	 U.1 3B[ ��6 k�(0( # . d11K3&√( � UF1 3√(& l
� 12 U.1 3UF1 3 �d11K3U�1 3B[ �B'(0�@�U�1 3B[ ���KÁ°Á­M
� 12 U�1 3UF1 3 �	 d11K3U.1 3B[ �B'(0�@	 U.1 3B[ ���KÁ°Á­MÄ 

(A-40) 

 

Calcul de ©º1À1Á3, ¬, ­, ¦, ®3 sur l’ensemble KÁ Â Á­M 
 `,1s1#3, (, �, ¥,  3 �

� � p�p . ¥ Ã�KÁ°Á­M � �	1F�»3�6 k�(0( # . d11K3&√( . U¤1 3√(& l
. 12 U¤�1¥,  3�F1¥,  3 �d11K3E¤u1»,
3B[ �B'(0E¤u1»,
3B[ �6 k�(0( # . d11K3&√( . �F1¥,  3√(& l
. 12 U¤	1¥,  3�F1¥,  3 �	 d11K3E¤Å1»,
3B[ �	B'(0E¤Å1»,
3B[ �6 k�(0( # . d11K3&√( � �F1¥,  3√(& l
� 12 U¤�1¥,  3�F1¥,  3 �d11K3E¤u1»,
3B[ �B'(0E¤u1»,
3B[ ��KÁ°Á­M
� 12 U¤	1¥,  3�F1¥,  3 �	 d11K3E¤Å1»,
3B[ �	B'(0E¤Å1»,
3B[ ��KÁ°Á­MÄ 

 

(A-41) 
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Calcul de b ÆÀ1Á3cÇ ©ª b ÆºÀ1Á3 , ¬, È, ®c sur l’ensemble KÁ Â Á­M 
� �s1#3�z @̀ ; �,s1#3 , (, K,  <

� �̄, ÉÊÊ
Ë�	B'(01@�z3��Ì�L�5[ ¹Q Í

� �	F��	B'(01@�z3�6 j��(0( # . d2 �KS2L2 �&√( . U1 3√(& m
. 12 U.1 3UF1 3 �d2;KS2L2 <U�1 3B[ �	B'(0�@�z�U�1 3B[ ��6 j��(0( # . d2 �KS2L2 �&√( . UF1 3√(& m
. 12 U�1 3UF1 3 �	 d2;KS2L2 <U.1 3B[ �	B'(0�@�z	 U.1 3B[ ��6 j��(0( # . d2 �KS2L2 �&√(
� UF1 3√(& l � 12 U.1 3UF1 3 �d2;KS2L2 <U�1 3B[ �	B'(0�@�z�U�1 3B[ ���Ì�L�5[ ¹Q Í

� 12 U�1 3UF1 3 �	 d2;KS2L2 <U.1 3B[ �	B'(0�@�z	 U.1 3B[ ���Ì�L�5[ ¹Q ÍÎ 

(A-42) 
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Calcul de b ÆÀ1Á3cÇ ©º b ÆºÀ1Á3 , ¬, È, ¦, ®c sur l’ensemble KÁ Â Á­M 
� �s1#3�z `, ; �,s1#3 , (, K, ¥,  <

� � p�p . ¥ �̄² ÉÊÊ
Ë�	Bz'(0��Ì�L�5[ ¹Q Í

� �	1F�»3��	Bz'(0�6 j��(0( # . d2 �KS2L2 �&√( . U¤1 3√(& m
. 12 U¤�1¥,  3�F1¥,  3 �d2;KS2L2 <E¤u1»,
3B[ �	B'(01E¤u1»,
3B[  �z3�6 j��(0( # . d2 �KS2L2 �&√(
. �F1¥,  3√(& l
. 12 U¤	1¥,  3�F1¥,  3 �	 d2;KS2L2 <E¤Å1»,
3B[ �B'(01E¤Å1»,
3B[  	z3�6 j��(0( # . d2 �KS2L2 �&√(
� �F1¥,  3√(& l � 12 U¤�1¥,  3�F1¥,  3 �d2;KS2L2 <E¤u1»,
3B[ �	B'(01E¤u1»,
3B[ �z3��Ì�L�5[ ¹Q Í

� 12 U¤	1¥,  3�F1¥,  3 �	 d2;KS2L2 <E¤Å1»,
3B[ �B'(01E¤Å1»,
3B[  	z3��Ì�L�5[ ¹Q ÍÎ 

(A-43) 
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En utilisant la remarque (B-4) et le paragraphe (B-2-2), on peut enfin calculer : 

Ï@1(, �,  3 � 7 @̀1s1#3, (, �,  3�5
	4 01#3"# 

� �̄@ Ð�B[(0, P6
#� � &'(0� � 6
#¨ � &'(0�R � �	F�v k&'(0, �(0( , d11K3&√( . U1 3√(& l
. 12 U.1 3UF1 3 �d11K3U�1 3B[ v k&'(0 ;1 . U�1 3&, < , �(0( , d11K3&√( � UF1 3√(& l
. 12 U�1 3UF1 3 �	 d11K3U.1 3B[ v k&'(0 ;1 � U.1 3&, < , �(0( , d11K3&√( � UF1 3√(& l
� 12 U.1 3UF1 3 �d11K3U�1 3B[ �B[(0, �@�U�1 3B[ �[ ¡6 �#� � &'(0 ;1 . U�1 3&, <�
� 6 �#¨ � &'(0 ;1 . U�1 3&, <�¢
� 12 U�1 3UF1 3 �	 d11K3U.1 3B[ �B[(0, �@	 U.1 3B[ �[ ¡6 �#� � &'(0 ;1 � U.1 3&, <�
� 6 �#¨ � &'(0 ;1 � U.1 3&, <�¢Î 

(A-44) 

 

 

 

 

 

 

 

 

 

 

 

 



Modélisation Stochastique pour l’Evaluation des Stock-options 

 

 ANDRIAMANANTENA  Philibert 
XXI 

Mémoire de DEA, ENI 

  

Ï,1(, �, ¥,  3 � 7 `,1s1#3, (, �, ¥,  3�5
	4 01#3"# 

� � p�p . ¥ Ð61#�3 � 61#¨3 � �	1F�»3�v k0, �(0( , d11K3&√( . U¤1 3√(& l
. 12 U¤�1¥,  3�F1¥,  3 �d11K3E¤u1»,
3B[ v k'(0 U¤	1¥,  3& , �(0( , d11K3&√( . �F1¥,  3√(& l
. 12 U¤	1¥,  3�F1¥,  3 �	 d11K3E¤Å1»,
3B[ v k�'(0 U¤�1¥,  3& , �(0( , d11K3&√( � �F1¥,  3√(& l
� 12 U¤�1¥,  3�F1¥,  3 �d11K3E¤u1»,
3B[ �(0E¤u1»,
32,B[ {6 ;#� � '(0 U¤	1¥,  3& <
� 6 ;#¨ � '(0 U¤	1¥,  3& <|
� 12 U¤	1¥,  3�F1¥,  3 �	 d11K3E¤Å1»,
3B[ �(0E¤Å1»,
32,B[ {6 ;#� . '(0 U¤�1¥,  3& <
� 6 ;#¨ . '(0 U¤�1¥,  3& <|Î 

(A-45) 
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w@1(, �,  3 � 7 � �s1#3�z @̀ ; �,s1#3 , (, K,  <�5
	4 01#3"# 

� �̄, ÉÊÊ
Ë�B[(0, 1@�z3[6 ;min �#� , #�[Q̈ � . &'(011 . �3<

� �	F�v j�&'(011 . �3, ��(0( , d2 �KS2L2 �&√( . U1 3√(& m
. 12 U.1 3UF1 3 �d2;KS2L2 <U�1 3B[ v j�&'(0 ;1 . � . U�1 3&, < , ��(0( , d2 �KS2L2 �&√(
. UF1 3√(& l
. 12 U�1 3UF1 3 �	 d2;KS2L2 <U.1 3B[ v j�&'(0 ;1 . � � U.1 3&, < , ��(0( , d2 �KS2L2 �&√(
� UF1 3√(& l
� 12 U.1 3UF1 3 �d2;KS2L2 <U�1 3B[ �B[(0, �@�z�U�1 3B[ �[6 �min �#� , #�[Q̈ �
. ;1 . � . U�1 3&, <�
� 12 U�1 3UF1 3 �	 d2;KS2L2 <U.1 3B[ 6 �min �#� , #�[Q̈ � . ;1 . � � U.1 3&, <�Î 

(A-46) 
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w,1(, �,  3 � 7 � �s1#3�z `, ; �,s1#3 , (, K, ¥,  <�5
	4 01#3"# 

�
� F¨F�» �̄² Ã�B[z[(06 �min �#� , #�[Q̈ � . &'(0�� � �	1F�»3�v ��&'(0�, �W(0� , d2�KS2L2 �B√� .
E¤1
3√�B < . @, E¤Å1»,
3�³1»,
3 �d2;KS2L2 <IÓu1Ô,·3

f[ v ��&'(0 bE¤u1»,
3B[ . �c , �W(0� , d2�KS2L2 �B√� . �³1»,
3√�B � .
@, E¤u1»,
3�³1»,
3 �	 d11K3IÓÅ1Ô,·3f[ v �&'(0 bE¤Å1»,
3B[ � �c , �W(0� , d2�KS2L2 �B√� � �³1»,
3√�B � �
@, E¤Å1»,
3�³1»,
3 �d2;KS2L2 <IÓu1Ô,·3

f[ �f[(0[ �z�IÓu1Ô,·3f[ �[6 ;min �#� , #�[Q̈ � . &'(0 b� . E¤u1»,
3B[ c< �
@, E¤u1»,
3�³1»,
3 �	 d11K3IÓÅ1Ô,·3f[ �f[(0[ �	z�IÓu1Ô,·3f[ �[6 ;min �#� , #�[Q̈ � � &'(0 b�� . E¤Å1»,
3B[ c<Ä      (A-47) 

 

 

Ainsi, à partir de (A-26), (A-31), (A-38) et des notations (A-44), (A-45), (A-46) 

et (A-47), on trouve finalement : 

�� � �	
(0 7  1s1#3, ( � (03�5
	4 01#3"# 

� �	
(0�Ï@1( � (0, �,  3 . Ï,1( � (0, �,  ,  3 � Ï@1( � (0, �,  J3 � �� Ï,1( � (0, �,  ,  J3
� w@1( � (0, �,  3 � w,1( � (0, �,  ,  3 . w@1( � (0, �,  J3
. �� w,1( � (0, �,  ,  J3 

(A-48) 
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Annexe B : Processus à intensité  
Cette présentation est tirée de [3] et [17]. Formellement, DF peut être vu comme 

le premier instant de saut d’un processus de comptage M non explosif et adapté à Õ : 
DF � Ö0TK2 � #, ×A � 1M. On rappelle qu’un temps d’arrêt DF admet une intensité � si et 

seulement si � est un processus prévisible positif tel que / pØ"Ù n ∞ p. s.  Üt � 0A
)  et le 

processus compensé ×@ � 1×A � / pØ"ÙA
) 3A�) est une  Ý -martingale locale. Si de plus, 

on a � �/ Þ1Ù3"ÙA
) � n ∞ Ü2 � 0 alors ×@ est  Ý -martingale. 

B-1 Processus de Cox 

Si le processus de comptage M est un processus de Cox ou « doubly 

stochastic process » par rapport à une filtration  Õ de  Ý, d’intensité � Õ-prévisible. 

C’est-à-dire, conditionnellement à la connaissance de l’évolution de � jusqu’à une 

date t, ×A est un processus de Poisson inhomogène de paramètre  / pØ"ÙA
) . On a donc 

pour 0 ß 2 ß ( : h1×� � ×A � à áA â CA⁄ 3 � b/ ã1Ø3!Ø�
ä cå

æ! �	 / ã1Ø3!Ø�
ä                                    

(B-1) 

La filtration Õ fournit l’information sur la tendance du taux d’exercice (l’évolution 

de pA ) mais ne permet pas de décider à un instant t si l’exercice a lieu. Cette 

information est contenue dans la filtration Ý par rapport à laquelle � est un temps 

d’arrêt. En résumé, même en connaissant la perspective d’exercice d’un bénéficiaire, 

l’événement d’exercice est perçu comme une surprise totale, il est totalement 

imprévisible (alors que la tendance � l’est).  

A partir de (B-1), nous pouvons définir la probabilité conditionnelle de survie et 

la densité conditionnelle de D. En effet, si on se restreindra à l’événement  KD x 2M, on 

a :  

h1D x 2 CA⁄ 3 � � ��	 / ã1Ø3!Ø�
ä CAQ �                                                                           (B-2) 

Et  
g

gØ h1D x 2 CA⁄ 3 � � �ÞØ �	 / ã1Ø3!Ø�
ä CAQ �                                                                 (B-3) 

On montre ici comment (B-1) conduit à (B-2) : 

       h1D x 2 CA⁄ 3 � h1×A � 0, ×� � ×A � 0 CA⁄ 3 

                                        � �Kèä±)Mh1×� � ×A � 0 CA⁄ 3 

                                        � �KD°AM��h1×� � ×A � 0 1áA â CA⁄ 3 CA⁄ � 
                                        � �KD°AM� ��	 / ã1Ø3!Ø�

ä CAQ � 
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B-2 Quelques outils mathématiques pour le calcul de s sous-options 

B-2-1 Exponentielle-gaussienne 

/ ���01#3"#E� � �é[[ �61U � �3 � 61} � �3�                                                           (B-4) 

B-2-2 Loi normale bivariée              

Toutes les intégrales peuvent se mettre sous forme combinaisons linéaires 

d’intégrales de la forme:  

v1}, U, �3 � 7 ���61U# . �301#3"#�5
	4  

� 7 ����5
	4 7 01\301#3"\"#E���

	4  

� 7 7 ���01U# . \301#3"\"#�
	4

�5
	4  

� ��[, 7 7 12? exp �� 12 11 . U,31# � }3, � U1\ . }U31# � }3 � 12 1\ . }U3,� "\"#�
	4

�5
	4  

En effet,  

���01U# . \301#3 � 12? exp1�3 

Avec : � � � @, 11 . U,3#, . }# � U#\ � @, \, 

� � 12 11 . U,31# � }3, . 12 11 . U,3}, � U,}# � U#\ � 12 \, 

� � 12 11 . U,31# � }3, � U1\ . }U31# � }3 � 12 1\ . }U3, . },2  

 

On peut donc relier l’intégrale B à la fonction de répartition d’une loi normale 

bivariée. En effet : 

v1}, U, �3 � / ���61U# . �301#3"#�5	4 � �ê[[ h1ë ß #�; � ß �3                               

(B-5) 

Où (X, Y) est un couple aléatoire de loi normale bivariée de paramètres: Þí Þî &í, &î, ï (B-6) 

a -ab 1 1 . U, � U√1 . U, 
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RESUME 
Dans ce document, on examine l'évaluation juste du régime  d'option d'achat 

d'actions des employés (ESO) dans le contexte de la  comptabilité IFRS standard 2 

[1].  

On présente un modèle qui intègre les propriétés principales caractérisant les 

ESO, en particulier, la période d’indisponibilité, la  probabilité de l'exercice volontaire 

tôt et l'obligation de  s'exercer immédiatement si l'employé quitte la société. Une 

formule analytique est dérivée pour le prix d'ESO, et  ses  propriétés et sa sensibilité  

sont analysées en ce qui concerne les paramètres du modèle. Le modèle considéré 

est ensuite comparé au modèle de Black & Scholes qui est un modèle de référence 

pour la valorisation des options [4]. Des simulations de Monte-Carlo ont été utiles 

pour faciliter la comparaison, et valider le modèle [48]. 

Mots clés : stock-option, fair value, modélisation, processus stochastique, 

simulation de Monte-Carlo, modèle analytique, norme comptable. 

 

 

ABSTRACT 

In this document, we considered the fair valuation of Employee Stock Option 

(ESO) in the context of the accounting standard IFRS 2 [1]. 

We introduce a model that contains the main properties that characterizing the 

ESO, in particular, the vesting period, the likelihood of early voluntary exercise and 

the obligation to exercise immediately if the employee leaves the firm. We derive an 

analytic formula is derived for the price of ESO, and its properties and sensitivity are 

analyzed with respect to the model parameters. This one is then compared with the 

model of Black & Scholes which is a model of reference for the valorization of the 

options [4].  Simulations of Monte-Carlo were useful to us to facilitate the comparison 

and to validate the model [48].   

Key words :  stock-option, fair value, modeling, stochastic process, simulation 

of Monte-Carlo, analytical model, countable standard.  

 


