N° d’ordre : 04/RS/ TCO Année Universitaire ;: 2009 /2010

UNIVERSITE D’ANTANANARIVO
E ¥ ? ;I

DEPARTEMENT TELECOMMUNICATION

MEMOIRE DE FIN D’ETUDES
en vue de I’obtention

du DIPLOME d’INGENIEUR

Spécialité : Télécommunication
Option : Réseau et Systeme (R.S)

par: RALAIARY Andry Tanjona Harinosy

CONCEPTION ET REALISATION D’UN LOGICIEL DE
GESTION DE LOCATION DE VOITURE UTILISANT
L’ARCHITECTURE CLIENT SERVEUR

Soutenu le 19 Septembre 2013 devant la Commission d’Examen composée de :
Président:
M. ANDRIAMIASY Zidora
Examinateurs:
M. RANDRIARIJAONA Lucien Elino
M. RASAMOELINA Jacques Nirina
M. RANDRIAMIHAJARISON Jimmy
Directeur de mémoire :

Mr. RATSIRANTO Albert

REMERCIEMENTS

Je ne saurais presenter ce mémoire sans rendre gloire & Dieu pour sa bonté et sa fidélité, de

m’avoir donné la force, le courage et la santé durant 1’¢laboration de ce mémoire de fin d’études.

Ma vive gratitude s’exprime tout particulierement a Monsieur ANDRIANARY Philippe,
Professeur Titulaire, Directeur de I’Ecole Supérieure Polytechnique d’Antananarivo, qui m’a

donné I’opportunité de suivre mes études supérieures au sein de 1’établissement.

Je tiens a témoigner ma reconnaissance et ma gratitude les plus sincéres a Monsieur
RATSIRANTO Albert, Ingénieur en chef de Télécommunication et enseignant au sein du
Département Télécommunication, qui en tant que Directeur de ce mémoire, s'est toujours montré a

I'écoute et tres disponible tout au long de sa réalisation.

Ma sincere reconnaissance va a feu Monsieur RAZAKARIVONY Jules, Maitre de Conférences,
ancien Chef de Département Télécommunication, qui s’est toujours efforcé de trouver la meilleure

voie pour nous, lors de notre formation.

Je tiens a remercier Monsieur RAKOTOMALALA Mamy Alain, Enseignant-Chercheur, Maitre
de conférences et Chef Département Télécommunication au sein de I’Ecole Supérieure

Polytechnique d’ Antananarivo de nous avoir acceptés et formés dans son département.

J’exprime également mes remerciements a Monsieur ANDRIAMIASY Zidora, Maitre de
Conférences, Enseignant-Chercheur a ’ESPA, qui nous a fait I’honneur de présider le Jury de ce

mémaoire.

J’exprime ma reconnaissance a tous les membres de jury qui ont voulu examiner ce travail :

- Monsieur RANDRIARIJAONA Lucien Elino, Assistant, Enseignant au sein du
Département Télécommunication.

- Monsieur RASAMOELINA Jacques Nirina, Assistant d’enseignement et de recherche et
enseignant au sein du Département Télécommunication.

- Monsieur RANDRIAMIHAJARISON Jimmy, enseignant-chercheur au sein du

Département Télécommunication.

Mes vifs remerciements s’adressent également a tous les enseignants au sein du Département
télécommunication ainsi qu’aux enseignants et au personnel de I’Ecole Supérieure Polytechnique

d’Antananarivo qui ont assuré notre formation durant ces cinq années d’études.

Je n’oublierai pas ma famille pour leur soutien bienveillant et leurs encouragements, pour la

réalisation de ce mémoire, comme en toute circonstance.

Et a tous ceux qui ont contribué de pres ou de loin a I’¢laboration de ce mémoire.

TABLE DES MATIERES

REMERCIEMENTS ...ttt bttt ettt she e s he e s a bt e ab e et e e be e st e e sbeeesbeenbeenbee e ii
TABLE DES MATIERES ...ttt bbbt st b et ettt iv
ABREVIATIONS ...ttt b bbbt b e b ek e e st sb e s bt e b sbe e b e et e nbe et e nbe e e e iX
INTRODUGCTION ...ttt btk h et b et e btk e bt e bt e R b e bt e bt e nbeeb e e s e e sbeebeebesbeennenbe e 1
CHAPITRE 1 BASE DE DONNEES.........co ittt ittt bbb st nne e 3
1.1 Présentation G8NEIAIE...........coiiiiiiee bbbt 3
1.1.1 Introduction auX Dases de UOMNEESccouiiriiiiiiiiiee e 3
1.1.2 Objectifs et avantages de lutilisation des bases de donnéesccccccouvuinviniininnnn. 3
1.1.3 Différents types de bases de GONNEES..........c.ccveiiiveie i sre et be e e re e 6
1.1.4 Modéle conceptuel des ONNEBEScvoviiiiiiiie e s re e re e 7

1.2 L’algébre relationnelle.................coooiiiiiiiiiiii e 11
B 1= T o] oI) SRR 11
1.2.2 Quelques remarques sur I'algebre relationnelle...........cccoeoveiiiiicc s 14

(R I = oo F- T[T 1 ARSI 14
1.3.2 L’0btention des dORREEScccocoueviiiiiiiiiiiiiiiii ittt 15
1.3.3 La mise a jour d’iRfOrMAIIONSccooiiiiiiiiiiiiiiii e 16
1.3.4 DEFiNition des dONNEES : 18 DDL........coiiieiiiiiieiieee e 17

I O] o] [T][] [PPSO PP O PP 20
CHAPITRE 2 L’ACCES AUX BASES DE DONNEES A PARTIR D’APPLICATIONS JAVA 21
2.1 INEFOTUCTION ...tk s s e ettt et b bt nesn e n e 21

2.2 Les outils nécessaires pour ULHHSEr JDBCcoov it 21

2.3 Type de PIOLE IDBC ... e ettt b e nn e nen e 21
2.3.1 JDBC-ODBC DFIAge (TYPE 1)...vveeoeeeeeeeeerieeeesessseeseeseesseseesesseeeseseeseseesssssssssseeesssesessse s 22
2.3.2 Un driver écrit en java qui appelle I’API native de la base de données (Type 2)cccveenns 22
2.3.3 Un driver écrit en java utilisant un middleware (type 3)coceorririiinennensereeee e 22
2.3.4 Un driver java utilisant le protocole natif de la base de données (type 4)ccccocevvvrverinncnne 23

2.4 La présentation des classes de PAPLIDBC ..o s 23

2.5 La connexion & UNne Dase de dONNEES ..o 24
2.5.1 Le chargement du PIOTEooiiiiieieieee b 24
2.5.2 L’établissement de la CONNEXIONcccccoiuiiiiiiiiiieiiie et 24

2.6 L’accés 2 1a base de dOMNEEScccoeeiiiiiiiiiiiii et 25
2.6.1 Les classes utiles pour obtenir des informations sur la base de données............ccccceeevvenennen, 25
2.6.2 L’exécution de requétes SQLcccocooviiiiiiiiiiiiiiiiiii i 26
2.6.3 LA ClasSe RESUILSELciiiiiiiiieii e 28

2.7 L’obtention d’informations sur la base de donneéesc.ccoooiiiiiiiiiiiiici 30
2.7.1 La classe ReSUISEIMELADALAeoviueiiiieiereiee e 30
2.7.2 La classe DatabaSeMEtaDataccerveieieieiiiie s 30

2.8 L’utilisation d’un objet PreparedStatement..................ccocoiiiiiiiiiiinii i 31

2.9 L utilisation des tranSactionsccccoeiiiiiiiiiiiiiee et sre e ae e 32

2.10 Le traitement des rreUrs JDBC........cooiiiiiiiiiie et 32
2.10.0 LB MBSSAGE ... veveevterteettente skttt btk sb stk b e btk e R bt ke b e SRt R e Rt R e e bt bt E e bt b e b nneenr e ne e 33
2.00.2 SQLSTALE ...eoteiiiiieie ettt ettt E et e nE e R bt be e nEe e nbeenneennreanres 33

P KR I (0] OT0 o [T 33

2.11 Amélioration des performances aveC JDBCcccoiiiiiniiienee et 33
2.11.1 Le choix du pilote IDBC & ULHISENc.oviuiiiiiiciieiceee e 33
2.11.2 La mise en ceuvre de DeSt PracCtiCesccccouoiiiiiiiiiiiiiiiiiii e 34
2.11.3 L’utilisation des connexions et des StAteMENLS.....................ccocoueiiiiiiiiiiiiiieniiee e 34
2.11.4 L’utilisation d’un pool de CORREXIONScc.ccooviiriiiiiiiiiiiiiee 35
2.11.5 La configuration et lutilisation des ResultSets en fonction des besoins...........ccoccveveiennnnns 35
2.11.6 L’utilisation des PreparedStatementcccoocvviiiiiiiiiiiiiienene e 35
2.11.7 La maximisation des traitements effectués par la base de données............cccooovcvvvericinnenn 36
2.11.8 Les optimisations sur 1a base de dONNEES.........ccoviii e 36
2.11.9 L’utilisation d’Umn CACHRE........................cccocoiiiiiiiiiiiesii e re et 37

2.02 CONCIUSION ..t b bbbtk bbbt bbbt bbb 37

CHAPITRE 3 ARCHITECTURE CLIENT-SERVEUR.........ccocoiitiriiee e 38

L INTFOAUCTION ...ttt b bttt b bbbt et e e ne bt bt bbb n e 38

BL2 DEFINITION ..o b bbbt bttt et n b 38

3.3 €S PrINCIPES GENEIAUX......ecuiiiviiiieiteiteeiesteete e e s te e e testaestesteeseesteate e besteessesbesseessesteeseesreeteesbesreeseessens 38

3.4 Les différents modeles de CIENT-SEIVEUNcociiiiiiiiiee e 40
3.4.1 Le Client-SErveur de GOMNMEE.oiiiiiiiiee ettt b e 40
3.4.2 Client-serveur de PréSENtation...........cccuivieiieiririieise et 40
3.4.3 Le client-Serveur de traiteMeNT...... ..o 41

3.5 Les differentes arChitECIUIESc.ciiiiiiecee et 41
3.5, 1 L' AICRITECTUIE 2-TIEIS ...ttt bbbttt b bbb e 41

I =Y o] a1 (=T (U] T T =T TR 43

3.5.3 L' AICIITECTUIE NM-TIBISeeiiieeiete ettt b 45
3B CONCIUSTON ...t bbbt bbb e e et bt bt b nn e n e 46
CHAPITRE 4 REALISATION DE L’APPLICATIONoooiiiiiiii e cee st e st e e 47
4.1 TNEFOAUCTION ...ttt bbb bbb bbbttt b et nn e an s 47
4.2 Les outils utilisés pendant la conception du 10giCIel...........ccoeiiiiiiiiiiiiii e 47
O R | S TSP PRSPPI 47
4.2.2 EDIINEEBRANS ..ottt ettt r e bt e e b sb e b e n e nr e e e e b e ne e nreare e nenre s 47
4.2.3 IR DESIGN ...ttt ettt bbbt R R R R bbbttt Rt bbb e r e 48
A28 IMYSQL ..ttt bRt b e R et R et E e be e be e nhe e nae e nar e reenns 49
o o 1 0] (0 15] 1 o] o FE SO SRSSSN 50
4.3 Méthodologie de construction d’une application :.................ccoeiiiiiiiiii 50
4.3.1 EXPression deS DESOINScecviiiiiiii ettt st s re e be e sre et b nre s 50
4.3.2 ANAIYSE ...ttt et be et Ee e e e te et e e beabeeRe e besRe e b e sbeeaeenreeteenrenreas 51
O O] (01T o) 1 o] o ISR ORRSPR SN 51
4.3.4 IMPIEMENTALION ...ttt st et e e esbeebe e besbe e b e sbesseeseesteenbesres 51
4.3.5 LeS testS de VEFTICALIONc..oiiiiicieee et 51
4.3.6 VAIIUALION ...ttt 51
4.3.7 MaINtENANCE €1 EVOIULIONviviiiiiciiieie ettt 51
4.4 Modélisation de la partie statique du systéme d’information du logiciel.....................c...cccocee. 52
4.4.1 REGIE T8 GESTION ...viiiiieiieie ettt et b et b ettt ettt et 52
4.4.2 DIctioNNAITe 08 UOMNEESoviieieieiiiieie ettt ettt sttt et et 52

O B =Y 01) (=TT 52

4.4.4 Le modele conceptuel de ONNEEScciiiiiriiiiiiees e 53

4.5 Modélisation de la partie dynamique du systeme d’information du logiciel 54
4.5.1 Description du fonctionnement du [OgICIEl..........ccoiiiiiiiiiiiiiie e 54
4.5.2 OFUINOGIAMIMIEeiuiiiieieeieeii ettt b et b bt bbb et e et e e bt b e nbeanenn e 55
4.5.3 Configuration réseau du [0gICIEL...........cooeiiiiiiiiii e 56
4.5.4 Les outils & mettre en place sur chaque Machingccoooeiiiiiiiiinciee e 57

4.6 Exemple de fenétre de I’applicationccccooiiiiiiiiiii e 57
4.6.1 La fenétre d’AUthentifiCationc.coccooviiiiiiiiiiceee e s 57
4.6.2 FENEBLIE PrINCIPAIE......vi ettt e st et s beebe e besbe e e e sbeeeesreeteenbesres 58
4.6.3 Quelques options AU TOGICIEL........c.oiiiiiiiiecc e et sre s 59

4.7 CONCIUSTON ..ttt e bbb bbb bbbt bbb bbbt bbb en s 64
CONCLUSION GENERALE ...ttt 65
ANNEXE L ...ttt bbbt h et ket bt e bt oo he e ekt e eh bt oAb oAbt e bt e bt e ebe e eRb e b e e beenre e 66
ANNEXE 2.ttt b bkt h e e R et e bt bt SR e R e R bt oAbt E e bt e bt e b e e eRb e b e e beenree e 82
BIBLIOGRAPHIESottt ettt b ettt e st e be e nbe e sbeesbeesabesnbeenbeebeenbeenneeas 87
RESUMIE ...ttt st r e s R e st e s e e b e e e bt e e b e e e R ee e s be e nEe e sbeesReeenbe e be e beenbeenteennee s 89

viii

API
ANSI
DBA
DDL
DML
DCL
EDI

LGLV
ISAM

IDE
JAR
JDBC
JIDK
JRE
MCD
OMT
ODBC
PC
SUN
sQL
SGBD
UML

URL

ABREVIATIONS

Application Programming Interface
American National Standard Institute
Data Base Administrator

Data Definition Language

Data Manipulation Language

Digital Command Language
Environnement de Développement Intégré

Logiciel de Gestion de Location de Voiture

Indexed Sequential Access Method
Integrated Development Environment
Java Archive

Java Data Base Connectivity

Java Development Kit

Java Runtime Environment

Modele Conceptuel de Données
Object Modeling Technique

Open Data Base Connectivity
Personal Computer

Stanford University Network
Structured Query Language

Systeme de Gestion de Base de Données
UnifiedModelingLanguage

Uniform Resource Locator

VSAM Virtual Storage Access Method

INTRODUCTION

Face & la mondialisation et la globalisation, les entreprises veulent de plus en plus accroitre
I’horizon de leur activité, réduire autant que possible leur colt d’exploitation, et aussi diminuer au
maximum le temps d’exécution. Tous ces objectifs ne peuvent étre atteints que si I’entreprise
accompagne ces stratégies par une mise en place d’un systéme d’information en tant que services
supports. Ainsi, les applications issues de cette démarche qui vont fournir ces services doivent-
elles combiner le systéme d’information existant dans 1’entreprise avec de nouvelles applications
qui offrent ces services a des client et utilisateurs a n’importe quel moment. Aussi, ces services
doivent-ils étre : hautement disponible afin de répondre de maniére fiable et efficiente aux
différentes sollicitations des utilisateurs.

C’est cela qui m’a motivé a la conception et a la réalisation de la présente application intitulée
LGLV «Logiciel de Gestion de Location de Voiture » utilisant 1’architecture client-serveur, ce
logiciel sert a mieux sécuriser, organiser et faciliter les acces aux données de I’entreprise. La
réalisation de cette application nécessite diverses connaissances qui seront détaillées dans le

présent mémoire.

Dans le premier chapitre nous allons voir ce que 1’on entend par base de données, c’est a dire les
objectifs, les avantages et les différents types de base de données. On va aussi parler des modéles
conceptuels des données, puis un petit rappel sur 1’algebre relationnelle et pour terminer ce

chapitre on va parler un peu du langage SQL « Structured Query Language ».

Le deuxiéme chapitre s’intitule « Accés aux bases de donneées a partir d’application JAVA ».Dans

ce chapitre nous allons voir successivement :

e les outils nécessaires pour ’utilisation de JDBC (Java Data Base Connectivity) ;
e la présentation des classes de I’API JDBC ;

e la connexion et I’acces a une base de données ;

e [’obtention d’information sur la base de donnees;

e [’utilisation d’un objet PreparedStatement;

e [’utilisation des transactions

e et enfin I’amélioration des performances avec JDBC.

L’application « Gestion de location de voiture » utilise ’architecture client-Serveur : il est
primordial de parler d’Architecture client-serveur, et c’est ce que nous allons développer dans le
troisieme chapitre. Pour présenter I’architecture client-serveur on va aborder en premier lieu les
différents modeéles, en second lieu les principes généraux qui gouvernent 1’architecture client-

serveur et en dernier lieu les différents types d’architectures client-serveur.

Dans le dernier chapitre 1’étude portera sur les étapes de la réalisation de 1’application, Dans cette
thématique, il convient d’abord de décrire les outils utilisés pendant la réalisation du logiciel, puis
de déterminer des méthodologies de construction d’une application. Par ailleurs une explication
de la méthode d’analyse MERISE® a été effectuée, suivie d’une modélisation de la partie statique
et de la partie dynamique du systéme d’information du logiciel, permettant ainsi d’élaborer son
MCD (Modele Conceptuel de donnée). En dernier lieu, a la fin de ce chapitre figurera des

exemples de fenétres et quelques manipulations de 1’application.

CHAPITRE 1
BASE DE DONNEES

1.1 Présentation générale
1.1.1 Introduction aux bases de données

Une base de données est un ensemble structuré d’informations enregistré avec le minimum de
redondance. Elle doit étre congue pour permettre une consultation et une modification aisée de son

contenu, si possible par plusieurs utilisateurs en méme temps.

Le SGBD (Systeme de Gestions de Base de Données) est un concept informatique permettant
d'insérer, de modifier et de rechercher efficacement des données spécifiques dans une grande
masse d'informations. C’est aussi une interface facilitant le travail des utilisateurs en présentant
I’information comme ils le souhaitent et donnant a chacun lI'impression qu'il est seul a utiliser cette

information.
Le SGBD est composé de trois couches successives :

e Le systeme de gestion de fichiers: Il gére le stockage physique de I'information. Il est
dépendant du matériel utilisé (type de support, facteur de blocage, etc ...).

e Le SGBD interne : Il s'occupe du placement et de lI'assemblage des données, gestion des
liens et gestion des acces.

e Le SGBD externe: Il s'occupe de la présentation et de la manipulation des données au
profil des concepteurs et des utilisateurs. Egalement il a pour attribution la gestion des

langages de requétes et des outils de présentation (états, formes, etc.).
1.1.2 Objectifs et avantages de lutilisation des bases de données

Un systeme d'information peut étre réalisé sans outil spécifique. On peut alors se demander quels
sont les objectifs et avantages de l'approche SGBD par rapport aux systéemes de fichiers

classiques. La réponse tient en neuf points fondamentaux :

e Indépendance physique : Les disques, la machine, les méthodes d'accés, les modes de

placement, les méthodes de tris, et le codage des données ne sont pas apparents. Le SGBD

offre une structure canonique permettant la représentation des donnees réelles sans se

soucier de I'aspect matériel.[2]

Na
Programme\A

d'application

Disques

Terminaux

Figure 1.01 : Le modéle a 3 couches

Indépendance logique : Chaque groupe de travail doit pouvoir se concentrer sur ce qui
I'intéresse uniquement. 1l doit pouvoir arranger les données comme il le souhaite méme si
d'autres utilisateurs ont une vue différente. L'administrateur doit pouvoir faire évoluer le
systeme d'informations sans remettre en cause la vue de chaque groupe de travail.
Manipulable par des non-informaticiens : Le SGBD doit permettre d'obtenir les données
par des langages non procéduraux c'est-a-dire on doit pouvoir décrire ce que I'on souhaite
sans décrire comment l'obtenir.

Acces efficace aux données: Les acces disques sont lents relativement a l'acces a la
mémoire centrale. Il faut donc offrir a ’utilisateur les meilleurs algorithmes de recherche

de données qui sont physiquement contenues dans des disques.

Remarque: le systéme de gestion de fichiers y répond parfois pour des mono-fichiers

(ISAM,VSAM etc...) mais dans le cas de relation multiples entre différents fichiers cela devient

beaucoup plus complexe et dépend méme parfois du contexte de la recherche effectuée.

Administration centralisée des données : Le SGBD doit offrir aux administrateurs des
données, des outils de vérification de cohérence des données, de restructuration éventuelle
de la base, de sauvegarde ou de réplication. L'administration est centralisée et est réservée

a un trés petit groupe de personnes pour des raisons évidentes de sécurité.

e Non redondance des données: Le SGBD doit permettre d'éviter la duplication
d'informations qui, outre la perte de place mémoire, demande des moyens humains
importants ainsi que des ressource informatiques supplémentaires pour saisir et maintenir a
jour plusieurs fois les mémes données.

e Cohérence des données : Cette cohérence est obtenue par la vérification des contraintes
d'intégrité. Cette derniere est une contrainte sur les données de la base, qui doit toujours
étre vérifiée pour assurer la cohérence de cette base. Les systéemes d'information sont
souvent remplis de telles contraintes, le SGBD doit permettre une gestion automatique de
ces contraintes d'intégrité sur les données. Par exemple :Un identifiant doit toujours étre
saisi, Le salaire doit étre compris entre 4000F et 100000F, Le nombre de commandes du
client doit étre cohérent avec le nombre de commandes dans la base, L'emprunteur d'un
livre doit étre un abonné du club. Dans un SGBD les contraintes d'intégrité doivent
pouvoir étre exprimées et gérées dans la base et non pas dans les applications.

e Partage des données: Le SGBD doit permettre a plusieurs personnes (ou applications)
d'accéder simultanément aux données tout en conservant l'intégrité de la base. Chacun doit
avoir lI'impression qu'il est seul a utiliser les données.

e Sécurité des données : Les données doivent étre protégées des acces non autorisés ou mal
intentionnés. 1l doit exister des mécanismes permettant d'autoriser, contréler et enlever des
droits d'acces a certaines informations pour n'importe quel usager. Par exemple un chef de
service pourra connaitre les salaires des personnes qu'il dirige, mais pas de toute
I'entreprise. Le systéme doit aussi étre tolérant aux pannes: si une coupure de courant
survient pendant I'exécution d'une opération sur la base, le SGBD doit étre capable de

revenir a un état dans lequel les données sont cohérentes.

Remarque : les neuf points ci-dessus, bien que caractérisant assez bien ce qu'est une base de
données, ne sont que rarement réunis dans les SGBD actuels. C'est une vue idéale des SGBD. De
plus, les SGBD sont interfacés a I’aide d’un langage unique : le SQL. Ce langage permet
d’effectuer I’ensemble des opérations nécessaires sur la base de données, et permet aussi la

gestion de transaction.

Une transaction est déefinie par quatre proprietés essentielles : ACID (Atomicité, Cohérence,

Isolation, Durabilité).

Ces propriétés garantissent I’intégrité des données dans un environnement multiutilisateur :

e [’atomicité permet a la transaction d’avoir un comportement indivisible ; soit toutes les
modifications sur les données dans la transaction sont effectives, soit aucune n’est réalisée. On
comprend I’intérét de ce concept dans 1’exemple simple d’une transaction débitant un compte A et
créditant un compte B : il est clair que la transaction est réussie si les deux opérations sont menées

a leur termes.

e Cohérence : I’atomicité de la transaction garantit que la base de données passera d’un état

cohérent & un autre état cohérent. La cohérence des données de la base est donc permanente.

e [solation : I’isolation des transactions signifie que les modifications effectuées au cours d’une
transaction ne sont visibles que par I’utilisateur qui effectue cette transaction. Au cours de la
transaction, I’utilisateur pourra voir des modifications en cours qui rendent la base apparemment
incohérente mais ces modifications ne sont pas visibles par les autres et ne le seront qu’a la fin de

la transaction si celle-ci est correcte.

e Durabilité : la durabilité garantit la stabilité¢ de 1’effet d’une transaction dans le temps, méme en

cas de probléme grave tel que la perte d’un disque dur.
1.1.3 Différents types de bases de données

Il existe différents types de base de données :

1.1.3.1 Les bases hiérarchiques :

Ce sont les premiers SGBD apparus (notamment avec IMS d'IBM). Elles font partie des bases
navigationnelles constituées d'une gestion de pointeurs entre les enregistrements. Le schéma de la

base doit étre arborescent.
1.1.3.2 Les bases réseaux :

Sans doute les bases les plus rapides, elles ont tres vite supplanté les bases hiérarchiques dans les
années 70 (notamment avec IDS 11 d'IBM). Ce sont aussi des bases navigationnelles qui gerent des

pointeurs entre les enregistrements. Cette fois-ci le schéma de la base est beaucoup plus ouvert.

1.1.3.3 Les bases relationnelles :

Actuellement les bases le plus utilisées sont les bases relationnelles. Les données sont représentées

en tables. Elles sont basées sur I’algebre relationnelle et un langage déclaratif (en géneral le

langage SQL).
1.1.3.4 Les bases déductives :

Les données sont aussi représentées en tables, le langage d’interrogation se base sur le calcul des

prédicats et la logique du premier ordre.
1.1.3.5 Les bases objets :

Les données sont représentées en tant qu’instances de classes hiérarchisées. Chaque champ est un
objet. De ce fait, chaque données est active et posseéde ses propres méthodes d’interrogation et

d’affectation. [1][2]
1.1.4 Modele conceptuel des données

Avant de s'attaquer a tout probléme, il est toujours nécessaire de réfléchir profondément aux
tenants et aboutissants de ce que I'on veut réaliser. La phase de conception nécessite souvent de
nombreux choix qui auront parfois des répercussions importantes par la suite. La conception de
bases de données ne fait pas exception a la régle. Les théoriciens de l'information ont donc
proposé des méthodes permettant de structurer sa pensée et présenter de maniere abstraite le
travail que I'on souhaite réaliser. Ces méthodes ont donné naissance a une discipline« analyse » et

a un métier « analyste ».

L’analyse est la discipline qui étudie et présente de maniere abstraite le travail a effectuer. La
phase d'analyse est tres importante puisque c'est elle qui sera validée par les utilisateurs avant la
mise en ceuvre du systéme concret. Il existe de nombreuses méthodes d'analyse (AXIAL, OMT,
Merise, UML, etc...). Merise sépare les données et les traitements a effectuer avec le systéme
d'information en différents modeéles conceptuels et physiques. Celui qui nous intéresse

particulierement ici est le MCD.

Le MCD (modele conceptuel de données) est un modele abstrait de la méthode Merise permettant
de représenter I'information d'une maniére compréhensible aux différents services de I'entreprise.

Il permet une description statique du systeme d'informations a I'aide d'entites et d'associations.

Le travail de conception d'une base de données par I'administrateur commence juste apres celui

des analystes qui ont établi le MCD.
Voici quelques définitions propres au MCD :
1.1.4.1 Laproprieté

La propriété est une donnée élémentaire et indécomposable du systeme d'information. Par

exemple une date de début de projet, la couleur d'une voiture, une note d'étudiant.
1.1.4.2 L'entité

L'entité est la représentation dans le systéeme d'information d'un objet matériel ou immatériel ayant
une existence propre et conforme aux choix de gestion de I'entreprise. L'entité est composée de

propriétés. Par exemple une personne, une voiture, un client, un projet.

nom de |'entite

liste des proprietés

Figure 1.02 : Représentation d’'une entité
1.1.4.3 L'association

L'association traduit dans le systeme d'information le fait qu'il existe un lien entre différentes

entités.

Le nombre d'intervenants dans cette association caractérise sa dimension :

réflexive sur une méme entité ;

binaire entre deux entités ;

ternaire entre trois entités ;

n-aire entre n entités.

Personne Service

Travaille dans un

Figure 1.03 : Représentation d 'une association

Des propriétés peuvent étre attachées aux associations. Par exemple, un employé peut passer 25 %
de son temps dans un service et 75 % de son temps dans un autre. L.’association « travaille dans »

qui relie une personne a un service portera la propriété « volume de temps passé »
Des propriétés peuvent étre attachées aux associations.
1.1.4.4 Les cardinalités

Les cardinalités caractérisent le lien entre une entité et une association. La cardinalité d'une

association est constituée d'une borne minimale et d'une borne maximale :

e minimale : nombre minimum de fois qu'une occurrence d'une entité participe aux occurrences

de l'association, généralement 0 ou 1.

e maximale : nombre maximum de fois qu'une occurrence d'une entité participe aux occurrences

de l'association, généralement 1 ou n.

Les cardinalités maximales sont nécessaires pour la création de la base de données, les cardinalités

minimales sont nécessaires pour exprimer les contraintes d'intégrités.

Personne Service

1.n Travaille dans un 1.n

Figure 1.04 : Représentation des cardinalités

De ce schéma on en déduit que «une personne peut travailler dans plusieurs services ». On
constate de plus que « dans chaque service il y a au moins 1 personne mais qu’il peut y en avoir
plusieurs ». Enfin une mesure du «volume de travail » est stockée pour chaque personne

travaillant dans un service donné. [1][2][5]

Remarque: il existe une notation "a I'américaine” dans laquelle on ne note que les cardinalités

maximum.

Un lien hiérarchique est un lien 1:n en notation américaine.
Un lien maillé est un lien n:m en notation américaine.
1.1.4.5 Identifiant

L’identifiant d'une entité est constitué d'une ou plusieurs propriétes de I'entité telles qu'a chaque
valeur de l'identifiant corresponde une et une seule occurrence de l'entité. L'identifiant d'une
association est constitué de la réunion des identifiants des entités qui participent a l'association.

L’identifiant est représenté en souligné dans le MCD.

10

1.2 L’algebre relationnelle
1.2.1 Définition [9]

Algebre relationnelle a été introduit par Codd en 1970 pour formaliser les opérations sur les
ensembles. Ses principes reposent sur la création de nouvelles tables a partir des tables existantes,
les nouvelles tables devenant des objets utilisables immédiatement. Les opérateurs de 1’algeébre

relationnelle permettant de créer les tables résultantes sont liés sur la théorie des ensembles.
Il existe deux familles d’opérations : les opérations ensemblistes et les opérations unaires.
D’une manicre pratique les opérations les plus utilisées sont :

e Projection :

La projection est I’ensemble des lignes de T obtenues en ne conservant que les colonnes

iy iz iz,....0 estnotérr; ;. . (T)

T (T) = {L(i), ..., Liy| Ldans T} (1.0.1)

i1,i2,i3 ik

Soit (T) égale :

C1(nom) C2(age) C3(adresse) C4 (né a)

13 Lyon Nice
Bob

7 Nice Nice
Sam

13 Brest Brest
Cathy

20 Lyon Breast
Julie

Tableau 1.01: Exemple d 'une table T

11

Exemple de Projection: m

e Restriction :
- Restriction par rapport a une constante : c’est I’ensemble des lignes L de T telles que

e .o (T

C1(nom) C2(age)
13

Bob
7

Sam
13

Cathy
20

Julie

Tableau 1.02: Projection =, . (T)

L(i) = a est noté g;=a(T).

o; =a(T) ={L|Ldans TetL(i) = a}(1.0.2)

C1(nom) C2(age) C3(adresse) C4 (né a)
13 Lyon Nice
Bob
20 Lyon Breast
Julie

Tableau 1.03: Exemple restriction par rapport a une constante g.3- « Lyon »(T)

- Restriction inter-colonnes est I’ensemble des lignes L de T telles que L(i)=L(j) est noté

a;=j(T).
o; =j(T) ={L Ldans Tet L(i) = L(j) }(1.0.3)
C1(nom) C2(age) C3(adresse) C4 (néa)
7 Nice Nice
Sam
13 Brest Brest
Cathy

Tableau 1.04: Exemple de restriction inter-colonnes a.3=c4(T).

12

e Jointure est I’ensemble des lignes L pouvant étre obtenues par concaténation d’une ligne
de L1 de T1 avec une L2 de T2 telle que L, (i) = L,(j) est noté T, xi=j T2.
Tyxi=jT2=1{L,.L, | Ly dans T; et L,dans T, et L, (i) = L,(j) }(1.0.3)

C1(nom) C2(adresse)
Lyon

Bob
Nice

Sam

Tableau 1.05: Table Homme

C1l(nom) C2(adresse)
Cathy Brest
Julie Lyon
Linda Lyon

Tableau 1.06: Table femme
Quels sont les couples homme, femme d’une méme ville ?

Hommewx, ,_., Femme

C1(nom) C2(adresse) C3(nom) C4(adresse)
Bob Lyon Julie Lyon
Bob Lyon Linda Lyon

Tableau 1.07: Hommex,,_., Femme

13

1.2.2 Quelques remarques sur l'algebre relationnelle

e L'algébre relationnelle permet I'étude des opérateurs entre eux (commutativité, associativité,
groupes d'opérateurs minimaux etc...).Cette étude permet de démontrer I'équivalence de
certaines expressions et de construire des programmes d'optimisation qui transformeront toute

demande en sa forme équivalente la plus efficace.

e D'une maniére pratique les opérations les plus utilisées sont la projection, la restriction et la
jointure naturelle. L'opération de jointure est en général trés colteuse. Elle est d'ailleurs
proportionnelle au nombre de tuples du résultat et peut atteindre m * n tuples avec m et n les

nombres de tuples des deux relations jointes.

e Avant davoir des requétes efficaces en temps il est toujours préférable de faire des

restrictions le plus tdt possible afin de manipuler des tables les plus réduites possibles.

e Les opérations de l'algébre relationnelle respectent a certaines lois algébriques
commutativité, associativité etc... pour peu que l'ordre des colonnes dans les tables utilisées
dans la base de données soit sans importance. C'est pourquoi les colonnes sont toujours

nommees.
1.3 Lelangage SQL

SQL est un langage de définition et de manipulation de bases de données relationnelles. Son nom

est une abréviation de « Structured Query Language » (langage d’interrogation structuré).

SQL est un standard qui a été normalisé par I’organisme ANSI .1l existe aussi des « dialectes »
propre a qui, pour chaque produit SQL reéalise, proposent des différences ou des compléments par

rapport a la norme.

SQL contient un langage de définition de donnees, le DDL, permettant de créer, modifier ou
supprimer les définitions des tables de la base par I’intermédiaire des ordres CREATE, DROP, et
ALTER. II contient aussi un langage de manipulation de données, le DML, par I’intermédiaire des
ordres SELECT, INSERT, UPDATE, DELETE. Il contient enfin, le DCL un langage de gestion
des protections d’acceés aux tables en environnement multiutilisateurs par 1’intermédiaire des
ordres GRANT, REVOKE [1][2][7].

14

DDL DML DCL
ALTER DELETE GRANT
CREATE INSERT REVOKE
COMMENT SELECT
DESCRIBE UPDATE
DROP
RENAME

Tableau 1.08: Ordres SQL principaux

Une requéte SQL peut étre utilisée de maniére interactive ou incluse dans un programme

d’application, quel que soit le langage.

Toutes les instructions SQL se terminent par un point-virgule. Un commentaire peut étre introduit
dans un ordre SQL par les signes /* et */ ou par le caractere % qui traite toute texte jusqu’a la fin

de la ligne comme commentaire.

1.3.2 L’obtention des données

L’obtention des données se fait exclusivement par I’ordre SELECT. La syntaxe minimale de cet

ordre est :
SELECT< liste des noms de colonnes> FROMK liste des noms de tables> ;

Elle permet aussi de faire de recherche c’est a dire de sélectionner des lignes spécifiques de la base

de données en fonction de critéres de recherche. Elle prend la forme suivante :

SELECT< liste des noms de colonnes> FROM< liste des noms de tables> WHERE

nom_colonne=valeur ;

Mais nous verrons qu’elle peut étre enrichie, de trés nombreuses clauses permettant notamment

d’exprimer les projections, les restrictions, les jointures, les tris.

15

Ordre des clauses du SELECT

FROM
WHERE
GROUP BY
HAVING

ORDER BY

Tableau 1.09: Ordres des clauses du SELECT

1.3.3 La mise a jour d’informations

Pour le contenu d’une table relationnelle trois types de mise a jour sont nécessaires : 1’ajout de

nouveaux tuples, le changement de certain tuples et la suppression de certains tuples.
1.3.3.1 Insertion

INSERT permet d’ajouter des lignes dans une table. Dans sa forme la plus générale, SQL
demande que les noms des colonnes soient explicitement cités. Les valeurs insérées sont alors en

correspondance avec I’ordre dans lequel les colonnes sont citées.

Si ’ordre INSERT contient une clause VALUE alors une seule ligne est insérée dans la table ; si
I’ordre INSERT contient une clause SELECT, alors plusieurs lignes peuvent étre simultanément
insérées dans la table. L’insertion de tuples peut donc se faire soit en extension par la clause

VALUE soit en intension par un ordre SELECT imbriqué.

Une table citée dans le champ INTO de I’ordre INSERT ne peut pas étre citée dans le champ
FROM du sous-select de ce méme INSERT. Il n’est donc pas possible d’insérer des éléments

dans une table a partir d’une sous-sélection de cette méme table.

16

1.3.3.2 Mise ajour

L’ordre UPDATE permet de modifier des lignes dans une table. L’expression caractérisant la
modification a effectuer peut étre une constante, une expression arithmétique ou le résultat d’un

select imbriqué.

L’ordre UPDATE peut parfois poser des problémes d’intégrité de la base. Par exemple, si une
table posséde comme clé unique un entier de 1 a n, que doit faire le SGBD lors d’une

incrémentation de 1 de cette clé ?

Certain SGBD vérifient la cohérence de la base uniquement apres chaque ordre SQL. C’est le cas
d’Oracle ou DB2. Dans ce cas cette requéte ne pose aucun probléme. D’autres en revanche
vérifient la cohérence de la base aprés chaque modification de ligne. C’est le cas d’Access. Dans
ce cas, il risque d’y avoir un probléme d’unicité de la clé durant I’exécution de la requéte. Ce
choix du mode de vérification de 1’intégrité de la base n’est toujours pas tranché et il est possible
de trouver selon les SGBD les deux modes d’exécution. D’une maniére générale il n’est pas

conseillé de faire des UPDATE sur des colonnes utilisées dans une clé primaire. [2][7]
1.3.3.3 Suppression

L’ordre DELETE permet de supprimer des lignes dans une table selon une qualification fixée.
L’ordre DELETE FROM <table> ; permet de vider complétement une table. Néanmoins, dans ce

cas, la table existe toujours bien qu’elle soit vide.

1.3.4 Définition des données : le DDL

Avant de parler des ordres de description de données DDL, précisions brievement les types de

données autorisés dans SQL.
1.3.4.1 Les types de données

Les types de données que 1’on peut représenter dans un SGBD sont fortement dépendants de
I’architecture de I’ordinateur sur lequel il tourne. Il existe donc de nombreuses variantes de types

selon les SGBD. Néanmoins certains types se retrouvent dans la plupart des SGBD.

Voici les principaux types :

17

Les types alphanumériques :

CHAR(n) : longueur fixe de n caractéres, n_max= 16383.
VARCHAR(N) : longueur variable, n représente le maximum.
Les types numériques :

NUMBER (n,d) : nombre de n chiffres dont d apres la virgule ;
SMALLINT : mot signé de 16 bits (-32768 a 32767) ;
INTEGER : double mot signé de bits (-2E31 a 2 E31-1) ;
FLOAT : numérique flottant ;

Les types gestions de temps :

DATE : champ date (ex :31/12/2010)

TIME : champ heure (ex : 18 :45:21.21) ;

TIMESTAMP : regroupe DATE et TIME ; [2][7]

1.3.4.2 La création de tables

Lorsque les données sont définies, on peut créer les tables. La commande CREATE TABLE

permet de définir des colonnes, de leur associer un type de données et d’y ajouter des contraintes a

vérifier. La syntaxe la plus simple est la suivante :

CREATE TABLE<nom-de-table>(<nom-de-colonne><type de données>,...)

1.3.4.3 Expression des contraintes d’intégrités

Le DDL doit offrir la possibilité d’exprimer ces contraintes dans la requéte de création de table. Il

est possible d’accoler différentes clauses gérant ces contraintes, bien qu’aucune ne soit

obligatoire : il est notamment possible de nommer une contrainte de colonne :CONSTRAINT nom

permet de nommer une contrainte.

18

CONSTRAINT nom Permet de nommer nom une contrainte
DEFAULT Précise une valeur par défaut

NOT NULL Force la saisie de la colonne
UNIQUE Vérifie que toutes les valeurs sont différentes
CHECK condition Vérifie la condition condition précisée

Tableau 1.10: Contrainte de colonne

On peut nommer une contrainte de table notée CONSTRAINT nom, ainsi que de définir une clé
comme PRIMARY KEY qui permet de spécifier que la colonne définit la clé primaire de la table.
La clé primaire peut porter sur plusieurs colonnes. Il n’y a bien stir qu'une clause de ce genre par
table. Ainsi, les colonnes qui constituent la clé primaire ne peuvent plus étre nulles et chaque clé
doit étre unique. Dans la majorité des SGBD un index est automatiquement créé sur cette clé. Et
enfin I’intégrité référentielle nommé FOREIGN KEY (liste-coll) REFERENCES table(liste-col2)
permet de spécifier que les colonnes liste-coll de la table en cours de définition référencent la clé
primaire liste-col2 de la table étrangere spécifiée. La clé étrangere peut porter sur plusieurs
colonnes. Il peut bien sdr y avoir plusieurs clés étrangeres dans une méme table. Les modifications
automatiques a faire sur les clés étrangéres en cas de changement de la clé primaire associée sont
précisées par les clauses ON DELETE et ON UPDATE.

Une convention généralement admise consiste 2 nommer les contraintes d’intégrité référentielle

par un nom préfixé par PK pour la clé primaire et par FK pour les clés étrangeres.

19

CONTRAINT Permet de nommer une contrainte

PRIMARY KEY Déclare que la colonne est clé primaire

FOREIGN KEY Déclare que la colonne est clé étrangére

Tableau 1.11: Contrainte de table

1.4 Conclusion

Pour obtenir une base de données fiable, il faut bien choisir le type de base de données approprié
au besoin. Il faut aussi faire une analyse approfondie des travaux et enfin de maitriser un langage

de définition de données comme SQL.

20

CHAPITRE 2
L’ACCES AUX BASES DE DONNEES A PARTIR D’APPLICATIONS JAVA

2.1 Introduction

L’application LGLV est écrite avec le langage de programmation Java et attaque une base de
données MySQL. C’est la raison de ce chapitre intitulé« Acces aux bases de données a partir
d’application JAVA ».JDBC est I’acronyme de Java Data Base Connectivity et désigne une API

définie par Sun pour permettre un acces aux bases de données avec Java.
Ce chapitre abordera successivement :

e les outils nécessaires pour utiliser JDBC ;

e les types de pilotes JDBC ;

o la présentation des classes de I’API JDBC ;

e laconnexion et I’accés a une base de données ;
e I’obtention d’information sur la base de données ;
e [’utilisation d’un objet PreparedStatement ;

e [’utilisation des transactions

et enfin I’amélioration des performances avec JDBC.
2.2 Lesoutils nécessaires pour utiliser JDBC

Pour pouvoir utiliser JDBC, il faut un pilote qui est spécifique a la base de données a laquelle on
veut accéder. Avec le JDK, Sun fournit un pilote qui permet I’accés aux bases de données via

ODBC. Ce pilote permet de réaliser I’indépendance de JDBC vis-a-vis des bases de données.
2.3 Type de pilote JIDBC
Il existe quatre types de pilote JDBC :

e JDBC-ODBC bridge (type 1)

21

e Un driver écrit en java qui appelle I’ API native de la base de données (Type 2)
e Un driver écrit en java utilisant un middleware (type 3)
e Un driver java utilisant le protocole natif de la base de données (type 4)

2.3.1 JDBC-ODBC bridge (Type 1)

Le pont JDBC-ODBC s’utilise avec ODBC et un pilote ODBC spécifique pour la base a accéder.
Cette solution fonctionne trés bien sous WINDOWS car il existe des pilotes ODBC pour la quasi-
totalité des bases de données. Par contre cette solution « simple » pour le développement posséde

plusieurs inconvénients dont :

e La multiplication du nombre de couche rend complexe I’architecture et détériore un
peu les performances.

e Lors du déploiement, ODBC et son pilote doivent étre installé sur tous les postes ou
I’application va fonctionner.

e La partie native d’ODBC et son pilote rend I’application moins portable car elle est

dépendante d’une plateforme
2.3.2 Un driver écrit en java qui appelle I’API native de la base de données (Type 2)

Ce type de driver convertit les ordres JDBC pour appeler directement les API de la base de
données via un pilote natif sur le client. Ce type de driver nécessite aussi I’utilisation de code natif

sur le client.
2.3.3 Undriver écrit en java utilisant un middleware (type 3)

Ce type de driver utilise un protocole réseau propriétaire spécifique a une base de données. Un
serveur dédié recoit les messages par ce protocole et dialogue directement avec la base de
données. Ce type de driver peut étre facilement utilisé par une applet mais dans ce cas le serveur

intermédiaire doit obligatoirement étre installé sur la machine contenant le serveur web.

22

2.3.4 Un driver java utilisant le protocole natif de la base de données (type 4)

Ce type de driver, écrit en java, appelle directement le SGBD par le réseau. Le driver est fourni

par I’éditeur de la base de données.

E:E > | >

pilote JDBC pilote JDBC APIC/C++
TYPE 3 TYPE 2 native

pilote JDBC
TYPE 4 3 2

% o ...,..)%
pilote JDBC AP tierce
THRE 1

base de données

APl locale

— AFl réseau

Figure 2.01 : Les différentes sortes de pilotes JDBC

2.4 La présentation des classes de ’API JDBC

Toutes les classes de JDBC sont dans le package java.sql donc il faut I’importer dans tous les

programmes devant utiliser JDBC (import java.sql.* ;).Ce package est inclus dans JDK.

Il y a quatre classes importantes pour accéder aux données dont : DriverManager, Connection,
Statement et ResulSet.

Classe Réle
DriverManager Charge et configure le driver de la base de données
Connection Réalise la connexion et I’authentification a la base de données
Statement Contient la requéte SQL et la transmet a la base de données.
ResulSet Permet de parcourir les informations retournées par la base de données

dans le cas d’une sélection de données

Tableau 2.01: Les quatre Classes importantes pour accéder aux données et leurs roles

23

2.5 Laconnexion a une base de données
2.5.1 Le chargement du pilote

Pour se connecter a une base de données via ODBC, il faut tout d’abord charger le pilote JDBC-
ODBC qui fait le lien entre les deux, Cette action peut étre réalisée par :Class.forName
(« sun.jdbc.odbc.JdbcOdbcDriver*) ;

Pour se connecter a une base en utilisant un driver spécifique, la documentation du driver fournit
le nom de la classe a utiliser. Par exemple, si le nom de la classe est jdbc.DriverXXX, alors le
chargement du driver se fera avec le code suivant : Class.forName("jdbc.DriverXXX"); (ex :

Class.forName (« postgresql.Driver ») ;)

(application } C DriverManager)

Pilote Sybase pilote mySQL]I pilote mMSQL

Figure 2.02 : JDBC cache a [’application les spécificités d’implémentation de chaque base de

données
2.5.2 L’établissement de la connexion

Pour se connecter a une base de données, il faut instancier un objet de la classe Connection en lui

précisant sous forme d’URL la base a accéder. Comme indique le tableau suivant

24

Exemple : Etablir une connexion sur la base testDB via ODBC

String DBurl = "jdbc:odbc:testDB";

con = DriverManager.getConnection(DBurl);

Tableau 2.02: Exemple d’établissement d’une connexion sur la base testDB via ODBC

La syntaxe URL peut varier d’un type de base de données a 1’autre mais elle est toujours de la
forme protocole :sous_protocole :nom, «jdbc » désigne le protocole et vaut toujours
« jdbc ». « odbc » désigne le sous protocole qui définit le mécanisme de connexion pour un type

de bases de données.

Le nom de la base de données doit étre celui saisi dans le nom de la source sous ODBC ; La
méthode getConnection() peut lever une exception de la classe java.sql.SQLException. Voici un
exemple de code qui décrit la création d’une connexion avec le hom d’utilisateur et un mot de

passe.
Connection con =DriverManager.getConnection (url, “ nomUtilisateur”, “ motDePasse”);
2.6 L’accés a la base de données

2.6.1 Les classes utiles pour obtenir des informations sur la base de données

Les objets qui peuvent étre utilisés pour obtenir des informations sur la base de données sont

indigués dans le tableau ci-dessous. [1]

Classe Réle
DatabaseMetaData Information a la base de données: nom des tables, index, version...
ResultSet Résultat d’une requéte et information sur une table. I’accés se fait par

enregistrement par enregistrement

ResultSetMetaData Information sur les colonnes (nom et type) d’un ResultSet

Tableau 2.03: Les réles des classes pour [’acces a la base de données

25

2.6.2 L’exécution de requétes SQL

Les requétes d’interrogation SQL sont exécutées avec les méthodes d’un objet Statement que 1’on

obtient a partir d’un objet Connection.

Exemple:

ResultSetrésultats = null;

String requete = "SELECT * FROM client™;

try {

Statement stmt = con.createStatement();

résultats = stmt.executeQuery(requete);

} catch (SQLEXxception e) {

/ltraitement de I'exception

}

Tableau 2.04: Exemple de requéte SQL avec traitement de [’exception

Un objet de la classe Statement permet d’envoyer des requétes SQL a la base. La création d’un
objet statement s’effectue a partir d’une instance de la classe Connection comme

suit :Statementstmt = con.createStatement();

Pour une requéte de type interrogation(SELECT), la méthode a utiliser de la classe Statement est
executeQuery(). Pour des traitement de mise a jour, il faut utiliser la méthode executeUpdate().
Lors de ’appel a la méthode d’exécution, il est nécessaire de lui fournir en parametre la requéte

SQL sous forme de chaine.

26

Le résultat d’une requéte d’interrogation est renvoyé dans un objet de la classe ResulSet par la

méthode executeQuery() ;

Exemple :

ResultSetrs = stmt.executeQuery("SELECT * FROM employe");

Tableau 2.05: Exemple de résultat d’'une requéte d’interrogation

La meéthode executeUpdate() retourne le nombre d’enregistrements qui ont été mis a jour

Exemple:

/linsertion d'un enregistrement dans la table client

requete = "INSERT INTO client VALUES (3,'client 3','prenom 3")";
try {

Statement stmt = con.createStatement();

intnbMaj = stmt.executeUpdate(requete);

affiche("'nb mise a jour = "+nbMaj);

} catch (SQLEXxception e) {

e.printStackTrace();

}

Tableau 2.06: Exemple d’insertion d’un enregistrement dans une table

Lorsque la méthode executeUpdate() est utilisée pour exécuter un traitement de type DDL (Data

Définition Langage : définition de données) comme la création d’un table, elle retourne 0. Si la

27

méthode retourne 0, cela signifie deux choses : le traitement de mise a jour n’a affecté aucun

enregistrement ou le traitement concernait un traitement de type DDL.

Si ’on utilise executeQuery() pour exécuter une requéte SQL ne contenant pas d’ordre

SELECTalors une exception de type SQLEXxception est levée.

Exemple:

.r.équete ="INSERT INTO client VALUES (4,'client 4','prenom 4")";
try {

Statement stmt = con.createStatement();

ResultSetrésultats = stmt.executeQuery(requete);

} catch (SQLEXxception e) {

e.printStackTrace();

}

Tableau 2.07: Exemple d utilisation SQLException
2.6.3 Laclasse ResultSet

C’est une classe qui représente une abstraction d’une table qui se compose de plusieurs

enregistrements constitués de colonnes qui contiennent les données.

Voici quelque méthode pour obtenir des données :

28

Méthode

Réle

getint(int)

Retourne le numéro de la colonne dont le numéro est passé en paramétre sous
forme d’entier

getInt(String)

Retourne le numéro de la colonne dont le nom est passé en paramétre sous
forme d’entier.

getFloat(int)

Retourne le contenu de la colonne dont le numéro est passé en paramétre sous
forme de nombre flottant.

getDate(int)

Retourne le contenu de la colonne dont le numéro est passé en parameétre sous
forme de date.

Next() Se déplace sur le prochain enregistrement : retourne false si la fin est atteinte
Close() Ferme le ResultSet
getMetaData() | Retourne un objet ResultSetMetaData associé au ResultSet

Tableau 2.08: Méthode pour récupérer des données

La méthode getMetaData() retourne un objet de la classe ResultSetMetaData qui permet d’obtenir

des informations sur le résultat de la requéte. Ainsi, le nombre de colonnes peut étre obtenu grace

a la méthode getColumnCount() de cet objet.

Exemple:

ResultSetMetaDatarsmd;

rsmd = results.getMetaData();

nbCols = rsmd.getColumnCount();

Tableau 2.09: Exemple d utilisation de la méthode getColumnCount

29

2.7 L’obtention d’informations sur la base de données

2.7.1 Laclasse ResultSetMetaData

La méthode getMetaData() d’un objet ResultSet retourne un objet de type ResultSetMetaData. Cet

objet permet de connaitre le nombre, le nom et le type des colonnes.

Méthode

Réle

Int getColumnCount()

Retourne le nombre de colonnes du ResultSet

String getColumnName(int)

Retourne le nom de la colonne dont le numéro
est donné

String getColumnLabel(int)

Retourne le libellé de la colonne donnée

BooleanisCurrency(int)

Retourne «true » si la colonne contient un
nombre au format monétaire

BooleanisReadOnly(int)

Retourne « true » si la colonne est en lecture
seule

BooleanisAutolncrement(int)

Retourne «true» si la colonne est auto
incrémentée

Int getColumntype(int)

Retourne le type de donnée SQL de la colonne

Tableau 2.10: Méthode et réle de La classe ResultSetMetaData

2.7.2 Laclasse DatabaseMetaData

Un objet de la classe DatabaseMetaData permet d’obtenir des informations sur la base de donnees

dans son ensemble : nom des tables, nom des colonnes dans une table, méthodes SQL supportées.

30

Méthode

Réle

ResulSetgetcatalogs()

Retourne la liste du catalogue d’informations
avec le pont JDBC-ODBC, on obtient la liste
des bases de données enregistrées dans ODBC

ResultSetgetTables(catalog,schema,tableNames,
columnNames)

Retourne une description de toutes les tables
correspondant au TableNames donné et a
toutes les colonnes correspondantes a
columnNames.

ResultSetgetcolumns(catalog, shema,
tableNames,columnNames)

Retourne une description de toutes les
colonnes correspondantes au TableNames
donné et a toutes les colonnes correspondantes
a columnNames.

String getURL()

Retourne ’URL de la base a laquelle on est
connecté

String getDriverName()

Retourne le nom du driver utilisé

Tableau 2.11: Méthode et role de La classe DatabaseMetaData

2.8 L’utilisation d’un objet PreparedStatement

L’interface PreparedStatement définit les méthodes pour un objet qui va encapsuler une requéte

précompilée. Ce type de requéte est particulicrement adapté pour une exécution répétée d’une

méme requéte avec des parametres différents. Cette interface hérite de I’interface Statement. Lors

de I'utilisation d’un objet de type PreparedStatement, la requéte est envoyée au moteur de la base

de données pour que celui-ci prépare d’abordson exécution

Un objet qui implémente l’interface PreparedStatement est obtenu en utilisant la méthode

preparedStatement() d’un objet de type Connection. Cette méthode attend en parametre une

chaine de caracteres contenant la requéte SQL. Dans cette chaine, chaque paramétre est représenté

par un caractere ?. [2][7]

Et pour exécuter la requéte, I’interface PreparedStatement propose deux méthodes :

31

o executeQuery() : cette méthode permet d’exécuter une requéte de type interrogation et
renvoie un objet de type ResultSet qui contient les données issues de I’exécution de la
requéte.

e executeUpdate() : cette méthode permet d’exécuter une requéte de type mise a jour et

renvoie un entier qui contient le nombre d’occurrence impactées par la mise a jour.
2.9 L’utilisation des transactions

Une transaction permet de ne valider un ensemble de traitements sur la base de données que si
tous les traitements de cet ensemble se sont tous effectués correctement. Par exemple une
opération bancaire de transfert de fond d’un compte vers un autre oblige a la réalisation de
I’opération de « débit » sur un compte et de I’opération de « crédit» sur I’autre compte. La

réalisation d’une seule de ces opérations laisserait les données de la base dans un état inconsistant.

Une transaction est un mécanisme qui permet donc de s’assurer que toutes les opérations qui la
compose seront réellement effectuées. Une transaction est gérée a partir de 1’objet Connection. Par
défaut, une connexion est en mode auto-commit. Dans ce mode, chaque opération est validée
unitairement pour former la transaction. Pour pouvoir rassembler plusieurs traitements dans une
transaction, il faut tout d’abord désactiver le mode auto-commit. La classe Connection possede la
méthode setAutoCommit() qui attend un booléen qui précise le mode de fonctionnement. Par

exemple connection.setAutoCommit(false) ;

Une fois le mode auto-commit désactivé, un appel a la méthode commit() de la classe Connection
permet de valider la transaction courante. L appel a cette méthode valide la transaction courante et
crée implicitement une nouvelle transaction. Et si une anomalie intervient durant la transaction, il
est possible de faire un retour en arriére pour revenir a la situation de la base de données au début

de la transaction en appelant la méthode rollback() de la classe Connection.
2.10 Le traitement des erreurs JDBC

JDBC permet de connaitre les avertissements et les exceptions générées par la base de données
lors de I’exécution de requéte. La classe SQLException represente les erreurs emises par la base de

données. Elle contient trois attributs qui permettent de préciser I’erreur :

32

2.10.1 Le message

Le message contient la description de I’erreur.

2.10.2 SQLState

SQLState c’est un code défini par les normes X/Open et SQL99
2.10.3 ErrorCode

ErrorCode est le code d’erreur du fournisseur du pilote

2.11 Amélioration des performances avec JDBC

Les opérations d’acceés a la base de données sont généralement nombreuses et source des
nombreux ralentissements dans une application, il est donc nécessaire de les prendre en compte

des le début d’un projet.

Voici quelques recommandations de base, regroupées par catégories, qui permettent d’améliorer

les performances.
2.11.1 Le choix du pilote JDBC a utiliser

La qualité du pilote JDBC est importante notamment en termes de rapidité, type de pilote, version
de JDBC supportée.

Le type du pilote influe grandement sur les performances :

e Pont JDBC/ODBC (type 1) : les pilotes de ce type sont a éviter car les différentes couches
mises en ceuvre (JDBC, pilote JDBC, ODBC, pilote ODBC, base de données) dégradent
les performances.

e Utilisation d’une API native (type 2): les pilotes de ce type ont généralement des
performances moyennes.

e JDBC, pilote JDBC, middleware, DB (type 3) : les pilotes de types 3 communiquent avec
un middleware généralement sur le serveur, ils sont genéralement plus performant que

ceux de type 1 et 2.

33

e JDBC, pilote JDBC, DB (type 4) : les pilotes de types 4 offre généralement les meilleures
performances car ils sont écrits en Java et communiquent directement avec la base de

données.
I1 est donc préférable d’utiliser les pilotes de type 3 ou 4.
2.11.2 La mise en ceuvre de best practices

Le terme « best practices » ou « bonne pratique » désigne, un ensemble de comportements qui font
consensus et qui sont considérés comme indispensables par la plupart des professionnels en

programmation. Plusieurs best practices sont communément mises en ceuvre lors de 1’utilisation
duJDBC :

e Fermer les ressources inutilisées dés que possible (Connection, Statement, ResultSet)
e Limiter le nombre de données retournées par une requéte SQL uniquement a celles
utilisées.

e Toujours assurer un traitement des « warnings »et des « exceptions »de Java.
2.11.3 L’utilisation des connexions et des Statements

Il est préférable de maintenir une connexion ouverte et la réutiliser plutét que créer une nouvelle
connexion et la fermer a chaque opération sur la base de données. C’est ce que permettent les

pools de connexions voir 2.11.4.

Si les acces sont en lecture seule, il est préférable d’utiliser la méthode setReadOnly() de 1’objet

Connection en lui passant le parametre true pour permettre au pilote de faire des optimisations.

Il est possible de paramétrer la quantité de données recues de la base de données en utilisant les
méthodes setMaxRows(),setMaxFieldSize() et SetFetchSize() de I’interface Statement.

La méthode nativeSQL() de la classe connection permet d’obtenir la requéte SQL native qui sera

envoyeée par le pilote a la base de données. [2]

34

2.11.4 L’utilisation d’un pool de connexions

La connexion vers une base de données est colteuse en temps et en ressources. Le role d un pool
de connexion est de maintenir un certain nombre de connexions ouvertes a disposition de

I’application dans un cache et de les proposer aux besoins.

Un pool peut étre soit fourni par 1I’environnement d’exécution, soit étre fourni par un tiers, soit étre

développé de toute piéce.

L’utilisation d’un pool de connexion est sirement 1’action la plus efficace pour des applications

qui utilisent les acces a la base de données de facon importante.

Il est important de configurer correctement le pool de connexions utilisé, notamment la taille du

pool, pour limiter la création et la destruction des connexions.
Un pool de connexions peut fonctionner selon deux modes principaux :

e Taille fixe : I’obtention d’une connexion, alors que toutes celles du pool sont en cours
d’utilisation, implique I’attente de la libération d’une des connexions.
e Taille variable : le pool posseéde une taille minimale et maximale, avec une possibilité

d’extension en cas de surcharge de travail.
2.11.5 La configuration et l'utilisation des ResultSets en fonction des besoins

Une bonne configuration et utilisation des objets de type ResultSet peuvent améliorer les
performances. Il faut éviter d’utiliser la méthode getObject() mais utiliser la méthode getXXX()

adaptée au type d’une donnée pour extraire sa valeur.

2.11.6 L’utilisation des PreparedStatement

Il est intéressant d'utiliser les PreparedStatement notamment pour les requétes qui sont executées
plusieurs fois avec les mémes parametres ou des parametres differents (les valeurs des données

fournies a la requéte peuvent étre paramétrées).

Une méme requéte exécutée avec des parameétres différents nécessite certains traitements
identiques par la base de données : une partie de ces traitements sont réalisés une et une seule fois

lors de la premiere utilisation d'un PreparedStatement par une connexion. Les appels suivants

35

avec la méme connexion sont plus rapides puisque ces traitements ne sont pas refaits.

2.11.7 La maximisation des traitements effectués par la base de données

Par exemple pour obtenir un nombre d'occurrences, il est préférable d'effectuer une requéte SQL
contenant un count(*) plutdt que de parcourir un ResultSet avec un compteur incrémenté a chaque

itération.

Il est possible d'utiliser les procédures stockées[ou stored procedure en anglais] pour les
traitements lourds ou complexes sur la base de données plutdt que d'effectuer plusieurs appels a la
base de données pour réaliser les mémes traitements coté Java. Une procédure stockée est un
ensemble d’instruction SQL précompilées, stockées dans une base de données et exécutées sur
demande par le SGBD qui manipule la base de données. Les performances sont accrues car les

traitements sont réalisés par la base de données ce qui évite notamment des échanges réseaux.

Attention ceci n'est vrai que pour des traitements complexes car une simple requéte SQL
s'exécutera plus rapidement que d'appeler une procédure stockée qui contient simplement la

requéte.

Il est préférable d'utiliser les marqueurs de parameétres dans les requétes des objets de type

Statement plutdt que de les passer en dur dans la requéte.
2.11.8 Les optimisations sur la base de données

Les optimisations coté Java sont importantes mais il est aussi nécessaire de procéder a des
optimisations coté base de données, généralement réalisées par un DBA dans des structures de

taille moyenne ou importante.

Les quelques optimisations fournies ci-dessous sont assez généralistes : elles ne dispensent pas

d’effectuer des optimisations spécifiques a la base de données utilisées.

e |l faut mettre en place les index utiles : I’ajout d’un index peut dramatiquement améliorer
les performances mais trop d’index nuit car la base de données doit les maintenir a jour.

e Les bases des données fournissent des outils pour afficher le plan d’exécution d’une
requéte ou d’une procédure stockée pour faciliter leur optimisation (ajout d’index,

modification des clauses de la requéte,...).

36

e Si le pilote JDBC le permet, il peut étre intéressant d’ajuster la taille des paquets échangés
avec la base de données.

e Utiliser le type de données approprié aux donnees stockées en fonction des besoins par
exemple : représenter une date avec un type DateTime (plus de sécurité dans 1’utilisation
de la donnée) ou varchar (traitement plus rapide).

e |l est préférable de stocker les chaines de caractéres en Unicode (encodage en UTF-8 par
exemple) dans la base de données pour éviter les conversions. Ceci a cependant un impact

important sur la taille de la base de données.[2]
2.11.9 L’utilisation d’un cache

L’utilisation d’un cache pour stocker les données peut éviter des acces a la base de données. Ceci
est particulierement adapté pour des données lues de facon répétitives ou dont les valeurs

évoluent trés peu ou pas du tout (données en lecture seule, données de références,...)

Mais il faut faire attention a la durée de vie des objets dans le cache afin d’éviter des problémes de
rafraichissement de données. Et aussi il ne faut pas mettre en cache les objets de types ResultSet :
il faut le parcourir, stocker les données dans des objets du domaine et mettre ces objets dans la

cache.
2.12 Conclusion

Pour accéder a une base de données a partir d’une application java il faut prendre en compte les
améliorations des performances comme le choix de pilote, la mise en ceuvre de best practices,
I'utilisation d’un pool de connexions, la configuration et ’utilisation de la classe ResultSet et
PreparedStatement en fonction des besoins, et les optimisations sur la base de données et enfin

I’utilisation d’un cache.

37

CHAPITRE 3
ARCHITECTURE CLIENT-SERVEUR

3.1 Introduction

Ces derniére années ont vu une évolution majeure des systémes d’information. Du passage d’une
architecture centralisée a travers de grosses machines (Mainframe) vers une architecture distribuée
basée sur I’utilisation de serveur et de postes clients grace a I’utilisation des PC (Personal

Computeur) et des réseaux.

Cette évolution est due essentiellement a la baisse des prix des outils informatiques et le

développement des réseaux.

Le logiciel LGLV est une application utilisant I’architecture 2 tiers [voir 3.5.1]. Alors il est

primordial de définir ce que I’on entend par Architecture client-serveur.
3.2 Définition

L’architecture client-serveur est un modeéle de fonctionnement logiciel qui peut se réaliser sur tout
type d’architecture matérielle (petites ou grosses machines), a partir du moment ou ces

architectures peuvent étre interconnectees.

On parle de fonctionnement logiciel dans la mesure ou cette architecture est basée sur 1’utilisation
de deux types d’application: un logiciel «serveur» et un logiciel «client» s’exécutant
normalement sur deux machines différentes. L’¢élément important dans cette architecture est
I’utilisation de mécanismes de communication entre les deux applications. Le dialogue entre les

applications peut se résumer par ces deux phrases :

e |e client demande un service au serveur.

e le serveur réalise ce service et renvoie le résultat au client
3.3 les principes généraux

Voici quelques principes d’un systéme Client-Serveur.

38

e Service:

Le serveur est fournisseur de services, et le client est le consommateur.

e Protocole :

La demande vient toujours du coté client, et le serveur attend les requétes des clients.

e Partage des ressources :

Le serveur traite plusieurs clients en méme temps et contrdle leurs acces aux ressources.
e Localisation :

Le logiciel client-serveur masque aux clients la localisation du serveur.

e Hétérogénéite.

Le logiciel client-serveur est indépendant des plate-formes matérielles et logicielles.

e Redimensionnement.

Il est possible d'ajouter et de retirer des stations clientes. Il est possible de faire évoluer les

Serveurs.

o Intégrité.

Les données du serveur sont gérées sur le serveur de fagon centralisée. Les clients

restent individuels et indépendants.

e Souplesse et adaptabilité.

On peut modifier le module serveur sans toucher au module client. La réciproque est

vraie. Si une station est remplacée par un modéle plus récent, on modifie le module

client (en améliorant l'interface, par exemple) sans modifier le module serveur.

39

Dans une architecture client-serveur, une application est constituée de trois grande parties ;

e L’interface utilisateur
e Lalogique des traitements

e La gestion des donnees
L’interface utilisateur est 1’application qui se trouve en face du client.
La logique des traitements sont les requétes.

La gestion des données est réalisée par le serveur de base de données qui s’occupe de la gestion

compléte des manipulations de données.
3.4 Les différents modeéles de client-serveur

La différence entre les modéles client-serveur se situe essentiellement sur les taches assurées par

le serveur.
3.4.1 Le client-serveur de donnée.

Dans ce cas, le serveur assure des taches de gestion, stockage et de traitement de données.

C'est le cas le plus connu de client-serveur et qui est utilisé par tous SGBD :

e Labase de données avec tous ses outils est installée sur un poste serveur.
e Un logiciel daccés est installé sur les postes client permettant d'accéder a la base de

données du serveur.
e Tous les traitements sur les données sont effectués sur le serveur qui renvoie les

informations demandées par le client.
3.4.2 Client-serveur de présentation

Dans ce cas la présentation des pages affichées par le client est intégralement prise en charge par

le serveur. Cette organisation présente l'inconvénient de générer un fort trafic réseau.

40

3.4.3 Le client-serveur de traitement

Dans ce cas, le serveur effectue des traitements a la demande du client. 1l peut s'agir de traitement

particulier sur des données, de vérification de formulaires de saisie, de traitements d'alarmes ...

Ces traitements peuvent étre réalisés par des programmes installé sur des serveurs mais
également intégrés dans des bases de données (triggers, procédures stockees), dans ce cas, les

parties« donnée » et « traitement » sont intégres.
3.5 Les différentes architectures
3.5.1 L'architecture 2-tiers

Dans une architecture 2-tiers, encore appelée client-serveur de données, le poste client se contente
de déléguer la gestion des données a un service spécialisé. Le cas typique de cette
architecture est une application de gestion fonctionnant sous Windows ou Linux et exploitant

un SGBD centralisé.

=

“T—
iy e,
iy

systéme client

.
l"'.
*

""" stockage

lli‘-‘i" dE'S
p donnees

systéme client

Figure 3.01 : L architecture client/serveur deux-tiers

Ce type d'application permet de tirer parti de la puissance des ordinateurs déployés en réseau pour
fournir a l'utilisateur une interface riche, tout en garantissant la cohérence des données, qui restent

gérées de facon centralisée.

La gestion des données est prise en charge par un SGBD centralisé, s'exécutant le plus

souvent sur un serveur dédié. Ce dernier est interrogé en utilisant un langage de requéte qui, plus

41

souvent, est SQL. Le dialogue entre client et serveur se résume donc a I'envoi de requétes et au

retour des données correspondant aux requétes.

Cet échange de messages transite a travers le réseau reliant le client et le serveur. Il met en ceuvre

des mécanismes relativement complexes qui sont, en général, pris en charge par un middleware.

L'expérience a démontré qu'il était colteux et contraignant de vouloir faire porter I'ensemble des
traitements applicatifs par le poste client. On en arrive aujourd'hui a ce que I'on appelle le client

lourd, avec un certain nombre d'inconvénients :

e On ne peut pas soulager la charge du poste client, qui supporte la grande majorité
des traitements applicatifs,

e Le poste client est fortement sollicité, il devient de plus en plus complexe et doit
étre mis a jour régulierement pour répondre aux besoins des utilisateurs,

e Les applications se prétent assez mal aux fortes montées en charge car il est
difficile de modifier I'architecture initiale,

e La relation étroite qui existe entre le programme client et l'organisation de la

partie serveur complique les évolutions de cette derniere.

Malgré tout, l'architecture 2-tiers présente de nombreux avantages qui lui permettent de
présenter un bilan globalement positif :

o Elle permet I'utilisation d'une interface utilisateur riche,
e Elle a permis I'appropriation des applications par I'utilisateur,

e Elle aintroduit la notion d'interopérabilité.

Les solutions 2-tiers ont tout de méme leur place dans le développement d’applications. Les
applications simple et qui ne demandent pas trop de maintenance sont de parfaites candidates a
une application 2-tiers. Voici la liste des questions importantes qu’il faut se poser avant d’adopter
une conception 2-tiers. Si la plupart des réponses a la question est « Oui », alors il est mieux

d’utiliser 1’architecture 2-tiers si non 1’architecture 3-tiers est 1’idéal.

e Pour votre application, sa date de mise sur le marché est-elle plus importante que

son architecture ?

e Votre application utilise-t-elle une seule base de données ?

42

e Votre moteur de base de données se trouve-t-il sur un seul hote ?

e Votre base de données va-t-elle conserver plus ou moins la méme taille ?

e Votre base d’utilisateurs va-t-elle conserver plus ou moins la méme taille ?
e Les contraintes sont-elle fixées sans pouvoir changer, ou tres peu ?

e Vous attendez-vous a une maintenance minimale de votre application ?

Pour résoudre les limitations du client-serveur 2-tiers tout en conservant ses avantages, on a
cherché une architecture plus évoluée, facilitant les forts déploiements a moindre codt. La

réponse est apportée par les architectures distribuées.
3.5.2 L'architecture 3- tiers
Les limites de I'architecture 2-tiers proviennent en grande partie de la nature du client utilisé:

e |e frontal est complexe et non standard (méme s'il s'agit presque toujours d'un PC
sous Windows),

e le middleware entre client et serveur n'est pas standard (dépend de la plate-forme,
du SGBD ...).

La solution résiderait donc dans l'utilisation d'un poste client simple communicant avec le

serveur par le biais d'un protocole standard.

Dans ce but, I'architecture 3-tiers applique les principes suivants :

e Les données sont toujours gérées de facon centralisée,
e La présentation est toujours prise en charge par le poste client,

e Lalogique applicative est prise en charge par un serveur intermeédiaire.

Cette architecture 3-tiers, également appelée client-serveur de deuxiéme géneération ou client-
serveur distribué sépare I'application en 3 niveaux de services distincts, conformes au principe

précédent :

e Premier niveau : l'affichage et les traitements locaux (controles de saisie, mise en
forme de données...) sont pris en charge par le poste client.
e Deuxiéme niveau : les traitements applicatifs globaux sont pris en charge par

le service applicatif.

43

e Troisiéme niveau : les services de base de données sont pris en charge par un
SGBD.

— &
v

s
.
.....
e
-

SyStéme'...ll
(:”EH?t ..:: EEEENSN NS EEEEERRRRRRE
Serveur Stockage des
d'applications données

Systeme
Client

Figure 3.02 : Une architecture 3-tiers

Tous ces niveaux étant indépendants, ils peuvent étre implantés sur des machines différentes, de

ce fait :

e Le poste client ne supporte plus I'ensemble des traitements, il est moins sollicité et
peut étre moins évolué, donc moins codteux.

e Les ressources présentes sur le réseau sont mieux exploitées, puisque les
traitements applicatifs peuvent étre partagés ou regroupés (le serveur d'application
peut s'exécuter sur la méme machine que le SGBD),

e La fiabilité et les performances de certains traitements se trouvent améliorées par
leur centralisation.

e |l est relativement simple de faire face a une forte montée en charge, en renforcant

le service applicatif.

Dans larchitecture 3- tiers, le poste client est communement appelé client léger ouen
anglais« Thin Client », par opposition au client lourd des architectures 2-tiers. Il ne prend en
charge que la présentation de I'application avec, éventuellement, une partie de logique applicative

permettant une vérification immédiate de la saisie et la mise en forme des données.

44

Le serveur de traitement constitue la pierre angulaire de l'architecture et se trouve souvent
fortement sollicité. Dans ce type d'architecture, il est difficile de répartir la charge entre client et
serveur. On se retrouve confronté aux épineux problémes de dimensionnement serveur et de

gestion de la montée en charge rappelant I'époque des mainframes.

De plus, les solutions mises en ceuvre sont relativement complexes a maintenir et la gestion des

sessions est compliquée.

Les contraintes semblent inversées par rapport a celles rencontrées avec les architectures 2-tiers :

le client est soulagé, mais le serveur est fortement sollicité.

Méme si D’architecture 3-tiers présente certains avantages importants, elle n’est pas sans
inconvénients. Le plus important est le niveau de complexité qu’elle ajoute a un systeme. Le
systéme est composé d’un ensemble de composants distincts plus importants, ils sont donc plus
complexes a gerer. 1l est aussi difficile de trouver des ingénieurs logiciels ayant des compétences
en programmation 3-tiers et notamment en ce qui concerne la gestion des transactions et
sécurité.[12]

3.5.3 L'architecture n-tiers

L'architecture n-tiers a été pensée pour pallier aux limitations des architectures 3-tiers et
concevoir des applications puissantes et simples a maintenir. Ce type d'architecture permet de
distribuer plus librement la logique applicative, ce qui facilite la répartition de la charge entre

tous les niveaux.

Cette évolution des architectures 3-tiers met en ceuvre une approche objet pour offrir une plus

grande souplesse d'implémentation et faciliter la réutilisation des développements.

Théoriquement, ce type d'architecture supprime tous les inconvénients des architectures

précédentes :

o Elle permet I'utilisation d'interfaces utilisateurs riches,
o Elle sépare nettement tous les niveaux de I'application,
e Elle offre de grandes capacités d'extension,

o Elle facilite la gestion des sessions.

45

L'appellation “"n-tiers' pourrait faire penser que cette architecture met en ceuvre un nombre
indéterminé de niveaux de service, alors que ces derniers sont au maximum trois (les trois
niveaux d'une application informatique). En fait, l'architecture n-tiers qualifie la distribution

d'application entre de multiples services et non la multiplication des niveaux de service.

Cette distribution est facilitée par [l'utilisation de composants "~ “métier', spécialisés et
indépendants, introduits par les concepts orientés objets (langages de programmation et
middleware). Elle permet de tirer pleinement partie de la notion de composants meétiers

réutilisables.

Ces composants rendent un service générique, si possible et clairement identifié. Ils sont
capables de communiquer entre eux et peuvent donc coopérer en étant implantés sur des

machines distinctes.

La distribution des services applicatifs facilite aussi lI'intégration de traitements existants dans les
nouvelles applications. On peut ainsi envisager de connecter un programme de prise de
commande existant sur le site central de I'entreprise a une application distribuée en utilisant un

middleware adapté.

Ces nouveaux concepts sont basés sur la programmation objet ainsi que sur des

communications standards entre application. Ainsi est né le concept de Middleware objet.
3.6 Conclusion
Ces différentes architectures présentent chacune ses atouts et aussi faiblesses.

En bref, le choix de I’architecture a utiliser dépend de plusieurs parametres comme les besoins

de I’entreprise et aussi le budget de conception de 1’architecture réseau.

46

CHAPITRE 4
REALISATION DE L’APPLICATION

4.1 Introduction

Dans les chapitres précédents les études nous ont permis de comprendre le fonctionnement des
bases de données ainsi que 1’accés a la base a partir d’application java et le fonctionnement des

architectures client-serveur.

Dans ce chapitre on va aborder en premier lieu la présentation et les fonctionnements des logiciels
utilisés lors de la conception du projet, en second lieu on abordera les services offerts par le

logiciel de gestion de location de voiture utilisant I’architecture client-serveur.
4.2 Les outils utilisés pendant la conception du logiciel

Pendant la réalisation du logiciel, plusieurs outils ont été utilisés comme JDK 6 pour le langage de
programmation JAVA, NetBeans 7.2 comme IDE, Win’Design pour la conception du MCD et
MySQL pour le Systeme de Gestion de Base de Données(SGBD) et Photoshop pour le traitement
d’image. Ces différents types d’outil vont étre détaillés par la suite.

421 JDK6

JDK est I’acronyme Java Development Kit et le chiffre 6 désigne le numéro de version de JDK.

C’est un environnement de développement de Sun permettant de produire du code Java.
4.2.2 EDI NetBeans

L’EDI NetBeans est un environnement de développement, gratuit, se concentrant principalement
sur la simplification de développement d’application JAVA. Il fournit un support pour tous les
types d’applications Java, depuis le client riche jusqu’aux applications d’entreprises multicouches,

en passant par les applications pour les mobiles supportant Java.

L’EDI est lui-méme écrit en Java, ce qui permet au programmeur de le faire tourner sur n’importe
quel systéeme d’exploitation pour lequel un JDK Java 2 Standard Edition (version 1.4.2, 5.0 ou
plus) est disponible. Des installateurs sont généralement fournis pour les systemes Microsoft

Windows, Solaris, Linux, MacOX et méme OpenVMS.

47

La tache principale de I’EDI est de rendre le cycle d’édition, compilation, débogage plus agréable

en intégrant des outils pour ces activités, par exemple I’EDI:

e Identifie les erreurs d’encodage presque immédiatement et les indique dans 1’éditeur de
source

e aide a coder plus rapidement grace aux fonctionnalités de remplissage automatique de
code.

e fourni une aide de navigation visuelle, comme la fenétre navigation et le « pliage de
code », ainsi que de nombreux raccourcis clavier congu spécialement pour les
programmeurs Java.

e Affiche la documentation d’une classe pendant qu’on code dans I’éditeur de code.

e Affiche les erreurs de compilation qui apparait dans la fenétre output avec des liens qui
permet de se déplacer directement au bon endroit dans le code.

e Gere les noms des paquetages, et les références vers d’autres classes. Lorsqu’un utilisateur
renomme ou déplace une classe, I’EDI identifie leurs places dans le code qui sont affectées

par les changements et EDI génére les modifications appropriées a ces fichiers.

On peut également télécharger le profileur NetBeans pour ajouter au cycle traditionnel d’édition,

de compilation, débogage, les tests de performance.

En plus de fournir un support pour I’encodage, I’EDI NetBeans est livré avec d’autres outils et
bibliothéques, I’EDI intégre ces outils dans le « workflow » de I’EDI, mais on peut également les

utiliser en ligne de commande.

Au déballage de I’EDI NetBeans, on peut trouver : Apache Ant, Tomcat, JUnit, Derby, GlassFish

et les catalogues de solutions Java BluePrints. Mais on peut également télécharger d’autres outils.
4.2.3 Win’Design

Win’Design est un logiciel de conception de systémes d’information. Il permet la génération des

entités suivantes d’UML :

e Diagramme de classes
e Diagramme de cas d’utilisation

e Diagramme de séguence

48

e Diagramme de collaboration
e Diagramme d’activité

e Diagramme de déploiement et diagramme de composants

Dans notre cas Win’Design est utilisé a générer la requéte SQL de la base de donnée apres avoir

entré le modele conceptuel de donnée.
424 MySQL

MySQL est un Systéeme de gestion de bases de données qui gére pour vous les fichiers constituant
une base, prend en charge les fonctionnalités de protection et de sécurité et fournit un ensemble

d’interfaces de programmation facilitant I’acces aux données.

MySQL consiste en un ensemble de programmes chargés de gérer une ou plusieurs bases de

données, et fonctionnent selon une architecture client/serveur. Voir Figure 4.01

Client

mvsgl .
vig Connexion

Servear
myvsgld

" Cemnexiem
Client

myvsgldump

Client

Base

mvsglimpert
e de données

Cemnexiem
Client
Apache/PHP

bl

Figure 4.01 : Serveur et client de MySQL

Le serveur mysqld : le processus mysgld est le serveur de MySQL. Lui seul peut accéder aux

fichiers stockant les données pour lire et écrire des informations.

MySQL fournit tout un ensemble de programmes, chargés de dialoguer avec mysqld par

I’intermédiaire d’une connexion, pour accomplir un type de tache particulier.[8]

49

4.2.5 Photoshop

Photoshop est un des produits de la Société Adobe destiné aux traitements d’image. A son début

Photoshop n’était disponible que pour Macintosh mais Aujourd’hui il est principalement utilisé

sur PC.
Dans notre cas, Photoshop servira au traitement de toutes les images de la présente application.
4.3 Meéthodologie de construction d’une application :

Avant de réaliser une application, il convient de suivre des étapes bien précises. Le génie logiciel a

été créé dans ce but. Il recommande de suivre les étapes suivantes :

e Expression des besoins
e Analyse

e Conception

e Implémentation

e Tests de vérification

e Validation

e Maintenance et évolution
4.3.1 Expression des besoins
C’est la description informelle des besoins exprimés par ’utilisateur.

e Besoins fonctionnels : ce sont les fonctionnalités attendues du systéeme
e Besoins techniques

o Moyen d’acces (local, distant,...)

o Temps de réponse acceptable

o Quantité d’informations a stocker

A la fin de cette étape, on devrait avoir un cahier des charges de I’application.

50

4.3.2 Analyse

En consultant le cahier des charges les services du systeme, ses contraintes et ses buts sont établis,

puis nous les définissons pour qu’il soit compréhensible par les utilisateurs et les concepteurs.

A la fin de cette étape, la spécification de 1’application est obtenue c'est-a-dire qu’on connait ce

que I’application doit étre et comment il peut étre utilisé,

4.3.3 Conception

Elle consiste a apporter des solutions techniques aux descriptions définies lors de I’analyse :
On y définit les structures et les algorithmes. Cette phase sera validée lors des tests.

4.3.4 Implémentation

Cette étape servira a la matérialisation du logiciel en le réalisant sous la forme d’un ensemble de

programmes ou d’unités de programmation.
4.3.5 Les tests de vérification

Ils permettent de réaliser des controles pour la qualité technique du systeme : il s’agit de relever

les éventuels défauts de conception et de programmation (revue de code, tests des composants,...).

Il faut instaurer ces tests tout au long du cycle de développement et non a la fin pour éviter des

reprises conséquentes du travail.
4.3.6 Validation
Tout au long de ces étapes, il doit y avoir des validations en collaboration avec I’utilisateur.

Une autre validation doit aussi étre envisagée lors de I’achévement du travail de développement,
une fois que la qualité technique du systéme est démontrée. Cela permettra de garantir la logique

et la complétude du systéme.
4.3.7 Maintenance et évolution

On considére deux sortes de maintenances

o1

¢ Une maintenance corrective, qui consiste a traiter les « bugs ».
e Une maintenance évolutive, qui permet au systéme d’intégrer les nouveaux besoins ou des

changements technologiques.
4.4 Modélisation de la partie statique du systéme d’information du logiciel
4.4.1 Reégle de gestion

Les régles de gestion décrivent la nature des relations entre les entités d’un systéme d’information.
L’ensemble de ces regles permet de définir un systeme correspondant a une problématique métier
précisément adaptée aux besoins du client. Chaque régle correspond a une relation entre deux
entites.

Ci-dessous un extrait de la régle de gestion pour notre application :

e Un client établi un contrat

e Un contrat affecte un véhicule
e Un véhicule subit une révision
e Un véhicule posséde un modéle
e Chaque modele a son tarif

e Chaque contrat a son tarif

e Un client loue un véhicule
4.4.2 Dictionnaire de données

Le dictionnaire de donneées est obtenu a partir d’une synthése de la regle de gestion. Le logiciel

Win’Design génére automatiquement les dictionnaires de données.
4.4.3 Les entités

L'entité est la représentation dans le systéeme d'information d'un objet matériel ou immatériel ayant

une existence propre et conforme aux choix de gestion de I'entreprise.

Dans le cas de ce logiciel, ci-dessous les differentes entités qui forment le MCD :

52

Client Contrat

Cm HumC.Iient o= NumContrat
EDFE"ENM' DiateEtablizsement
aleleliaEsance DateDebutPrev
Telephone .
- DateFinPrev
NumPermis
DateDEditionPermis
CIM

Vehicule TypeHRevision
c= NumMineralogique = CodeRevision
Couleur LibelleRevizion
KmEnCours

TypelLocation) Modele
c~ CodeTarif ¢= NomModele
: . Margue
LibelleTarif Puiszance
Caution

Figure 4.02 : Les entités du logiciel
4.4.4 Le modele conceptuel de données

Le modele conceptuel de données, représenté par la figure 4.02 est une représentation statique du

systeme d’information de 1’entreprise.

53

Contrat
o= NumContrat

DateEtablissement
DateDebutPrev
DateFinPrey
\U.n
1,1 ‘
1,1 Choisir_tarif
— e J
- Affecter
on TypeLocation
N ”-: @ CodeTarif
Clignt ehicale LibelleTarif
¢ NumClient c= NumMineralogigue |
NomClient Couleur o,n
DateDeNaizzance KmEnCours
Telephone 3
NumPermis on i i
DateDEditionPermis ' 11
CH
DateDebutRevision
DateFinRevision 0.n
CoutRevision -
Kilometrage
U.n\
0,n Modele
&= NomModele
Margue
TypeRevision Puissance
= CodeRevision Caution

LibelleRevision

Figure 4.03 : Modeéle conceptuel de données du logiciel

A partir de cette modele, le logiciel Win’Design génére automatiquement le script pour la création

de la base de données du logiciel.
4.5 Modélisation de la partie dynamique du systéme d’information du logiciel
4.5.1 Description du fonctionnement du logiciel

Le LGLYV (logiciel de gestion de location de voiture) est une application de gestion travaillant en

réseau et fonctionnant sous différents systémes d’exploitation.

L’accés au logiciel requiert une ldentification des utilisateurs avec 1’usage de leur propre mot de
passe. Le logiciel est tres riche en fonctions, ces derniéres sont regroupées dans un menu en haut

de la fenétre principale

54

45.2 Ordinogramme

La figure ci-dessous représente 1’ordinogramme correspondant au systéme d’authentification de

I’application LGLV.
T est le nombre de tentative

MDP est le mot de passe

)
57

T=T+1 OUVERTUEE DE LA
FENETEE FRINCIFALE

O

Figure 4.04 : Ordinogramme de [’application

55

4.5.3 Configuration réseau du logiciel

Voici un exemple de configuration réseau du LGLV

=

o
1192 168.0 11

secrftalre
SERVEUR BdD | g
= ’ —.--i"‘ - e -
e Switch 192.168.0.13
-_,...-""" Directeur
E_
h-""‘*-...__-
witch —
Serveur de base de données Swteht - - _D
IP:192.168.0.10 : A,
Swifchz 5492.165.0.14

=

192 168.0.15

service financier

Figure 4.05 : Configuration réseau du LGLV
4.5.3.2 Description des équipements réseau utilisés

e Serveur de base de données :
C’est dans cette machine qu’on a installé la base de données, ici on utilise WAMP serveur,
I’adresse IP de la machine doit étre fixe pour que les clients puissent envoyer leur
demandes.

e Switch:
Qui sert a raccorder les machines clientes au serveur.

e Machine Cliente :
L’application LGLV est installée dans les machines clientes pour pouvoir accéder a la base
de données installée au niveau du serveur. Il est préférable d’attribuer au serveur une

adresse IP fixe pour assurer la sécurité de la base de données.

56

4.5.4 Les outils & mettre en place sur chaque Machine
45.4.1 Coté serveur

Il faut installer WampServeur dans la machine Serveur et lui importer la base de donnees

contenant les données de notre application.
45.4.2 Coté clients

Pour pouvoir utiliser le LGLV, il faut installer la machine virtuelle de java JRE (Java Runtime
Environment) et aussi ’application LGLV en format JAR (ou Java Archive) dans les machines

clientes.
4.6 Exemple de fenétre de I’application
4.6.1 La fenétre d’Authentification

La fenétre d’ Authentification permet a chaque utilisateur de s’identifier et d’entrer son propre mot

de passe.

UTILISATEURS :

MOT DE PASSE : ’

Figure 4.06 : Fenétre d’identification

Apres validation de mot de passe I'utilisateur peut accéder a son compte et jouir des fonctions

offertes par le logiciel.

S7

Par contre si le nom d’utilisateur ou le mot de passe est incorrect le systéme affiche un message
d’erreur (Figure 4.06). L’utilisateur a droit de faire 3 erreurs avant la fermeture de la fenétre

d’authentification.

i GLV-Message d erreur . @‘

-

& Votre mot de passe est incorrect nombre de tentative = 1/3

OK

Figure 4.07 : Message d’erreur
4.6.2 Fenétre principale
Cette fenétre se divise en 4 parties :

e La barre de menus qui contient les différentes options du logiciel comme : le tableau
de bord, véhicule, Client, Financiere, Option, et Aide

e Labarre de logo, la ou I’entreprise met son propre logo

e La barre de raccourci

e [a Zone d’Affichage

58

Barre des

Toblemide Bord Velscte Chest Fancare Option 7

. menus
;g <5, Bbarede DE GESTION DE
e, logo LOCATION DE VOITURE
.
Barre des -
Date: 70 acit 2013 nm, !o-u L imancane @ Aade (& ouree '_affﬂ.r&

Tablean de bord

. mabicUton 5 Wiokh &= Cougut T sum Coatat Mo chent Barre

e ’:::! 9{“9._—'4“ ;:J:; v d'affichage 3

ol &
L 18 RAKOTORE ——
| PABE 360

Figure 4.08 : Fenétre principale

4.6.3 Quelques options du logiciel

Le logiciel de gestion de location de voiture offre plusieurs options comme 1’affichage des

voitures libres ou occupées avec le nom et le numéro de contrat du locataire et la date de retour
prévue pour la voiture (figure 4.08).

59

 oatmeone T . O

Tableau de Bord Vehicule Client Financiere Option ?

.) . P
W e AN ﬂ Voiture 2 Client 1 | Financiére @ Ride @ Quitter
Tableau de bord
Immatriculation Modéle Couleur Disponibilité num Contrat Nom client Date de retour
1222TAC M3 MOIRE Occupé RAKOTO 28i0813
4344TAF 405 ROUGE Occupé 444 RAZAFY 1310812013
1515 TBA PRADO BLEU Occupé 8 RAKOTOBE 17i0812013
1222TAC M3 MOIRE Occupé 1 RABE 28i08N13
0407 Tva POLO 1 BLAMGC Disponible
0010TAA LIMOSINE MOIRE Disponible
1010TAV 206 BLEU Disponible
406 TAA 406 MOIRE Disponible
& pétail

En cliquant sur le bouton Détail 1'utilisateur peut voir les détails sur la voiture sélectionnée et

aussi de préparer le contrat de location de la voiture sélectionnée en choisissant un tarif parmi les

trois proposés.

Figure 4.09 : Affichage des listes des voitures occupées

60

P lowtonsevorve WL N T R || i)

Tableau de Bord Vehicule Client Financiere Option ?

[y
| R e
o
Date: 28 aouit 2013 I'| 5 A
Voiture Client a. | Financiére @ Aide @ Quitter
v
Vehicule
rechercher N° Identification Echéance
N° Matricule: 406 TAA Disponibilité: [Disponihle 1 = [
Date de mise en ser... 1996 Nombre de jours d'emp... ‘ ‘
T Début d'echéance: \ |
Marque: PEUGEOT Fin d'echéance: [‘
Modeéle: 406
. Tarif
Puissance: 10 S
1a6jours: 100000 [Tarif 1
Couleur ext: NOIRE -
7a25jours: 80000 [[] Tarif 2
Couleur int: NOIRE
Un mois: []Tarif3
Type Carburant: ESSENCE HE
Chassis: 3 URL photo: C:fimage/406Noire.jpa
Carte grise: 3
N° moteur: 3
@ Precedent Enregist... m Louer

Figure 4.10 : Détail de la voiture sélectionnée

Apres avoir cliqué sur le bouton Louer, le logiciel demande d’entrer des informations utile
concernant le client. Apres avoir enregistré ce dernier, 1’utilisateur peut tirer un contrat en format

PDF qui attend juste d’étre signé par les deux entités.

61

 Location de voiture o S|

Tableau de Bord Vehicule Client Financiere Option ?

S “’%ﬁ'l‘

Date: 28 aouit 2013

ﬂ Voiture n Client

2o ~
a_ | Financiére @ Aide @Qumer

Client
Rechercher le n° de la CIN du Clie... ‘ 0K N° Client: ‘ |
N° Contrat: [|
le client est t-il deja dans la base de données ? N° Carte Bancai.. [i
Qoul CNON N°de la voiture a louée: [|
Nom et prenoms: ‘ |
Adresse: [|
Date de naissance: [| e |
Téléphone: [|
E-mail: [J
N° permis : [|
Date d'édii... [| vLiew | |
CIN: [| e | | a| |
5) précedent I contrat(pan & Enregistrer

Figure 4.11 : Information concernant le client

Avec LGLYV les utilisateurs peuvent ajouter de nouveau véhicule, et aussi modifier leur état dans

le menu Véhicule. lls peuvent aussi ajouter de nouveaux clients et regarder leur liste.
Dans le menu Financier il y a deux sous menus :

e Recette qui montre un tableau de toutes les recettes de I’entreprise.
e Dépense qui montre un autre tableau de toutes les dépenses de 1’entreprise avec le
type de révision des véhicules. Les utilisateurs peuvent aussi ajouter d’autres dépenses

et d’exporter ce tableau en format EXCEL.

62

Tableau de Bord Vehicule Client Financiere Option ?

i ZEEnanE g Voiture ! Client i . Financiére @ Aide E Quitter
Financiere
Dépenses
Voiture type de revision Colt Date de revision

0002 TAA vidange 100 13i08i12012 =

0001 TAA PNEU 500000 26/08/2012

0010TAA VIDAMGE 30000 01/08/2012

004 TED vidange 30000 i3 =

E] Ajouter Dépense | | ﬁ;‘ Exporter Excel Total des depenses: 560100.0 Ariary
Figure 4.12 : Affichage des dépenses
Tableau de Bord Vehicule Client Financiere Option ?
s SobEiE g Voiture a Client ﬁ_ | Financiére @ Aide E Quiitter
Financiere
Recette
Voiture Numero Contrat Recetta

1212TAA B 200000 =
1331TAA 4 400000
1313 4 500000
4455TAB 6 600000 T

‘E‘] Ajout Recette [Exporter Excel Recetie total: 1700000.0 Ariary

Figure 4.13 : Affichage des recettes

63

4.7 Conclusion

Avant d’entamer le développement d’application, une démarche méthodique doit étre mise en
place afin d’améliorer la production des applications. Plusieurs meéthodes, qui suivent une
démarche spécifique, ont été ¢élaborées pour le développement d’application tel que Merise.
Merise est une méthode de conception, de modélisation et de réalisation de projet informatique,
elle sépare les données des traitements lors de ces différentes phases de développement du projet.

Pour la partie realisation le choix de I’architecture et outils de développement sont tres important.

64

CONCLUSION GENERALE

L’objectif premier d’un systeme d’information quel qu’il soit est de permettre a plusieurs

utilisateurs d’accéder aux méme informations.

Le but de cette étude est la mise en place d’une architecture client-serveur. Cette architecture
présente un colt moins élevé et un temps de réponse réseau beaucoup plus rapide par rapport a

d’autres architectures client-serveur.

Le présent mémoire a porté sur I’étude de la gestion de location de voiture. Cette application
permet au personnel d’une entreprise de location de voitures de sécuriser leurs données et aussi
d’automatiser leurs tdches courantes. Par conséquent les procédures de location vont étre plus

efficaces et les pertes de données seront minimisées.

65

ANNEXE 1

CODE SOURCE DE LA FENETRE D’AUTHENTIFICATION

packagegestiondelocationvoiture;

importjava.awt.Dialog.ModalExclusionType;
importjava.awt.Image;
importjava.awt. Toolkit;
import java.net.URL;
importjavax.swing.JFrame;
importjava.sql.Statement;
importjava.sgl.Connection;
importjava.sql.DriverManager;
importjava.sql.ResultSet;
importjava.sql.SQLEXxception;
importjava.util.logging.Level;
importjava.util.logging.Logger;
importjavax.swing.JOptionPane;
importjavax.swing.JTable;
public class Authentificationl extends javax.swing.JFrame {
static Connection connection;
static Statement statement;
staticResultSetresultSet;
String initiale;
String i ;
int j=1;
String serveur="jdbc:mysql://192.168.0.10/mlr1";
String user= "root";
String motdepassbase="";
[** Creates new form Authentification */

public Authentification1() {

66

initComponents();

@SuppressWarnings(""unchecked")
I <editor-fold defaultstate="collapsed" desc="Generated Code">

private void initComponents() {

jLabel2 = new javax.swing.JLabel();
jPanell = new javax.swing.JPanel();
jButtonEntrer = new javax.swing.JButton();
jLabel3 = new javax.swing.JLabel();
jPasswordFieldMotDePasse = new javax.swing.JPasswordField();
jLabel4 = new javax.swing.JLabel();
jLabel5 = new javax.swing.JLabel();
jTextFieldUtilisateur = new javax.swing.JTextField();
jLabel6 = new javax.swing.JLabel();
jPanel2 = new javax.swing.JPanel();

jLabell = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
setTitle("LGLV");

setLocationByPlatform(true);

setName("authentification"); // NOI18N

setResizable(false);

jLabel2.setBackground(new java.awt.Color(255, 255, 255));

jPanell.setBackground(new java.awt.Color(255, 255, 255));
jPanell.setForeground(new java.awt.Color(255, 255, 255));

jButtonEntrer.setBackground(new java.awt.Color(255, 255, 255));

67

jButtonEntrer.setlcon(new
javax.swing.Imagelcon(getClass().getResource(*'/gestiondelocationvoiture/okbutton.png™))); //
NOI18N

jButtonEntrer.setBorder(null);

jButtonEntrer.setBorderPainted(false);

jButtonEntrer.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEventevt) {

jButtonEntrerActionPerformed(evt);

}
b

jPasswordFieldMotDePasse.setTool TipText(*mot de passe™); // NOI18N
jPasswordFieldMotDePasse.addKeyL.istener(new java.awt.event.KeyAdapter() {
public void keyPressed(java.awt.event.KeyEventevt) {
jPasswordFieldMotDePasseKeyPressed(evt);
}
b

jLabel4.setFont(new java.awt.Font("Felix Titling", 0, 14));
jLabel4.setText("UTILISATEURS :");

jLabel5.setFont(new java.awt.Font("Felix Titling", 0, 14));
jLabel5.setText("mot de passe :");

jLabel6.setlcon(new

javax.swing.Imagelcon(getClass().getResource(*'/gestiondelocationvoiture/cle.gif"))); // NOI18N

javax.swing.GroupLayout jPanellLayout = new javax.swing.GroupLayout(jPanell);

jPanell.setLayout(jPanelllLayout);

jPanellLayout.setHorizontalGroup(

jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanelllLayout.createSequential Group()

68

.addGap(121, 121, 121)

.addComponent(jLabel5, javax.swing.GroupLayout.PREFERRED_SIZE, 108,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(411, Short MAX_VALUE))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanellLayout.createSequentialGroup()
.addGap(474, 474, 474)
.addComponent(jButtonEntrer, javax.swing.GroupLayout.PREFERRED_SIZE, 28,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap(138, Short. MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanel1Layout.createSequentialGroup()
.addGap(275, 275, 275)
.addComponent(jLabel3)
.addContainerGap(365, Short. MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanellLayout.createSequentialGroup()

.addGap(237, 237, 237)

.addComponent(jPasswordFieldMotDePasse,
javax.swing.GroupLayout.PREFERRED _SIZE, 210,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(193, Short. MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanelllLayout.createSequential Group()
.addGap(121, 121, 121)
.addComponent(jLabel4, javax.swing.GroupLayout.PREFERRED_SIZE, 108,
javax.swing.GroupLayout.PREFERRED _SIZE)
.addContainerGap(411, Short. MAX_VALUE)))

69

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanellLayout.createSequentialGroup()

.addGap(237, 237, 237)

.addComponent(jTextFieldUtilisateur,
javax.swing.GroupLayout.PREFERRED_SIZE, 2009,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(194, Short MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
jPanellLayout.createSequentialGroup()
.addContainerGap(236, Short MAX_VALUE)
.addComponent(jLabel6)
.addContainerGap(200, Short MAX_VALUE)))
)i
jPanelllLayout.setVerticalGroup(
jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(javax.swing.GroupLayout. Alignment. TRAILING,
jPanellLayout.createSequentialGroup()
.addContainerGap(271, Short MAX_VALUE)
.addComponent(jLabel5, javax.swing.GroupLayout. PREFERRED_SIZE, 26,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap())
.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
jPanellLayout.createSequentialGroup()
.addContainerGap(264, Short. MAX_VALUE)
.addComponent(jButtonEntrer)
.addContainerGap()))
.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanelllLayout.createSequential Group()

70

.addContainerGap()
.addComponent(jLabel3)
.addContainerGap(297, Short MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(javax.swing.GroupLayout.Alignment. TRAILING,
jPanellLayout.createSequentialGroup()
.addContainerGap(268, Short. MAX_VALUE)
.addComponent(jPasswordFieldMotDePasse,
javax.swing.GroupLayout.PREFERRED_SIZE, 29,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap()))
.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanel1Layout.createSequentialGroup()
.addGap(225, 225, 225)
.addComponent(jLabel4, javax.swing.GroupLayout. PREFERRED_SIZE, 33,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap(50, Short. MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanellLayout.createSequentialGroup()

.addGap(222, 222, 222)

.addComponent(jTextFieldUtilisateur,
javax.swing.GroupLayout.PREFERRED_SIZE, 33,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(53, Short. MAX_VALUE)))

.addGroup(jPanellLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanelllLayout.createSequential Group()
.addContainerGap()
.addComponent(jLabel6)
.addContainerGap(93, Shortt MAX_VALUE)))

71

jPanel2.setBackground(new java.awt.Color(255, 255, 255));

jLabell.setlcon(new
javax.swing.Imagelcon(getClass().getResource(*'/gestiondelocationvoiture/soratra.png™))); //
NOI18N

javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2);

jPanel2.setLayout(jPanel2Layout);

jPanel2Layout.setHorizontalGroup(

jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGap(0, 640, Short. MAX_VALUE)

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(jPanel2Layout.createSequential Group()

.addGap(98, 98, 98)

.addComponent(jLabell, javax.swing.GroupLayout.PREFERRED_SIZE, 506,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap(36, Short. MAX_VALUE)))

);
jPanel2Layout.setVerticalGroup(
jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGap(0, 79, Short. MAX_VALUE)

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(jPanel2Layout.createSequentialGroup()
.addComponent(jLabell)
.addGap(0, 0, Short. MAX_VALUE)))

);

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

72

getContentPane().setLayout(layout);
layout.setHorizontal Group(
layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addComponent(jLabel2, javax.swing.GroupLayout. DEFAULT_SIZE, 640,
Short. MAX_VALUE)
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addComponent(jPanell, javax.swing.GroupLayout. DEFAULT _SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, Short. MAX_VALUE))
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addComponent(jPanel2, javax.swing.GroupLayout.Alignment. TRAILING,
javax.swing.GroupLayout. DEFAULT _SIZE, javax.swing.GroupLayout. DEFAULT_SIZE,
Short. MAX_VALUE))
);
layout.setVertical Group(
layout.createParallelGroup(javax.swing.GroupLayout. Alignment. LEADING)
.addGroup(javax.swing.GroupLayout. Alignment. TRAILING,
layout.createSequentialGroup()
.addGap(0, 382, Short. MAX_VALUE)
.addComponent(jLabel2, javax.swing.GroupLayout. PREFERRED_SIZE, 24,
javax.swing.GroupLayout.PREFERRED_SIZE))
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequentialGroup()
.addGap(69, 69, 69)
.addComponent(jPanell, javax.swing.GroupLayout. PREFERRED_SIZE,
javax.swing.GroupLayout. DEFAULT _SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap(29, Short. MAX_VALUE)))
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment. LEADING)
.addGroup(layout.createSequential Group()
.addComponent(jPanel2, javax.swing.GroupLayout. PREFERRED_SIZE, 66,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addGap(0, 340, Short. MAX_VALUE)))

73

pack();
}I <leditor-fold>
public String etude(){

try

try {
Class.forName(""'com.mysql.jdbc.Driver");

} catch (ClassNotFoundException ex) {

Il Logger.getLogger(FenetreSuivi.class.getName()).log(Level. SEVERE, null, ex);
}
System.out.printIn("---------- aaaaaaaaaaaaaaaaaaaa ------------- ");

//connection = DriverManager.getConnection("jdbc:mysql://192.168.0.10/mlr1","root","");
connection = DriverManager.getConnection(serveur,user,motdepassbase);

Il connection =
DriverManager.getConnection(*jdbc:mysql://localhost/mlr1l", root","");

statement = connection.createStatement();

resultSet=statement.executeQuery("SELECT “itestt FROM "mirl’. Idap" WHERE "eyks" LIKE
'ratabe6™);

while (resultSet.next()){

initiale= resultSet.getString("itest");

Il System.out.printin("eeeeeee"+initiale);

}

connection.close();

statement.close() ;

}
catch (SQLEXxception ex){}

returninitiale;

¥

74

private void jButtonEntrerActionPerformed(java.awt.event.ActionEventevt) {
etude();

String utilisateur=jTextFieldUtilisateur.getText();

Il fd.setVisible(true);

System.out.printin("eeeeeee"+initiale);

if (j<=3K
if(evt.getSource()==jButtonEntrer) {
String choix=new String();

choix=(String) jPasswordFieldMotDePasse.getText();
System.out.printin(*choix="+choix);
i=initiale;
if (i.equals("fenosoa™))
{
try
{

try {
Class.forName("com.mysql.jdbc.Driver");

} catch (ClassNotFoundException ex) {
Logger.getLogger(Authentificationl.class.getName()).log(Level. SEVERE, null, ex);

OPTION);
}

connection = DriverManager.getConnection(serveur,user,motdepassbase);
/lconnection = DriverManager.getConnection("jdbc:mysql://localhost/Essai™,"root","");

statement = connection.createStatement();

75

System.out.printin(*'---------- Insertion du Formulaire ------------- ")
System.out.printIn("Ouverture de la connexion a la base de données");

resultSet=statement.executeQuery("SELECT "'motDePasse'’ FROM “authentification' WHERE
“Utilisateur™ LIKE "'+utilisateur+"");
while (resultSet.next()){

String MotDePasse= resultSet.getString("motDePasse");

System.out.printin("itony mot de passse"+MotDePasse);

if (choix.equals(""+MotDePasse))
{

GestionLocationVoitureglv=new GestionLocationVoiture();

glv.Ouvrir();

GestionLocationVoiturefen= new GestionLocationVoiture();

fen.demarrer();

setVisible(false);

else

{
JOptionPane.showMessageDialog(this,"VVotre mot de passe est incorrect nombre de tentative =
"+j+"/3","GLV-Message d erreur”,JOptionPane.OK_CANCEL_OPTION);
intval=JOptionPane.OK_OPTION;
if(val==0){

=i+

System.out.printin(""'+j);}

76

3
catch (SQLEXxception ex){

JOptionPane.showMessageDialog(this,"ffff "+j,"GLV- Message d
erreur”,JOptionPane.OK_CANCEL_OPTION);

}

else{
JOptionPane.showMessageDialog(this,"Entrer le code d'enregistrement!!!" "GLV-Message d
erreur”,JOptionPane.OK_CANCEL_OPTION);

else

{
setVisible(false);
}

}

public static Image sary(JFramej,String s){
Toolkit toolkit = Toolkit.getDefaultToolkit();
URL url = j.getClass().getResource(s);
Image image = toolkit.getImage(url);

return image;

¥

private void jPasswordFieldMotDePasseKeyPressed(java.awt.event.KeyEventevt) {

77

if (evt.getKeyCode()==10){

etude();

String utilisateur=jTextFieldUtilisateur.getText();

System.out.printin("eeeeeee"+initiale);

if (j<=3){

String choix=new String();

choix=(String) jPasswordFieldMotDePasse.getText();
System.out.printIn("choix="+choix);
i=initiale;
if (i.equals("fenosoa™))
{
try
{

try {
Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(serveur,user,motdepassbase);
} catch (ClassNotFoundException ex) {
Logger.getLogger(Authentificationl.class.getName()).log(Level. SEVERE, null, ex);

OPTION):;

//connection = DriverManager.getConnection("jdbc:mysql://localhost/Essai”, " "root","");
statement = connection.createStatement();

System.out.printin(*'---------- Insertion du Formulaire ------------- ");

78

System.out.printIn("Ouverture de la connexion a la base de données");

resultSet=statement.executeQuery("SELECT "motDePasse' FROM “authentification WHERE
“Utilisateur™ LIKE ™+utilisateur+"");
while (resultSet.next()){

String MotDePasse= resultSet.getString("motDePasse");

System.out.printin("itony mot de passse"+MotDePasse);

if (choix.equals(""+MotDePasse))
{ GestionLocationVoiturefen= new GestionLocationVoiture();

fen.demarrer();
fen.Ouvrir();
setVisible(false);

else

{
JOptionPane.showMessageDialog(this,"VVotre mot de passe est incorrect nombre de tentative =
"+j+"/3","GLV-Message d erreur",JOptionPane.OK_CANCEL_OPTION);
intval=JOptionPane.OK_OPTION;
if(val==0){

=i+

System.out.printin(""'+j);}

133,
catch (SQLException ex){

JOptionPane.showMessageDialog(this,"ffff "+j,"GLV-Message d
erreur”,JOptionPane.OK_CANCEL_OPTION);

}

79

else{
JOptionPane.showMessageDialog(this,"Entrer le code d'enregistrement!!!" "GLV-Message d
erreur”,JOptionPane.OK_CANCEL_OPTION);

}

else

{
setVisible(false);

}

}

¥
public static void main(String args[]) {

java.awt.EventQueue.invokeLater(new Runnable() {
public void run() {
new Authentificationl1().setVisible(true);

}
H;

Il Variables declaration - do not modify
privatejavax.swing.JButtonjButtonEntrer;
privatejavax.swing.JLabel jLabell;
privatejavax.swing.JLabel jLabel2;
privatejavax.swing.JLabel jLabel3;
privatejavax.swing.JLabel jLabel4;
privatejavax.swing.JLabel jLabel5;
privatejavax.swing.JLabel jLabel6;
privatejavax.swing.JPanel jPanell;

privatejavax.swing.JPanel jPanel2;

80

privatejavax.swing.JPasswordFieldjPasswordFieldMotDePasse;
privatejavax.swing.JTextFieldjTextFieldUtilisateur;

/I End of variables declaration

81

ANNEXE 2

SCRIPT SQL POUR LA CREATION DE LA BASE DE DONNEES

DROP DATABASE IF EXISTS GLV;

CREATE DATABASE IF NOT EXISTS GLV;
USE GLV;

TABLE : MODELE

CREATE TABLE IF NOT EXISTS MODELE

(
NOMMODELE CHAR (32) NOT NULL ,
MARQUE CHAR(32) NULL ,
PUISSANCE CHAR(32) NULL ,
CAUTION CHAR(32) NULL

, PRIMARY KEY (NOMMODELE)

)

comment = "";

TABLE : TYPELOCATION

CREATE TABLE IF NOT EXISTS TYPELOCATION
(
CODETARIF CHAR(32) NOT NULL ,
LIBELLETARIF CHAR(32) NULL
, PRIMARY KEY (CODETARIF)
)

comment =

mww
’

TABLE : VEHICULE

CREATE TABLE IF NOT EXISTS VEHICULE

(
NOMINERALOGIE CHAR(32) NOT NULL ,
NOMMODELE CHAR (32) NOT NULL
COULEUR CHAR(32) NULL ,
KMENCOURS CHAR (32) NULL
, PRIMARY KEY (NOMINERALOGIE)

)

comment =

mww
Iz

82

CREATE INDEX I_FK_VEHICULE_MODELE
ON VEHICULE (NOMMODELE ASC) ;

TABLE : CLIENT

CREATE TABLE IF NOT EXISTS CLIENT

(
NOCLIENT CHAR(32) NULL ,
NOMCLIENT CHAR(32) NULL ,
ADRESSE CHAR(32) NULL ,
CODEPOSTAL CHAR(32) NULL ,
CIN CHAR(32) NOT NULL
, PRIMARY KEY (CIN)

)

comment = "";

TABLE : CONTRAT

CREATE TABLE IF NOT EXISTS CONTRAT

(

NOCONTRAT CHAR(32) NOT NULL ,
CIN CHAR(32) NOT NULL ,

NOMINERALOGIE CHAR(32) NOT NULL |,
DATEETABLISSEMENT CHAR(32) NULL ,

DATEDEBUTPREV CHAR(32) NULL ,
DATEFINPREV CHAR (32) NULL

, PRIMARY KEY (NOCONTRAT)

)

comment =

mww
4

CREATE INDEX I FK CONTRAT CLIENT
ON CONTRAT (CIN ASC);

83

CREATE INDEX I FK CONTRAT VEHICULE
ON CONTRAT (NOMINERALOGIE ASC) ;

TABLE : MAINTENANCE

CREATE TABLE IF NOT EXISTS MAINTENANCE

(
CODEREVISION CHAR(32) NOT NULL ,
LIBELEREVISION CHAR (32) NULL
, PRIMARY KEY (CODEREVISION)

)

comment = "";

TABLE : TARIFIER

CREATE TABLE IF NOT EXISTS TARIFIER
(
NOMMODELE CHAR (32) NOT NULL
CODETARIF CHAR(32) NOT NULL ,
TARIFLOCATION CHAR(32) NULL
, PRIMARY KEY (NOMMODELE,CODETARIF)
)

comment = "";

CREATE INDEX I FK TARIFIER MODELE
ON TARIFIER (NOMMODELE ASC) ;

CREATE INDEX I FK TARIFIER TYPELOCATION
ON TARIFIER (CODETARIF ASC);

TABLE : CHOISIR TARIF

CREATE TABLE IF NOT EXISTS CHOISIR TARIF

(
CODETARIF CHAR(32) NOT NULL ,

84

NOCONTRAT CHAR(32) NOT NULL
, PRIMARY KEY (CODETARIF,NOCONTRAT)
)

comment = "";

CREATE INDEX I FK CHOISIR TARIF TYPELOCATION
ON CHOISIR TARIF (CODETARIF ASC);

CREATE INDEX I FK CHOISIR TARIF CONTRAT
ON CHOISIR TARIF (NOCONTRAT ASC);

TABLE : REVISER

CREATE TABLE IF NOT EXISTS REVISER
(

CODEREVISION CHAR(32) NOT NULL |,
NOMINERALOGIE CHAR(32) NOT NULL ,
DATEDEBUTREVISION CHAR (32) NULL |,
DATEFINREVISION CHAR(32) NULL ,
COUTMAINTENANCE CHAR (32) NULL ,
KILOMETRAGE CHAR (32) NULL
, PRIMARY KEY (CODEREVISION,NOMINERALOGIE)

)

comment = "";

CREATE INDEX I FK REVISER MATINTENANCE
ON REVISER (CODEREVISION ASC);

CREATE INDEX I FK REVISER VEHICULE
ON REVISER (NOMINERALOGIE ASC);

85

ALTER TABLE VEHICULE
ADD FOREIGN KEY FK VEHICULE MODELE (NOMMODELE)
REFERENCES MODELE (NOMMODELE) ;

ALTER TABLE CONTRAT
ADD FOREIGN KEY FK CONTRAT CLIENT (CIN)
REFERENCES CLIENT (CIN) ;

ALTER TABLE CONTRAT
ADD FOREIGN KEY FK CONTRAT VEHICULE (NOMINERALOGIE)
REFERENCES VEHICULE (NOMINERALOGIE) ;

ALTER TABLE TARIFIER
ADD FOREIGN KEY FK TARIFIER MODELE (NOMMODELE)
REFERENCES MODELE (NOMMODELE) ;

ALTER TABLE TARIFIER
ADD FOREIGN KEY FK TARIFIER TYPELOCATION (CODETARIF)
REFERENCES TYPELOCATION (CODETARIF) ;

ALTER TABLE CHOISIR TARIF
ADD FOREIGN KEY FK CHOISIR TARIF TYPELOCATION (CODETARIF)
REFERENCES TYPELOCATION (CODETARIF) ;

ALTER TABLE CHOISIR TARIF
ADD FOREIGN KEY FK CHOISIR TARIF CONTRAT (NOCONTRAT)
REFERENCES CONTRAT (NOCONTRAT) ;

ALTER TABLE REVISER
ADD FOREIGN KEY FK REVISER MAINTENANCE (CODEREVISION)
REFERENCES MAINTENANCE (CODEREVISION) ;

ALTER TABLE REVISER
ADD FOREIGN KEY FK REVISER VEHICULE (NOMINERALOGIE)

REFERENCES VEHICULE (NOMINERALOGIE) ;

86

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]
[10]

[11]

BIBLIOGRAPHIES

George R., « JDBC et Java », Guide de programmeur, 2¢ édition, 2001.

Philippe M., « Bases de Données », U.F.R Université des Sciences et Technologies de
Lille, Version 1.3, 1999.

RANDRIARIJAONA L. E., «Développement d’application d’entreprise », Cours 15-TCO,
Dép. TCO-E.S.P.A., A.U 2009-2010.

Jean M.D., « Développons en Java », Version 1.40, aout 2010.

RABEHERIMANANA L., «Systeme d’information », Cours 15-TCO, Deép. TCO-
E.S.P.A., A.U 2009-2010.

Claude S., « RESEAUX ET TELECOMS »,2003.

Richard G., «Langage SQL », Université de Nice Sophia-Antipolis, version 2.3,

novembre 2000.
Philippe R., « Pratique MySQL ET PHP »4°™ édition, 2009
Céline R., « Eléments d’algebre relationnelle », cours 2.

http://www.CodeS-SourceS.com

http://www.memoireenligne.com

87

http://www.codes-sources.com/
http://www.memoireenligne.com/

PAGE DE RENSEIGNEMENT
Nom :RALAIARY
Prénoms :Andry Tanjona Harinosy

Adresse de ’auteur : lot B 93 bis Andrefantsena Sabotsy Namehana

Tel :+261 (0) 33 14 476 27

E-mail :ralaiaryandrytanjona@gmail.com

Titre du mémoire : « CONCEPTION ET REALISATION D’UN LOGICIEL DE GESTION DE
LOCATION DE VOITURE UTILISANT L’ARCHITECTURE CLIENT SERVEUR»

Nombre de pages : 89
Nombres de figures : 21
Nombre de tableaux : 22

Mots clés : Application JAVA, architecture Client Serveur, logiciel de gestion de location de

voiture.

Directeur de mémoire : Mr RATSIRANTO Albert

88

mailto:ralaiaryandrytanjona@gmail.com

RESUME

La présente application porte sur 1’élaboration d’un logiciel de location de voiture utilisant
I’architecture client-serveur. Sa conception a nécessité plusieurs démarches. La premiere étape
consiste a la présentation genérale de la base de données ainsi que son acces a partir de
I’application Java. Ceci, afin de pouvoir déterminer la base de données et le type de pilote le plus
adapté a la réalisation de I’application. L’étape suivante présente les avantages et les
inconveénients des différentes architectures Client-serveur, afin de définir 1’architecture le mieux

appropriée. La derniere étape est consacrée a la réalisation.

Cet ouvrage a permis de mieux comprendre les différentes étapes pour la réalisation d’une

application Client-serveur, et sa mise en pratique au niveau de la gestion de location de voiture.
ABSTRACT

This application focuses on the development of software for car rental using the client-server
architecture. Its design required several steps. The first step is the overview of the database and its
access from the Java application. This is, in order to choose the database and the most suitable
type of driver for making the application. The next step presents the advantages and disadvantages
of different client server architectures to define the most appropriate architecture. The last step is
devoted to the realization.

This work has led to a better understanding of the different steps for achieving a client application

server and its implementation in the management of car rental.

89

