

UNIVERSITE D'ANTANANARIVO

ECOLE SUPERIEURE POLYTECHNIQUE D'ANTANANARIVO

MENTION INFORMATION GEOGRAPHIQUE ET AMENAGEMENT DU TERRITOIRE PARCOURS : GEOMETRE-TOPOGRAPHE

Mémoire de fin d'études en vue de l'obtention du

Grade Master II - Titre Ingénieur Géometre Topographe

CONTRIBUTION A L'ETUDE D'AMENAGEMENT HYDROAGRICOLE DE MAHARIVO DANS LE FOKONTANY FENOARIVO, COMMUNE RURALE DE

BERONONO, DISTRICT MAHABO, REGION MENABE

Présenté par :

RAMANANTOANINA Faniriniaina Jean Arthur

Encadré par:

Monsieur RAMANANTSIZEHENA Pascal, Professeur Titulaire à l'ESPA.

Monsieur **RAMILISON Jean Marie Louis Bernard**, Ingénieur Géomètre Topographe, Géomètre Expert, Directeur Technique de la société SIMTEPHA-Sarl.

Promotion 2015

Date de soutenance : 08 Février 2017

UNIVERSITE D'ANTANANARIVO

ECOLE SUPERIEURE POLYTECHNIQUE D'ANTANANARIVO

MENTION INFORMATION GEOGRAPHIQUE ET AMENAGEMENT DU TERRITOIRE

PARCOURS: GEOMETRE-TOPOGRAPHE

Mémoire de fin d'études en vue de l'obtention du

Grade Master II - Titre Ingénieur Géometre Topographe

CONTRIBUTION A L'ETUDE D'AMENAGEMENT HYDROAGRICOLE DE MAHARIVO DANS LE FOKONTANY FENOARIVO, COMMUNE RURALE DE BERONONO, DISTRICT MAHABO, REGION MENABE

<u>Présenté par</u>:

RAMANANTOANINA Faniriniaina Jean Arthur

Président du Jury:

Monsieur **RABARIMANANA Mamy**, Professeur et Responsable de la Mention Information Géographique et Aménagement du Territoire.

Encadreurs:

Monsieur RAMANANTSIZEHENA Pascal, Professeur Titulaire à l'ESPA.

Monsieur **RAMILISON Jean Marie Louis Bernard,** Ingénieur Topographe, Géomètre Expert, Directeur Technique de la société SIMTEPHA-Sarl.

Examinateurs:

Monsieur RANDRIAMAHERISOA Alain, Enseignant chercheur à l'ESPA.

Monsieur RABETSIAHINY, Maître de conférences à l'ESPA.

Promotion 2015

REMERCIEMENTS

Tout d'abord, je rends grâce à Dieu pour sa bénédiction et sa bonté, de m'avoir donné la force, la santé et l'opportunité afin que je puisse bien réaliser ce travail de mémoire de fin d'études.

Je tiens aussi à exprimer mes profondes reconnaissances et remerciements à :

- Monsieur ANDRIANAHARISON Yvon, Professeur Titulaire et Responsable du
 Domaine d'ingénieur au sein de l'Ecole Supérieure Polytechnique d'Antananarivo, de
 m'avoir donné la possibilité de poursuivre mes études dans cette école.
- Monsieur **RABARIMANANA Mamy**, Professeur et Responsable de la Mention Information Géographique et Aménagement du Territoire, qui m'a fait l'honneur d'être président du jury de ce mémoire.
- Mes encadreurs,
 - Monsieur RAMANANTSIZEHENA Pascal, Professeur Titulaire au sein de l'ESPA et à
 - Monsieur RAMILISON Jean Marie Louis Bernard, Ingénieur Topographe, Géomètre Expert, Directeur Technique de la société SIMTEPHA-Sarl qui m'ont dirigé tout au long de la réalisation de ce mémoire et n'ont cessé de me prodiguer des conseils précieux.
- Mes examinateurs,
 - Monsieur **RANDRIAMAHERISOA** Alain, Enseignant chercheur à l'ESPA et à
 - Monsieur **RABETSIAHINY**, Maître de conférences à l'ESPA, qui a bien voulu accepter d'être les membres du jury de ce mémoire.
- Tous les membres du corps enseignant de la mention Information Géographique et Aménagement du Territoire et tous ceux de l'Ecole Supérieure Polytechnique d'Antananariyo

Un grand merci particulier à:

- Monsieur RAKOTOMALALA Honoré, Ingénieur Géomètre-Topographe, Directeur Gérant de la société SIMTEPHA qui m'a accepté de faire mon stage de fin d'études dans son département.
- Monsieur CHABAUD Claude, Expert en aménagement, Gérant de la société SDMAD qui m'a donné des appuis techniques lors de la réalisation de ce mémoire.
- Toutes les équipes de la société SIMTEPHA et SDMAD.
- Mes parents et toute ma famille de m'avoir toujours soutenu tout au long de mes études.
- Tous mes camarades de promotion pour les agréables moments passés ensemble.

Enfin, j'adresse un vif remerciement à tous ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire.

LISTE DES TABLEAUX

Tableau 1: Coordonnée du centre du chef-lieu de la Commune Rural de Beronono	4
Tableau 2: Récapitulatif des chemins vers la zone d'étude	7
Tableau 3: Circuits de production en pourcentage des produits agricoles du CR de Beronono	14
Tableau 4: Nombres des élevages avec leurs nombres d'éleveurs en 2009	15
Tableau 5: Récapitulatif des résultats	20
Tableau 6: Valeur de la période de retour selon la classification de NIHYCRI	21
Tableau 7: Pluviométries maximales journalières de différentes fréquences	22
Tableau 8: Caractéristique du bassin versant	26
Tableau 9: Apport moyen annuel et apport annuel pour les différentes fréquences	27
Tableau 10: Apports moyens mensuels Qm et apport moyen mensuel des différentes fréquences (QmF
Tableau 11: Valeur des apports interannuels à la station de Dabara	
Tableau 12: Valeur des apports interannuels du Bassin versant	
Tableau 13: Apport moyen mensuel de différentes fréquences	29
Tableau 14: valeur moyenne des apports interannuels quinquennaux secs des deux méthodes	30
Tableau 15: Valeur moyenne des apports moyens mensuels des deux méthodes	30
Tableau 16: Débit de crue par la méthode d'ORSTOM	
Tableau 17: Débit de crue par la méthode de LOUIS DURET	
Tableau 18: Caractéristique du Sebota 70	
Tableau 19: Evapotranspiration potentielle décadaire	
Tableau 20: Résultat de l'adéquation ressource et besoin	38
Tableau 21: Résultat des calculs des besoins en eau en saison de pluie : cas de « Vary Asara »	40
Tableau 22: Débits fictifs continus de pointe des différentes années et leur besoin en eau respective	e en
« Vary Asara »	42
Tableau 23: Résultat des calculs des besoins en eau en étiage : cas de « Vary Asotry »	43
Tableau 24: Débits fictifs continus de pointe des différentes années et leur besoin en eau respective	e en
« Vary Asotry »	44
Tableau 25: Points délimitant le périmètre	
Tableau 26: Caractéristiques des stations totales	
Tableau 27: Coordonnée du point géodésique Vohimena en système de coordonnées Laborde	
Madagascar	
Tableau 28: Points d'appui du levé	
Tableau 29: Coordonnée des points de canevas d'ensemble	
Tableau 30: Densité des points	
Tableau 31: Valeur de la longueur de passe	65
Tableau 32: Résultat de vérification de la règle du tiers central	
Tableau 33: Superficie de chaque secteur du périmètre	
Tableau 34: Dimension des ouvrages de prise	
Tableau 35: Caractéristique de chaque bâche	
Tableau 36: Valeur du paramètre de la section de la chute	78

Tableau 37: Valeur admissible du coefficient de rugosité en fonction de la nature de paroi	79
Tableau 38: Valeur des paramètres de section du canal	81
Tableau 39: Caractéristiques des canaux	82
Tableau 40: Débit de drain secondaire	90
Tableau 41: Calage hydraulique des drains	91
Tableau 42: Liste des coordonnées à implanter	93
Tableau 43: Liste des coordonnées à implanter pour les ouvrages de prises	96
Tableau 44: Liste des coordonnées à implanter pour le dessableur	96
Tableau 45: Liste des coordonnées à implanter pour la bâche	96
Tableau 46: Liste des coordonnées à implanter pour les chutes	97
Tableau 47: Coordonnée d'implantation des alignements droits	98
Tableau 48: Coordonnée d'implantation du courbe numéro 1	100
Tableau 49: Coordonnée d'implantation du courbe numéro 29	100
Tableau 50: Identification des impacts	106
Tableau 51: Attribution de notes	109
Tableau 52: Evaluation des impacts	111
Tableau 53: Mesure d'atténuation	
Tableau 54: Mesure d'optimisation	113
Tableau 55: Plan de mise en œuvre de la mesure proposée	115
Tableau 56: Suivi environnemental	117
Tableau 57: Coût des travaux topographiques	118
Tableau 58: Coût des constructions des ouvrages et du canal principal	119
Tableau 59: Récapitulatif du coût de l'ensemble des travaux	122

LISTE DES ABREVIATIONS

AD2M Appui au Développement du Melaky et du Menabe

AN Application Numérique APD Avant-Projet de Détail

Ar Ariary
AS Mise à sec

BCEOM Bureau Centrale d'Etudes pour les Equipements d'Outre-Mer

BD Base de Données

BP Besoin propre d'une plante

BV Bassin Versant

CAO Conception Assistée par Ordinateur
CEPE Certificat d'Etude Primaire Elémentaire

CD Cercle Droite
CG Cercle Gauche

CIID Commission Internationale pour l'Irrigation et Drainage

CP Canal Principal
CR Commune Rurale
CS Canal Secondaire

CSB II Centre de Santé de Base niveau II

CTGREF Centre Technique du Génie Rural, des Eaux et des Forêts

DAO Dessin Assisté par Ordinateur
DAS Durée Admissible de Submersion

Dfc Débit fictif continu

Dépit fictif continu de pointe

Dim Dimension
DP Drain principale
DS Drain secondaire

E Entretien

EIE Etude d'Impact Environnemental

ET Evapotranspiration

ETP Evapotranspiration potentiel FAO Food International Organisation

fft Forfaitaire

FIDA Fond International de Développement Agricole FJKM Fiangonan'I Jesoa Kristy eto Madagasikara

FKT Fokontany

FOFIFA FOibem-pirenena momba ny Flkarohana ampiharina amin'ny

Fampandrosoana ny eny Ambanivohitra

FTM Foibe Tao-saritanin'i Madagasikara

GPS Global Positionning System

GRS80 Geodetic Reference System 1980 INSTAT Institut National de la STATistique

MB Mise en boue

MNT Modèle Numérique du Terrain

MPAE Ministère auprès de la Présidence en charge de l'Agriculture et de l'Elevage MST/SIDA Maladie Sexuel Transmissible/Syndrome d'Immuno Déficience Acquise NIHYCRI Norme Malgache de Construction des Infrastructures Hydroagricoles contre

les Crues et Inondations

Nb Nombre

NGM Nivellement Général de Madagascar
OMD Objectif du Millénaire de Développement

ORSTOM Office de la Recherche Scientifique et Technique Outre-MER

PCS Prise Canal Secondaire

PGE Plan de Gestion Environnementale

PIB Produit Intérieur Brut
PK Point Kilométrique
PM Point Métrique
PP Prise Principale
PU Prix Unitaire

Qe Débit d'équipement On Débit nominal

RC Remplissage des clos
RN Route Nationale

Sarl Société à responsabilité limitée SDMAD Semis Direct de Madagascar

SIMTEPHA Société d'Investigation de Mesures Topographiques et d'Exploitation de

Photographies Aériennes

SMA Service de la Météorologie Agronomique

SRA Système de Riziculture Intensive
SRI Système de Riziculture Améliorée
SRTM Shuttle Radar Topography Mission

TDR Terme De Référence
TGO Trimble Géomatic Office

TN Terrain Naturel

WGS84 Word Geodetic System 1984

LISTES DES FIGURES

Figure 1: Histogramme de la pluviométrie moyenne mensuel la Région Menabe	8
Figure 2: Diagramme de la vitesse moyenne mensuel du vent de la Région Menabe	9
Figure 3: Diagramme de la température moyenne mensuelle de la Région Menabe	9
Figure 4: Diagramme de répartition de la population par Fokontany	12
Figure 5: Diagramme de répartition de la population de Beronono dans chaque secteur d'act	ivité 15
Figure 6: Limite de la zone d'étude	47
Figure 7: Plan topographique de la zone	56
Figure 8: Fonctionnement des réseaux hydroagricoles	71
Figure 9: Coupe transversale de la bâche	75
Figure 10: Coupe transversale de la chute	78
Figure 11: Coupe transversale d'un canal en terre	81
Figure 12: Coupe transversale d'un canal bétonnée	81
Figure 13: Profil en long du réseau d'irrigation	84
Figure 14: Profil en travers type du canal bétonné	85
Figure 15:Profil en travers type du canal en terre	86
Figure 16: Plan d'implantation du barrage	95
Figure 17: Courbe de raccordement	99
Figure 18: Canal creusé sans berges artificielles	101
Figure 19: Canal avec deux berges artificielles	101
Figure 20: Canal avec une berge artificielle	101
Figure 21: Méthodologie adoptée	105
LISTE DES CARTES	
Carte 1: Localisation administrative de la zone d'étude	
Carte 2: Hydrographique de la District Mahabo	10
Carte 3: Bassin versant	24

LISTE DES ANNEXES

Annexe 1: Présentation du NIHYCRI	131
Annexe 2 : Pluviométrie moyenne mensuelle	134
Annexe 3 : Pluviométrie maximale journalière	135
Annexe 4 : Présentation de la société SIMTEPHA-Sarl	
Annexe 5 : Profil en long au droit du barrage	137
Annexe 6 : Coefficients de stabilité	138
Annexe 7 : Dimensionnement et Stabilité du barrage	139
Annexe 8 : Stabilité interne du barrage	140
Annexe 9 : Description d'une irrigation par bassin de submersion	141
Annexe 10 : Plan des ouvrages	

SOMMAIRE

REMERCIEME	ENTS	i
LISTE DES TA	BLEAUX	iii
LISTE DES AB	REVIATIONS	v
LISTES DES FI	IGURES	vii
LISTE DES CA	RTES	vii
LISTE DES AN	NEXES	viii
SOMMAIRE		ix
CHAPITRE I:	PRESENTATION GENERALE DE LA ZONE D'ETUDE	4
CHAPITRE II:	ASPECTS AGRO-SOCIO-ECONOMIQUES DE LA ZONE D'ETUDE	12
CHAPITRE III:	ETUDES PLUVIOMETRIQUES	18
CHAPITRE IV:	ETUDES HYDROLOGIQUES	23
CHAPITRE V:	ETUDES DES BESOINS EN EAU	33
CHAPITRE VI:	ETUDES TOPOGRAPHIQUES	46
CHAPITRE VII:	CONCEPTION ET DIMENSIONNEMENT DES OUVRAGES	62
CHAPITRE VIII:	PROPOSITION D'IMPLANTATION	92
CHAPITRE IX:	ANALYSES DES IMPACTS ENVIRONNEMENTAUX	104
CHAPITRE X:	COUT DU PROJET	118
CHAPITRE XI:	ANALYSE MULTICRITERE	123
CONCLUSION		127
REFERENCE		128
ANNEXES		130
TADIE DEC I	MATIEDES	155

INTRODUCTION

L'agriculture contribue pour plus d'un tiers à l'alimentation de la population mondiale. Particulièrement, dans notre pays, ce secteur occupe la majorité de la population, avec un taux de 80 % environ. Le secteur de subsistance constitué particulièrement de la riziculture joue un rôle primordial, car le riz représente l'aliment de base de la population Malgache, l'un des plus grands consommateurs de riz dans le monde, 140 Kg de riz par habitant par an selon le FAO. Le riz constitue même le moteur de développement économique du pays. Il contribue à hauteur 12 % au PIB nationale et de 43 % au PIB agricole (*Source : Mission FAO/PAM d'évaluation de la sécurité alimentaire à Madagascar*)

Malgré les différents efforts établis, la production de riz s'est développée, mais n'a pas pu suivre la croissance démographique de la population grâce à de nombreux facteurs comme l'utilisation des méthodes traditionnelles, le changement climatique, la non-maîtrise de l'eau ainsi que la faible valeur de l'espace cultivée qui est de 8 % seulement exploitée à Madagascar.

La commune rurale de Beronono, une des communes situées dans la zone d'intervention du projet AD2M (Appui au Développement du Melaky et du Menabe) comprenait anciennement plus de 1450 ha de rizières sur une rivière voisine appelée Fanikay. Cette commune est victime de la non-maîtrise de l'eau et le manque d'entretien des infrastructures existants, car ces rizières ont été ensablées. Certes, les agriculteurs sont à la fois victimes de l'insuffisance et de diversité alimentaire, mais aussi de l'insécurité rurale.

Face à ce problème, l'AD2M par son objectif vise à réduire la pauvreté dans les zones rurales de la région Menabe par l'amélioration des conditions de vie des paysans à l'aide de l'augmentation de la production, grâce à la maîtrise de l'irrigation et la pérennisation des outils de production. Par ses activités, ce projet auprès du Ministère auprès de la Présidence en charge de l'Agriculture et de l'Elevage financé par FIDA lance l'étude de faisabilité de création d'un nouvel aménagement hydroagricole dans le périmètre de Maharivo en proposant la réalisation d'un barrage de dérivation, de l'avant canal en rive gauche, et des canaux tête morte et principal afin d'assurer la disponibilité de l'eau d'irrigation ainsi que le bon fonctionnement de ces infrastructures.

Vu que tous travaux d'aménagement que ce soit nouvelle construction, réhabilitation ou extension d'un périmètre irrigué, l'étude topographique du terrain est l'une des bases de la conception de l'aménagement. C'est la raison du choix du thème : « Contribution à l'élaboration d'un plan d'aménagement hydroagricole cas du périmètre irrigué de Maharivo

d'une superficie de 832 ha dans le Fokontany Fenoarivo, Commune rurale de Beronono, District Mahabo et Région Menabe ».

Ce mémoire de fin d'études apporte aux géomètres et topographes des méthodologies de levé topographique d'une grande surface et permet d'améliorer leurs méthodes de travail à travers le logiciel Mensura Genius 6.0.

Pour expliciter et développer le contenu de ce mémoire, l'étude comporte quatre parties. La première partie concerne la présentation générale de la zone d'étude ainsi que leurs aspects agro-socio-économiques. Ensuite, la deuxième partie traite les études techniques de base qui sont orientées sur l'étude pluviométriques, l'étude hydrologiques, l'étude des besoins en eau et l'étude topographiques. La troisième partie traite la conception de l'aménagement, le résultat de cubature de terrassement et la proposition d'implantation topographique. Enfin, la quatrième partie se consacrera à l'analyse des impacts environnementaux, le coût et l'analyse multicritères du projet.

CHAPITRE I: PRESENTATION GENERALE DE LA ZONE D'ETUDE

I.1 Localisation

I.1.1 Localisation administrative

Le périmètre de Maharivo se trouve dans la CR de Beronono, District de Mahabo, Région de Menabe et Province de Toliara. La CR de Beronono est composée de cinq FKT tels que :

- > Beronono le chef-lieu de la Commune :
- Ambalabe se trouve à 9 km du chef-lieu de la commune ;
- > Ambiky à 8 km;
- > Fenoarivo à 16 km:
- Maharivokely à 15 km.

Dont le périmètre à aménager se trouve dans le FKT de Fenoarivo.

I.1.2 Localisation géographique

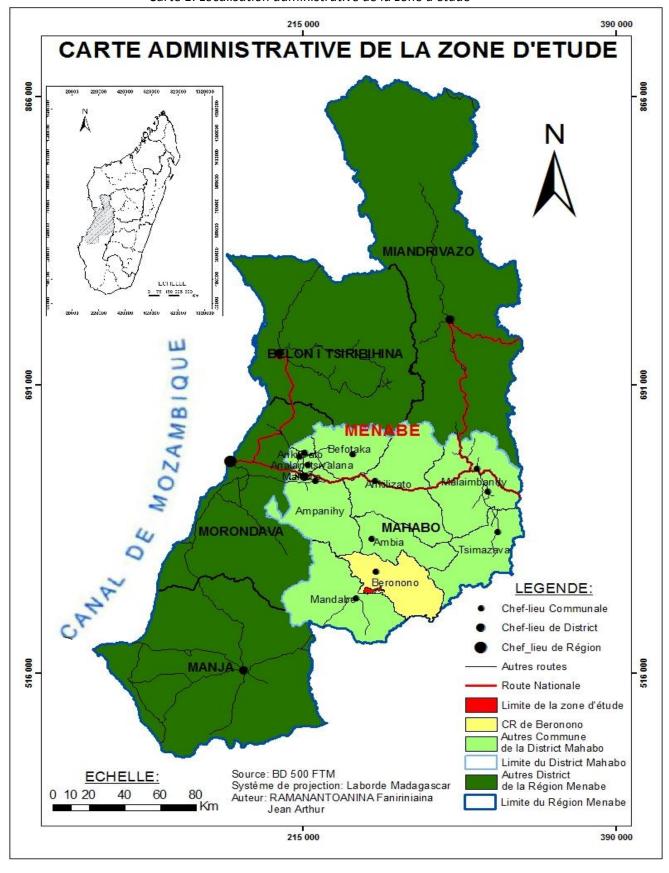
Le chef-lieu du CR de Beronono est repéré au système de projection mondiale WGS84 et au système de projection Laborde Madagascar par les coordonnées présentées dans le tableau 1:

Tableau 1: Coordonnée du centre du chef-lieu de la Commune Rural de Beronono

WG	S84	Laborde M	I adagascar
φ [°]	λ [°]	X [m]	Y [m]
45° 2' 1" Est	20° 33′ 6″ Sud	256 827	575 905

Source: Google Earth et BD 500 FTM

La CR de Beronono est située à 132 km au Sud du chef-lieu du District de Mahabo, et est repérée par la carte FTM au 1/100 000è sur la feuille H52 édition 1987. La CR de Beronono est délimitée par les communes rurales :


- > D'Ampanihy et d'Ambia au Nord;
- ➤ De Mandabe à l'Ouest ;
- ➤ De Tsimazava à l'Est et
- De Tanamary et de Beroroha puis la limite de la région Menabe à la région Atsimo Andrefana au Sud.

Ainsi, la zone d'étude est encadrée par les coordonnées Laborde suivantes :

$$X_{minimal} = 251 \ 944 \ m \qquad \qquad X_{maximal} = 263 \ 678 \ m$$

$$Y_{minimal} = 562761 \text{ m}$$
 $Y_{maximal} = 567347 \text{ m}$

Et la carte administrative de la zone d'étude est présentée dans la page suivante.

Carte 1: Localisation administrative de la zone d'étude

I.2 Accessibilité dans la zone

Deux voies sont possibles pour accéder à la zone, mais cela passe toujours à la CR de Mandabe, l'un sur la RN 9 de Toliara— Mandabe et l'autre RN 35 PK 386 (Pont Dabara) vers Mandabe. Par la suite, à Mandabe on prend la piste non classée vers Beronono. Les récapitulatifs de ces trajets sont résumés dans le tableau 2.

Tableau 2: Récapitulatif des chemins vers la zone d'étude

Variante	Chef-lieu	Catégorie	Longueur	Observation
		de la route	[Km]	
	Toliara-Bevoay	RN9	204	Route non revêtue praticable toute
				l'année
	Bevoay-Manja	RN9	81	Route non revêtue praticable saisonnière
1				Traversée toujours sur la rivière
				Mangoky par un bac à Bevoay.
	Manja-Manbabe	RN9	90	Route non revêtue praticable saisonnière
	Mandabe-Beronono	Piste	28	Route non revêtue praticable saisonnière.
	Mahabo-Pont Dabara	RN35	13	Route revêtue
	Pont Dabara-Mandabe	Piste	96	Traversé en passage à gué
2				les rivières Maharivo, Ankatsakatsa et
				Ampandra.
				Route non revêtue praticable saisonnière.
	Mandabe-Beronono	Piste	28	Route non revêtue praticable saisonnière.

Vu le mauvais état de la route, certaines routes ne sont seulement accessibles qu'en saison sèche. Il est avantageux de prendre la variante deux sur le facteur coût et temps, mais très risquée pendant la saison humide à cause de la montée des eaux fluviales, tandis que la première variante est très longue, mais moins risquée que la deuxième.

I.3 Climat

La Région Menabe tout entière est marquée par deux saisons climatiques bien distinctes : une saison chaude et pluvieuse, de Novembre à Avril et une saison moins chaude et très sèche de Mai à Octobre.

Sa pluviométrie est comprise entre 600 et 1 000 mm/an, laquelle constitue un facteur limitant pour les activités agricoles dans la région.

En Septembre et Octobre la région souffle un vent desséchant, qui entraine le tarissement de tous les fleuves et les rivières, réduisant ainsi le niveau des nappes phréatiques. Par rapport aux cyclones, les perturbations tropicales n'atteignent pas en général le stade de cyclone, mais restent au stade de dépression tropicale. Elles apportent toutefois des précipitations importantes qui provoquent des inondations durables.

En raison de l'effet de continentalité combiné à des précipitations moyennes, il est chaud en Mars avec une température moyenne mensuelle de 32,2°C et plus froid en mois de Juillet 14,3°C.

Les figures 1, 2 et 3 suivantes nous donne les valeurs moyennes mensuelles de la pluviométrie, de la vitesse du vent et de la température de la Région Menabe.

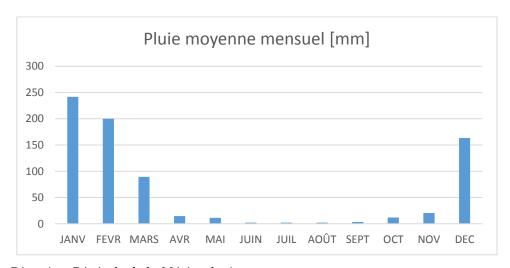


Figure 1: Histogramme de la pluviométrie moyenne mensuel la Région Menabe

Source : Direction Générale de la Météorologie

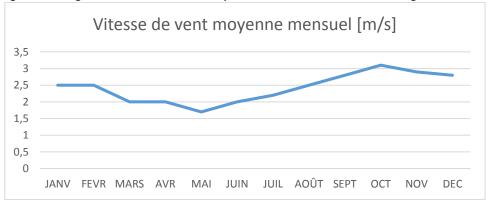
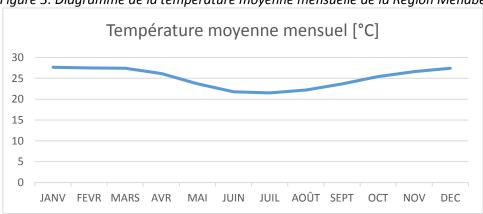
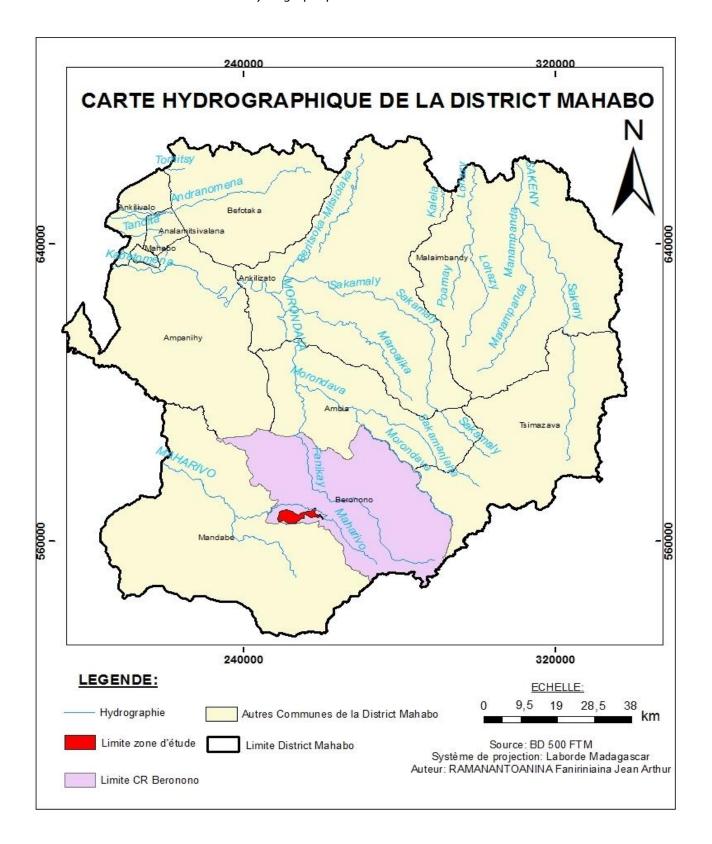


Figure 2: Diagramme de la vitesse moyenne mensuel du vent de la Région Menabe

Source : Direction Générale de la Météorologie




Figure 3: Diagramme de la température moyenne mensuelle de la Région Menabe

<u>Source</u>: Direction Générale de la Météorologie

I.4 Hydrographie

La Commune Rurale de Beronono est traversée par deux rivières principales telles que la rivière Maharivo qui coupe la commune sur une longueur de 10 km et la rivière Fanikay sur 21 km.

Carte 2: Hydrographique de la District Mahabo

I.5 Géomorphologie [3]

La zone étudiée se trouve dans la surface d'aplatissement sur matériel sédimentaire et système karstique.

I.6 Pédologie

Les connaissances pédologiques de détail de l'ensemble de la zone sont assez fragmentaires. L'étude de la carte pédologique au 1/1 000 000 pour Madagascar (édition ORSTOM-Tananarive) montre que la zone est dominée par quatre types de sol :

- Complexe lithosols et sol peu évolué;
- ➤ Complexe sols ferrugineux tropical et peu évolué ;
- > Sols ferrugineux tropicaux ;
- > Sols ferrugineux tropicaux roche sableux.

I.7 Géologie [3]

L'ensemble de cette zone est caractérisé par des terrains sédimentaires constitués par des jurassiques, des cretaces et des nummulitiques.

I.8 Couverture végétale

Suivant l'analyse de la carte d'occupation du sol au 1/1 000 000 pour Madagascar (édition ORSTOM-Tananarive), 55% de la superficie de la commune est dominée par des savanes arborées, 30% sont des savanes herbeuses, 10% de mosaïque de culture et le reste sont des forêts dégradées et des forêts denses.

CHAPITRE II: ASPECTS AGRO-SOCIO-ECONOMIQUES DE LA ZONE D'ETUDE

II.1 Situation démographique

II.1.1 Population

D'après la projection effectuée par l'INSTAT, le nombre de la population du CR de Beronono en 2015 est de 3 426 habitants, avec un taux d'accroissement annuel de 1,028 habitant par an. Elle est répartie de façon inégale dans une superficie de 1082 Km², présentant une densité de la population 3,17 habitants par kilomètre carré.

La répartition de la population par Fokontany est représentée dans la figure 4 ci-après :

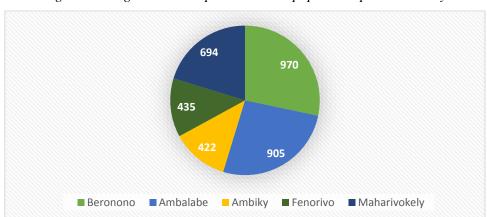


Figure 4: Diagramme de répartition de la population par Fokontany

Source: INSTAT/ Projection de la population 2015

II.1.2 Composition ethnique [11]

On y trouve plusieurs types d'ethnies, qui vivent côte à côte comme les Sakalava, les Masikoro, les Betsileo, les Antemoro, les Antesaka, les Antandroy, les Merina ainsi que les Bara. Ce dernier domine le chef-lieu de la commune par la culture de riz et de l'arachide en dehors de l'élevage. De plus chaque groupe d'ethnie à sa propre valeur et activité quotidienne qui se répartit dans le secteur agriculture, élevage et commerce.

II.2 Aspects sociaux [12]

II.2.1 Santé

La zone est mal équipée sur le plan sanitaire. Pour toute la commune, un seul CSB II est dirigé par une seule infirmière pour toute la population entière. L'état de santé des habitants de la commune est très inquiétant parce que la durée pour se rendre au service de maternité le plus proche est de l'ordre de 3h à 12h en période sèche ainsi que l'insuffisance des infrastructures sanitaires et personnels soignants. En effet, la commune est encore loin de l'OMD (Objectif du Millénaire de Développement) c'est-à-dire santé maternelle et la lutte contre les diverses maladies transmissibles.

II.2.2 Accès en eau potable

L'inexistence des points d'eau pour la consommation humaine dans chaque Fokontany oblige la population à utiliser l'eau provenant des lacs, des étangs ou des rivières pour leur besoin en eau quotidienne. L'eau biologiquement potable est rare à trouver dans la zone, c'est pour cela que le taux d'accès à l'eau potable est très faible.

II.2.3 Enseignement et éducation

On y trouve quatre établissements scolaires publics et une école primaire privée répartis dans la commune tout entière, et caractérisée par un faible niveau d'équipement en infrastructures et par ses très faibles rendements. C'est pourquoi on ne trouve pas d'enseignement secondaire dans toute la commune. Après avoir réussi leur premier examen national (CEPE), les élèves sont obligés d'aller en ville pour poursuivre leurs études, mais la majorité d'entre eux abandonnent au niveau primaire. Plusieurs facteurs peuvent expliquer ces abandons.

II.2.4 Sécurité

La CR de Beronono et la CR de Mandabe sont limitrophes entre eux. La CR de Mandabe est très attaquée par les Dahalo, c'est pourquoi la population locale de Beronono vit dans la peur et dans l'inquiétude. L'existence d'un poste de gendarmerie composé de 5 personnels ne suffit pas à assurer la sécurité d'une vaste surface comme Beronono.

II.3 Activité économique

II.3.1 Agriculture [12]

La production agricole du CR de Beronono est caractérisée par plusieurs types de cultures telle que le riz, l'arachide, la canne à sucre, le maïs, le manioc, le saonjo, la banane et la mangue, mais la riziculture reste l'activité principale des paysans de la commune, occupant environ 72 % de la superficie cultivée en cultures vivrières. Miandrivazo et Mahabo y compris notre zone sont les zones productrices de riz dans la région du Menabe. On notera aussi que 90 % des terres de Mahabo et 74 % de celles de Miandrivazo sont des rizières. Le tableau 3 suivant montre les circuits de production en pourcentage des produits agricoles du CR de Beronono

Tableau 3: Circuits de production en pourcentage des produits agricoles du CR de Beronono

PRODUITS	LOCAUX	DISTRICT	REGION	Autre District	TOTAL
				hors de la Région	
Paddy/Riz	100	0	0	0	100
Manioc	100	0	0	0	100
Patate douce	100	0	0	0	100
Arachide	10	10	80	0	100
Mais	100	0	0	0	100
Mangue	100	0	0	0	100

Source : MPAE / Service de la statistique agricole

D'après ce tableau, les produits agricoles restent consommés dans la zone seulement sauf pour l'arachide 10% seulement consommée localement et les restes sont exportés vers le cheflieu district et région. On peut envisager que ce résultat est dû à diverses raisons tels que le transport, l'insuffisance de production ou bien l'inexistence de collecteurs locaux.

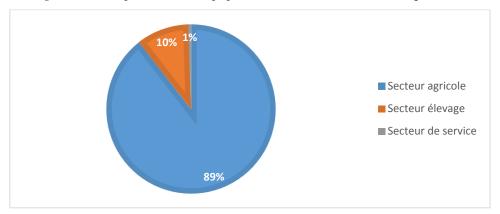
II.3.2 Elevage [12]

Puisque le CR de Beronono est une zone vaste et herbeuse, l'élevage occupe aussi une grande place dans la recherche de revenue de la population de la commune. On peut les distinguer en deux catégories: un élevage extensif et contemplatif de zébus, et un élevage domestique de bovins et porcin, qui vivent dans ou à proximité des villages. Les chiffres présentés dans le

tableau suivant nous montrent les nombres d'élevages avec leurs nombres d'éleveurs en 2009 dans la commune rurale de Beronono.

Tableau 4: Nombres des élevages avec leurs nombres d'éleveurs en 2009

Espèce animale	Effectif du cheptel	Nombre d'éleveurs
Bovins	4008	3914
Porcins	56	16


Source: MPAE/ Service de la statistique agricole

II.3.3 Autres activités économiques [11]

Autre que l'agriculture et l'élevage, le commerce prend une petite place dans la commune par l'existence de dix détaillants qui vend des produits de première nécessité et un produit vétérinaire.

La figure cinq suivantes nous montre la part de la population dans chaque secteur d'activité :

Figure 5: Diagramme de répartition de la population de Beronono dans chaque secteur d'activité

<u>Source</u>: Recensement des Communes de 2001 entrepris par le Programme Ilo de Cornell University avec FOFIFA et l'INSTAT

II.4 Situation actuelle du périmètre de Maharivo

Maharivo coïncide avec la zone agricole de haute potentialité agricole, cette zone comprend des grandes vallées alluviales comme les plaines deltaïques de Morondava et de Tsiribihina. La rivière Maharivo irrigue actuellement par des prises au fil de l'eau sur sa rive gauche et sa rive droite totalisant 812 ha. Cependant, même si la ressource en eau est abondante, une

grande partie de ces rizières sont annuellement ensablées : le sable semble avancer de plus en plus à l'intérieur des zones cultivées. Plus à l'intérieur sur les plateaux en rive gauche et probablement en rive droite existe une zone sableuse non cultivable. Les parties rizicultivables sont dominées par un éventuel site de barrage mesurant jusqu'à 832 ha, présentant des sols argileux, argilo – sableux.

Même si les rizières actuelles sont ensablées, un des avantages de notre zone d'étude est la grandeur de la superficie exploitable, que ce soit pour la riziculture que pour les autres cultures.

CHAPITRE III: ETUDES PLUVIOMETRIQUES

III.1 But [7]

Le principal but de l'étude pluviométrique dans un projet d'aménagement est de déterminer la hauteur et l'intensité de pluie tombée dans la zone d'étude ainsi que sa répartition spatiotemporelle.

III.2 Choix de la station de référence

La zone d'étude ne possède pas de station météorologique, alors les données exploitées sont celles de la station de Morondava qui est la station la plus proche, avec une série pluviométrique de 44 années d'observation (1960 - 2006 ; sauf 1999 et 2000) livrée auprès de la Direction de la Météorologie Ampandrianomby.

III.3 Exploitation des données pluviométriques

Les pluies moyennes mensuelles et annuelles ont été obtenues par l'étude statistique des données pluviométriques recueillies auprès de la station de Morondava. Cette statistique est établie en calculant la moyenne de chaque mois. La somme des pluies moyennes mensuelles donne la pluie moyenne annuelle exprimée en « mm ».

III.3.1 Pluviométrie moyenne mensuelle [mm]

Elle est définie par la formule :

$$\bar{P}_m = \frac{1}{N} \sum_{i=1}^{N} P_{m_i}$$
 [7]

Avec:

 \bar{P}_m : Pluviométrie moyenne mensuelle [mm];

 P_{m_i} : Pluviométrie mensuelle du mois concerné [mm];

N : Nombre d'années d'observations disponibles.

Le tableau suivant nous montre les valeurs des pluies moyennes mensuelles, ainsi que leur pourcentage par rapport à la pluie moyenne interannuelle.

D'après le calcul effectué, on a les valeurs des pluviométries moyennes mensuelles mentionnées dans le tableau qui suit.

III.3.1.1 Pluviométrie moyenne interannuelle [mm]

C'est la moyenne arithmétique des pluies moyennes annuelles de N années d'observation et est donnée par la formule :

$$\boxed{\bar{P}_a = \frac{1}{N} \sum_{a=1}^{N} P_a}$$
 [7]

Avec:

 \bar{P}_a : Pluie moyenne interannuelle [mm];

 P_a : Pluie annuelle de l'année considérée [mm];

N: Nombre d'années d'observations.

Le résultat des calculs a donné une pluie moyenne interannuelle de 755,60mm.

III.3.1.2 Ecart-type

Ce paramètre est défini par :

$$\partial = \sqrt{\frac{\sum_{a}^{N} (P_{a} - \overline{P})^{2}}{N - 1}}$$
 [7]

Avec:

 ∂ : Ecart-type;

 \bar{P} : Pluviométrie moyenne interannuelle [mm];

D'après les calculs, on trouve une valeur d'écart-type égale à 248,85mm.

III.3.2 Pluviométries de différentes fréquences

III.3.2.1 Pluviométrie quinquennale et décennale

Le traitement des données se fait par l'ajustement statistique selon la loi de GAUSS en appliquant la loi normale suivante pour le calcul des pluviométries annuelles quinquennales et décennales sèche et humide :

$$P_{F} = \bar{P}_{a} + \partial \mu_{F} \text{ (ann\'ee humide)}$$

$$P_{F} = \bar{P}_{a} - \partial \mu_{F} \text{ (ann\'ee s\`eche)}$$
[7]

Avec:

 P_F : Pluviométrie annuelle pour une fréquence donnée [mm];

 \bar{P}_a : Pluviométrie moyenne annuelle [mm];

 ∂ : Ecart-type;

 μ_F : Variable aléatoire de Gauss de fréquence F;

F: Fréquence.

D'où

Année sèche

$$P_{5h} = \bar{P}_a + 0.84\partial$$

$$P_F = \bar{P}_a - 0.84\partial$$

$$P_{10h} = \bar{P}_a + 1,28\partial$$

$$P_F = \bar{P}_a - 1,28\partial$$

Dans notre cas, $\bar{P}_a = 755,60 \text{ } mm \text{ et } \partial = 248,86 mm.$

III.3.2.2 Répartition mensuelle de la pluviométrie de différentes fréquences

La distribution mensuelle de P_F s'obtient en multipliant la pluviométrie annuelle de fréquence F considéré par les coefficients de répartition mensuelle.

La formule qui détermine cette répartition mensuelle s'exprime comme suit :

$$P_{mF} = \frac{P\% * P_F}{100}$$
 [7]

Avec:

 P_{mF} : Répartition mensuelle de la pluviométrie de différentes fréquences ;

P% : Répartition mensuelle de la pluviométrie moyenne mensuelle ;

 P_F : Pluviométrie annuelle de fréquence F.

Les résultats des calculs sont représentés dans les tableaux suivants :

Tableau 5: Récapitulatif des résultats

	JANV	FEVR	MARS	AVR	MAI	JUIN	JUIL	AOÛT	SEPT	ОСТ	NOV	DÉC	Moyenne interannuel le
Moyenne	256,99	206,33	87,72	19,85	8,13	1,66	1,93	1,76	3,17	9,73	19,57	138,97	755,60
P%	34,01	27,31	11,61	2,63	1,08	0,22	0,25	0,23	0,42	1,29	2,59	18,39	100,03
Ecart-type	pe l								248,86				
P5s	185,89	149,25	63,45	14,36	5,88	1,20	1,39	1,27	2,29	7,04	14,16	100,52	546,56
P10s	148,65	119,35	50,74	11,48	4,70	0,96	1,11	1,02	1,83	5,63	11,32	80,39	437,06
P5h	328,09	263,41	111,98	25,34	10,38	2,12	2,46	2,25	4,05	12,43	24,99	177,42	964,63
P10h	365,33	293,31	124,69	28,22	11,56	2,36	2,74	2,50	4,51	13,84	27,82	197,56	1074,13

III.3.3 Pluviométrie maximale journalière

Selon NIHYCRI, les périodes de retour à considérer varient selon les classements des infrastructures hydroagricoles.

Dans notre cas, la plaine a 832ha de superficie, il appartient donc à la classe III. Les périodes de retour à considérer sont donc les suivantes :

Tableau 6: Valeur de la période de retour selon la classification de NIHYCRI

Périmètre	Superficie en	Classe selon	Durée de vie	Crue de	Crue de
	ha	NIHYCRI	(ans)	projet (ans)	sureté (ans)
Beronono	832	III	50	50	225

Source: NIHYCRI

L'ajustement statistique s'effectue à l'aide de la loi de GUMBEL qui est une des méthodes donnant des résultats fiables. La loi de GUMBEL est exprimée par :

$$P_{max;F} = P_0 + \mu_F * a_G$$
 [8]

Avec:

$$P_0 = P_{m;max} - 0.45 \partial$$

$$\mu_F = -\ln(-lnF)$$

$$a_G = \partial /1,28$$

Dans lesquelles:

 $P_{max;F}$: Pluviométrie maximale journalière de fréquence F [mm];

F: Fréquence donnée;

 P_0 : Pluviométrie de l'année de référence;

 μ_F : Variable réduite de Gumbel;

 a_G : Gradex;

 $P_{m:max}$: Pluviométrie moyenne maximale journalière;

 ∂ : Ecart-type;

F=1-1/T : Fréquence avec T : période de retour.

Les résultats sont donnés dans le tableau suivant :

Tableau 7: Pluviométries maximales journalières de différentes fréquences

Pluviométrie de Différentes	$P_{max;10}$	$P_{max;50}$	$P_{max;j;225}$
Fréquences			
Valeur en mm	67,5	88,4	107,5

Avec:

 $P_{max;10}$: Pluviométrie maximale journalière en année décennale humide

 $P_{max;50}$: Pluviométrie maximale journalière en année cinquantennale humide;

 $P_{max;i;225}$: Pluviométrie maximale journalière de période de retour 225 ans en année humide.

CHAPITRE IV: ETUDES HYDROLOGIQUES

L'hydrologie est la science, qui étudie les eaux, leurs sources, leurs quantités et leurs qualités.

En général, la réalisation de cette étude est effectuée suivant la démarche suivante :

Collecte les données climatiques de la région ;

Calcul des caractéristiques principales du bassin versant ;

Calcul des apports provenant des différentes sources;

Estimation des débits de crue. [10]

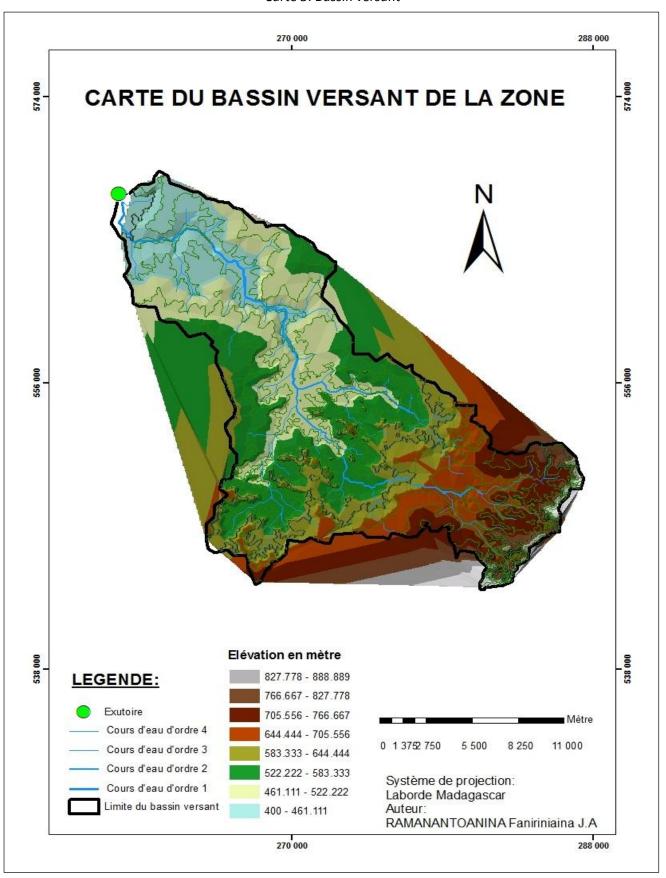
IV.1 Bassin versant

IV.1.1 Notion du bassin versant

Le BV en une section d'un cours d'eau est défini comme la surface drainée par ce cours d'eau et ses affluents en amont de la section. Tout écoulement prenant naissance à l'intérieur de cette surface doit donc traverser la section considérée, appelée exutoire, pour poursuivre son trajet vers l'aval.

Ainsi, la ressource en eau d'un cours d'eau ou rivière dépend de leur bassin versant.

IV.1.2 Délimitation du bassin versant [19]


Le BV a été délimité par le logiciel ArcGIS à partir du Modèle Numérique du Terrain (SRTM_mada). La carte suivante montre la limite du BV entier ayant comme exutoire le site du barrage, dont les coordonnées Laborde sont :

X=259 715,058 m

Y=567 722,791 m

Z=394,00 m

Carte 3: Bassin versant

IV.1.3 Caractéristique physique du bassin versant

Dans notre projet, les caractéristiques de bassin versant sont obtenues à partir de la carte du bassin versant précédent.

- > Superficie du bassin versant S : c'est la surface de réception, et d'alimentation des cours d'eau. La superficie du bassin versant est déterminée à partir de cette carte.
- Périmètre du bassin versant P: c'est la longueur totale du contour du bassin versant.
 Le périmètre du bassin versant est déterminé aussi à partir de cette carte.
- ➤ Plus long cheminement hydraulique L: c'est la longueur maximale, du cours d'eau jusqu'à l'exutoire du bassin versant, elle est déterminée de la même manière que la superficie S et le périmètre P du bassin versant.
- ➤ La pente du bassin versant I est obtenue, par la formule suivante :

$$I = \frac{0.95 (Zmax - Zmin)}{L}$$
 [10]

Avec:

I: Pente moyenne du bassin versant [m/km];

Zmax : Altitude maximale du bassin versant [m];

Zmin: Altitude minimale du bassin versant (exutoire) [m];

L: Plus long cheminement hydraulique [Km].

> Forme du bassin versant

La forme du bassin versant est très importante pour les crues, et la répartition de débit au cours de l'année. Plus le bassin est petit, plus les débits de crue par unité de surface sont importants.

La forme du bassin versant dépend de *l'indice de GRAVELUIS K* :

Si K = 1, le bassin versant a une forme d'un cercle.

Si K > 1, il a une forme allongée.

L'indice de GRAVELUIS K est défini, par la formule suivante :

$$K_C = 0.28 \frac{P}{\sqrt{S}}$$
 [10]

Avec:

 K_C : Coefficient de compacité de GRAVELIUS;

P : Périmètre du bassin versant en [Km] ;

S: Superficie du bassin versant en [Km²];

Dans notre cas, K = 1,7. Alors le bassin versant du projet a une forme allongée.

Ainsi, sont déterminés ces paramètres, concernant le bassin versant :

Tableau 8: Caractéristique du bassin versant

S [km²]	P [km]	K_C	<i>L</i> [km]	<i>l</i> [km]	Zmax [m]	Zmin [m]	<i>I</i> [m/km]
315	108	1,7	47,3	6,7	950	394	11,17

IV.2 Estimation des apports

La connaissance de la ressource en eau disponible est nécessaire pour pouvoir déterminer les surfaces maximales qu'il est possible de mettre en rizière et l'utilisation de l'eau pour les cultures de contre-saison. La ressource en eau est estimée suivant les méthodes suivantes:

- Méthode de CTGREF;
- Méthode de la station de référence.

IV.2.1 Méthode CTGREF

IV.2.1.1 Apport moyen annuel

C'est une méthode qui consiste à calculer les modules à partir des pluviométries enregistrées sur le bassin et en fonction de l'altitude moyenne du bassin versant. Cette valeur est définie par la formule ALDEGHERI:

$$Q_a = \frac{S}{31.5}E$$
 [10]

Avec $E = (\frac{P}{R})^{5/3} (\frac{Z_m}{100})^{1/3}$: Lame d'eau écoulée en quinquennale sèche [mm];

 Q_a : Apport moyen annuel [l/s];

S : Superficie du bassin versant [km²];

P: Pluviométrie moyenne annuelle [mm];

B: Paramètre régional;

 Z_m : Altitude moyenne du bassin versant [m].

Ainsi, pour les valeurs des apports annuels de différentes fréquences, il suffit de prendre la valeur de la pluviométrie annuelle sèche ou humide de la fréquence considérée à la place de la pluviométrie moyenne annuelle.

Les résultats sont présentés dans le tableau suivant :

Tableau 9: Apport moyen annuel et apport annuel pour les différentes fréquences

Apport annuel sec [l/s]		Apport moyen annuel [l/s]	Apport annuel humide [l/s]				
5 ans	10 ans	Médiane	5 ans	10 ans			
3706,55 2553,55		6359,11	9554,04 11429,10				

IV.2.1.2 Apport moyen mensuel

Les débits mensuels s'obtiennent à partir des débits annuels et des coefficients de répartition mensuelle de la région :

$$Q_m = \frac{Q_a * 12 * R4}{100}$$
 [7]

Avec:

 Q_m : Débit mensuel [l/s];

 Q_a : Apport moyenne annuelle [l/s];

R4 : Coefficient de répartition mensuelle de la région.

Ainsi, les apports mensuels des différentes fréquences sont obtenus en considérant la valeur de l'apport annuelle sèche ou humide de la fréquence considérée à la place de l'apport moyenne annuelle.

Les résultats sont donnés par le tableau suivant :

Tableau 10: Apports moyens mensuels Qm et apport moyen mensuel des différentes fréquences

QmF

	JANV	FEVR	MARS	AVR	MAI	JUIN	JUIL	AOÛT	SEPT	OCT	NOV	DEC	ANNEE
R4	23,70	18,90	17,10	6,60	3,70	2,70	2,30	2,00	1,50	1,50	3,20	15,70	98,90
Q_m	18085 ,3	14422.5	13048.9	5036.4	2832.4	2060.4	1755.1	1526.2	1144.6	1144.6	2441.9	11980.6	6289.2
Q_{m5s}	10541.4	8406.5	7605.8	2935.6	1645.7	1200.9	1023.0	889.6	667.2	667.2	1423.3	6983.1	3665.8
Q_{m10s}	7262.3	5791.4	5239.9	2022.4	1133.8	827.3	704.8	612.9	459.6	459.6	980.6	4810.9	2525.5
Q_{m5h}	27171.7	21668.6	19604.9	7556.8	4242.0	3095.5	2636.9	2293.0	1719.7	1719.7	3668.8	17999.8	9449.0
Q_{m10h}	32504.4	25921.2	23452.5	9051.8	5074.5	3703.0	3154.4	2743.0	2057.2	2057.2	4388.8	21532.4	11303.4

IV.2.2 Méthode de STATION DE REFERENCE

Cette méthode est basée sur l'exploitation des valeurs observées sur les stations hydrométriques. Comme la zone étudiée ne possède pas de station hydrométrique, la rivière Morondava à Dabara qui est la station la plus proche et possédant une série d'observations de 32 années (1952- 1984) est alors prise comme référence.

La station de DABARA (20° 24' S ; 44° 47' E) est située près de la prise d'eau de DABARA, en bordure de la RN 35. Le bassin versant contrôlé a une superficie de 4640 km².

IV.2.2.1 Apports interannuels des diverses fréquences à la station de Dabara

Les valeurs des apports moyens interannuels à la station de référence sont données par le tableau suivant :

Tableau 11: Valeur des apports interannuels à la station de Dabara

Apport annuel spécifique		Apport moyen annuel	Apport annuel spécifique			
sec [l/s/km²]		spécifique [l/s/km²]	humide [l/s/km²]			
5 ans	10 ans	Médiane	5 ans	10 ans		
8,9 7,9 10,6		10,6	12,0	12,6		

Source: Fleuves et rivières de Madagascar page 523

IV.2.2.2 Apports interannuels des diverses fréquences du Bassin versant

Cet apport est obtenu en multipliant les valeurs des débits spécifiques à la station référence, par la superficie du bassin versant à étudier. Cela se traduit par :

$$Q_a = q_a * S$$
 [8]

Avec:

 Q_a : Débit d'écoulement moyen du bassin étudié [m³/s];

 q_a : Débit spécifique du bassin versant de référence [l/s/km²];

S : Surface du bassin versant étudié [km²].

Le tableau suivant nous montre les apports des différentes fréquences du bassin versant étudié.

Tableau 12: Valeur des apports interannuels du Bassin versant

Apport annuel sec [l/s]		Apport moyen annuel [1/s]	Apport annuel humide [l/s]			
5 ans	10 ans	Médiane	5 ans	10 ans		
2803,5	2488,5	3339,0	3780,0	3969,0		

IV.2.2.3 Apports moyens mensuels

Les apports mensuels s'obtiennent à partir des débits annuels et des coefficients de répartition mensuelle de la région :

 $Q_m = \frac{Q_a * 12 * R4}{100}$ [8]

Avec:

 Q_m : Débit mensuel [l/s]

 Q_a : Apport moyen annuel [l/s]

R4 : Coefficient de répartition mensuelle de la région

Les résultats sont donnés par le tableau suivant :

Tableau 13: Apport moyen mensuel de différentes fréquences

	JANV	FEVR	MARS	AVR	MAI	JUIN	JUIL	AOÛT	SEPT	OCT	NOV	DEC	ANNEE
R4	23,7	18,9	17,1	6,6	3,7	2,7	2,3	2,0	1,5	1,5	3,2	15,7	98,9
Q_m	9496,1	7572,9	6851,6	2644,5	1482,5	1081,8	921,6	801,4	601,0	601,0	1282,2	6290,7	3302,3
Q_{m5s}	7973,2	6358,3	5752,8	2220,4	1244,8	908,3	773,8	672,8	504,6	504,6	1076,5	5281,8	2772,7
Q_{m10s}	7077,3	5643,9	5106,4	1970,9	1104,9	806,3	686,8	597,2	447,9	447,9	955,6	4688,3	2461,1
Q_{m5h}	10750,3	8573,0	7756,6	2993,8	1678,3	1224,7	1043,3	907,2	680,4	680,4	1451,5	7121,5	3738,4
Q_{m10h}	11287,8	9001,7	8144,4	3143,4	1762,2	1286,0	1095,4	952,6	714,4	714,4	1524,1	7477,6	3925,3

IV.2.3 Synthèse des résultats

Les valeurs obtenues par la méthode STATION DE REFERENCE sont légèrement plus faibles que celles de la méthode CTGREF. Par précaution, on prend les valeurs issue de la méthode STATION DE REFERENCE, on considère les apports en année quinquennale sèche, alors les tableaux suivants récapitulent ces valeurs.

Tableau 14: valeur moyenne des apports interannuels quinquennaux secs des deux méthodes

Méthode	CTGREF	STATION DE REFERENCE	MOYENNE
Q 0,2 sèches	3706,5	2803,5	3255,0

Tableau 15: Valeur moyenne des apports moyens mensuels des deux méthodes

METHODE	JANV	FEVR	MARS	AVR	MAI	JUIN	JUIL	AOÛT	SEPT	OCT	NOV	DÉC
CTGREF	10541,4	8406,5	7605,8	2935,6	1645,7	1200,9	1023,0	889,6	667,2	667,2	1423,3	6983,1
STATION												
DE	7973,2	6358,3	5752,8	2220,4	1244,8	908,3	773,8	672,8	504,6	504,6	1076,5	5281,8
REFERENCE												
MOYENNE	9257,3	7382,4	6679,3	2578,0	1445,2	1054,6	898,4	781,2	585,9	585,9	1249,9	6132,5

IV.3 Estimation des débits de crues

Par définition une crue est une augmentation du débit d'une rivière par rapport à la normale. Il existe plusieurs méthodes pour estimer le débit de crue relatif à un bassin versant selon ses caractéristiques et suivant son régime hydrologique. Les méthodes utilisées par la présente étude sont celles d'ORSTOM et de Louis DURET.

Pour ce calcul, NIHYCRI exige pour tout nouvel aménagement d'utiliser les crues de dimensionnement comme base de calculs des infrastructures hydroagricoles par rapport aux crues. Pour notre cas, le temps de retour à utiliser est de 50 ans pour la crue de projet et 225 ans pour la crue de sureté. [7]

IV.3.1 Méthode d'ORSTOM

La méthode d'ORSTOM est valable pour des bassins versants de superficie supérieure à 10 [km²]. La formule utilisée est comme suit:

$$Q_T = 4.31S^{0.72}P^{0.03}I^{0.26}E^{2.31}G^{1.25}V^{0.27}$$
 [10]

Avec:

 Q_T : Débit de crue de période T $[m^3/s]$;

S: Superficie du bassin versant [Km²];

I: Indice de pente globale [m/Km];

P : Indice de précipitations [mm] ;

E: Indice d'exondement ; égal à 1 ;

G: Coefficient d'imperméabilité; égal à 0.9;

V: Indice de la couverture végétale ; égal à 0.4 ;

Ces variables sont tirées de l'ouvrage « Fleuves et Rivières de Madagascar » et l'application de cette méthode au bassin versant concerné donne les résultats suivants :

Tableau 16: Débit de crue par la méthode d'ORSTOM

RIVIERE	METHODE	CRUE	CRUE DE	CRUE DE	
		DECENAL $[m^3/s]$	PROJET $[m^3/s]$	SURETE $[m^3/s]$	
Maharivo	ORSTOM	T=10	T=50	T=225	
		$Q_{10} = 394$	$Q_{50} = 397$	$Q_{225} = 400$	

IV.3.2 Méthode de LOUIS DURET

La méthode Louis DURET est applicable pour les bassins versants dont la superficie est supérieure à 10 km². La formule s'annonce comme suit :

$$Q_T = KS^{\alpha} I^{0.32} P_F \left(1 - \frac{36}{P_F} \right)^2$$
 [10]

Une formule simplifiée est valable pour des petits et grands bassins versant donnés par la SOMEAH.

➤ Pour un petit Bassin versant c'est-à-dire une superficie inférieure à 150 km² on a

$$Q_T = 0.009 S^{0.5} I^{0.32} P_{24;T}^{1.39}$$

➤ Pour un grand Bassin versant c'est-à-dire une superficie supérieure à 150 km² on a :

$$Q_T = 0.002S^{0.8}I^{0.32}P_{max24;T}^{1.39}$$

Dans laquelle:

 Q_T : Débit de crue de période retour T $[m^3/s]$

S: Surface du bassin versant [km²];

I: Pente du bassin versant [m/km]; et

 $P_{max24;T}$: Pluie maximale journalière tombée en un point du bassin versant pour la même période de retour T.

Les résultats de calcul sont donnés par le tableau suivant :

Tableau 17: Débit de crue par la méthode de LOUIS DURET

RIVIERE	METHODE	CRUE DECENAL $[m^3/s]$	CRUE DE	CRUE DE	
			PROJET $[m^3/s]$	SURETE $[m^3/s]$	
Maharivo	LOUIS	T=10	T=50	T=225	
	DURET	$Q_{10} = 151$	$Q_{50} = 219$	$Q_{225} = 288$	

IV.3.3 Synthèse de résultat

Par précaution, le débit de crues adopté pour ce projet est la valeur maximale trouvée entre ces deux méthodes.

Selon NIHYCRI, la crue décennale sert à dimensionner le réseau de drainage tandis que les crues de projet sont utilisées pour le dimensionnement des ouvrages dans le cas où le dépassement des crues de dimensionnement sur les infrastructures ne causerait pas la destruction de l'infrastructure. Dans le cas contraire, on utilise les crues de sûreté.

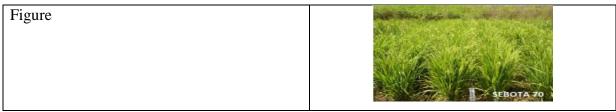
CHAPITRE V: ETUDES DES BESOINS EN EAU

L'étude des besoins en eau est un des facteurs les plus importants pour un projet d'aménagement d'un périmètre irrigué. Il permet de dimensionner les ouvrages d'irrigation. Avant d'entamer les calculs de besoin en eau de la zone étudiée, if faut d'abord définir le type de cultures, la variété de cultures, le calendrier cultural, la pluie efficace, l'évapotranspiration, le coefficient cultural ainsi que la perte par infiltration.

V.1 Type de culture et calendrier cultural

Pour notre cas, deux saisons de culture à cycle court de trois mois sont à envisager telles que :

- La culture de « vary Asara » appliquée pendant la saison de pluie où le repiquage des parcelles commence la 3 ème décade du mois de Février et la récolte en mois de Juin;
- La culture de « vary Asotry », pendant la saison d'étiage où le repiquage commence la 3 ème décade du mois de Juin et la récolte en mois d'Octobre.


Le repiquage des parcelles s'étale en 4 décades à cause des conditions agronomiques et climatologiques.

V.2 Variété culturale

Pour ces deux types de cultures, on a introduit la variété culturale «Sebota 70» qui est la variété de riz favorable à la condition climatique et géologique de la zone. Le tableau suivant montre quelque caractéristique du SEBOTA 70.

Tableau 18: Caractéristique du Sebota 70

Nom	SEBOTA 70
Culture	Riz polyaptitudes (Saison ou contre-saison)
Cycle	95 à 100 jours selon la saison
Pied	Rouge ou blanc
Rendement à l'usinage	62 à 64%
Rendement cultural en irrigué	12t/ha

Source : SD Mad / Variété culturale

V.3 Coefficient cultural [15]

Le coefficient cultural dépend du type de climat, de la culture, du stage de la végétation et du degré de couverture du sol. Il est fonction de la période de la croissance de la plante et varie suivant le stade développement de la culture.

Selon les calendriers culturaux pratiqués pour la saison de culture, les valeurs des coefficients culturaux sont de 0,9 avant le remplissage des rizières, 1,1 pendant les 6 décades suivant la mise en eau des parcelles et 1,05 pour la suite.

V.4 Pluie efficace [15]

La pluie efficace est la quantité de pluie tombée sur les parcelles. Elle est estimée à 80% de la pluie tombée avant le remplissage des rizières et 70% de la pluie tombée après le remplissage. Ainsi, les pluies journalières inférieures à 5mm ne sont pas considérées, car elles sont estimées comme entièrement évaporées et les pluies efficaces sont exprimées en décades pour notre cas.

V.5 Pertes d'eau par évapotranspiration potentielle

L'ETP est la quantité d'eau évapotranspirée par une couverture végétale en phase de croissance et par le sol. L 'ETP dépend essentiellement des facteurs climatologiques comme la température, l'humidité relative, le vent, l'insolation et le rayonnement solaire. Pour notre cas, on a utilisé la valeur de l'ETP décadaire calculée par le Service de la Météorologie Agronomique (SMA) à partir de la formule de Penman, dont 23 ans d'observation entre 1957 à 1980, les valeurs sont données par le tableau suivant :

Janvier Février Mars Avril Mai Juin Dec1 Dec2 Dec3 57 63 70 61 59 55 54 43 52 46 43 37 36 32 32 46 36 31 Juillet Août Septembre Octobre Novembre Décembre Dec1 Dec2 Dec3 31 33 70 38 37 40 50 47 51 57 58 62 71 68 68 58 63 67

Tableau 19: Evapotranspiration potentielle décadaire

Source : Service de la Météorologie Agronomique (SMA)

V.6 Pertes d'eau par infiltration

Les pertes par infiltration commencent dès qu'on a une nappe d'eau au-dessus de la couche mise en boue déjà saturée. Ces pertes sont supposées égales à 2mm/j pendant le remplissage de la couche entre la partie mise en boue et le niveau statique de la nappe phréatique et à 1mm/j après la saturation de cette couche.

V.7 Besoin propre de la plante BP

C'est la quantité d'eau à compenser par l'irrigation parce que la pluie ne suffit pas ou bien l'évapotranspiration est trop grande par rapport à la pluie.

Ce besoin symbolisé par BP est obtenu à partir de la formule :

$$BP = k_c ETP - P_e$$
 [10]

Dans laquelle:

 k_c : Coefficient cultural

ETP: L'évapotranspiration potentielle

 P_e : La pluie efficace

Si la valeur de BP calculée est négative, elle sera considérée comme nulle.

V.8 Besoin lié à la pratique culturale ($B_{absolue}$) [15]

On distingue différentes étapes de travaux de riziculture. Cependant, on présente ici les principales directement liées à l'évaluation de la quantité d'eau nécessaire à l'irrigation.

V.8.1 Mise en boue (MB)

Ceci comporte les opérations de mise en eau, hersage ou piétinage et de planage des parcelles. Cette opération intervient pendant la décade qui précède le repiquage. Une hauteur d'eau de 100 mm permet d'assurer cette opération.

V.8.2 Remplissage des clos (RC)

On procède au remplissage des parcelles à la décade suivant le repiquage. Une hauteur de 100 mm est demandée pour assurer une submersion minimale au-dessus de la surface du sol dans les parcelles repiquées.

V.8.3 Mise à sec (AS)

Il est pratiqué avant et après sarclage et on procède à l'assèchement de la rizière suivi du sarclage et puis on apporte de nouveau de l'eau dont la quantité sera égale à celle pendant le remplissage de clos.

V.8.4 Entretien (E)

Effectuée après sarclage, cette phase consiste à assurer l'oxygénation de l'eau dans les parcelles. L'opération sert donc à renouveler la hauteur de la lame d'eau de 50 mm, hauteur constante jusqu'à la récolte.

L'irrigation devra être arrêtée à la deuxième décade qui précède la récolte tout en compensant entre temps les pertes par infiltration et les pertes par évapotranspiration.

V.9 Besoin net B_n

C'est la quantité d'eau qui doit être effectivement consommée par la plante. Elle ne tient compte ni les apports naturels ni des diverses pertes pendant le transport ni la distribution jusqu'à la parcelle.

$$B_n = 10 * (B_p + B_{absolue})$$
 [9]

Dans laquelle:

 B_n : Besoins nets en [m3/ha];

 B_p : Besoins de la plante en [mm];

 $B_{absolue}$: Besoin absolu égale à $B_{absolue} = MB + RC + AS + E$

V.10 Efficience E_t

C'est une majoration tenant compte des pertes lors de leur transport de distribution à la parcelle. Dans la pratique, l'efficience varie de 70% à 90% selon le type de réseau considéré, mais d'une manière générale l'efficience globale se situe autour de 60%.

V.11 Besoin total brut

C'est la quantité d'eau nécessaire à la parcelle qui se trouve en tête de réseau et exprimé en [l/s/ha] et qui tient compte toutes les pertes.

$$B_b = \frac{B_n}{E_t}$$
 [10]

Dans laquelle:

 B_n : Les besoins nets en [m3/ha];

 E_t : Efficience du réseau.

V.12 Débit fictif continu (dfc)

C'est le débit qui fournit d'une façon continue 24 heures sur 24 permettrait de satisfaire les besoins en eau d'une période donnée par la surface unitaire et il est exprimé en l/s par ha.

$$q = \frac{B_b * 1000}{N * 24 * 3600}$$
 [9]

Dans laquelle:

q : Débit fictif continu [l/s/ha] ;

 B_b : Besoin brut de la riziculture $[m^3/\text{ha}]$;

N : Nombre de jours.

V.13 Adéquation ressource-besoin

Cela consiste à comparer les ressources en eau disponibles pour un mois considéré et les besoins en eau d'irrigation pendant le même mois. Pour que les conditions d'irrigation soient assurées, il faut que ces besoins soient inférieurs aux apports.

Le principe est de faire multiplier le débit fictif continu de chaque mois par la surface à irriguer, et on fait la comparaison de ces valeurs avec les apports en année quinquennale sèche.

Les résultats de comparaison sont présentés dans le tableau suivant.

Tableau 20: Résultat de l'adéquation ressource et besoin

	Décade	Apport disponible [I/s] 7382,4	Dfc [l/s/ha] 0,24	Surface [ha]	Besoin [l/s]	Débit restant [I/s] 7185,63	Volume d'eau restant [m³] 6208385,95	
FEVR	Dec 2	7382,4	0,46	832	381,98	7000,42	6048364,62	
	Dec 3	7382,4	1,32	832	1098,74	6283,66	5429079,28	
	Dec 1	6679,3	1,85	832	1536,73	5142,58	4443192,11	
MARS	Dec 2	6679,3		832	1567,54	5111,77	4416568,11	
IVIARS			1,88		·		·	
	Dec 3	6679,3	1,75	832	1458,41	5220,90	4510861,45	
	Dec 1	2578,0	1,26	832	1046,90	1531,08	1322852,07	40905583,24
AVR	Dec 2	2578,0	0,91	832	758,33	1819,65	1572174,73	[m ³]
	Dec 3	2578,0	0,66	832	548,89	2029,09	1753134,73	
	Dec 1	1445,2	0,37	832	304,94	1140,29	985213,11	
MAI	Dec 2	1445,2	0,10	832	80,25	1364,98	1179346,44	
	Dec 3	1445,2	0,05	832	40,12	1405,11	1214013,11	
	Dec 1	1054,6	0	832	0,00	1054,63	911198,75	
JUIN	Dec 2	1054,6	0	832	0,00	1054,63	911198,75	
	Dec 3	1054,6	0,43	832	356,94	697,69	602804,09	
	Dec 1	898,4	0,72	832	595,91	302,47	261337,01	
JUIL	Dec 2	898,4	1,46	832	1217,02	-318,64	-275302,99	
	Dec 3	898,4	1,84	832	1528,70	-630,32	-544593,65	
	Dec 1	781,2	1,66	832	1380,25	-599,04	-517571,29	607121 76
AOÛT	Dec 2	781,2	1,68	832	1396,30	-615,09	-531437,96	-687121,76
	Dec 3	781,2	1,45	832	1203,70	-422,50	-365037,96	[m³]
	Dec 1	585,9	1,09	832	906,79	-320,89	-277245,14	
SEPT	Dec 2	585,9	0,84	832	698,15	-112,24	-96978,47	
	Dec 3	585,9	0,50	832	414,07	171,83	148461,53	
	Dec 1	585,9	0,10	832	80,25	505,66	436888,20	
ОСТ	Dec 2	585,9	0,05	832	40,12	545,78	471554,86	

Saison ASARA

Saison ASOTRY

Discussions des résultats

D'après ce tableau, en saison Asara les ressources sont largement suffisantes pour irriguer le périmètre, elle présente 40 905 583 m³ de volume d'eau excédentaire. Tandis qu'en saison Asotry, on peut irriguer le 91% de la superficie du périmètre c'est-à-dire 757Ha. Et pour éviter que les 9% des terres soient vacantes pendant cette période, il faut les utiliser pour des cultures maraîchères, car ce type de culture nécessite peu d'eau pour leur développement. Mais si on exige d'irriguer tout le périmètre en contre-saison, il faut envisager un bassin de stockage d'eau de 687 122 m³

V.14 Calcul des débits

V.14.1 Débit fictif continue de pointe (dfcp) en [l/s/ha]

C'est le débit maximal observé parmi les dfc durant le cycle végétatif.

V.14.2 Débit d'équipement Q_E en [l/s/ha]

C'est la majoration des dfc pour compenser les pertes dues à l'infiltration et à l'évaporation et ce coefficient de majoration est à 1,1 à 1,2. Ce débit sert à dimensionner les canaux.

 Q_E = Max(dfc) x 1,1 lorsque les ressources disponibles sont limitées.

 Q_E = Max(dfc) x 1,2 lorsque les ressources disponibles sont largement suffisantes.

Tableau 21: Résultat des calculs des besoins en eau en saison de pluie : cas de « Vary Asara »

		Fév	Mar			Avr			Mai			Jul					
Année	Irrigation	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Total du besoin de la campagne culturale en m3/ha	Débit de point en l/s/ha	Débit d'équ ipem ent en l/s/ha	Besoin en eau d'irrigation en m3/ha
2014	Besoin des rizières en m3/ha	200	375	685	975	1035	938	648	483	350	200	50	25	6561	2,00	2,20	10935
	Besoin total brut (l/s/ha)	333,33	625,00	1141,67	1625,00	1725,00	1563,33	1080,00	805,00	583,33	333,33	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,39	0,72	1,32	1,88	2,00	1,81	1,25	0,93	0,68	0,39	0,10	0,05				
2013	Besoin des rizières en m3/ha	0,00	168,00	603,00	938,00	1043,00	908,00	680,00	483,00	340,00	195,00	50,00	25,00	5977,00	2,01	2,21	9962
	Besoin total brut (l/s/ha)	280,00	1005,00	1563,33	1738,33	1513,33	1133,33	805,00	566,67	325,00	83,33	41,67	0,00				
	Débit fictif continu (l/s/ha)	0,00	0,32	1,16	1,81	2,01	1,75	1,31	0,93	0,66	0,38	0,10	0,05				
2012	Besoin des rizières en m3/ha	155,00	270,00	820,00	963,00	888,00	900,00	680,00	483,00	350,00	200,00	50,00	25,00	6363,00	1,86	2,04	10605
	Besoin total brut (l/s/ha)	258,33	450,00	1366,67	1605,00	1480,00	1500,00	1133,33	805,00	583,33	333,33	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,30	0,52	1,58	1,86	1,71	1,74	1,31	0,93	0,68	0,39	0,10	0,05				
2011	Besoin des rizières en m3/ha	198,00	105,00	648,00	1053,00	858,00	923,00	625,00	438,00	310,00	178,00	50,00	25,00	5953,00	2,03	2,23	9922
	Besoin total brut (l/s/ha)	330,00	175,00	1080,00	1755,00	1430,00	1538,33	1041,67	730,00	516,67	296,67	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,38	0,20	1,25	2,03	1,66	1,78	1,21	0,84	0,60	0,34	0,10	0,05				
2010	Besoin des rizières en m3/ha	235,00	350,00	693,00	950,00	1043,00	908,00	680,00	468,00	340,00	195,00	50,00	25,00	6531,00	2,01	2,21	10885
	Besoin total brut (l/s/ha)	391,67	583,33	1155,00	1583,33	1738,33	1513,33	1133,33	780,00	566,67	325,00	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,45	0,68	1,34	1,83	2,01	1,75	1,31	0,90	0,66	0,38	0,10	0,05				
2009	Besoin des rizières en m3/ha	170,00	203,00	508,00	915,00	973,00	938,00	610,00	468,00	350,00	200,00	50,00	25,00	5951,00	1,88	2,07	9918
	Besoin total brut (l/s/ha)	283,33	338,33	846,67	1525,00	1621,67	1563,33	1016,67	780,00	583,33	333,33	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,33	0,39	0,98	1,77	1,88	1,81	1,18	0,90	0,68	0,39	0,10	0,05				
2008	Besoin des rizières en m3/ha	0,00	33,00	658,00	943,00	1028,00	938,00	680,00	468,00	350,00	183,00	50,00	25,00	5892,00	1,98	2,17	9820
	Besoin total brut (l/s/ha)	0,00	55,00	1096,67	1571,67	1713,33	1563,33	1133,33	780,00	583,33	305,00	83,33	41,67				

MEMOIRE DE FIN D'ETUDE

		Fév	Mar	Avr	Mai	Jul											(Suite)
Année	Irrigation	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Total du besoin de la campagne culturale en m3/ha	Débit de point en l/s/ha	Débit d'équ ipem ent en l/s/ha	Besoin en eau d'irrigation en m3/ha
2007	Besoin des rizières en m3/ha	180,00	378,00	775,00	990,00	893,00	938,00	640,00	468,00	350,00	183,00	50,00	25,00	6457,00	1,91	2,10	10762
	Besoin total brut (l/s/ha)	0,00	630,00	1291,67	1650,00	1488,33	1563,33	1066,67	780,00	583,33	305,00	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,00	0,73	1,49	1,91	1,72	1,81	1,23	0,90	0,68	0,35	0,10	0,05				
2006	Besoin des rizières en m3/ha	18,00	103,00	613,00	915,00	1003,00	848,00	640,00	483,00	340,00	183,00	50,00	25,00	5744,00	1,93	2,12	9573
	Besoin total brut (l/s/ha)	30,00	171,67	1021,67	1525,00	1671,67	1413,33	1066,67	805,00	566,67	305,00	83,33	41,67				
	Débit fictif continu (l/s/ha)	0,03	0,20	1,18	1,77	1,93	1,64	1,23	0,93	0,66	0,35	0,10	0,05				
2005	Besoin des rizières en m3/ha	250,00	395,00	843,00	933,00	1003,00	848,00	640,00	483,00	340,00	183,00	50,00	25,00	6593,00	1,93	2,12	10988
	Besoin total brut (l/s/ha)	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60				
	Débit fictif continu (l/s/ha)	0,48	0,76	1,63	1,80	1,93	1,64	1,23	0,93	0,66	0,35	0,10	0,05				

Voici un tableau récapitulatif des débits fictifs continus de pointe des différentes années et leur besoin en eau respective en « Vary Asara »

Tableau 22: Débits fictifs continus de pointe des différentes années et leur besoin en eau respective en « Vary Asara »

Année	Besoin en eau d'irrigation en m3/ha	dfc de pointe en l/s/ha
2014	10 935	2,00
2013	9 962	2,01
2012	10 605	1,86
2011	9 922	2,03
2010	10 885	2,01
2009	9 918	1,88
2008	9 820	1,98
2007	10 597	1,91
2006	9 573	1,93
2005	10 988	1,93
Moyenne	10 321	1,95
Ecartype (l/s)		0,06

On trouve alors un besoin en eau d'irrigation moyenne de 10 321 m3/ha en « **vary Asara** ». En appliquant la loi GAUSS pour trouver le débit fictif continu de pointe en année quinquennale sèche, on a :

DFC $_{0,2}$ = DFC $_{MOYENNE}$ + 0,82*ECARTYE DFC = 1,95 + 0,82*0,06 = 1,99 l/s/ha. Soit un débit fictif continu de pointe dfc pointe= 2 l/s/ha en saison de pluie ou « vary Asara ».

Le tableau suivant montre les résultats de calcul des besoins en eau en étiage : cas de « Vary Asotry » du périmètre.

Tableau 23: Résultat des calculs des besoins en eau en étiage : cas de « Vary Asotry »

		Juin		Juillet			Août		S	Septemb	re	Octo	obre				
Année	Irrigation	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Dec 3	Dec 1	Dec 2	Total du besoin de la campagne culturale en m3/ha	Débit de point en l/s/ha	Débit d'équipement en l/s/ha	Besoin en eau d'irrigation en m3/ha
2014	Besoin des rizières en m3/ha	250	360	723	853	700	745	550	468	370	225	50	25	5851	1,87	2,05	9752
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2013	Besoin des rizières en m3/ha	250	390	775	968	860	870	750	565	435	258	50	25	6816	1,87	2,05	11360
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2012	Besoin des rizières en m3/ha	78	218	608	813	860	870	750	565	435	258	50	25	6083	1,68	1,85	10138
	Besoin total brut (I/s/ha)	130,00	363,33	1013,33	1355,00	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	10139			
	Débit fictif continu (l/s/ha)	0,15	0,42	1,17	1,57	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2011	Besoin des rizières en m3/ha	250	390	775	968	860	870	750	565	435	258	50	25	6816	1,87	2,05	11360
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2010	Besoin des rizières en m3/ha	250	390	775	968	860	870	750	565	435	258	50	25	6816	1,87	2,05	11360
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2009	Besoin des rizières en m3/ha	250	390	775	968	860	870	750	565	435	258	50	25	6816	1,87	2,05	11360
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2008	Besoin des rizières en m3/ha	250	390	775	968	860	870	750	565	435	258	50	25	6816	1,87	2,05	11360
	Besoin total brut (I/s/ha)	416,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11360			
	Débit fictif continu (l/s/ha)	0,48	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2007	Besoin des rizières en m3/ha	238	390	775	968	860	870	750	565	435	258	50	25	6803	1,87	2,05	11338
	Besoin total brut (I/s/ha)	396,67	650,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11338			
	Débit fictif continu (l/s/ha)	0,46	0,75	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				
2006	Besoin des rizières en m3/ha	158	375	775	968	860	870	750	565	435	258	50	25	6698	1,87	2,05	11163
	Besoin total brut (I/s/ha)	263,33	625,00	1291,67	1613,33	1433,33	1450,00	1250,00	941,67	725,00	430,00	83,33	41,67	11164			
	Débit fictif continu (l/s/ha)	0,30	0,72	1,49	1,87	1,66	1,68	1,45	1,09	0,84	0,50	0,10	0,05				

Voici un tableau récapitulatif des débits fictifs continus de pointe des différentes années et leur besoin en eau respective en « Vary Asotry ».

Tableau 24: Débits fictifs continus de pointe des différentes années et leur besoin en eau respective en « Vary Asotry ».

Année	Besoin en eau d'irrigation en m3/ha	dfc de pointe en l/s/ha
2014	9 752	1,87
2013	11 360	1,87
2012	11 163	1,87
2011	11 360	1,90
2010	11 360	1,87
2009	11 360	1,87
2008	11 360	1,87
2007	11 338	1,87
2006	11 163	1,87
2005	11 360	1,87
Moyenne	11 158	1,87
Ecartype (l/s)		0,01

Source: Auteur

Pour toutes les années qu'on a, il n'y a plus de pluie à partir du mois juin jusqu'en octobre. D'où l'unique tableau de calcul de besoin en eau ci-dessus pour le « vary Asotry ». On trouve Be=11 158 m3/ha (en contre-saison ou « vary Asotry ») et débit fictif continu de pointe dfc pointe= 1,9 l/s/ha.

Résultat :

On trouve un débit d'équipement réduit en « vary ASOTRY », dfc =1,9 l/s/ha contre 2 l/s/ha en « vary ASARA », car on a une évapotranspiration potentielle ETP beaucoup plus faible en contre-saison même s'il n'y a pas de pluie.

Pour la valeur du débit d'équipement de ce projet, on prend le maximum des 2 débits des débits fictifs continu des 2 campagnes culturales en multipliant par 1,2 pour compenser les

pertes dues à l'infiltration et à l'évaporation. Après calcul, on trouve un débit d'équipement égal à **2,4 l/s/ha**

V.14.3 Débit nominal

C'est le débit que l'on doit capter en tête du réseau.

$$\boxed{\boldsymbol{D}_n = \boldsymbol{Q}_E * \boldsymbol{S}}$$
 [8]

Dans laquelle:

 D_n : Débit nominal [m³/s];

 Q_E : Débit d'équipement [l/s/ha];

S : Superficie de la parcelle à irriguer [ha].

Pour une surface irriguée de 832ha la valeur du débit nominal est donc $D_n=2$ m³/s.

V.14.4 Main d'eau

C'est le débit que l'usager utilise effectivement à l'unité parcellaire d'arrosage pendant le temps nécessaire pour que la parcelle reçoive la dose dont elle a besoin. Sa limite supérieure est la « main d'eau », c'est-à-dire le débit qu'un homme peut manier sans être débordé. La valeur de main d'eau sera prise égale à 5 [l/s].

CHAPITRE VI: ETUDES TOPOGRAPHIQUES

Le mot « Topographie » vient de deux mots grecs « Topos » signifiant lieu et « Graphein » qui signifie décrire. En combinant les deux mots grec, on peut définir le mot « Topographie » comme la science donnant les moyens et étudie la représentation graphique ou numérique de la surface terrestre. La Topographie est la base de toute étude et tout travail en génie civil. Sans lui, aucun travail n'est commencé. [6]

Pour cette étude, nous avons l'occasion de travailler avec l'équipe de la société SIMTEPHA pour l'établissement du plan topographique de la zone définie par le terme de référence suivante.

VI.1 Termes de référence pour les travaux topographiques

Les travaux topographiques confiés à la SIMTEPHA-Sarl, consistent à faire le relevé topographique général en planimétrie et en altimétrie du périmètre de Beronono sur une superficie de 2250Ha à l'échelle 1/10 000éme, ainsi qu'un levé au 1/5 000éme de la rivière et de ses berges (100m de part et d'autre) sur 6,4Km entre le site du barrage amont et l'emplacement éventuel du siphon joignant rive gauche et rive droite en amont du périmètre à irriguer.

VI.2 Travaux préliminaires

Les travaux préliminaires consistent à réunir tous les documents topographiques disponibles nécessaires à l'étude et de faire une descente sur terrain (reconnaissance).

Pour cette phase, on a recueilli auprès de la FTM:

- Le plan de repérage à l'échelle 1: 100 000 du CR de Beronono;
- Les fiches signalétiques de la région afin de repérer des points de rattachement planimétrique et altimétrique ;
- Des différentes cartes thématiques en rapport avec le projet d'aménagement hydro
 -agricole (pédologie, géologique, climatologie, occupation du sol).

VI.2.1 Délimitation du périmètre d'étude

La limite exacte du périmètre a été définie après diverses études mais pour la quantification des travaux topographique, la zone d'étude a été délimitée à peu près sur l'image satellite Google Earth. D'où le périmètre de cette zone est à peu près 32 000m et la superficie est de 22 500 000m².

Figure 6: Limite de la zone d'étude

Source: Google Earth

Dix points sont piquetés sur l'image Google Earth, pour des points de repère aux opérateurs topographes lors du levé de détails afin d'éviter le dépassement du levé en dehors de la limite de la zone.

Ces points sont par leurs coordonnées d'origine dans le système de coordonnées mondial WGS84. Alors, il est nécessaire de le transformer en Laborde Madagascar. Le FTM a effectué cette transformation et voici les résultats :

Tableau 25: Points délimitant le périmètre

		Système de	coordonnées				
	WG	S84	Laborde Madagascar				
Numéro de point	$oldsymbol{arphi}[^{\circ}]$	λ[°]	X [m]	Y [m]			
1	45° 6'13.67"E	20°59'56.52"S	261 435.038	567 339.162			
2	45°06'21,61"E	21°00'50,75"S	261 809.027	565 983.765			
3	45° 7'24.43"E	21° 1'26.19"S	263 941.576	565 345.529			
4	45°05'46,43"E	21°01'21,07"S	260 814.382	565 088.018			
5	45°04'44,17"E	21°00'55,87"S	258 889.912	565 567.291			
6	45°04'40,34"E	21°01'30,84"S	258 839.119	564 653.779			
7	45°03'40,10"E	21°02'12,08"S	257 146.716	563 431.323			
8	45° 0'53.83"E	21° 2'13.20"S	252 211.262	562 970.974			
9	45° 1'25.65"E	21° 0'29.01"S	252 894.339	565 705.680			
10	45° 3'50.14"E	21° 1'50.61"S	257 313.642	565 184.280			

Source: FTM

VI.2.2 Reconnaissance

Quand il s'agit d'une étude d'un nouvel aménagement hydroagricole, la reconnaissance consiste à constater la morphologie de terrain en pensant à l'aménagement global du site telle que le choix du site du barrage, le tracé du canal d'irrigation, du drainage et de la piste. Puis, de collecter le maximum d'information sur le site et sur la commune tout entière qui englobe ce dernier. Pendant cette phase, il faut reconnaitre les bornes géodésiques le plus proches de la zone pour le rattachement du levé au repère général et au nivellement général de Madagascar. Ainsi, sur cette étape même qu'on devrait définir les appareils, les instruments, les matériels nécessaires et la composition des brigades topographiques pour la réalisation du levé topographique proprement dite.

VI.2.3 Choix des moyens utilisés

VI.2.3.1 Moyens personnels

L'équipe de la Société SIMTEPHA est composée d'un chef de mission et trois brigades topographiques. Chaque brigade est composée d'un chef de brigade topographique, un opérateur topographe, deux portes réflectrices plus une manœuvre recrutée sur place et un opérateur informaticien pour l'ensemble des 3 Brigades.

VI.2.3.2 Moyens matériels

Les matériels utilisés pour l'ensemble des travaux topographiques sont :

- > une Station Totale du type LEICA TS06 plus avec ses accessoires;
- > (02) deux Stations Totale du type NIKON NPL 332 avec ses accessoires;
- ➤ (03) trois GPS portables marque GARMIN;
- ➤ (03) trois paires de Talky Walky;
- Divers accessoires (ordinateur portable pour le transfert de données, groupes électrogènes, etc...)

Le tableau suivant montre les caractéristiques de chaque station totale utilisée:

Tableau 26: Caractéristiques des stations totales

Appareil		Leica TS06PLUS	Nikon NPL 332
Image			
Précision de distance	En mode sans prisme	2mm+2ppm	3mm+3ppm
	En mode avec prisme	1.5mm+2ppm	2mm+2ppm
Précision angulaire	Angle horizontal	2" (0.6mgon)	2 '' (0.6mgon)
	Angle vertical	3'' (0.9mgon)	5" (1.5mgon)
Portée maximale		3,5km	3km
Distance minimale		1,5m	1,5m
Mémoire interne		100 000 points et 60 000 mesures	Plus de 60 000 mesures
Format de donnée		GSI/DXF/LandXML/C SV/TXT	CSV
Spécificité		Ecart-type ISO17123	Ecart-type
		Interface USB et	ISO 17 123
		Bluetooth	
Accessoire		1 Tripied, 2 prismes, 2	1Tripied, 2 prismes, 1
		cannes, 1 embase, 1 USB.	embase.

Le tableau montre que la station totale Leica TS06PLUS permet, relativement, d'atteindre plus de précision par rapport à celui du type Nikon. Ce qui justifie logiquement son emploi pour les opérations de polygonation, définissant le support et la base de toutes les mesures qui vont s'ensuivre. Entre autres, les stations totales de type Nikon sont tout à fait appropriées pour les levés de détails.

VI.2.4 Divers logiciels utilisés par la SIMTEPHA pour le traitement des données

- ➤ Le logiciel MS Office tel que le **Microsoft Word** pour la rédaction et le **Microsoft Excel** pour les différents calculs;
- Le logiciel Google earth 5.0, Global mapper 11 et ArGIS 10.0, pour la réalisation des cartes:
- Le logiciel **Autocad_Covadis** pour les différents dessins techniques, et **Mensura Genius 6.0** pour les traitements tels que les tracés en plan, les profils en long, les profils en travers, et les calculs de cubatures.

VI.3 Déroulement des travaux topographique

VI.3.1 Rattachement du levé

Le canevas du chantier a été rattaché au point géodésique Vohimena situés à 200m de la limite de la zone d'étude sur la montagne de Vohimena à partir d'un GPS portable selon le terme de références des travaux.

Tableau 27: Coordonnée du point géodésique Vohimena en système de coordonnées Laborde Madagascar

Point géodésique	X [m]	Y [m]	Z [m]
Vohimena	259 034,88	565 399,26	456,00

Source: FTM

VI.3.1.1 Paramétrage du GPS portable

Tout GPS portable doit être paramétré avant son utilisation. Les paramètres a introduit dans l'appareil pour la transformation du système WGS84 en Laborde Madagascar sont :

VI.3.1.1.a. Système géodésique

Méridien origine : 46°26,14'

Facteur d'échelle de Laborde : 0,9995

Erreur latitude : 2889560,8 Erreur Longitude : 399818,6

Source: FTM

VI.3.1.1.b. Format de position

Dx:-185

Dy:-231

Dz:-112

Da:-251

Df:-0, 001419

Source: FTM

VI.3.1.2 Calibrage du GPS portable

En principe, le calibrage d'un GPS portable consiste à recaler la variation de coordonnée obtenue par l'appareil avec leur valeur vraie sur le même point géodésique.

$$\delta X = X - X'$$

$$\delta Y = Y - Y'$$

Avec X et Y sont les coordonnées réelles et X' et Y' les coordonnées données par le GPS.

On ajoute ces résidus δX et δY par Xo et Yo pour caler le GPS, avec Xo=400 000m et Yo=800 000m.

Exemple, la coordonnée moyenne des observations avec le GPS est:

X'=259 037m

Y'=565~397m

Alors:
$$\delta X = 259\ 034 - 259\ 037 = -3$$
m

$$\delta Y = 565 399 - 565 397 = 2m$$

Donc, pour avoir les coordonnées exactes X et Y dans le récepteur on corrige les coordonnées Xo et Yo par Xonouv et Yonouv.

$$Xonouv = 400\ 000 - 3 = 399\ 997m$$

Yonouv =
$$800\ 000 + 2 = 800\ 002$$
m

Le processus à suivre est : MENU SETUP/NAVIGATION/USER GRID/ENTRER. On modifiera Xo et Yo. On refait le même processus jusqu'à ce qu'on ait les coordonnées de X et Y réels au mètre près.

VI.3.2 Etablissement du polygonaux primaires

Les points polygonaux primaires sont répartis d'une façon plus ou moins homogène sur toute la superficie à lever et espacés d'environ 1 km. Ils sont matérialisés par des bornes en béton de 15 cm de diamètre et de 30 cm de hauteur. Et ils sont rattachés par GPS portable en coordonnées planimétriques (X, Y) dans le système local Laborde.

Vu la précision du GPS portable de l'ordre de 3 à 5m, deux points seulement sont levés par GPS portable pour avoir le gisement de référence du levé.

Ces deux points sont choisis de telle sorte qu'il soit le plus loin possible pour avoir la minimum erreur sur le pointé de mesure, mais de distance inférieure aux portées maximales de l'appareil. Et ils doivent être aussi visibles entre eux. Pour notre cas, ils sont éloignés d'une distance plus de 2,5 km.

 Point
 X [m]
 Y [m]
 Z [m]

 A1
 259 053
 565 584
 400,00

 A2 (provisoire)
 256 649
 564 606

Tableau 28: Points d'appui du levé

VI.3.2.1 Calcul de gisement A1A2

Elle est définie par :

$$G_{A1A2} = arc \tan \frac{\Delta X_{A1A2}}{\Delta Y_{A1A2}}$$
 [6]

Après calcul, on trouve $G_{A1A2} = 275,4027$ gon

VI.3.2.2 Calcul de coordonnée définitif de A2

VI.3.2.2.a. Détermination planimétrique du point

La coordonnée planimétrique du point A2 est déterminée par rayonnement du point A1 en appliquant la formule suivante :

$$X_{A2} = X_{A1} + DhSinG_{A1A2}$$

$$Y_{A2} = Y_{A1} + DhCosG_{A1A2}$$
[9]

D'où $X_{A2} = 256\ 650,39\mathrm{m}$ et $Y_{A2} = 564\ 606,57\mathrm{m}$ avec Dh égal à 2593,823m.

VI.3.2.2.b. Détermination altimétrique

L'altitude du point A2 est déterminée par nivellement indirect à partir du point A1. Pour cette opération on a fait des visées directes c'est-à-dire on stationne sur le point connu et on vise le point inconnu. Puisqu'on a une distance horizontale, on applique la formule de « cotg » suivantes :

Visée directe ascendante si i = 100 - V > 0

$$Z_{vis\acute{e}} = Z_{station} + H_a + D_h cotgV - H_P + NA$$
 [9]

Visée directe descendante si i = 100 - V < 0

$$Z_{vis\acute{e}} = Z_{station} + H_a - D_h cotgV - H_P + NA$$
 [9]

Avec:

i : Angle de site [gon];

V: Angles angle vertical [gon];

 $Z_{vis\acute{e}}$: Altitude du point à déterminer ou altitude du point visé [m];

 $Z_{station}$: Altitude de la station [m];

Ha: Hauteur d'appareil [m];

Hp: Hauteur du voyant [m];

Dh : Distance horizontale [m];

NA: Correction du niveau apparent [m].

En utilisant la distance mesurée sur terrain de A1A2 ainsi l'angle vertical A1 vers A2, on trouve après calcul $Z_{A2} = 374,20$.

La coordonnée définitive du point A2 est donc (256 650,39 ; 564 606,57 ; 374,20) m.

VI.3.2.3 Déterminations des autres points polygonaux primaire

Ces points sont déterminés en faisant un cheminement fermé à partir des points A1 et A2. Ils sont calculés automatiquement par l'appareil station total en choisissant le mode de levé rectangulaire. Le résultat est donné par le tableau suivant :

N° point	X (m)	Y (m)	Z(m)
A1	259 053	565 584	400,00
A2	256 650,39	564 606,57	374,20
B.1	263 498,28	564 676,76	412,89
B.2	262 933,47	565 570,56	407,59
B.3	262 283,34	565 430,77	405,92
B.4	260 642,06	565 236,96	403,46
B.5	260 181,95	565 672,89	400,83
B.6	260 304,13	566 252,17	400,02
B.7	258 510,66	564 991,84	431,66
B.8	257 051,85	565 253,09	376,17
B.9	255 588,84	564 816,10	372,70
B.10	255 230,94	565 576,65	365,09
B.12	253 457,13	565 833,80	353,82
B.11	252 651,11	565 123,06	354,51
B.12	252 376,89	564 362,00	355,20
B.13	253 018,51	563 752,14	345,50
B.14	254 315,54	563 472,62	352,82
B.15	255 961,46	563 386,84	360,71
B.16	257 666,96	564 588,86	374,50

Tableau 29: Coordonnée des points de canevas d'ensemble

VI.3.3 Etablissement des polygonaux secondaires

Les points polygonaux secondaires sont des points qui constituent un trait d'union entre les polygonaux primaires et les lever de détails. Il est basé sur le polygonaux primaires et espacé de 100m à 200m environ.

VI.3.4 Levé de détail

Lors d'un levé de détail, le topographe est confronté à trois problèmes principaux premièrement les déterminations des détails à lever ensuite la définition du degré de précision et enfin l'arrêt des mesures à effectuer.

VI.3.4.1 Détails à lever [1]

En général, pour une étude de nouvelle aménagement hydro agricole, on à lever en principe les bas et hauts talus, les changements brusques de côte, les lignes de crêtes et les lignes de talweg, la côte d'eau amont et aval au moment de lever, la côte des traces de niveau de crue (plus haut niveau d'eau PHE), l'affleurement des rochers pour l'implantation du barrage et le niveau du périmètre agricole à irriguer.

VI.3.4.2 Précision du levé [17]

La taille minimale des détails à lever est liée directement à l'échelle du plan. On admet en général que le pouvoir séparateur de l'œil humain est d'un dixième de millimètre alors les détails non représentables ne sont pas levés.

Pour notre cas, l'échelle du levé est fixée par le terme de référence à 1/10 000 pour la plaine tout entier et 1/5 000 pour le site de l'ouvrage de barrage. On adopte alors la densité des points suivants :

Tableau 30: Densité des points

Echelle	Densité des points cotés
1:5000	Tous les 5 m
1:10 000	Tous les 10 m

Source: Auteur

VI.3.4.3 Mesures à effectuer

Les points de détails sur terrain sont levés par rayonnement à base des points de polygonaux primaires et secondaires.

La méthode de levé par rayonnement consiste à stationner sur un point connu en visant un point inconnu

Chaque point levé doit s'accompagner d'un croquis aussi précis, soigné et descriptif que possible.

Figure 7: Plan topographique de la zone

VI.3.5 Remarques et Recommandations

L'élaboration de la méthodologie adoptée pour la réalisation de ces travaux a été effectuée entièrement par le SIMTEPHA. Alors, en tant que stagiaire, je devais me conformer à la méthode de travail de cette société. Par contre, j'ai jugé utile d'apporter quelques remarques et recommandations d'ordre général en vue d'assurer la qualité pédagogique de ce document de mémoire en termes de méthodologie adoptée pour l'acquisition des données et les matériels correspondants.

VI.3.5.1 Remarques

• Rattachement et établissement des points d'appui du cheminement directeur

Rappelons qu'il s'agit d'une polygonation rattaché par un GPS portable.

Or, les coordonnées issues d'un GPS portables sont des coordonnées fictives alors, on ne pourra faire des contrôles et inexploitable après achèvement définitif du projet et pour futur projet.

• Appareil de mesure angulaire

On remarque que tous les appareils topographiques mécanique ou électronique présentent toujours des défauts et erreurs systématiques telles que :

- > Erreur de collimation horizontale ;
- > Erreur de collimation verticale:
- > Erreur de tourillonnement;
- > Erreur du limbe;
- > Erreur d'index du cercle vertical;
- > Erreur d'excentricité du viseur;

Ces erreurs sont toujours présentes malgré les soins adoptés par le constructeur de l'appareil.

• Observation des angles

Lors des travaux de polygonation de cette étude, l'opérateur de la société SIMTEPHA a effectué des observations angulaires en un seul cercle gauche (CG) car il s'agit des polygonations non rattachées et sans contrôle.

Ainsi, les erreurs systématiques citées ci-dessus ne sont pas éliminées. Par conséquent, les observations angulaires sont entachées d'erreurs et ne sont pas acceptables.

• Détermination planimétrique et altimétrique de la polygonale de base

Les méthodes d'observation angulaire utilisées pour la détermination planimétrique et altimétrique de cette étude se fait par lecture cercle gauche seulement avec un seul pointé à chaque visée, qui n'ont permis de travailler dans des conditions convenables ni de faire des vérifications.

VI.3.5.2 Recommandations

Rattachement et établissement des points d'appui du cheminement directeur

Par définition, le cheminement directeur est un cheminement principal reliant deux points d'appui, l'un se trouve à l'origine du cheminement étant le point de départ et l'autre à la fin étant la fermeture. Ces deux points d'appuis sont rattachés au canevas géodésique de Madagascar, donc ils sont connus en coordonnées planimétrique et altimétrique.

On a deux méthodes pour déterminer les points d'appui :

Soit par la méthode de triangulation ou géodésie classique ;

Soit par la méthode de géodésie spatiale.

Nous proposons l'établissement des points d'appui du cheminement directeur par la méthode de géodésie spatiale. Cette méthode est plus économique et plus rapide que celle de la méthode de triangulation car les points d'appuis seront déterminés en utilisant au moins deux GPS bifréquence ou monofréquence.

• Appareil de mesure angulaire

Lors des travaux topographiques, elles sont incontournables ; normalement, toutes les observations ne peuvent être entachées d'erreur. Donc pour les éliminer ; il faut appliquer la méthode dite « double retournement » qui consiste à appliquer les lectures en cercles gauches et en cercle droit (CG et CD).

Observation des angles

Pour que les observations angulaires soit acceptables, il faut effectuer deux couples en (CG et CD) car un seul couple ne constitue pas une vérification mais permet seulement d'éliminer les erreurs systématiques. Puisque les observations en (CG et CD) peuvent présenter de grandes différences dues au bullage de la nivelle torique et sphérique, leur moyenne n'est pas une vérification.

C'est pour cette raison qu'il faut effectuer toujours deux couples en (CG et CD) lors de la polygonation.

De plus, il faut toujours faire une fermeture angulaire pour qu'on puisse réaliser la compensation des angles et que la fermeture en ΔX et ΔY ne soit pas très grande et ne dépasse pas la tolérance admise.

• Correction des distances

Pour bien appliquer la projection Laborde et que l'étude soit superposable sur une carte, il faut appliquer les corrections suivantes :

Correction à horizontales

Correction à l'ellipsoïde ou au niveau zéro

Correction à la corde

Correction à la projection

• Détermination planimétrique et altimétrique de la polygonale de base

Pour que la fermeture angulaire et fermeture planimétrique aient lieu, il faut avoir deux points d'appui connus au système de projection générale ou système de projection Laborde au départ et à l'arrivée de la polygonation de base.

Pour l'altimétrie, nous proposons de faire un nivellement direct par double station à partir des points d'appuis connus en Nivellement Général de Madagascar en utilisant une appareille de niveau pour bien assurer la fermeture au niveau de l'altitude.

• Levé de détails

Pour des grandes superficies à lever comme la nôtre 2250Ha, le levé topographique classique par l'utilisation des appareils station totale est assez long. Alors, nous avons conseillé d'utiliser un drone pour exécuter ces travaux. Le drone, présente un intérêt technique pour la qualité des rendus. Il est économique car les mesures sont réalisées rapidement et les traitements s'effectuent depuis un poste informatique à travers un logiciel ce qui réduit considérablement les coûts d'acquisition et d'analyse de données. En termes de précision, des relevés par drones déjà effectué nous a montrés que les données issue de cette opération sont très précises et seulement une très faible variation de précision par rapport au relevé classique.

VI.3.6 Modélisation du terrain

L'étude topographique vise à produire un modèle numérique de terrain (MNT) de la zone à aménager. Le MNT est la base indispensable pour la plupart des plans de projet et des calculs des cubatures. La modélisation du terrain est faite dans le module Terrain (MNT) du menu Terrain/Modéliser Terrain.

VI.3.7 Filage des courbes de niveau

Ce module présente l'ensemble des fonctionnalités permettant de calculer de manière automatique et de représenter graphiquement les courbes de niveau sur le modèle numérique de terrain. Le logiciel Mensura Genius a permis d'établir un plan topographique avec courbes de niveau tous les 50 cm à l'échelle 1/10 000.

Γ

CHAPITRE VII: CONCEPTION ET DIMENSIONNEMENT DES OUVRAGES

VII.1 Barrage de dérivation

Un barrage de dérivation est un ouvrage qui assure la dérivation d'une partie du débit d'un cours d'eau pour alimenter le réseau d'irrigation. Le débit pouvant être dérivé dépend du débit instantané du cours d'eau et doit couvrir les besoins en eau d'irrigation.

VII.1.1 Choix du site du barrage

Le choix du site de barrage dépend essentiellement de l'étude géologique du sous-sol. Elle a un impact direct sur le coût du projet. Pour un meilleur emplacement, il est préférable que :

- L'ouvrage doit être ancré sur un sol rocheux et à l'endroit d'une fermeté aux berges pour raison de résistance et simplicité de construction.
- L'ouvrage doit être placé sur des lits de rivières stables pour éviter la variation de débits.
- L'ouvrage doit dominer le périmètre et les ouvrages en aval.

Trois sites de barrage ont été reconnus pour cette étude. Le plus en amont, qui au niveau du barrage proprement dit, était le plus intéressant avec 21 m de largeur seulement, entre deux rives rocheuses. Mais les rives étaient abruptes, et avec des à pic de 13 m de hauteur, et il était très difficile, voire impossible, d'y faire passer l'avant-canal. La côte du fond rivière y était de 396,67m. Le second site est toujours encadré par deux parois rocheuses, mais au pendage plus limité, fait 42 m de largeur. L'avant-canal sera sans doute cher, mais son tracé est possible. La côte fond rivière au niveau du site y est de 393 m. Le troisième site est situé nettement plus en aval, toujours entre deux rives rocheuses. La largeur de la rivière est ici de 55 m. Ce site avait l'avantage de réduire la longueur des canaux. Mais la côte fond rivière n'y est plus que de 389 m, alors que pour accéder au périmètre depuis la rivière il faut franchir un petit col à la cote 394 m. C'est donc le deuxième de ces trois sites qui a été retenu.

VII.1.2 Choix du type de barrage

Après jaugeage de la rivière lors de la reconnaissance, on trouve un débit exceptionnel de 1350 l/s, ce débit est largement supérieur au débit normatif de la zone de Mandabe en fin

d'étiage de l'ordre de 120 à 250 l/s pour les 315 km² de bassin versant. Vu la valeur du débit de crue de la rivière, on a choisi de construire un barrage en béton armé de type massif pour assurer la sécurité, de faciliter la réalisation et d'avoir un coût minimal de construction de l'ouvrage

VII.1.3 Dimensionnement du barrage

VII.1.3.1 Longueur L du barrage

Vu la largeur de la rivière de 42m au site du barrage, on a projeté un barrage de 48m de large c'est-à-dire une sur plus de 3m de part et d'autre de la rive pour qu'il soit bien ancré aux berges.

VII.1.3.2 Côte de la crête du barrage

La côte de la crête du barrage est égale à la somme de la côte fond de l'avant-canal de la prise, la hauteur d'eau dans l'avant canal sur le point de la prise et les pertes de charge du canal et de la prise.

La côte de la crête du barrage est obtenue par :

$$\boxed{Z_1 = Z_2 + h_1 + \Delta h_1 + \Delta h_2 + \Delta h_3}$$
 [8]

Avec:

 Z_1 : Côte de la crête du barrage [m];

 Z_2 : Côte du fond de l'avant canal, Z_2 =393,50 m;

 h_1 : Hauteur d'eau dans l'avant-canal sur le point de la prise, égale à 1m;

 Δh_1 : Perte de charge continue dans tous les canaux 0,3;

 Δh_2 : Perte de charge de la prise d'eau dans la rizière égale à 0,1m;

 Δh_3 : Perte de charge de la prise du barrage égale à 0,1m.

D'où la côte de la crête du barrage est : $Z_1 = 395 \text{ m}$

VII.1.3.3 Hauteur du barrage

Le barrage doit dominer toute la superficie du périmètre en relevant le plan d'eau. Sa hauteur est donnée par la différence de la côte de la crête du barrage Z_1 et de celle du fond du radier Z_1 .

Soit : $H_B = Z_1 - Z_r$

Avec $Z_r = 393 \text{ m}$

La hauteur du barrage sera égale a $H_B = 2$ m.

VII.1.3.4 Calcul du niveau des plus hautes eaux H_{NPHE}

Elle est définie par la relation :

$$\boldsymbol{H_{NPHE}} = \boldsymbol{H_{NNE}} + \boldsymbol{H_e}$$
 [8]

Avec:

 H_{NNE} : Hauteur normale de retenue qui est égale à la hauteur du barrage;

H : Hauteur de la lame d'eau au-dessus du seuil en amont ou charge hydraulique maximale. La formule appliquée pour déterminer la hauteur d'eau au-dessus du seuil est la formule de déversoir :

$$H_e = \left(\frac{Q_{225}}{mL\sqrt{2g}}\right)^{2/3}$$
 [8]

Avec:

 Q_{225} : Débit de sureté;

m : Coefficient de débit 0,5m;

L: Largeur de rivière 42m;

g : Accélération de pesanteur égale à 9,81m/s².

Après calcul, on obtient la valeur de H_e = 2,6 m

D'où H_{NPHE} = 4,6m

La hauteur entre le talus et le barrage est égale a $H_r = Z$ berge $-Z_1$

Berge à droite : $H_r = 407,80 - 394,5 = 13,3$ m

Berge à gauche : $H_r = 397,11-394,5=2,61$ m

Pour la berge en rive droite, on a $H_r > H$, ce qui signifie qu'il n'y a aucun débordement des rivières sur les berges. Par contre, il y a débordement sur la berge à gauche.

VII.1.3.5 Largeur de la crête du barrage

La largeur de la crête du barrage est conçue de 1m de large le long du barrage, pour qu'on puisse passer au-dessus pour des raisons d'entretien.

VII.1.3.6 Pente en aval 1/m

En général, pour les barrages en béton armé, la pente est de 1/1.

VII.1.3.7 Largeur de la base du barrage

Elle est établie par la formule :

$$l_B = mH_B + l_{cr\hat{e}te}$$
 [9]

Avec:

 $l_{crête}$: Largeur de la crête du barrage.

L'application numérique nous donne: $l_B = 3 \text{ m}$

VII.1.3.8 Passes batardables

Les passes ou les ouvrages de chasses jouent un rôle de protection du barrage, car la poussée d'eau avec ses affluents détruit l'ouvrage. Ils évacuent le surplus d'eau et les matières solides stockées en amont de l'ouvrage et permettent de faciliter le curage pour maintenir son fonctionnement.

Le nombre de passe batardable ou ouvrages de chasse est calculé avec la formule de déversoir, mais on tient compte des vides au niveau des passes. La formule est présentée donc comme suit :

$$Q_{225} = mL_1 H_e^{3/2} \sqrt{2g} + L_2 (H_e + H_b)^{3/2}$$
 [8]

Avec:

 Q_{225} : Débit de sureté;

m : Coefficient du débit, fixé à 0,4 ;

 H_e : Hauteur d'eau au-dessus du seuil=2,7 m;

g : Accélération du pesanteur [m/s²];

 L_1 : Longueur totale du seuil déversant [m];

 L_2 : Longueur totale de la passe batardable [m];

 H_b : Hauteur du barrage=2m.

Tableau 31: Valeur de la longueur de passe

Q225	L	L1	L2	Qcal	ΔQ/Q
400	42	35,2	6,8	399,5	0,1%

Nous adopterons 7 passes de 1 m.

VII.1.3.9 Mur d'encaissement

Pour éviter le débordement de l'eau sur la berge à gauche du barrage, un mur d'encaissement doit être envisagé. Ce mur joue aussi le rôle des parafouilles pour résister à l'écoulement souterrain latéral dû à la différence de niveau d'eau amont et aval.

Les murs sont en maçonnerie de moellons, pour des raisons économiques et de sécurité. La hauteur du mur est donnée par la relation suivante:

$$H_{mur} = H_B + H_e + r$$
 [10]

Avec:

 H_{mur} : Hauteur du mur [m];

 H_B : Hauteur du barrage [m];

 H_e : Hauteur d'eau au-dessus du barrage [m];

r: Revanche (0,2 à 0,5) [m].

Après calcul, avec une revanche de 0,2m on trouve une hauteur de mur de 4,8 m.

VII.1.4 Stabilité du barrage

L'étude de stabilité du barrage consiste à vérifier les conditions de non-rupture du barrage dû au glissement, au renversement, ainsi que la considération des contraintes du sol en se basant sur la prise en compte de la crue de projet.

Les calculs de stabilité consistent donc à vérifier :

- La règle de LANE ;
- La stabilité au glissement ;
- La stabilité au renversement :
- > Et la stabilité élastique.

Pour pouvoir calculer la stabilité du barrage, il parait évident de connaître les différentes forces appliquées qui le déstabilisent. Les valeurs de ces différentes forces se trouvent en annexes 7.

VII.1.4.1 Règle de LANE

La Règle de LANE doit être respectée pour minimiser le débit d'infiltration qui circule sous la fondation ou le phénomène de renard. Elle consiste à calculer un coefficient « C » qui doit

toujours être supérieur au coefficient \mathcal{C}' de la fondation. C'est égal à la somme des cheminements verticaux L_V et horizontaux L_H . Ces cheminements doivent vérifier l'inégalité suivante :

$$C = \frac{L_V + \frac{L_H}{3}}{H_{(NPHE)}}$$
 [8]

Avec:

 L_V : Longueur de cheminements verticaux en (m);

 L_H : Longueur de cheminements horizontaux en (m);

 $H_{(NPHE)}$: Dénivellation du plan d'eau amont et aval de l'ouvrage en (m);

VII.1.4.2 Stabilité au glissement

Sous l'effet de la poussée de l'eau, le barrage tend à glisser sur sa base, et si on ne tient pas compte la cohésion c des fondations alors la condition de stabilité a pour expression :

$$kg = \frac{(\sum W - \sum U)tg\varphi}{\sum P}$$

$$kg > 1$$
[8]

Dans laquelle:

kg: Le coefficient de glissement;

W: Les forces verticales dues au poids du barrage en [kg];

U : La sous-pression ;

P: Les forces glissantes;

 $tg\varphi$: Coefficient du frottement semelle-sol du béton ;

 $tg\varphi = 0.60$ pour un sol de fondation meuble ;

 $tg\varphi = 0.75$ pour un sol de fondation rocheux.

La poussée hydrostatique résulte en une force horizontale dont la résultante est située au tiers de la hauteur d'eau. La résultante du poids du barrage passe par son centre de gravité. Ces deux forces sont calculées par mètre linéaire de barrage et exercent un moment de renversement.

VII.1.4.3 Stabilité au renversement

Sous l'effet de la poussée de l'eau et de la sous-pression, l'ouvrage à tendance à se basculer vers l'aval et seul son poids agit pour le stabiliser. La stabilité au renversement est assurée, si le coefficient de renversement est $1,5 \le Kr \le 2$.

$$K_r = \frac{M_s}{M_r}$$
 [8]

Avec:

 M_s : La somme des moments stabilisateurs par rapport au point à l'extrême aval du barrage ;

 M_r : La somme des moments qui tend à renverser l'ouvrage par rapport à ce même point.

VII.1.4.4 Stabilité élastique

La stabilité élastique est vérifiée, si la règle du tiers centrale et la règle des contraintes au sol de fondation sont à la fois vérifiées.

VII.1.4.4.a. Vérification de la règle du tiers central

La règle du tiers central est vérifiée à condition que la résultante des forces agissant dans le corps du barrage passe dans le tiers central de sa base. Autrement dit, il faut que l'excentricité « e » soit inférieure ou égale à la longueur totale du radier divisée par six.

$$e \le \frac{L_r}{6}$$

Ainsi, l'excentricité s'obtient par :

$$e = \left| d - \frac{L_r}{2} \right|$$

Avec
$$d = \frac{M_S - M_r}{N}$$

Où d la distance entre le point 0 et le prolongement de la résultante des forces appliquées à l'ouvrage à la base et N la valeur de la résultante des forces verticales appliquées au barrage.

Tableau 32: Résultat de vérification de la règle du tiers central

M_s [kgm]	M_r [kgm]	N[Kg]	<i>d</i> [m]	$L_r[m]$	e [m]	$\frac{L_r}{6}$ [m]
75 594	46 257	10 665	0,99	7	0,75	1,16

Ce tableau nous montre que la règle du tiers central est vérifiée.

VII.1.4.4.b. Vérification des contraintes au sol de fondation

Il s'agit de vérifier si la contrainte exercée au sol de fondation ne dépasse pas sa capacité portante admissible, c'est-à-dire que la valeur de la contrainte maximale « σ_{max} » doit être inférieure à la contrainte au sol de fondation « $\overline{\sigma_{sol}}$ » qui est égale à 0,70kg/cm² pour notre cas. Les contraintes maximales et minimales sont observées respectivement dans les deux extrémités A et O, on assimile le barrage à une poutre console verticale encastré dans sa fondation.

$$\sigma_{max} < \overline{\sigma_{sol}}$$

$$\sigma_{max} = \frac{N}{S} \pm \frac{Mv}{I}$$
 Avec $I = \frac{B^3}{12}$ et $v = \frac{B}{2}$

Finalement:

$$\sigma_{max} = \frac{N}{S} \pm \frac{6M}{B^2}$$
 [8]

Dans lesquelles:

 σ_{max} : Contrainte maximale exercée au sol de fondation ;

 $\overline{\sigma_{sol}}$: Contrainte admissible au sol de fondation ;

N : Somme des efforts normaux à la section [kg];

S : Aire de la section [m²];

M : Moment fléchissant dans la section par rapport à l'axe passant par le centre de gravité de base ;

I : Moment d'inertie par rapport à l'axe passant par le centre de gravité de la section du radier $[m^4]$;

v : Distance maximale à l'axe neutre [m] ;

B: Base de la fondation [m].

VII.2 Système d'irrigation [14]

C'est l'ensemble de(s) technique(s) et mode de distribution d'eau permettant d'irriguer chaque parcelle de culture et de leur fournir la quantité d'eau nécessaire pour assurer le développement végétatif des plantes.

VII.2.1 Proposition mode de distribution d'eau d'irrigation

Pour la riziculture telle qu'en saison ou en contre-saison, le mode de distribution d'eau continue est proposé pour assurer l'arrosage des parcelles. Pour ce mode les canaux sont toujours en eau 24h sur 24h avec un débit satisfaisant le besoin de pointe d'irrigation c'est-à-dire un arrosage ininterrompu pendant tout le cycle végétatif.

Pour les cultures maraichères, la distribution à la demande est à conseiller pour irriguer les parcelles. Cette méthode respecte les variations des besoins des plantes aux divers stades de l'évolution végétative et elles sont plus économiques au point de vue utilisation d'eau.

VII.2.2 Technique d'irrigation [11]

La pente de chaque secteur varie de 0,40% à 0,75%, cultivé par des riz SEBOTA 70 pour une fréquence d'arrosage continue de 24h sur 24. La méthode d'irrigation la plus probable et la plus rationnelle, que l'on doit s'efforcer de faire adopter par le plus grand nombre du périmètre est l'irrigation par bassin de submersion. La mise en œuvre de cette méthode est facile et les investissements sont peu élevés. Mais, une opération de planage est nécessaire à réaliser ainsi que des petits ouvrages de répartition ou prise d'eau.

VII.2.3 Découpage hydraulique du périmètre [11]

Le découpage hydraulique consiste à découper la zone d'étude respectivement en secteurs, quartiers et enfin en parcelles et de tracer les réseaux hydro-agricoles.

Le fonctionnement est donné par le schéma suivant :

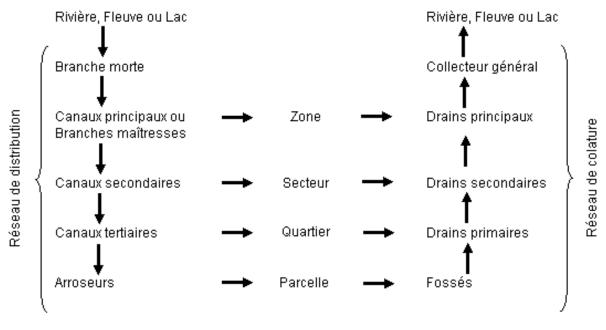


Figure 8: Fonctionnement des réseaux hydroagricoles

> Zone

La zone c'est l'ensemble de toutes les surfaces rizicultivables alimentées par un canal principal. Il est de l'ordre de 832ha pour notre cas.

> Secteur

Ce sont des surfaces dans la zone indépendante de l'une à l'autre et alimentées chacun par un canal secondaire. L'ensemble des quartiers constitue un secteur.

SECTEUR N°	Superficie [ha]
S1	16
S2	182
S3	130
S4	30
S5	474

Tableau 33: Superficie de chaque secteur du périmètre

Quartier hydraulique

Le quartier hydraulique est l'ensemble des parcelles qui peuvent être irriguées à partir d'une même main d'eau. Leur superficie est définie par la formule suivante :

$$w = \frac{m}{Dfcp}$$
 [14]

Avec:

w: Quartier hydraulique [ha];

m : Main d'eau = 20 [1/s];

Dfcp: Débit maximum de pointe =2 [l/s/ha].

Pour ce système, les quartiers hydrauliques sont de l'ordre de 10ha.

> Parcelle

Un périmètre irrigué comprend un ensemble de « parcelles ». Chaque parcelle reçoit périodiquement, pendant un temps déterminé, une main d'eau ou débit que l'irrigant peut manipuler aisément sans perte de temps ni d'eau excessive.

VII.3 Réseaux hydroagricoles

On appelle réseaux hydroagricoles l'ensemble des parcelles cultivées desservies par un réseau d'irrigation éventuellement par un réseau de drainage et par un réseau de piste. [13]

VII.3.1 Réseaux d'irrigation

VII.3.1.1 Définition

C'est le canal d'amener à l'eau de la prise principale vers les parcelles, son but est d'apporter au bon moment les quantités d'eau nécessaires au développement des plantes. [13]

VII.3.1.2 Principe du tracé des réseaux d'irrigation

Avant de tracer les réseaux d'irrigation, quelques principes doivent être connus sur le plan technique et économique.

Techniquement, le tracé des têtes mortes et canaux principaux doivent, dans la mesure du possible, éviter les terrains trop perméables, les terrains glissants ou susceptibles de le devenir par des infiltrations. Comme pour le tracé d'une route, l'équilibre entre les remblais et les déblais doit être recherché. Ainsi, les canaux secondaires suivent sensiblement les lignes de faîte permettant ainsi de desservir sur chaque côté une surface limitée par les thalwegs voisins. Et les canaux tertiaires sont perpendiculaires aux courbes de niveau.

Economiquement, l'étude du tracé s'adresse surtout à un canal principal. Pour cette étude, le coût marginal de l'hectare irrigué et la superficie desservie par le canal ainsi que le coût approximatif du canal et les ouvrages doivent être connus.

VII.3.1.3 Tracé de l'axe du réseau d'irrigation

La connaissance de la côte du fond canal de départ et la côte maximale de la première rizière de tous les secteurs rizicultivables ainsi que la pédologie du terrain permet de tracer l'axe des canaux d'irrigation sur le plan topographique muni d'une courbe de niveau de la zone d'étude. Les pertes de charge singulières à la direction sont inversement proportionnelles au rayon de courbure du canal, pour amoindrir cette perte de charge et éviter les affouillements, on adopte un rayon de courbure minimal 100 m pour les canaux en terre et 80 m pour les canaux revêtus.

VII.3.1.4 Dimensionnement des ouvrages

VII.3.1.4.a. Prise

La prise d'eau est un ouvrage destiné à faire passer le débit désiré d'une façon plus ou moins constante dans un canal de dérivation. Les prises sont constituées par une ouverture aménagée dans une paroi et elle fonctionne toujours en orifice noyé. Ainsi, la section de l'ouvrage peut être des sections rectangulaires ou circulaires.

L'aire de l'orifice est donnée par la formule suivante :

$$S = \frac{Q}{C\sqrt{2gH}}$$
 [7]

Le tableau suivant indique la dimension de la prise dimensionnée à partir de formule de l'orifice noyé.

PM	Prise	Qe (l/s/ha)	S (ha)	Qn (m ³ /s)	С	g (m/s)	H (m)	S (m²)	L (m)	l (m)
	PP	2,4	832	2	0,6	9,81	0,2	1,68	1,4	1,2
PM	Prise	Qe (l/s/ha)	S (ha)	Qn (m3/s)	C	g (m/s)	H (m)	S (m²)	D (m)	ф (mm)
0	PCS1	2.4	16	0,04	0,6	9,81	0,2	0,03	0,2	203
43	PCS2	2.4	182	0,44	0,6	9,81	0,2	0,37	0,68	684
2015	PCS3	2.4	160	0,38	0,6	9,81	0,2	0,32	0,64	642
PM	Prise	Qe (l/s/ha)	S (ha)	Qn (m3/s)	С	g (m/s)	H (m)	S (m²)	L (m)	1 (m)
3365,6	Fin canal	2,4	474	1,14	0,6	9,81	0,2	0,96	1	0,9

Tableau 34: Dimension des ouvrages de prise

D'après ce résultat de calcul:

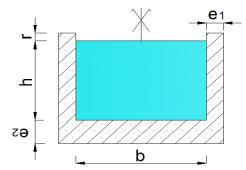
La prise principale projetée est une prise d'eau avec seuil à section rectangulaire qui repose directement sur un rocher.

Au PM 0 du canal principal, une prise simplifiée (buse de diamètre 200 mm) pour alimenter la prise n° 1, qui domine 16 ha.

Au PM 43, un régulateur de plan d'eau oblique, et d'une prise avec modules à masques XX2 360 au départ pour amoindrir la variation de débits sur des écoulements à surface libre malgré une variation du plan d'eau en amont.

Au PM 2015, de même qu'au PM 43 une prise avec modules à masques XX2 360 au départ, mais un régulateur de plan d'eau transversal.

Au PM 3365,6 un ouvrage de fin canal en régulateur droit.


VII.3.1.4.b. Bâches

On rencontre 5 sakasaka tout au long du canal tête morte, sur lesquels seront construits des bâches ou pont-canal. Les caractéristiques de ces bâches sont données ci-dessous :

Ν° P V L fruit h Qn R Qc PM K b (m) talus (m/km)(m3/s)(m²)(m3/s) Bâche (m) (m) (m) (m) (m) (m/s)579,38 7 1,5 0 2 1,5 3,5 0,43 1,98 1,32 B1 60 1 1,5 **B2** 0 2 0,43 1,98 20 1,5 1 1,5 1,5 3,5 1,32 1340,54 60 1,32 **B**3 1932,57 29 1,5 0 1,5 2 1,5 3,5 0,43 1,98 60 1 2 **B**4 1,5 0 1 1,5 3,5 0,43 | 1,98 1,32 2331,42 60 1,5 20 2 21 60 1,5 1,5 1,5 3,5 0,43 | 1,98 **B5** 2668,06 1,32

Tableau 35: Caractéristique de chaque bâche

Figure 9: Coupe transversale de la bâche

Le plan de la bâche est présenté dans l'annexe 11.

VII.3.1.4.c. Dessableur dynamique

Le dessableur comme son nom l'indique est un ouvrage qui sert à éliminer le sable, le gravier et le restitue à la rivière. Pour que, le petit grain a le temps de tomber au fond du dessableur pour les éliminer, il faut que la vitesse horizontale de l'eau dans le dessableur doit être assez faible, avant d'arriver à la sortie du dessableur.

Les dimensions du dessableur sont données par les deux formules ci-dessous :

$$V = \frac{L.W}{h} (1)$$

$$V = \frac{Q}{h.l} \quad (2)$$

$$(1)=(2)$$

$$(3) \quad W = \frac{Q}{L.l}$$

Avec:

V : Vitesse de l'écoulement dans le dessableur [m/s] ;

W: Vitesse de chute de la particule [m/s];

Q : Débit de l'écoulement [m³/s]

L, h, l indiquent respectivement la longueur, la hauteur et la largeur du dessableur [m].

- Calcul de la vitesse de chute de la particule [m/s]

Théorie du phénomène :

Toute particule présente dans l'eau est soumise à deux forces :

- La force de la pesanteur qui est l'élément moteur permettant la chute de cette particule
- Les forces de frottement dûes à la traînée des liquides s'opposant à ce mouvement.

STOCKES a établi à partir de ces données la loi qui permet de calculer la vitesse de chute *W* d'une particule par la formule suivante :

$$W = \frac{g(\rho_p - \rho_e)d^2}{18\eta}$$

Dans laquelle:

W: Vitesse de chute de la particule [m/s];

g: Accélération due à la pesanteur 9,81 [m/s²];

 ρ_p : Masse volumique de la particule « sable » ; 2,65 [Kg/ m³] ;

 ρ_e : Masse volumique de l'eau 1 [Kg/m³];

d : Diamètre apparent de la particule ;

 η : Viscosité dynamique de l'eau ; 1,306 (10⁻⁶).

Pour $d = 200 \, [\mu m]$ (diamètre le plus fin : cas défavorable du sable), on trouve

W = 0.028 [m/s]

- Calcul de la longueur et largeur du dessableur

Le débit de dimensionnement du dessableur est Q = 2 m3/s

D'après (3)
$$L.l = \frac{Q}{W}$$

$$L. l = 71,43 \text{ [m}^2\text{]}$$

D'où L= 11 m et l = 6.5 m.

- Détermination de la hauteur du dessableur

D'après la relation (1) $h = \frac{L.W}{V}$

Or, la vitesse de l'écoulement dans le dessableur doit être comprise entre 0,3 et 1 [m/s], car si

V < 0.3 [m/s]: Il y aura des dépôts solides dans le dessableur.

Si on prend le cas défavorable V = 0.3 [m/s].

On trouve h=1 m

- Vérification de l'équation de continuité

Elle est vérifiée si :

$$S_1V_1 = S_2V_2$$

Tels que:

 S_1 : Section de l'avant-canal égale à 1,5m²;

 V_1 : Vitesse d'écoulement de l'avant-canal égale à 1,32 ;

 S_2 : Section du dessableur;

 V_2 : Vitesse d'écoulement dans le dessableur.

Après calcul, V_2 = 0,3m/s c'est une valeur minimale. Pour assurer la condition, on adopte une hauteur **h=0,9m** d'où V_2 =0,34m/s.

0,3 [m/s] $< V_2 0,34$ [m/s] < 1 [m/s]. Alors, l'équation de continuité est vérifiée.

Le plan du dessableur est présenté dans l'annexe 11.

VII.3.1.4.d. Chute

Ils ont pour rôle de dissiper l'énergie cinétique permettant d'obtenir un écoulement calme et un plan d'eau réglé à l'amont et à l'aval et aussi afin de maintenir la pente du canal, pour avoir une vitesse d'écoulement admissible.

Le volume du bassin de dissipation de la chute est le demi de l'énergie dissipée en chevaux par l'eau.

$$V = \frac{E}{2 * 75} = \frac{Q * z}{2 * 75}$$
 [14]

Dans laquelle:

E: Energie dissipée [cheval-vapeur (Ch)]. Avec 75Kgm/s= 1Ch

Q : Débit de l'eau dans le canal [l/s];

z : Hauteur de chute et le débit de l'eau [m].

AN:
$$V = \frac{2000 \times 2}{2 \times 75} = 26,67 \text{ m}^3$$

- La longueur du bassin est :

$$L=1,5.z$$
 [14]

AN: L=1,5*2=3m

- La section mouillée (S) du bassin est :

$$S = (h_0 + h_c)L$$
 [14]

Avec:

 h_0 : Hauteur de l'eau dans le canal;

 h_c : Décrochement entre le radier du bassin et le plafond du bief aval égal à 0,1m;

L: Longueur du bassin [m];

AN:
$$S=(1,5+0,1)*3=4,8m^2$$

- La largeur minimale du bassin est :

$$B = \frac{V}{S}$$
 [14]

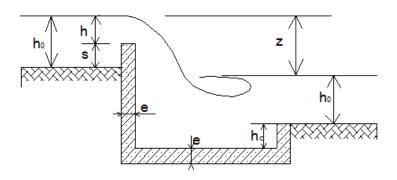
AN:
$$B = \frac{26,67}{4,8} = 5,56 \text{ m}.$$

- La longueur du seuil déversant est:

$$l = B - 0.10$$
 [14]

AN: l = 5,56 - 0,20 = 5,66 m

- La lame d'eau sur le seuil est:


h=1,26m

- La hauteur du seuil est :

$$S = h_0 - h$$
 [14]

AN: S=1,5-1,26=0,24m

Figure 10: Coupe transversale de la chute

Pour la section de la chute, on prend la valeur issue de la valeur du paramètre suivant :

Tableau 36: Valeur du paramètre de la section de la chute

Matériaux	Béton	Maçonnerie
e (m)	0,15	0,3

Source : O.MHL

Le plan de la chute est présenté dans l'annexe 11.

VII.3.1.5 Dimensionnement des canaux

La formule de Manning-Strickler exprimée ci-après permettra de déterminer les caractéristiques hydrauliques des canaux ainsi que les dimensions de ces derniers.

$$Q = KSR^{2/3}I^{1/2}$$
 [13]

Avec:

Q : Débit nominal du canal [m³/s] ;

K : Coefficient de rugosité ;

S: Surface mouillé;

R: Rayon hydraulique;

I: Pente du canal.

Coefficient de rugosité d'un canal

La rugosité des canaux est définie par le coefficient qui dépend de la nature des parois du canal. Voici quelques valeurs de K en fonction de la nature de la paroi :

Tableau 37: Valeur admissible du coefficient de rugosité en fonction de la nature de paroi

Nature de paroi	K
Canal en terre régulière	30 à 40
Canal en maçonnerie	50 à 60
Canal en béton vibré	60 à 70
Canal en béton lisse	70 à 80
Bâche métallique	80 à 100

Source: SOGETHA

Périmètre mouillé (P)

C'est la longueur de la section où l'eau est en contact avec le canal sans inclure la largeur b à la surface de l'eau.

$$P = b + 2h\sqrt{1 + m^2}$$
 [13]

> Surface mouillée (S)

C'est la portion de section droite comprise entre la surface libre et le fond.

$$S = b.h + mh^2$$
 [13]

Rayon hydraulique (R)

C'est le rapport entre la surface mouillée et le périmètre mouillé. Plus R est important, plus le débit du canal est élevé.

$$R = \frac{S}{P}$$
 [13]

> Pente (I)

La pente longitudinale du fond canal est comptée positivement si le canal est descendant dans le sens de l'écoulement. En général, elle est définie par le rapport entre la dénivelée deux points et leur distance. Mais dans la pratique de l'aménagement hydroagricole, la pente du fond canal est choisie selon le type de canal. Pour les canaux en terre, la pente peut être réduite à zéro ou tout au plus maintenue à une valeur minimale de 0,2m/km afin

d'éviter un écoulement trop rapide de l'eau dans les canaux et l'érosion de leurs parois. Et dans le cas de canaux à revêtement d'étanchéité de briques ou de béton par exemple, la pente du fond peut être plus forte, compte tenu du risque d'érosion moins important. [1]

➤ Vitesse de l'écoulement (V)

La vitesse de l'eau dans les conduites doit respecter des valeurs limites pour éviter le risque d'érosion au fond et sur les parois si sa valeur est trop grande ou bien éviter le dépôt des matières en suspension si elle est trop faible.

Dans la pratique, les vitesses admissibles peuvent être largement majorées de 0,50 à 1,00 m/s pour les canaux en terre et 1 à 2,50m/s les canaux revêtus. [1]

> Revanche

On définit comme revanche la différence entre la côte du niveau d'eau et la crête de la berge. Elle varie en fonction du gabarit du canal. Pour le réseau d'irrigation de petite et moyenne importance, la revanche est comprise dans la fourchette de 10 cm à 50 cm c'est-à- dire 10 cm< R < 50cm.

Ainsi on adopte une revanche de 20 cm pour les canaux en terre et 10 cm pour le canal en maçonnerie de moellons et bétonné. [1]

> Principe de calcul

Les critères suivants doivent être aussi vérifiés :

- h < b < 2 h
 - b: Largeur du fond;
 - h : Hauteur d'eau dans le canal.
- $\frac{\Delta Q}{Q_n} < 5\%$ Avec $\Delta Q = Q_c Q_n$;
- Q_n : Débit nominal dans le canal ;
 - Q_c : Débit calculé à partir de la formule de Manning-Strickler.
- $R \approx \frac{h}{2}$;
 - R: Rayon hydraulique;
 - h: Hauteur d'eau dans le canal.
- $V_{min} < V < V_{max}$
 - V_{min} : Vitesse minimale admissible;
 - V_{max} : Vitesse maximale admissible.

Les figures 14 et 15 suivantes nous montrent la coupe transversale d'un canal en terre et d'un canal bétonnée.

Figure 11: Coupe transversale d'un canal en terre

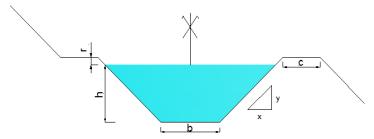
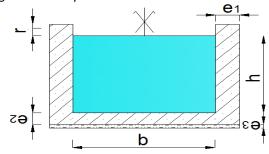



Figure 12: Coupe transversale d'un canal bétonnée

VII.3.1.5.a. Avant canal

L'avant-canal est un tronçon de canal qui reçoit directement le débit sortant de la prise principale du barrage de dérivation. Il est entièrement fondé sur rocher sur toute sa longueur de 568,40 m entre la prise en rive gauche du barrage et l'arrivée sur le dessableur dynamique. L'avant-canal est construit en béton de forme rectangulaire à ciel ouvert. Les caractéristiques du canal sont données par la formule de MANNING STRICKLER. Et pour la section du canal, on prend la valeur issue de la valeur de paramètre suivant :

Tableau 38: Valeur des paramètres de section du canal

Débit (l/s)	Section canal			Canal maçonné		Canal bétonné		
	h [cm]	b [cm]	r [cm]	e_1 [cm]	e_2 [cm]	e_1 [cm]	$e_2[cm]$	e_3 [cm]
5-50	VARIABLE	VARIABLE	5	30	20	15	10	5
50-100			10	30	20	20	15	5
100-1000			15	35	30	25	15	5

Source: O.MHL

VII.3.1.5.b. Canal tête morte

Le canal tête morte consiste à transporter l'eau venant de l'avant-canal vers la canalisation principale. Le canal tête morte d'une longueur de 5624,30 m commence à la

sortie du dessableur et se termine à l'entrée du canal principale. Ce canal est construit en terre et on rencontre cinq ouvrages bâches tout au long du canal.

VII.3.1.5.c. Canal principal

Le canal a une longueur totale de 3365,60 m, il commence à la première prise secondaire et se termine à la côte de la première rizière du dernier secteur. Le canal principal est construit en terre de même caractéristique que le canal tête morte et possédant 11 chutes de 2 m.

Le tableau suivant montre les résultats des dimensions des canaux d'irrigation.

VII.3.1.5.d. Canal secondaire

C'est le canal qui dérive l'eau du canal primaire vers les secteurs par un ouvrage de prise. Pour notre cas, on a projeté trois canaux secondaires munis d'une prise d'eau chacun.

Le canal secondaire 1 (CS1) irrigue 16 ha juste au début du canal primaire, CS2 irrigue 182 ha, CS3 irrigue 160 ha et la fin du canal primaire irrigue 474ha. Les canaux secondaires sont tous des canaux en terre avec un profil trapézoïdal de pente 0,2m pour mille et de revanche de 20cm munis des ouvrages de prises secondaires.

Les résultats de dimensionnements sont représentés dans le tableau 38.

Calculs Contrôle Entrée des données Résultats intermédiaires Nature 0,75 h < du observation S $\Delta O/O$ b h On R Oc < Vb K x/ycanal <2 (m) (m) (m/km) (m3/s)(m²)(m) (m) (m3/s)(m/s)<5% < 1,5 h 60 1,5 0 1 1,5 2 1,5 3,5 0,43 1,98 1,32 0,01 0,5 1,32 1,5 Bétonné Avant canal Canal tête 1,5 2 5,84 0,04 0,45 30 1,6 1 0,24,65 0,8 2,08 0,45 0,75 1,6 En terre morte Canal 1,5 5,84 0,8 30 1,6 1 0,22 4,65 2,08 0,45 0,04 0,75 0,45 1,6 En terre principal 0,35 0,35 0,04 0,245 1,34 0,18 0,04 30 1 0,3 0,17 0,03 0,18 0,17 0,35 En terre CS1 0,01 30 0,7 1 0,9 0,3 0,44 1,44 3,25 0,44 0,44 0,30 0,45 0,30 0,7 En terre CS2 0,8 3,06 0,42 0,29 30 1 0,8 0,3 0,38 1,28 0,37 0,29 0,02 0,40 0,8 En terre CS3

Tableau 39: Caractéristiques des canaux

VII.3.1.6 Cubature de terrassement

La cubature des terrassements est l'évaluation des volumes des terres à enlever ou à mettre à mettre en remblai pour l'exécution d'un projet.

Pour l'ensemble de l'avant canal, canal tête morte et canal principal, le volume de remblai, de déblai et de décapage sont donnée par le tableau suivant :

Nº Profil	Pr	L.A.	Section décapage	Volume décapage	Volume décapage cumulé	Section déblais	Section remblais	Volume déblais	Volume déblais cumulé	Volume remblais	Volume remblais cumulé
364	9075,00	25,00	0,00	0,000	909,978	5,98	0,00	149,548	22308,087	0,000	2172,200
365	9100,00	25,00		0,000	909,978	5,68	0,00	141,951	22450,037	0,000	2172,200
366	9125,00	25,00		0,000	909,978	5,18	0,00	129,621	22579,658	0,000	2172,200
367	9150,00	25,00		0,000	909,978	4,56	0,00	114,030	22693,688	0,000	2172,200
368	9175,00	25,00		0,000	909,978	3,96	0,00	98,987	22792,675	0,000	2172,200
369	9200,00	25,00		0,000	909,978	3,42	0,00	85,462	22878,137	0,000	2172,200
370	9225,00	25,00	0,00	0,000	909,978	3,12	0,00	77,947	22956,084	0,000	2172,200
371	9250,00	25,00	0,00	0,000	909,978	2,94	0,00	73,538	23029,622	0,000	2172,200
372	9275,00	25,00	0,00	0,000	909,978	2,84	0,00	71,053	23100,675	0,000	2172,200
373	9300,00	25,00	0,00	0,000	909,978	2,78	0,00	69,471	23170,146	0,000	2172,200
374	9325,00	25,00	0,00	0,000	909,978	2,60	0,00	64,897	23235,043	0,000	2172,200
375	9350,00	25,00	0,00	0,000	909,978	2,48	0,00	62,028	23297,071	0,000	2172,200
376	9375,00	25,00	0,00	0,000	909,978	2,38	0,00	59,554	23356,625	0,000	2172,200
377	9400,00	25,00	0,00	0,000	909,978	2,31	0,00	57,796	23414,421	0,000	2172,200
378	9425,00	25,00	0,00	0,000	909,978	1,81	0,00	45,328	23459,749	0,000	2172,200
379	9450,00	25,00	0,00	0,000	909,978	1,00	0,00	20,319	23480,069	0,000	2172,200
380	9475,00	25,00	0,00	0,000	909,978	0,57	0,00	4,478	23484,546	0,000	2172,200
TOTALISATIO	N	9487,50		909,978				23484,546		2172,200	

Figure 13: Profil en long du réseau d'irrigation

Figure 14: Profil en travers type du canal bétonné

Figure 15:Profil en travers type du canal en terre

VII.3.2 Réseau de drainage

Le réseau de drainage est très souvent nécessaire pour assainir le périmètre en évacuant les eaux de ruissellement lors des averses et de drainer le périmètre en évacuant les eaux excédentaires d'irrigation, supérieur à la capacité d'absorption des sols puis les pertes par infiltration ainsi que les pertes par percolation à l'intérieur de la surface cultivée afin de maîtriser l'eau de la culture. [14]

Ainsi, la structure du réseau de colature ou de drainage est réciproque de celle du réseau de distribution. En principe, on y trouve d'abord des « fossés », établis au point bas de chaque parcelle, pour collecter les eaux excédentaires dans celles-ci. Ces fossés se jettent ensuite dans des drains primaires, qui rassemblent les eaux d'un même quartier et les déversent dans des drains secondaires tracés sur les limites des secteurs. Les drains secondaires aboutissent dans des drains principaux qui recueillent ainsi toutes les eaux venant d'une zone et les conduisent dans un collecteur ou « exutoire général» prévu pour recevoir tous les débits excédentaires du périmètre et les évacuer hors de celui-ci.

VII.3.2.1 Tracé des drains

Sur un plan topographique muni de courbes de niveau, les collecteurs des réseaux de drainage sont tracés suivant la ligne de talweg ou la côte la plus basse. Ainsi le drain peut être lâché suivant la ligne de plus grande pente soit transversalement à cette ligne.

VII.3.2.2 Paramètre de base d'un réseau de drainage [2]

Le paramètre suivant peut être mis en jeu pour définir les caractéristiques des réseaux telles que la durée admissible de submersion (DAS) de culture, la nature du sol, le niveau optimal de la nappe, la pluie critique de la zone et le débit caractéristique du réseau.

VII.3.2.2.a. Durée admissible de submersion

Elle varie selon le type de culture et le moment de submersion, pour la culture de riz, la valeur fréquemment retenue est de 3 jours.

VII.3.2.2.b. Profondeur de la nappe

Elle est fonction du type de terrain, et pour un terrain cultivé, la valeur retenue est 0,5m.

VII.3.2.2.c. Pluie critique

Elle est fonction du DAS et de la période de retour donnée. Sa valeur est donnée par la formule de MONTANA suivante :

$$I = \frac{a'}{\sqrt{t}}$$
 [2]

Avec:

I : Intensité de la pluie critique [mm/h] ;

a' : Paramètre dépendant de la période de retour égale à 145 pour T=10 ans ;

t : DAS égale à 3jour.

Après calcul, la valeur de l'intensité de la pluie critique est de 2,21mm/h.

VII.3.2.2.d. Débit caractéristique

C'est le débit qui sert à dimensionner le réseau de drainage. Elle est fonction du Coefficient d'évaporation et de la pluie critique.

> Calcul du coefficient d'évaporation

Le coefficient d'évaporation est le rapport entre la lame d'eau évaporée et la lame d'eau précipitée.

Dans le cas pratique, l'évaporation moyenne annuelle E est égale au déficit d'écoulement moyen annuel D, c'est-à-dire E=D.

La formule de Turc exprimée ci-dessous déterminera le déficit d'écoulement moyen annuel D :

$$D = \frac{P}{\sqrt{0.9 + \frac{P^2}{L^2}}}$$
 [2]

Avec $L = 300 + 25T + 0.05T^3$

D : Déficit d'écoulement [mm] ;

P: Pluviométrie moyenne annuelle [mm];

T : Température moyenne annuelle [mm].

Pour notre cas P=755.60mm; T=24.8°C; L=920°C.

D'où D=E=602,16[mm]

D'où le coefficient d'évaporation e a pour valeur

$$e = \frac{E}{P}$$

Donc, la valeur du coefficient d'évaporation est égale à 0,8.

> Calcul du débit caractéristique

C'est le débit que les drains doivent pouvoir évacuer. El est exprimé par la relation suivante :

$$q_c = \frac{1 - e}{0.36}I$$
 [2]

Dans laquelle:

 q_c : Le débit caractéristique du réseau [l/s/ha];

e: Coefficient d'évaporation;

I : Intensité de pluie critique [mm/h].

D'où le débit caractéristique du réseau est 0.96 l/s/ha.

VII.3.2.3 Caractéristique du réseau de drainage

Elles sont constituées par l'écartement de drain, la profondeur de drain, le débit à évacuer et la dimension de drain et fossé.

VII.3.2.3.a. Profondeur de drain

Le plus souvent la profondeur moyenne à adapter est de 1 à 1,25m pour les terres arables.

VII.3.2.3.b. Ecartement de drain

L'écartement de drain peut être calculé à partir de la formule suivante :

$$E = \frac{78}{\gamma} d. i. T^2. \sqrt{I}$$
 [9]

Avec:

γ : Coefficient de rugosité de la parcelle égale à 2,5 en moyenne pour un champ cultivé;

d : Coefficient d'écoulement de la parcelle égale à 0,35 en moyenne pour une pente régulière et un ruissellement facile ;

i : Intensité des précipitations [mm/h]

T : Durée de submersion admissible [jours] ;

I : Pente du terrain à assainir est égale à 5% en moyenne.

Après calcul, on trouve que l'écartement de drain est de 160m sur toutes les parcelles.

VII.3.2.3.c. Débit à évacuer

Le débit à évacuer dans chaque secteur, quartier et parcelle d'irrigation dépend de leur surface et du débit caractéristique du drainage.

> Drain primaire (DR)

Le drain primaire sert à évacuer l'eau excédentaire dans chaque quartier. Or chaque quartier a une superficie de 10ha d'où le débit de drain primaire est 9.6 l/s.

> Drain secondaire (DS)

Le drain secondaire récupère l'eau excédentaire dans les secteurs. Le débit de drain secondaire est donné par le tableau suivant:

Drain	Débit caractéristique	Surface assainie (ha)	Débit de drainage (l/s)
secondaire	(l/s/ha)		
DS1	0.96	16	15.36
DS2	0.96	182	174.72
DS3	0.96	130	124.8
DS4	0.96	30	28.8
DS5	0.96	474	455.04

Tableau 40: Débit de drain secondaire

> Drain principal (DP)

Le drain principal récupère toutes les eaux excédentaires provenant du drain du périmètre tout entier d'où leur débit pour une superficie de 832ha assainie est 799 l/s.

Dans notre cas, l'existence des rivières sur le bas fond des secteurs joue le rôle d'un drain naturel et qui est le collecteur général des drains principaux. Un entretien du fond et de la berge des rivières et un ouvrage doit être mis en place pour éviter le refoulement des eaux de la rivière vers les parcelles.

VII.3.2.3.d. Dimensionnement de drain

Les drains ont été dimensionnés pour écouler le débit de drainage par la formule de MANNING STRICKLER. Il est préférable d'opter un canal en terre de coefficient de rugosité 30, de forme trapézoïdale dont les caractéristiques sont les suivantes :

Entrée des données Calculs intermédiaires Résultats k V fruit Qc b i Qn Drai Surfac (coef $S(m^2)$ P(m)R (m) h (m) (m) talus (m/km) (m3/s)(m3/s)(m/s)e n) 30 2,5 0,30 7,99 13,26 9,85 8,40 0,63 DP 832 1 2,6 1,35 DS1 30 0,5 0,30 0,66 2,20 0,30 0,15 0,23 16 1 0,6 0,15 DS₂ 182 30 1,3 1 1,5 0,30 1,75 4,2 5,54 0,76 1,81 0,43 DS3 130 30 1,2 1 1,3 0,30 1,25 3,25 4,88 0,67 1,29 0,40 DS4 30 0,29 1,0764 30 0,6 1 0,78 0,30 2,81 0,38 0,30 0,27 474 30 0,30 4,72 DS5 2 1 2,1 4,55 8,61 7,94 1,08 0,55 0,21 DR 2,56 30 0,45 1 0,5 0,30 0,10 0,475 0,25 0,10 1,86

Tableau 41: Calage hydraulique des drains

VII.3.3 Réseau de piste

Son but est de permettre la circulation pour la surveillance, l'entretien de l'irrigation et de drainage, le transport d'intrant agricole à la parcelle et l'évacuation des récoltes.

Suivant sa mission, on peut distinguer les pistes d'accès, les pistes de desserte, et les pistes d'exploitation. [14]

VII.3.3.1 Pistes d'exploitation

Souvent, elles longent les canaux tertiaires ou les drains de même rang. Elles permettent aux cultivateurs d'accéder à leurs parcelles.

VII.3.3.2 Pistes d'entretien

Elles sont en général constituées par les produits de décapage et de curage. Leur largeur varie aussi de 1,5 à 6 m, mais elles se trouvent à l'opposé du chemin d'accès, car elles longent souvent les Collecteurs principaux et secondaires.

VII.3.3.3 Pistes de liaison

Ce sont des pistes qui relient les villages et le périmètre.

CHAPITRE VIII: PROPOSITION D'IMPLANTATION

VIII.1 Définition

L'implantation topographique consiste à matérialiser sur le terrain les éléments d'un projet qu'il soit en planimétrie et/ou en altimétrie en se basant sur les points de canevas établis lors de levé topographique. [6]

La plupart des implantations sont constituées des alignements droits, des courbes et des points isolés.

VIII.2 Matériels utilisés

Le choix des matériels utilisés dépend de la précision à chercher sur le type d'éléments à piqueter (point isolé, alignement droit, courbe de raccordement, clothoïde). Ainsi que les obstacles (visibilité, relief) sur terrain.

Face au développement de la technologie, il est préférable d'utiliser une station totale pour la planimétrie et un appareil de niveau de précision pour l'altimétrie pour répondre au besoin de précision de notre implantation. Un appareil de niveau de précision peut apprécier une lecture jusqu'au centième de millimètre à l'aide d'une vis micrométrique reliée à la rotation d'une lame à face parallèle.

VIII.3 Implantation des ouvrages

Les ouvrages à implanter dans ce projet sont : une barrage de dérivation, des prises d'eau, un dessableur, des bâches et des chutes. Avant tout, le plan de l'ouvrage ainsi que les données nécessaires doivent être entre les mains de la brigade topographique pour établir le plan d'implantation de chaque ouvrage pour avoir le listing des coordonnées à implanter sur terrain.

Pour résoudre tout problème de visibilité entre la station, référence angulaire et les points à implanter et/ou disparition des points de canevas, il vaut mieux faire une implantation par coordonnée rectangulaire donc tous les points à implanter sont enregistrés en coordonnées rectangulaires.

Pour effectuer ces travaux d'implantation:

- On place dans le chantier des points de canevas altimétriques et planimétriques, de sorte qu'ils restent en place pendant la durée des travaux. Ce nouveau point étant évidemment rattaché au canevas existant ;
- Puis, on stationne sur un point de canevas et on vise un autre point connu comme référence angulaire ensuite, on introduit dans l'appareil la coordonnée du point à implanter et l'appareil indique par une fléche l'orientation du point. Après calcul automatique de distance effectué par l'appareil, il indique la différence entre la position exacte du point à implanter et position du prisme porté par le manoeuvre. On fait le même procédé jusqu'on a une différence minimal inférieur à la tolérance entre la position exacte et le prisme porté par le manoeuvre. Ces points sont matérialisés par des piquets et ils devront se situer hors zones de terrassement.
- Ensuite, on implante les côtes de projet par nivellement direct à partir des canevas altimétriques existant en marquant sur les piquets leur différence de niveau avec le terrain naturel.

VIII.3.1 Barrage

Pour un barrage, les éléments à implanter sont :

- L'axe principal correspondant à la longueur du barrage, les parallèles, les perpendiculaires correspondant aux divers alignements et les axes des poutrelles ;
- L'axe des pieux du barrage ;
- L'axe des parafouilles amont et en aval du barrage;
- La position des deux extrémités de l'ouverture des passes batardables ;
- L'axe de l'ouvrage de prise ;

Les coordonnées des points à implanter sont représentées dans le tableau 42.

Matricule	X [m]	Y [m]	Matricule	X [m]	Y [m]
B.1	262623.789	565556.158	B.22	262587.649	565559.564
B.2	262616.804	565556.623	B.23	262588.647	565559.498
B.3	262615.807	565556.689	B.24	262592.353	565559.251
B.4	262612.101	565556.936	B.25	262593.351	565559.185
B.5	262611.103	565557.002	B.26	262597.057	565558.939
B.6	262607.397	565557.249	B.27	262598.054	565558.872

Tableau 42: Liste des coordonnées à implanter

B.7	262606.399	565557.315	B.28	262601.762	565558.625
B.8	262602.694	565557.562	B.29	262602.760	565558.559
B.9	262601.696	565557.628	B.30	262606.466	565558.312
B.10	262597.988	565557.875	B.31	262607.464	565558.247
B.11	262596.990	565557.941	B.32	262611.169	565558.000
B.12	262593.284	565558.188	B.33	262612.167	565557.934
B.13	262592.287	565558.254	B.34	262615.873	565557.687
B.14	262588.581	565558.500	B.35	262616.871	565557.621
B.15	262587.583	565558.567	B.36	262623.855	565557.156
B.16	262583.877	565558.813	B.37	262576.077	565562.088
B.17	262582.879	565558.880	B.38	262626.070	565558.763
B.18	262575.895	565559.344	B.39	262623.580	565553.018
B.19	262575.961	565560.342	B.40	262575.686	565556.204
B.20	262582.946	565559.877	B.41	262575.646	565555.602
B.21	262583.944	565559.811	B.42	262623.540	565552.417

(Suite)

Le plan de la page suivante représente le plan d'implantation du barrage.

Figure 16: Plan d'implantation du barrage

VIII.3.2 Ouvrage de prise

Pour les ouvrages de prises, les coordonnées à implanter sont listées dans le tableau 43.

Tableau 43: Liste des coordonnées à implanter pour les ouvrages de prises

Prise n°	X [m]	Y [m]	Z Projet [m]
PP	262622.72	565558.05	393.50
1	258838.98	565750.69	385.07
2	258796.28	565755.49	385.07
3	257078.89	565119.94	373.46
4	255796.83	565254.13	367.74

VIII.3.3 Dessableur

Pour le dessableur, les coordonnées au début et à la fin du dessableur sont :

Tableau 44: Liste des coordonnées à implanter pour le dessableur

PM [m]	X [m]	Y [m]	Z Projet [m]
568.38	262315.9315	565208.6550	393.38
579.38	262310.5921	565207.9675	

VIII.3.4 Bâche

Pour les ouvrages bâche, les coordonnées à implanter de part et d'autre des obstacles sont :

Tableau 45: Liste des coordonnées à implanter pour la bâche

Bâche n°	PM [m]	Longueur[m]	Lieu	X [m]	Y [m]	Z Projet [m]
1	579.38	7	Début	262319.44	565209.13	393.36
	586.38		Fin	262300.27	565219.67	
2	1340.54	20	Début	261755.96	565424.92	393.28
	1360.54		Fin	261731.57	565422.75	
3	1932.57	29	Début	261593.33	565203.66	393.26
	1961.57		Fin	261564.33	565203.62	
4	2331.42	16	Début	261238.20	565316.26	393.25
	2347.42		Fin	261229.58	565302.32	
5	2668.06	21	Début	261192.98	565053.23	393.24
	2689.06		Fin	261191.64	565033.49	

VIII.3.5 Chute

Pour les ouvrages chute, les coordonnées de l'axe à implanter sont :

CHUTE N° PM [m] X[m]Y[m]Z Projet [m] 5936.10 259092.46 565733.85 393.14 2 6044.90 258983.83 565734.14 391.11 3 6179.86 258849.74 565749.42 389.08 4 6300.00 258730.19 565761.19 387.08 5 6534.86 258496.49 565777.20 385.07 6 6803.86 258232.15 565729.70 383.06 7 7340.00 257784.83 565446.34 379.54 8 7604.51 257599.10 565258.84 377.48 9 8271.51 257017.39 375.46 565144.80 10 8500.51 256803.32 565219.94 373.46 11 8770.51 256533.70 565202.12 371.45

Tableau 46: Liste des coordonnées à implanter pour les chutes

VIII.4 Implantation du tracé en plan du canal

L'implantation du tracé en plan consiste à matérialiser sur terrain l'axe du canal.

L'implantation de ces éléments est composée par l'implantation des alignements droits et d'arcs de cercle.

VIII.4.1 Implantation des alignements droits

VIII.4.1.1 Eléments à implanter

Pour l'alignement droit, les principaux points qu'il faut implanter sont les points de tangence T, T', le sommets S et les points d'axe à implanter tous les 25 à 35m. Il est rare que le sommet S soit accessible. Si c'est le cas, on implantera les tangences T et T' depuis le sommet S. Une fois que la conception du projet est terminée, on peut créer un listing des points à implanter en faisant des distinctions entre sommet, point de tangence et points de l'axe puis en entre les listings dans la mémoire interne de l'appareil.

Voici quelques coordonnées d'alignement droit de l'axe du canal principal de part et d'autre d'une courbe représentée par le tableau 47.

Numéro de point d'implantation	PM	X	Y
T6D	1024.63 (Point de tangence)	261905.65	565214.08
A6_1	1050.00	261897,79	565238,2
A6_2	1075.00	261889,94	565261,94
A6_3	1100.00	261881,85	565285,6
A6_4	1125.00	261873,77	565309,25
A6_5	1150.00	261865,68	565332,9
A6_6	1175.00	261857,6	565356,56
T7G	1186.25 (Point de tangence)	261854.01	565367.05
S7	Sommet d'une courbe	261848.84	565382.19
T7D	1217.03 (Point de tangence)	261835.85	565391.51
A7_1	1225.00	261829,38	565396,15
A7_2	1250.00	261809,07	565410,72
T8G	1260.29 (Point de tangence)	261800.70	565416.77

Tableau 47: Coordonnée d'implantation des alignements droits

Signification des codages du numéro de points d'implantation:

TC6D : Tangente à la courbe numéro 7 située à droite de la courbe ou en arrière de la courbe ;

S7 : Sommet de la courbe numéro 7 ;

A6_3 : Point de l'axe numéro 3 débutant à la tangente à droite de la courbe numéro 6.

VIII.4.1.2 Méthodes d'implantations

Ces points sont implantés par coordonnée rectangulaire à partir des canevas existant en stationnant sur un point connu qui trouve la majeure partie des points à implanter. Pour cette méthode, les coordonnées de station sont déjà saisies dans l'appareil sinon il faut le faire manuellement.

Pour l'implantation des points, il faut entrer dans le menu implantation de l'appareil en choisissant la station et la référence angulaire puis viser cette référence angulaire en fixant la valeur zéro de lecture. Puis chercher l'emplacement du fichier à être implanter dans l'appareil en choisissant le point à implanter après. Une fois que le point est prêt à implanter sur l'appareil, une flèche qui oriente sur la position du point apparait sur l'écran et il faut les ajuster puis bloquer l'appareil. Finalement, on implante la distance sur cette direction.

Les points intermédiaires entre deux points de tangence peuvent être implantés par jalonnement et la distance par chainage.

VIII.4.2 Implantation des arcs de cercle

Pour les raccordements circulaires,il existe plusieurs méthodes pour implanter les points de raccordement à savoir le piquetage par intersection (biangulation), par coordonnées polaires , de proche en proche ,et par coordonnées rectangulaires ainsi que par coordonnées calculées .

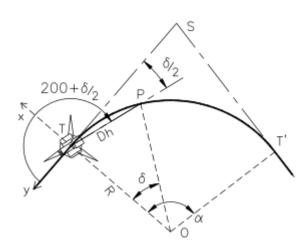


Figure 17: Courbe de raccordement

Dans le repère (T,x,y), les coordonnées polaires topographiques d'un point P de la courbe sont : P $(Dh_{TP}; G = 200 + \delta/2)$. Pratiquement, on divise l'angle α au centre en n parties d'angles au centre $\delta = \alpha/n$. On en déduit : $(Dh = 2R \sin(\delta/2), G = 200 + \delta/2)$.

Stationner une station totale sur T et on vise Ty pour référence l'alignement, puis on ouvre l'angle $200\text{gr} + \delta/2$ et on mesure la distance Dh, on obtient la position du point P sur la courbe.

Toujours stationnée en T, on ouvre un angle n δ et sur cette direction on mesure Dh TM' = $2R^* \sin(n\delta)$ et on obtient P' et ainsi de suite.

Si la visibilité sur terrain ne permet pas d'implanter tous les points à partir de la station T ou pour diminuer les portées, on peut déplacer la station sur un autre point permettant la continuation de l'implantation et on refait la même opération en prenant comme référence la direction précédente.

Si on stationne en P', on vise comme référence le point P, on ouvre l'angle $200gr + \delta/2$ pour implanter le point P''. Ou bien on stationne et T', et on vise T'y' pour références, on peut implanter aussi les points de l'arc du cercle sur le même procédé.

Les tableaux 48 et 49 répresentent un extrait des coordonnées polaires des arcs de cercle de la tracé en plan du canal principal.

Tableau 48: Coordonnée d'implantation du courbe numéro 1

Courbe n°1						
Ra	Rayon de la courbe= 20.00m et Angle au centre=69.4666gon					
Station	Station Référence Point Angle [gon] Distance [m]					
T1G	A0_13	P	208.6732	5.39		
		P1	217.2054	10.78		
		P2	226.0726	15.65		
		T1D (Contrôle)	234.7333	20.76		

Tableau 49: Coordonnée d'implantation du courbe numéro 29

Courbe n	Courbe n° 29						
Rayon de la courbe= 400.00m et Angle au centre=32.8134gon							
Station Référence Point Angle [gon] Distance [m]							
T29G	A28_14	P	202.0829	25.65			
		P1	204.2015	51.51			
		P2	206.2290	77.31			
		P3	208.2033	102.80			
P3	T29G	P4	210.2882	25.65			
		P5	212.3213	51.51			
		P6	214.3705	77.31			
		T29D (Contrôle)	216.4067	102.80			

VIII.5 Implantation des profils en long et profils en travers du projet [8]

Après la détermination des différents éléments qui constituent le projet, on a procédé à l'implantation de ce projet sur terrain.

Pour les profils en long, l'implantation altimétrique de ces éléments est faite par nivellement direct en se référant sur le côte du point du canevas existant.

Pour les profil en travers, les éléments à implanter sont donnés par les figures 24, 25 et 26 :

Figure 18: Canal creusé sans berges artificielles

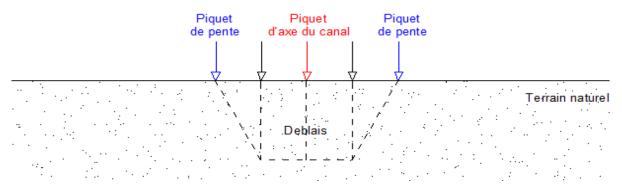


Figure 19: Canal avec deux berges artificielles

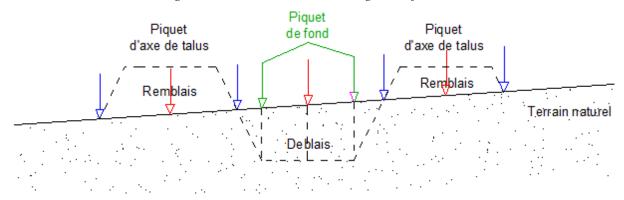
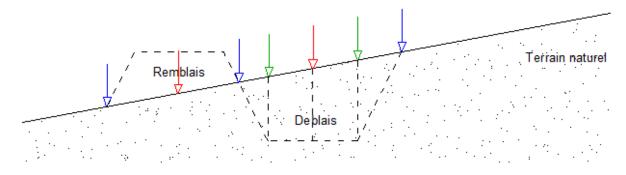



Figure 20: Canal avec une berge artificielle

VIII.6 Contrôles d'implantations

L'implantation assure la bonne exécution du projet conformément au cahier de charge, on ne donne jamais droit à l'erreur, les conséquences financières étant vite désastreux c'est pour cela que toute implantation doit toujours être soigneusement contrôlée.

Avant de faire l'implantation, vérifier d'abord les instruments utilisés, en particulier l'élimination des erreurs systématiques instrumentales compte tenu des matériels et des

méthodes mises en œuvre. Puis s'assurer de l'exactitude et chaque fois que possible de la qualité des références planimétriques et altimétriques sur lesquelles s'appuient les travaux. Ainsi, contrôler soigneusement les calculs des points d'implantation. Et après implantation, il faut mettre en œuvre des contrôles efficaces sur terrains par des levés des points piquetés à partir des références différentes ou par des mesures de distance entre deux points implantés. La comparaison des écarts entre la prévision et la réalisation du projet permet de stopper ou de réimplanter de nouveau le point.

Finalement, des plans de vérification, appelés plan de récolement, sont répertoriés tous les éléments de l'ouvrage réalisé, qui peuvent d'ailleurs être peu différents du projet initial du fait d'imprévus à l'exécution.

CHAPITRE IX: ANALYSES DES IMPACTS ENVIRONNEMENTAUX

IX.1 Objet de l'étude

Pour tout projet sur l'aménagement urbain ou rural, une EIE doit être faite avant sa mise en œuvre afin d'identifier les impacts négatifs pour préconiser des mesures d'atténuation et les impacts positifs pour l'optimisation.

IX.2 Cadre de l'étude :

L'étude environnementale reflète, d'une façon globale et détaillée, les atouts et les méfaits de la réalisation d'un projet avant, pendant et après la réalisation des travaux sur les milieux récepteurs tels que : milieu physique, milieu biologique et milieu humain susceptible d'être affecté par les différentes activités du projet.

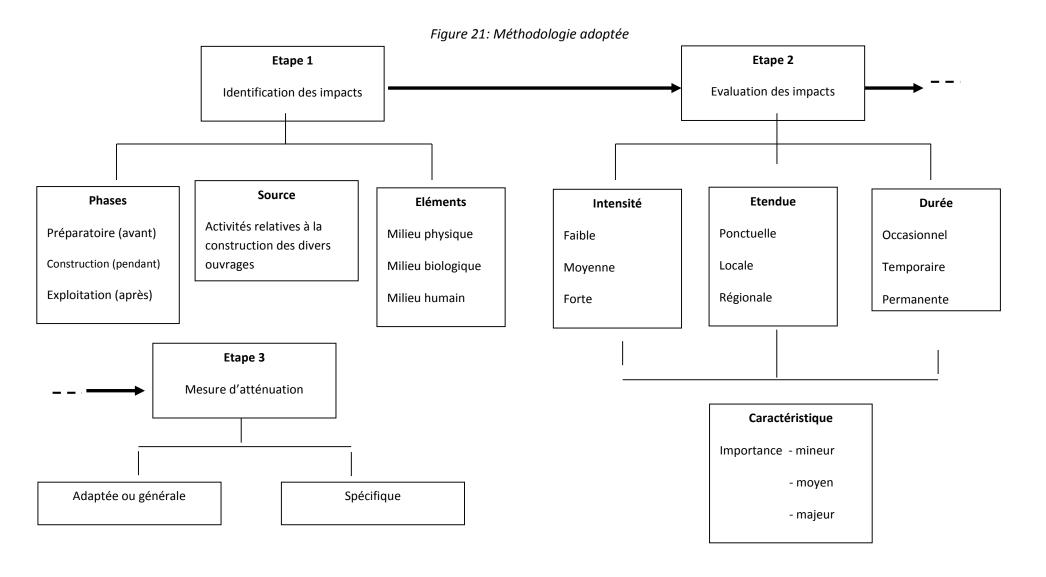
IX.3 Description du milieu récepteur

IX.3.1 Milieu physique

Il est composé du sol, de l'eau, et de l'air.

IX.3.2 Milieu humain

Ce sont la santé, l'économie et le social.


IX.3.3 Milieu biologique

Il est composé des flores et des faunes.

IX.4 Analyse des impacts environnementaux

L'analyse des impacts se fait en trois étapes :

- ➤ Identification des impacts négatifs et positifs sur les milieux récepteurs ;
- Evaluation des impacts potentiels et résiduels du projet ;
- Proposition des mesures d'atténuations et d'optimisations.

IX.4.1 Identification des Impacts

Tableau 50: Identification des impacts

Phase	Etape de travaux	Sources d'impact	Composante de	Impacts possibles	Type
			l'environnement		
Préparation	Installation de	Construction de magasin de	Sol, faune, flore,	Disparition de certaines faunes	Négatif
	chantier	stockage pour les matériels, les matériaux et d'habitat pour les manœuvres recrutées		Défrichement de quelques plantes	
		Venue de travailleurs extérieurs	Santé	Risque de propagation de maladies sexuellement transmissibles	Négatif
		Recherche de bois de chauffe et bois de construction	Faune	Augmentation de la pression anthropique sur la forêt	Négatif
		Excréta humaine	Santé	Contamination bactériologique	Négatif
	Offre d'emploi	Recrutement du personnel, manœuvres locales	Social, économie	Conflit lors du recrutement des ouvriers	Négatif
	Approvisionnement des matériaux	Détection et exploitation de gites d'emprunt pour les matériaux	Biophysique	Surexploitation des ressources (mines et rivières)	Négatif
	Transport des matériels et matériaux	Circulation fréquente des camions	Sol, social, santé	Dégradation du sol et pollution de l'air	Négatif
Construction		Décapage, débroussaillage,	Faune et flore	Réduction de la couverture végétale	Négatif

	Construction du barrage Construction des	Exécution de fouille et travaux en eau	Eau, sol	Perturbation du régime hydrique	Négatif
	ouvrages (bâches, chute) et des canaux	Exécution des canaux	Sol	Perturbation et érosion du sol	Négatif
		Produits de chantier	Eau	Pollution de l'eau	Négatif
Exploitation	Replis de chantier	Exploitation du périmètre	Economie, sociale	Acquisition de nouvelle surface cultivable	Positif
			Economie	Augmentation de revenus des ménages	Positif
		Association formée et motivée	Social	Consolidation de l'association et amélioration de leur savoir-faire	Positif
		Construction d'un nouvel écosystème	Social, économie	Stimulation de l'économie locale en favorisant le petit commerce	Positif

IX.4.2 Evaluation des impacts potentiels et résiduels du projet

L'évaluation consiste à donner pour chaque impact un ordre de grandeur. La notation se forge par l'intensité de l'effet, sa durée dans le temps et son étendue dans l'espace, ainsi on pourra déterminer si les changements prédits sont suffisamment significatifs pour justifier l'application des mesures d'atténuations, de suivi et de surveillance des impacts.

IX.4.2.1 Classification des impacts

Les impacts seront classés selon le fait qu'ils sont nuisibles à l'environnement, donc négatifs, ou selon qu'ils améliorent l'environnement, donc positif.

Ils seront aussi classés selon le fait qu'ils sont les impacts directs (D) ou indirects (I) d'une action modifiant l'environnement.

IX.4.2.2 Durée de l'impact

La durée de l'impact peut être très courte, temporaire ou permanente.

- L'impact est dit **courte durée** s'il se fait ressentir momentanément au plus pendant quelques jours.
- L'impact est **temporaire** s'il se fait ressentir pendant quelques jours, semaines ou mêmes quelques mois, ses impacts se font ressentir pendant les phases de réalisation du projet.
- L'impact est **permanent** s'il se demeure au-delà de la phase de réalisation du projet ou pendant une durée considérablement longue, voire même définitive.

IX.4.2.3 Intensité des impacts

L'intensité est la qualification de l'ampleur des impacts dans le milieu touché. Elle peut être faible, moyenne ou forte selon l'importance des modifications que subit le milieu. Ainsi :

- ➤ Un impact de **faible intensité** ne provoque que des modifications de moindres importances à la composante visée, ces modifications ne remettent pas en cause l'utilisation du composant source de cet impact.
- Un impact d'intensité moyenne engendre des perturbations de la composante du milieu touchée qui modifient modérément son utilisation, ses caractéristiques ou sa qualité.

Un impact de forte intensité est associé à un impact qui résulte en des modifications importantes de la composante du milieu, qui se traduisent par des différences également importantes au niveau de son utilisation, de ses caractéristiques et sa qualité.

IX.4.2.4 Etendue de l'impact

L'étendue est l'extension spatiale dans laquelle l'impact se fait ressentir. Elle est dite locale si la zone d'influence ne dépasse pas la zone d'étude, régionale si la zone d'influence ne dépasse pas la Commune concernée, et nationale quand elle concerne le pays tout entier.

IX.4.2.5 Attribution de notes

Pour mieux juger de l'importance des impacts, on attribue des notes de 1 à 3 à chacun des paramètres d'évaluation de l'importance de l'impact, parmis la durée, l'intensité, et l'étendue. Les notes sont définies selon le tableau suivant :

ETENDUE	DUREE	INTENSITE	NOTE
Locale	Courte durée	Faible	1
Régionale	Temporaire	Moyenne	2
National	Permanent	Forte	3

Tableau 51: Attribution de notes

IX.4.2.6 Importance des impacts

La somme des notes attribuées à chaque impact respectif donnera une notation finale de l'impact.

L'appréciation globale est classée selon les trois catégories suivantes :

- ➤ Impact mineur : les conséquences sur le milieu sont significatives, mais réduites et exigent ou non l'application de mesures d'atténuation ; pour une note comprise dans l'intervalle [3,4]
- ➤ Impact moyen : les conséquences sur le milieu sont appréciables, mais peuvent être atténuées par des mesures spécifiques ; pour une note comprise dans l'intervalle [5,6]
- ➤ Impact majeur : les conséquences sur le milieu sont très fortes et peuvent difficilement être atténuées; pour une note comprise dans l'intervalle [7, 9].

IX.4.2.7 Analyse des impacts

Le tableau suivant informe sur les impacts, leur nature et leur importance. La matrice d'interaction ci-après présente l'importance de chaque impact. Les cases correspondantes aux interactions seront marquées par la valeur du degré d'importance d'impact.

Tableau 52: Evaluation des impacts

Type	Impacts	Classification	Etendue	Durée	Intensité	Note	Importance
NEGATIF	Disparition de certaines faunes et	D	1	2	1	4	Mineur
	Défrichement de quelques plantes						
	Risque de propagation de maladies	I	2	2	3	7	Majeur
	sexuellement transmissibles						
	Augmentation de la pression anthropique	D	1	2	1	4	Mineur
	sur la forêt						
	Contamination bactériologique	I	1	2	1	4	Mineur
	Conflit lors du recrutement des ouvriers	D	2	1	2	5	Mineur
	Surexploitation des ressources (mines et	D	1	1	2	4	Mineur
	rivières)						
	Perturbation du régime hydrique	D	1	2	2	5	Moyen
	Perturbation et érosion du sol	D	1	2	1	4	Mineur
	Pollution de l'eau	D	1	2	2	5	Moyen
POSITIF	Acquisition de nouvelle surface cultivable	D	1	3	3	7	Majeur
	Augmentation de revenus des ménages	D	1	2	3	6	Moyen
	Consolidation de l'association et	D	1	2	2	5	Moyen
	amélioration de leur savoir-faire						
	Stimulation de l'économie locale en	D	1	3	2	6	Moyen
	favorisant le petit commerce						

IX.4.3 Proposition des mesures d'atténuation et optimisation

Pour que le projet puisse être accordé légalement, les impacts du projet néfastes à l'environnement doivent être accompagnés d'actions ou de mesures appropriées pour prévenir, réduire ou si possibles, supprimer ces impacts négatifs. Dans le cas où ces impacts seraient bénéfiques pour l'environnement, des mesures d'optimisation de ces impacts positifs doivent être entreprises. Ces mesures sont présentées dans le tableau suivant : Préconisé doit être économiquement viable et socialement acceptable.

Tableau 53: Mesure d'atténuation

Source d'impact	Nature de l'impact	Mesure d'atténuation
Construction de	Disparition de certaines	-Limiter au maximum la surface occupée
magasin de stockage	faunes et Défrichement	par la zone d'installation
pour les matériels,	de quelques plantes	
les matériaux et		
d'habitat pour les		
manœuvres recruté		
	Risque de propagation	-Mise en place de discipline et de
Venue de travailleur	de maladies	règlement voté et accepté par toutes les
extérieur	sexuellement	parties prenantes dans le site de projet
	transmissibles	-Sensibilisation des ouvriers sur le respect
		des us et coutumes locales
		-Sensibilisation en termes de MST/SIDA
Recherche de bois de	Augmentation de la	- Eviter l'abattage d'arbre et le
chauffe et bois de	pression anthropique	déboisement abusif
construction	sur la forêt	
Excréta humain	Contamination	- Construction des latrines
	bactériologique	- Sensibilisation en termes d'hygiène
Recrutement du	Conflit lors du	Informer à l'avance tous les exploitants de
personnel,	recrutement des	la teneur du projet et aux contraintes de
manœuvres locales	ouvriers	réalisation du projet (apport, les travaux à
		faire, la responsabilité des différentes
		parties prenantes)
Détection et	Surexploitation des	Extraire seulement les ressources
exploitation de gites	ressources (mines et	nécessaires et suffisantes au nouvel
d'emprunt pour les	rivières)	aménagement
matériaux		
Circulation fréquente	Dégradation du sol et	Trouver le site d'exploitation des
des camions	pollution de l'air	matériaux plus proche de la zone

		Stocker dans le minimum d'espace
		possible les matériaux tout en clôturant cet
		espace
Décapage,	Réduction de la	Limiter au strict minimum les surfaces à
débroussaillage,	couverture végétale	décaper
Exécution de fouille	Perturbation du régime	Limiter la durée des travaux en eau
et travaux en eau	hydrique	
Exécution des	Perturbation et érosion	Bien compacter le terrain, après
canaux	du sol	modification de leur structure
Produits de chantier	Pollution de l'eau	-Evacuer les produits dans un lieu de dépôt
		-Eviter le déversement des huiles ou
		carburant dans la nature

Tableau 54: Mesure d'optimisation

Exploitation du périmètre	Acquisition de nouvelle surface	-Régulariser administrativement toutes les paperasses du dit parcelle de
perimetre	cultivable	cultures
	cuitivaoic	-Le Maire de la commune doit
		demander au service compétent de
		faire de l'opération cadastrale dans la
		zone
Exploitation du	Ayamantation do	
Exploitation du	Augmentation de	-Suivre des formations et guides pour
périmètre	revenus des ménages	la pratique culturale
		-Respecter le calendrier cultural et les
		variétés de culture adoptée
Association formée	Consolidation de	-Mettre en place un statut ou règlement
et motivée	l'association et	définissant le fondement, le but de
	amélioration de leur	l'association ainsi que son mode de
	savoir-faire	fonctionnement.
		-Voter une personne qui dirige
		l'association
		-Organiser des formations pour
		renforcer la capacité de tous les
		membres
Construction d'un	Stimulation de	- Rechercher des investisseurs locaux,
nouvel écosystème	l'économie locale	nationaux ou étrangers pour le
-		développement de l'économie local et
		national
		-Réaliser des projets sociaux et de
		Développement
		Developpement

IX.5 Plan de Gestion Environnemental

IX.5.1 Plan de mise en œuvre de la mesure proposé

L'EIE doit débouché sur la production d'un Plan de Gestion Environnementale qui comprendra le plan de mise en œuvre des mesures proposées avant, pendant et après les travaux, déterminera les responsabilités pour leur mise en œuvre et estimera les coûts nécessaires à l'application de ces mesures.

Tableau 55: Plan de mise en œuvre de la mesure proposée

Mesures	Activités à entreprendre	Période de	Responsable	Coût
Wiesures	Activites a entreprendre	réalisation	Responsable	Cour
Sensibilisation pour le respect des us				
et coutumes locaux	Réunion de lancement des travaux en			
Informer tous les exploitants de la	Fivoriam pokonolona		Commune	
teneur du projet et aux contraintes de	Séances de sensibilisation	Avant l'exécution	Fokontany	100 000 Ar
réalisation du projet (apport, travaux à	Distribution de préservatifs	des travaux	Bureau d'étude	100 000 AI
faire, la responsabilité des différentes			Burcau a ctude	
parties prenantes) ainsi que sur les				
MST.				
	Localisation dans l'espace et sur carte des			
	composantes inhérentes à la biologie des			
	ruminants			
Gestion de prairie naturelle et des	Plantation de plantes fourragères	Avant l'exécution	Commune	
terrains dénudée	Détermination des techniques de	des travaux	Fokontany	
	protection plus adaptées et de règles de			
	gestion techniques sur les zones sensibles			
	(canaux, sakasaka, bassin de réception)			
	Détermination des activités spécifiques			
	que l'on devrait exécuter dans chaque			
Gestion et protection des sources	zone dans le temps et dans l'espace (le	Pendant l'exécution	Fokontany	
	contrôle forestier, la protection contre le	des travaux	Bureau d'étude	
	feu, l'enrichissement et le reboisement			
)			

Instaurer des Dina pour règlementer la protection de la zone	Sensibilisation Instauration de Dina sur la protection des ouvrages	Après l'exécution des travaux	Commune Fokontany	-
Effectuer des sensibilisations contre le	Sensibilisation	Après l'exécution	Commune	
feu de brousse l'acte de vandalisme	Instauration de Dina	des travaux	Fokontany	_
Effectuer une campagne de	Appui technique des bénéficiaires	Après l'exécution	Commune	
reboisement	Mise en place de pare-feu	des travaux	Fokontany	_
Mise en place d'une structure de	Assemblée générale	Après l'exécution	Commune	
gestion	Election des membres de bureau	des travaux	Fokontany	_

IX.5.2 Suivi environnemental

Le suivi quant à lui consiste à suivre l'évolution de certaines composantes de l'environnement biophysique et humain affectées par la réalisation du projet. Cette activité vise à vérifier l'efficacité des mesures d'atténuations préconisées et la performance environnementale du projet.

Tableau 56: Suivi environnemental

COMPOSANTES DU MILIEU	OBJET DE SUIVI	PROGRAMME DE SUIVI				
MILIEU PHYSIQUE						
Eau	Quantité	Vérification périodique de l'état				
		des sources et de leur débit.				
Sol	Evolution des phénomènes	Suivi de la structure du sol, du				
	de dégradation	lessivage (érosion), du caractère				
		du paysage.				
MILIEU BIOLOGIQUE						
Flore	Evolution de la couverture	Analyse de l'évolution de la				
	végétale	végétation générée				
		Suivi de la composition				
		floristique de la végétation				
		générée				
Faune	Espace pour les animaux	analyse de l'évolution de l'espace				
	bovins et ovins et autres	(eau, prairie) pour les animaux				
	animaux sauvages					
MILIEU HUMAIN						
Social	Evolution du mode de vie de	Analyse des taux et nature des				
	la population locale	maladies.				
		Analyse du taux de scolarisation.				
Economie	Evolution du niveau de vie	Analyse de la situation des				
	de la population locale	valeurs ajoutées au niveau des				
		ménages du lieu d'implantation				
		du projet d'adduction d'eau.				
Santé	Amélioration de la santé	Analyse de la statistique de la				
	publique	visite du CSB sur toutes les				
		différentes sortes de maladies et				
		leur source				

CHAPITRE X: COUT DU PROJET

Cette partie est consacrée à évaluer le coût de ce projet d'aménagement afin de discuter la faisabilité de ce projet. Le coût du projet est la somme du coût des travaux élémentaires qui constitue le projet. Le produit du prix unitaire avec la quantité des travaux à réaliser obtenu par le métré donne le prix de chacun des travaux élémentaires.

Le métré consiste à faire l'évaluation en quantité des travaux à réaliser. Pour la réalisation, de ce métré, il est nécessaire d'avoir le plan de chaque ouvrage pour pouvoir connaître les détails de chaque ouvrage.

X.1 Coût des travaux topographique

Tableau 57: Coût des travaux topographiques

Désignation	Unité	PU (Ar)	Quantité	Coût (Ar)
Immobilisation de l'équipe et des	fft	1	1	3 000 000
matériels y compris le transport allé				
et retour				
Coût global de travaux	На	7500	2 250 Ha	16 875 000
Au 1/10 000				
Coût global de travaux	На	30 000	192 Ha	5.760.000
Au 1/5 000				
Diverses fournitures, Forfaitaire	fft	1	1	1 300 000
(bornes, piquets, tirage, etc)				
Location de voiture + Carburant +	Jours	150 000	27 jours	8 100 000
Indemnité du chauffeur				
TOTAL DES TRAVAUX HORS T	35 035 000			

Référence des prix : SIMTEPHA

X.2 Coût des constructions des ouvrages et du canal principal

Le bordereau détail quantitatif estimatif du Barrage et du canal principal est la suivante :

Tableau 58: Coût des constructions des ouvrages et du canal principal

N°	DESIGNATION	U	QUANTITES	PRIX	PRIX TOTAL
PRIX				(MGA)	(MGA)
				(MGA)	
	SERIE 000- PRIX				
	<u>GENERAUX</u>				
001	Installation de chantier	fft			
002	Repli de chantier	fft			
BARRA	AGE DE DERIVATION	L = 48	8,0 METRES		
	<u>SERIE 100-</u>				
	TERRASSEMENT				
102,2	Fouille dans l'eau	m3	50,00	24 500,00	1 225 000,00
		TOT	AL SERIE 100	,	1 225 000,00
	SERIE 200- GENIE				
	CIVIL				
202,1	Acier pour armatures	kg	3 000,00	6 600,00	19 800 000,00
204,1	Béton de propreté dosé à 150 kg/m3	m3	6,00	334 000,00	2 004 000,00
204,3	Béton armé dosé à 350	m3	50,00	600 000,00	30 000 000,00
	kg/m3				
212,00	Joint waterstop	ml	8,60	66 000,00	567 600,00
214,00	Acier œuvré	kg	212,00	35 000,00	7 420 000,00
		TOT	AL SERIE 200		59 791 600,00
	<u>SERIE 400-</u>				
	<u>APPAREILLAGE</u>				
	<u>HYDROMECANIQUE</u>				
401,1	Fourniture et pose	U	1,00	12 600	12 600 000,00
	vanne à volant dim :			000,00	
	900 mmX1400 mm				
401,2	Fourniture et pose	U	2,00	12 600	25 200 000,00
	vanne à volant dim :			000,00	
	1000 mmX1000 mm				
			AL SERIE 400		37 800 000,00
D E G G A		TOT	AL BARRAGE		98 816 600,00
DESSA	BLEUR DYNAMIQUE	ı	1	1	T
	SERIE 100-				
102.2	<u>TERRASSEMENT</u>	2	45.00	156,000,00	7 020 000 00
103,3	Déroctage	m3	45,00	156 000,00	7 020 000,00
	CEDIE 200 CENTE	101	AL SERIE 100		7 020 000,00
	SERIE 200- GENIE				
	CIVIL				

201,0	Coffrage	m²	438,50	12 000,00	5 262 000,00
202,1	Acier pour armatures	kg	3069,50	6 600,00	20 258 700,00
204,1	Béton de propreté dosé	m3	11,10	334 000,00	3 707 400,00
	à 150 kg/m3			,	,
204,3	Béton armé dosé à 350	m3	43,85	600 000,00	26 310 000,00
	kg/m3		,	,	,
212,00	Joint waterstop	ml	5,15	66 000,00	339 900,00
	-	TOT	AL SERIE 200		55 538 100,00
	SERIE 400-				
	<u>APPAREILLAGE</u>				
	HYDROMECANIQUE				
401,3	Fourniture et pose	U	1,00	12 600	12 600 000,00
	vanne à volant dim :			000,00	
	1000 mmX1000 mm				
401,4	Fourniture et pose	U	1,00	18 900	18 900 000,00
	vanne à volant dim :			000,00	
	1500 mmX1500 mm				
		TOT	CAL SERIE 400		31 500 000,00
		TOT	AL DESSABLE	UR	281 960 100,00
CANAI	L DE FUITE				
	<u>SERIE 100-</u>				
	<u>TERRASSEMENT</u>				
102,1	Fouille sur terrain	m3	467,50	14 500,00	6 778 750,00
	ferme				
105,0	Engazonnement	m²	224,40	2 600,00	583 440,00
		TOT	AL SERIE 100		7 362 190,00
	SERIE 200- GENIE				
	CIVIL				
201,0	Coffrage	m²	182,00	12 000,00	2 184 000,00
202,1	Acier pour armatures	kg	1 274,00	6 600,00	8 408 400,00
204,1	Béton de propreté dosé	m3	1,60	334 000,00	534 400,00
2012	à 150 kg/m3		10.00	100 000 00	10.020.000.00
204,3	Béton armé dosé à 350	m3	18,20	600 000,00	10 920 000,00
200.00	kg/m3		7.70	5 0,000,00	277 000 00
209,00	Enrochement antiérosif	m3	5,50	50 000,00	275 000,00
210.2	(P>50 kg)	1	72.20	24.000.00	1.750.200.00
210,2	Fourniture et battage au	ml	73,30	24 000,00	1 759 200,00
	refus pieux en bois de				
011.00	Diam 200 mm		0.20	744.000.00	140,000,00
211,00	Fourniture et pose bois	m3	0,20	744 000,00	148 800,00
ND	pour batardeau	1	20.00	20,000,00	400,000,00
NP	Acier œuvré	kg	20,00	20 000,00	400 000,00

		TOT	AL SERIE 200		24 629 800,00
	SERIE 400-				
	<u>APPAREILLAGE</u>				
	<u>HYDROMECANIQUE</u>				
401,3	Fourniture et pose	U	1,00	12 600	12 600 000,00
	vanne à volant dim :			000,00	
	1000 mmX1000 mm				
		TOT	AL SERIE 400		12 600 000,00
		TOT	AL CANAL DI	E FUITE	44 591 990,00
CANA	L TETE MORTE				
	<u>SERIE 100-</u>				
	<u>TERRASSEMENT</u>				
103,1	Déblais ordinaires	m3	84 617,00	10 500,00	888 478 500,00
104,3	Remblais compactés	m3	2 549,00	13 000,00	33 137 000,00
	provenant produits de				
	fouille				
		TOT	AL SERIE 100		921 615 500,00
		TOT	AL CANAL DI	E FUITE	921 615 500,00
AVAN'	Γ CANAL BETONE				
	<u>SERIE 100-</u>				
	<u>TERRASSEMENT</u>				
103,3	Deroctage	m3	2,66	156 000,00	414 960,00
		TOT	AL SERIE 100	•	414 960,00
	SERIE 200- GENIE				
	CIVIL				
201,0	Coffrage	m²	10,00	12 000,00	120 000,00
202,1	Acier pour armatures	kg	60,00	6 600,00	396 000,00
204,3	Béton armé dosé à 350	m3	1,30	600 000,00	779 520,00
	kg/m3				
212,00	Joint waterstop	ml	5,40	66 000,00	356 400,00
		TOT	AL SERIE 200	•	1 651 920,00
		TOTAL AVANT CANAL			1 240 128
		BET	ONE		000,00

Référence des prix : SD MAD

Le tableau ci-dessous donne la récapitulation du coût de l'ensemble des travaux:

Tableau 59: Récapitulatif du coût de l'ensemble des travaux

Objet	Montant, en
Objet	Millions Ar
Travaux Topographiques	35
Barrage de dérivation	913,1
Avant-canal en béton, dalot-cadre visitable, du PM 0 au PM 600	1 056,0
Dessableur dynamique de 30 m * 10 m, stockage 300 m3 au PM 600	55,5
Coût du terrassement du canal tête morte de 4.700 m	921,6
5 bâches sur canal tête morte, aux PM	429,0
Canal principal, parti en terre, du PM 0 au PM 1100, coût terrassement	79,0
Prise simplifiée de 60 l/s au PM 0 du canal principal	20,2
4 chutes de 2 m de hauteur sur le canal principal entre le PM 0 et le PM	
770	136,0
Prise de 285 l/s au PM 770, avec régulateur transversal et modules à	
masques	90,0
Prise de 280 l/s au PM 2670, avec régulateur transversal et modules à	
masques	83,0
Canal principal, en béton, du PM 2670 au PM 4530	829,6
Montant total HT	5 579,0
Installation de chantier (10 % du montant ci-dessus)	557,9
TOTAL Y COMPRIS INSTALLATION DE CHANTIER	7 383,8

CHAPITRE XI: ANALYSE MULTICRITERE

XI.1 Critères d'analyses [15]

Cette analyse comportera les éléments suivants :

XI.1.1 Coût de l'aménagement par ha (appelé ratio) :

C'est le critère essentiel de réalisation ou bien de la rentabilité du projet, même en fonction des zones et de la vulnérabilité de la population, il peut y avoir une certaine élasticité.

Les notations correspondantes sont de :

- \triangleright 3 points pour 0 < ratio < = 1
- \triangleright 2 points pour 1 < ratio < = 2
- \rightarrow 1 point pour 2 < ratio < = 3
- \triangleright 0 point si ratio > 3

XI.1.2 Augmentation de production par ha:

Cette augmentation de production sert à définir le produit rendu par l'aménagement en une année et son évolution annuelle en améliorant le rendement à cause d'une meilleure alimentation en eau. On pourra prendre en compte ensuite de l'augmentation annuelle de rendement obtenue grâce à l'encadrement agricole et la diffusion des techniques (SRI, SRA, nouvelles variétés sur les parties irriguées, autres améliorations sur les périmètres d'épandage de crues). Elle est fonction de la surface irriguée et du rendement par ha, la variété et technique appliquée.

Les notations correspondantes seront de :

- \triangleright 3 points pour augmentation de rendement > = 2 t/ha
- \triangleright 2 points pour 1 t/ha <= augmentation de rendement < 2 t/ha
- ightharpoonup 1 point pour 0 < augmentation de rendement < 1 t/ha

XI.1.3 Intérêt économique de l'aménagement :

C'est évalué par la durée de retour sur investissement, en comparant les coûts d'aménagement et les productions supplémentaires espérées, valorisé à raison de 600 Ar/kg de paddy supplémentaire ce qui est le prix moyen pratiqué au moment de la récolte.

Les notations correspondantes sont données ci-dessous :

 \triangleright 3 points pour retour sur investissement < = 2 ans

- \triangleright 2 points pour 2 ans < retour sur investissement < = 4 ans
- ➤ 1 point pour 4 ans < retour sur investissement < = 6 ans
- \triangleright 0 point pour retour sur investissement > 6 ans

XI.1.4 Intérêt social de l'aménagement :

Il est mesuré en fonction de la population cible, et des autres ressources disponibles

- > 3 points pour les communes où les autres ressources sont rares, et où il y a actuellement des difficultés alimentaires
- ➤ 2 points pour les communes qui manquent de riz, mais qui ont d'autres sources de revenus importants.
- 1 point pour les communes déjà relativement riches, et qui ont de multiples autres sources de revenus.

XI.1.5 Motivation des usagers au vu de l'expérience des années passées

- ➤ 3 points pour les périmètres où les usagers se sont investis récemment à la fois en travaux manuels et en cotisations monétaires pour acheter des sacs, du ciment, payé des tâcherons...
- ➤ 2 points pour les périmètres où il y a au moins des mobilisations en main d'œuvre, ou une participation financière régulière pour l'entretien,
- ➤ 1 point pour les autres périmètres, où il n'y a pas de signe récent tangible de participation à des réparations ou à des entretiens.

XI.1.6 Aspects environnementaux :

Ils concernent essentiellement les nouvelles superficies à cultiver, ainsi que la modification éventuelle des écosystèmes.

- > 3 points s'il n'y a pas de risque identifié (pas de défrichement, pas de modification de milieu ni d'écosystème,
- > 2 points pour un risque minime (défrichement, mais de jujubier par exemple)
- ➤ 1 point si à la fois défrichement et modification de milieu.

XI.1.7 Analyse des risques, tant techniques que socio-économiques

> 3 points si pas de risque identifié

- ➤ 2 points si un risque socio-économique (foncier, entente entre FKT) ou technique (entretien)
- ➤ 1 point si à la fois risque socio-économique et technique.

XI.2 Résultat de l'analyse

XI.2.1 Coût d'aménagement par ha (ratio)

Le coût des travaux est estimé à 7 383,8 M d'Ar, ce qui équivaut à un ratio de 8,87 M d'Ar/ha.

La note correspondant au ratio est de 0/3.

XI.2.2 Augmentation de la production par ha

Il y aura 832 ha de rizières toute neuve dont la production moyenne est estimée à 2 t/ha en saison et 2 t/ha en contre-saison sur une surface de 757 ha dès la fin de l'aménagement, sans parler de l'amélioration technique de la riziculture; ce qui équivaut à 3178 t de paddy par an évalué à 1,9 M Ar par an.

Note proposée : 3/3 pour l'augmentation de la production par ha

XI.2.3 Intérêt économique de l'aménagement (retour sur investissement)

Tenant compte du coût des travaux et de la valeur de la production estimée, le retour sur investissement est atteint en 4,66 ans, ce qui est intéressant.

Note obtenue : 1/3.

XI.2.4 Intérêt socio-économique de l'aménagement et motivation des usagers

Beronono est une commune qui a très peu de sources de production nécessaire à la survie de sa population. Un tel aménagement améliorerait d'abord la sécurité alimentaire de la population et l'augmentation de leurs revenus. La commune est avantagée par la proximité de la route vers Mahabo et Morondava qui seront les principaux détaillants du riz produit dans le périmètre.

Note proposée : 3/3 pour l'intérêt économique

XI.2.5 Motivation des usagers au vue de l'expérience des années passées

Quant à la motivation des usagers et de la population de la commune, vis-à-vis d'un nouvel aménagement, il est déclaré qu'une grande partie de la population qui a quitté les villages et

les fokontany (car il n'y a plus de source de production et, car il y a souvent des dahalo) va revenir cultiver les nouvelles rizières avec ceux qui y sont restés. Leur motivation se reflète également par leur mainte tentative d'aménagement de la moindre ressource en eau à proximité pour produire du riz : c'est le cas pour la réfection à chaque saison des prises au fil de l'eau et de l'aménagement sur le lac Berety)

Note proposée : 3/3 pour la motivation des usagers

XI.2.6 Impacts environnementaux

Les travaux proposés concernent un nouvel aménagement donc une modification du paysage et de l'environnement aux alentours. Toutefois il faut signaler que le paysage actuel est constitué de zones rocailleuses ou sableuses faiblement végétalisées sur le plateau : cette végétation est constituée de graminées herbeuses servant au pâturage de zébus (Hyparenia, Aristida,...) et de jujubiers clairsemés.

Note proposée : 2/3

XI.2.7 Risques techniques, socio-économiques

Une partie du canal tête morte est située dans des sols fragiles. Le risque se situe aussi au niveau de la texture quelques fois sableuse des sols de Maharivo à la fois sur le canal et également sur les rizières. Sur le tracé du canal, cela peut être corrigé par un revêtement de ce dernier pour limiter les pertes par infiltration, mais sur les rizières cela modifierait la consommation d'eau de certaines parcelles.

Sur le plan socio-économique, il peut y avoir des conflits en ce qui concerne l'attribution des nouvelles terres cultivables.

Note proposée: 1/3

CONCLUSION

Dans l'ensemble, le futur périmètre diagnostiqué offre d'énormes potentialités agricoles pour la sécurité alimentaire dans la zone d'étude et les régions environnantes. La superficie disponible est importante de 832 Ha, les sols ont une bonne aptitude à la riziculture et à d'autres spéculations, les ressources en eau de la zone sont très importantes, et permettraient de réaliser cet aménagement en pratiquant 2 cultures de riz par an sur les 832 ha en saison Asara et 757Ha en saison Asotry.

La maîtrise de l'eau à travers la construction des infrastructures hydroagricoles est la première solution pour atteindre l'objectif visé, mais elle doit être accompagnée par la valorisation optimale du périmètre aménagé. La conception et le dimensionnement des ouvrages et des réseaux hydroagricoles selon les normes NIHYCRI de cet aménagement permet d'augmenter la durée de vie technique du projet.

Ce projet est intéressant et donnera un espoir aux paysans pour améliorer leur niveau de vie. Or, vu que le coût de l'aménagement par hectare est très élevé selon l'analyse multicritère effectuée, l'aménagement, bien que possible est particulièrement chère. En revanche, on peut faire des avant-projets détaillés permettant de choisir d'autres tracés de canaux qui ne nécessitent pas de revêtement en béton.

L'ensemble des opérations d'aménagement décrites ci-dessus est basé sur les résultats des campagnes topographiques incontournables, la topographie a été d'une importance capitale dans la conception et la réalisation de ce projet d'aménagement. Le plan topographique muni des courbes de niveau permet de tracer les différents réseaux hydroagricoles, le profil en long permet de concevoir les différentes longueurs et emplacements des ouvrages à projeter. Ainsi, l'affectation des profils types sur les profils en travers permet de définir les résultats de cubature de terrassement afin de quantifier l'avant-métré du projet pour étudier le coût de l'aménagement. De plus, avant tout travail d'exécution, l'implantation de ce projet sur terrain a été dirigée par un ingénieur Géomètre-Topographe. D'ailleurs, ce dernier doit encore revenir sur terrain une fois les travaux réalisés pour effectuer des contrôles de conformité.

Le fait de travailler avec les différents matériels topographiques comme la station totale Leica T06 plus et Nikon NPL332 et le logiciel Mensura Genius a permis de réaliser le projet dans un bref délai.

REFERENCE

BIBLIOGRAPHIE

- [1] AGRAR-UND HYROTECHNIK GMBH, Mémento Microhydraulique, 1985, 178p.
- [2] A. MERMOUD, Assainissement du sol, 2007, 100p.
- [3] CHAPERON P, DANLOUX J, FERRY L, "Fleuves et rivières de Madagascar », 1997, 880p.
- [4] GERCO, « Normes Malgaches De Construction D'infrastructures Hydroagricoles Contre Les Crues et Les Inondations NIHYCRI », 136p.
- [5] M. RISLEY Marius Y. GNASSOUNOU, Etudes d'avant-projet de l'aménagement de 390 ha dans le casier de Ke-Macina au profit du village Ziranikoro : études topographiques avec un GPS différentiel Promark 500 [en ligne]. Mémoire d'ingénieur. Géodésie à l'école nationale d'ingénieurs Abderhamane Baba TOURE, 2011.
- [6] MICHEL Brabant, Maîtriser la topographie, Eyrolles, 54p.
- [7] RANDRIAMIHARINTSOA Mamy Niaina. Plan de réhabilitation hydroagricole de la plaine d'Ambohibary. Mémoire d'ingénieur Hydraulique. ESPA, 2015, 194p.
- [8] RAKOTORIZAFY Anjara Tongasoa Mirana, Contribution d'un Géomètre-Topographe dans un projet d'aménagement hydroagricole à Ampany, Commune rurale d'Antanetikely. Mémoire d'ingénieur Géomètre-Topographe. ESPA, 2015, 124p.
- [9] RAKOTO Lovatiana Fidélis, Contribution à l'élaboration du plan d'aménagement hydroagricole du bas fond de Maevarano. Mémoire d'ingénieur Géomètre-Topographe. ESPA, 2010, 151p.
- [10] ANDRIAMALALA Tsilavohery, Etude de réhabilitation du périmètre de Sarobaratra dans la commune rurale de Sarobaratra, District de Tsaratanana, Région Betsiboka. Mémoire d'ingénieur Hydraulique. ESPA, 2014,159p.
- [11] CLEMENT René, GALAND Alain, MEYLAN Jacques, Système d'irrigation, 48p.
- [12] Ministère auprès de la Présidence en charge de l'Agriculture et de l'Elevage, Monographie de la commune de Beronono, 2009, 15p.
- [13] Société Générale des Techniques Hydro agricoles (SOGETHA), Les ouvrages d'un petit réseau d'irrigation, 1969, 1974, 192p.
- [14] Société Grenoble d'Etudes et d'Applications Hydrauliques (SOGREAH), Irrigation gravitaire par canaux, 1976, 296p.

[15] CHABAUD Claude, RAKOTONIAINA Andrianjaka, EDOUARD Jean, Etude de faisabilité du périmètre de Marefilaly, Commure rurale de Marohazo, District de Maintirano, Région Menabe, 2015, 87p.

WEBOGRAPHIE

- [16] http://www.geomensura.com
- [17] http://www.esgt.fr
- [18] http://www.aftopo.org

AUTRE SUPPORT (cédérom)

[19] ArcGIS HYDROLOGY PARAMETROS GEOMORFOLOGICOS DE CUENCA.mp4

ANNEXES

Annexe 1: Présentation du NIHYCRI

On désigne par l'acronyme NIHYCRI, les normes malgaches de construction des infrastructures hydroagricoles contre les crues et inondations.

Sous-composante A3. Renforcement de capacités sur la réduction des risques et des catastrophes, NIHYCRI s'applique :

- à toute nouvelle construction sur des nouveaux aménagements hydroagricoles ;
- à toute réhabilitation visant la reconstruction d'infrastructures clés sur des réseaux hydroagricoles existants ;
- à toute réhabilitation intégrant le volet remise en conformité par rapport aux normes.

Enjeux de NIHYCRI

Les principaux enjeux de NIHYCRI sont :

- 1. Présenter des normes nationales sur la conception, le dimensionnement, la construction et la maîtrise d'œuvre des projets d'aménagement hydroagricole.
- 2. Les infrastructures construites selon NIHYCRI:
- a) Résistent aux crues et inondations dans le cadre de la durée de vie technique projet des infrastructures ;
- b) Sont à l'abri de l'ensablement qui constitue un facteur aggravant, conduisant à la destruction des infrastructures, à un niveau de crues inférieures à celles pour lesquelles, elles sont dimensionnées.

Exigences et prescription

Dans les différents articles constituant NIHYCRI, on distingue les exigences des prescriptions. NIHYCRI donne des exigences qui sont des termes à respecter obligatoirement. Les exigences de portée générale sont axées sur les types d'activités à réaliser.

NIHYCRI donne des prescriptions détaillées qui sont des guideline ou guide de bonne pratique. Le suivi à la lettre des prescriptions n'est pas obligatoire. Elles servent de référence et de guide et sont à adapter selon le contexte réel du projet.

Limites du NIHYCRI

NIHYCRI est une norme technique portant sur la protection des infrastructures hydroagricoles contre les crues et les inondations, elle ne donne aucune prescription d'ordre socio-organisationnel, environnemental et administratif. Par ailleurs, elle est limitée uniquement à ce qui est en relation directe avec la sécurité et la pérennisation des infrastructures hydroagricoles par rapport aux crues et inondations.

Classement des infrastructures hydroagricoles

Les infrastructures hydroagricoles sont classées, selon un premier niveau de classement, en fonction de leur importance du point de vue socio-économique, qui dépend de la superficie totale des parcelles de culture que le réseau domine.

On distingue les cinq classes suivantes :

	Classes	Caractéristiques
Classe I		Superficie supérieure à 3000 Ha
Classe II		Superficie comprise entre 1000 et 3000 Ha
Classe III		Superficie comprise entre 200 et 1000 Ha
Classe IV		Superficie comprise entre 75 et 200 Ha
Classe V		Superficie inférieure à 75 Ha

Du point de vue impacts de la rupture des infrastructures clés (barrage, retenue et digue de protection) sur le milieu humain, et particulièrement, les impacts appréhendés sur la vie humaine, on considère une classe spécifique portant sur les ouvrages. Ainsi, il est attribué à chaque infrastructure (barrage, retenue et digue de protection) la sous-classe M, dans le cas où sa rupture risquerait de causer des pertes de vies humaines sur sa zone d'influence directe.

• Sous-classe M : Infrastructure (barrage, retenue ou digue de protection) dont la rupture risque de causer directement des pertes de vie humaines.

Crue de dimensionnement

Les crues de projet sont les valeurs du débit des crues de pointe utilisées pour le dimensionnement des infrastructures d'alimentation (dérivation, prise directe et retenue), protection et franchissement (supérieur ou inférieur) à la limite de leur fonctionnement optimal. Elles sont utilisées dans les calculs à l'état limite de service.

Les crues de sûreté sont les valeurs du débit de pointe constituant le maximum que les infrastructures peuvent tolérer, à la limite de leur sécurité physique. Elles sont utilisées dans les calculs à l'état limite ultime.

Pour quel usage?

Pour tout nouvel aménagement, les crues de dimensionnement sont utilisées comme base de calculs des infrastructures hydroagricoles par rapport aux crues.

Pour tout projet de reconstruction / réhabilitation, les crues de dimensionnement sont utilisées pour le calcul de toutes les infrastructures à reconstruire totalement et la vérification et évaluation des risques sur les infrastructures existantes ne respectant éventuellement pas NIHYCRI.

Période de retour des crues de dimensionnement

NIHYCRI exige les périodes de retour à considérer dans le calcul des crues de projet et de sûreté pour les différentes classes, selon le tableau suivant :

Classes	Durée de vie (ans)	Crues projet (ans)	Crues de sureté (ans)
М			СМР
I	100	100	450
П	75	75	350
III	50	50	225
IV	20 à 30	20 à 30	90 à 135
v	10	10	45

Crue de sureté ou crue de projet ?

Les crues de projet sont utilisées pour le dimensionnement dans le cas où le dépassement des crues de dimensionnement sur les infrastructures ne causerait pas la destruction de l'infrastructure.

Dans le cas contraire où le dépassement des crues de dimensionnement causerait la destruction des infrastructures, les crues de sûreté sont utilisées.

Ainsi, dans tout calcul de calage hydraulique et dimensionnement par rapport à la stabilité des infrastructures, les crues de sûreté sont toujours utilisées comme crues de dimensionnement.

Les crues de projet sont utilisées pour le calage hydraulique des infrastructures pour lesquelles, les submersions temporaires causées par le dépassement des crues de dimensionnement ne causeraient aucune dégradation ou que des dégradations mineures sur les infrastructures et le périmètre irrigué. Les crues de projet sont utilisées dans le dimensionnement des ouvrages de protection de niveau secondaire tels que les ouvrages de franchissement des eaux sauvages.

Le calcul de drainage ne mettant pas en jeu l'intégrité des infrastructures est réalisée avec les crues décennales ou les crues de projet.

Annexe 2 : Pluviométrie moyenne mensuelle

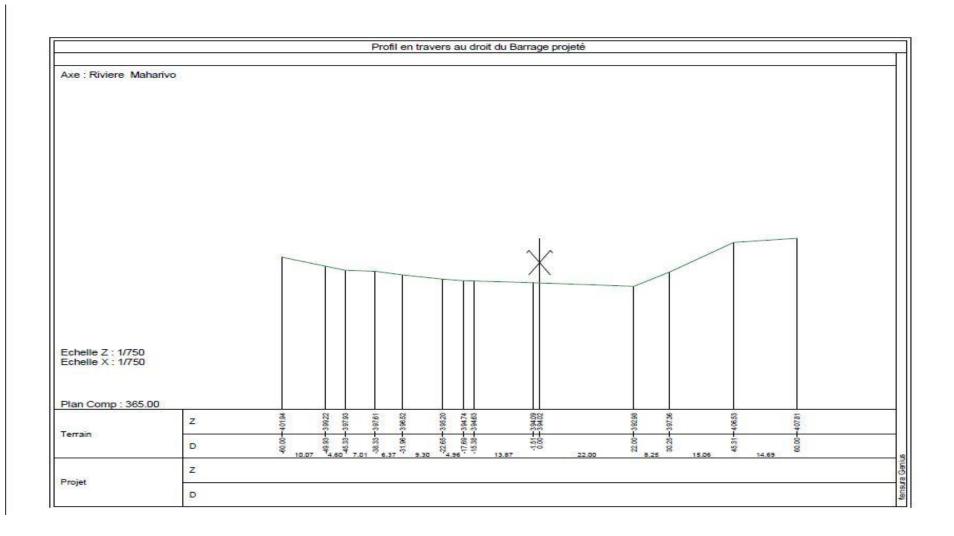
ANNEE	JANV	FEVR	MARS	AVR	MAI	JUIN	JUIL	AOÛT	SEPT	ост	NOV	DÉC	Moyenne annuelle
2006	114,9	291,7	39,9	2,6	0,0	0,0	3,8	10,0	0,0	0,0	4,8	155,1	622,80
2005	471,8	17,4	44,9	5,0	1,1	0,0	0,0	0,0	0,0		1,8	54,8	596,80
2004	242,7	77,7	402,0	31,0	0,0	0,0	4,3	0,0	19,0	0,0	3,0	375,9	1155,60
2003	441,6	413,4	65,3	7,8	0,0	0,0	8,9	0,0	0,0	8,1	0,0	15,2	960,30
2002	195,3	151,9	69,5	0,0	0,0	0,0	0,0	0,0	4,0	0,0	38,5	59,1	518,30
2001	279,3	187,9	115,3	3,1	0,0	0,0	0,0	1,2	0,0	11,5	25,3	191,7	815,30
1998	263,9	410,3	10,7	0,0	0,0	1,8	0,0	0,0	0,2	0,0	12,6	69,2	768,70
1997	365,0	50,0	71,9	343,0	0,0	0,0	0,0	0,0	0,0	0,0	0,5	46,7	877,10
1996	396,9	106,2	197,5	0,0	0,2	0,5	0,0	0,0	2,0	0,0	0,0	46,5	749,80
1995	345,1	262,1	17,9	1,5	2,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	629,00
1994	376,1	388,7	90,2	26,3	3,1	0,0	0,0	0,0	0,0	9,5	0,0	40,3	934,20
1993	335,9	292,5	59,6	0,0	13,0	0,0	0,0	0,0	1,2	0,0	0,2	81,9	784,30
1992	278,1	141,7	28,1	0,0	0,0	0,0	0,0	0,0	0,1	0,0	99,1	35,9	583,00
1991	127,4	538,1	68,8	81,4	0,0	0,4	0,0	0,0	6,9	2,9	10,0	50,4	886,30
1990	236,4	181,6	0,1	53,1	0,0	0,0	0,0	0,8	0,0	3,9	4,9	75,6	556,40
1989	358,3	242,5	80,5	21,7	37,3	0,0	0,0	0,9	10,0	8,9	33,4	94,3	887,80
1988	338,5	170,1	199,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	11,8	52,7	772,80
1987	313,2	64,5	95,5	10,5	0,0	2,3	0,7	0,0	0,0	1,6	10,9	128,1	627,30
1986	49,1	283,2	217,7	1,2	7,0	24,5	0,0	0,0	0,0	85,6	4,0	77,4	749,70
1985	172,1	78,3	15,4	3,5	0,0	0,0	6,5	0,0	1,7	29,9	3,5	97,0	407,90
1984	268,4	398,2	57,8	38,2	0,0	0,0	0,0	1,7	0,0	7,4	4,8	248,3	1024,80
1983	254,8	126,7	56,6	0,0	9,5	0,0	0,0	3,6	0,0	0,0	0,0	32,9	484,10
1982	605,0	193,8	233,2	3,1	0,0	1,1	0,0	0,1	0,0	23,4	8,3	138,3	1206,30
1981	73,1	225,6	59,9	0,0	0,0	0,0	0,0	0,0	12,9	2,5	52,4	46,8	473,20
1980	173,4	7,5	26,6	0,0	0,0	0,0	0,9	0,0	34,6	0,5	1,8	222,9	468,20
1979	40,4	235,0	44,0	27,5	0,0	0,0	12,2	0,0	0,0	0,0	23,7	81,0	463,80
1978	56,4	150,2	116,2	52,9	0,0	0,2	14,8	0,0	0,0	0,0	3,9	249,3	643,90
1977	844,6	355,1	67,0	36,6	0,0	0,0	0,0	0,0	1,1	2,7	108,8	15,1	1431,00
1976	124,5	153,1	50,2	4,3	4,1	0,0	7,8	14,9	0,0	29,9	0,9	31,1	420,80
1975	179,7	159,1	52,4	6,7	7,5	2,9	0,2	0,0	0,0	4,3	16,4	131,8	561,00
1974	246,6	7,2	59,3	98,5	3,4	7,7	0,2	0,0	5,2	0,0	11,4	247,8	687,30
1973	392,9	104,2	259,2	4,8	3,9	0,0	0,7	0,1	0,0	0,0	36,1	561,2	1363,10
1972	171,9	180,0	9,8	0,0	3,1	7,4	5,4	0,1	0,5	22,3	0,0	97,3	497,80
1971	353,3	325,9	63,9	0,0	43,5	0,3	0,0	0,0	0,0	7,4	0,3	207,5	1002,10
1970	577,1	39,1	3,2	0,1	0,0	0,0	0,0	0,0	0,0	0,3	0,0	24,3	644,10
1969	115,2	280,6	17,9	0,0	23,9	0,0	0,0	0,0	0,0	0,0	3,4	449,5	890,50
1968	77,3	587,7	30,3	6,4	85,2	4,0	0,0	0,0	20,7	4,3	0,2	263,5	1079,60
1967	267,9	56,3	277,5	10,4	0,0	0,0	0,0	0,1	0,0	0,2	28,7	83,5	724,60
1966	125,9	401,8	26,1	0,0	65,1	0,0	0,0	0,3	0,0	30,2	48,1	274,9	972,40
1965	226,0	42,0	96,1	0,0	0,0	12,3	0,0	0,0	18,3	4,4	0,0	224,0	623,10
1964	215,1	168,7	83,2	4,4	0,0	4,1	2,1	35,4	4,3	0,0	56,6	143,0	716,90
1963	190,6	401,5	128,8	0,0	5,5	2,9	17,9	0,0	0,0	0,0	134,6	155,3	1037,10
1962	102,3	168,9	67,6	3,8	35,3	0,0	0,0	5,3	0,0	88,1	0,0	127,9	599,20
1961	58,9	117,3	100,7	0,3	6,0	2,4	0,3	2,2	0,0	0,0	9,7	321,2	619,00
1960	121,6	49,6	69,2	3,6	5,7	0,0	0,0	2,5	0,0	38,5	66,3	127,5	484,50
Moyenne	256,99	206,33	87,72	19,85	8,13	1,66	1,93	1,76	3,17	9,73	19,57	138,97	755,60
%	34,01	27,31	11,61	2,63	1,08	0,22	0,25	0,23	0,42	1,29	2,59	18,39	100,0
Ecart-type	<u> </u>	-											248,86
P5s	185,89	149,25	63,45	14,36	5,88	1,20	1,39	1,27	2,29	7,04	14,16	100,52	546,56
P10s	148,65	119,35	50,74	11,48	4,70	0,96	1,11	1,02	1,83	5,63	11,32	80,39	437,06
P5h	328,09	263,41	111,98	25,34	10,38	2,12	2,46	2,25	4,05	12,43	24,99	177,42	964,63
P10h	365,33	293,31	124,69	28,22	11,56	2,36	2,74	2,50	4,51	13,84	.,,,,	,	1074,13

Annexe 3 : Pluviométrie maximale journalière

Année	Max 24h
1985	31,1
1986	55,0
1987	58,4
1988	49,1
1989	99,4
1990	53,7
1991	84,4
1992	49,9
1993	69,4
1994	57,2
1995	45,1
1996	24,8
1997	30,7
1998	31,0
1999	42,6
2000	45,9
2001	35,9
2002	35,3
2003	42,9
2004	38,5
2005	41,0
2006	47,4
2007	34,4
2008	53,8
2009	34,4
2010	25,9
2011	46,6
2012	35,7
2013	46,5
2014	44,0
Moyenne	46,3
Ecart-type	16,2
Po	39,0
Ag	12,7
P10h	67,5
P50h	88,4
P225h	107,5

Annexe 4 : Présentation de la société SIMTEPHA-Sarl

SIMTEPHA-Sarl ou Société d'Investigation de Mesures Topographiques et d'Exploitation de Photographies Aériennes., créé en 1989, au service des organismes gouvernementaux, non gouvernementaux et privés, tant nationaux qu'internationaux. Sa constitution était l'œuvre de deux professionnels du métier qui ont su marier compétence technique et esprit d'entreprise dans un contexte guère favorable en son temps à de telles initiatives, mais qui, malgré tout, avaient pu surmonter toutes les contraintes et forger une image qui place la société au premier plan du sous-secteur.


Il est à noter que ces deux professionnels sont des sortants de l'Ecole Supérieur Polytechnique d'Antananarivo (ESPA) :

- Monsieur Jean Marie RAMILISON est la Directeur Technique, Ingénieur Topographe de l'ESPA, 1ère promotion, sortant en 1977 et Géomètre Expert;
- Monsieur Jean Honoré RAKOTOMALALA est le Directeur Gérant, Ingénieur Géomètre-Topographe de l'ESPA, 4^{ème} promotion, sortant en 1986 et Photogrammètre.

Aujourd'hui, la SIMTEPHA-Sarl représente un effectif de 23 techniciens permanents composées de deux Ingénieurs topographes, d'un Géomètre expert, d'un chef de mission et des Chefs de brigade topographique, d'opérateurs topographes, d'aide opérateurs et personnel d'appui.

Son siège est au logement 507 Cité Ampefiloha Antananarivo 101.

Annexe 5 : Profil en long au droit du barrage

Annexe 6 : Coefficients de stabilité

REGLE DE LANE

Nature sol	Valeurs C'
Limons et sables très fins	8,5
Sables fins	7
Sables moyens	6
Sables gros	5
Petits graviers	4
Graviers moyens	3,5
Gros graviers	3
Graviers et galets	2,5
Argiles plastiques	3
Argiles moyennes	2
Argiles dures	1,8
Argiles très dures	1,6

RESISTANCE DU SOL DE FONDATION

Nature du sol	$\overline{\sigma_{sol}}$ en T/m ²
Argile compacte bien sèche	80
Argile compacte humide	30
Sable humide mêlé de cailloux	60 à 80
Sable fin humide	50
Remblai ancien (1 siècle)	10
Sable argileux et aquifère	20
Roches compactes	100 à 150
Gravier terreux	20 à 50
Cailloux et graviers	40 à 60
Terre vierge non humide	20
Terre végétale rapportée qui a été tassée et pilonnée	10

Annexe 7 : Dimensionnement et Stabilité du barrage

Débit (m³/s)	400,0
Longueur seuil (m)	42,0
Lame d'eau (m)	2,60
Hauteur seuil (m)	2,00
Largeur crète (m)	1,00
Talus paroi aval	1,00
Radier amont (m)	4,00
Radier aval (m)	4,50

Epaisseur radier (m)	0,60
Parafouille amont (m)	4,00
Parafouille aval (m)	2,50
Seuil aval (m)	0,20
Base (m)	3,00
H amont (m)	4,60
H aval (m)	2,00
Pesanteur (m/s²)	9,81

Masse vol barrage	2 500
Mas vol im sédiments	1 600
Hauteur de sédiments	0,25
Angle Frot interne (°)	25
Largeur fondation	11,50
Epaisseur parafouille	0,70

AFFOUILLEMENT : Règle de LANE

 $l_v+(l_h/3)=C'h$

Cheminement vertical l _v (m)	11,8
Cheminement horizontal l _h (m)	11,50
Dénivelée d'eau (m)	2,60
C calculé	6,0
C' sol de fondation	6

sol de fondation = gros gravier

Règle de Lane vérifiée

STABILITE

FORCES (kg)

Poids du barrage

W1 (massif)	5 000
W2 (massif)	5 000
W3 (radier)	17 250
W4 (parafouille amont)	5 950
W5 (parafouille aval)	3 325
W6 (seuil aval)	350
Total W	36 875

_		-		
Panss	ée i	nle.	l'ean	

P1 (lame d'eau)	5 200
P2 (réservoir eau)	2 000

Poussée de sédiments

Ps	20
Total P	7 220

Sous-pression

Total U	18 975
U2	7 475
U1	11 500

Surcharge

Sc radier amont	18 400
Sc crête	2 600
Sc radier aval	9 000
Sc parafouille aval	1 080
Total Sc	31 080

BRAS DE LEVIER % à O (m)

Poids du barrage

dW1	7,00
dW2	5,83
dW3	5,75
dW4	11,15
dW5	0,35
dW6	0,35

Poussée de l'eau

dP1	3,50
dP2	3,17

Poussée de sédiments

dPs	2,58

Sous-pression

dU1	5,75
dU2	7,67

MOMENTS % à O (kg.m)

Poids du barrage

MW1	35 000
MW2	29 167
MW3	99 188
MW4	66 343
MW5	1 164
MW6	123
Total M(W)	230 983

Poussée de l'eau

MP1	18 200
MP2	6 333

Poussée de sédiments

MPs	52
Total M(P)	24 586

Sous-pression

MU1	66 125
MU2	57 308
Total M(U)	123 433

Stabilité à la flottaison

Si coef sécu >1,1

Kf	1,94
STABLE	

Stabilité au glissement

Si coef sécu >1

Kg	1,49
STABLE	

Stabilité au renversement

Si coef sécu >1,5

Mais mieux vaut que coef sécu<2

Kr	1,56
STABLE	

Tg □ =

0,6

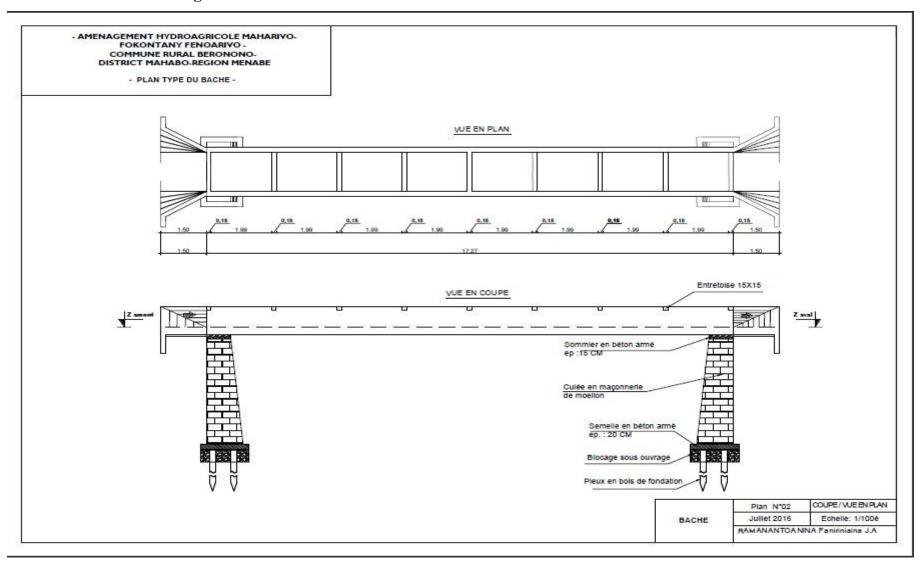
Annexe 8 : Stabilité interne du barrage

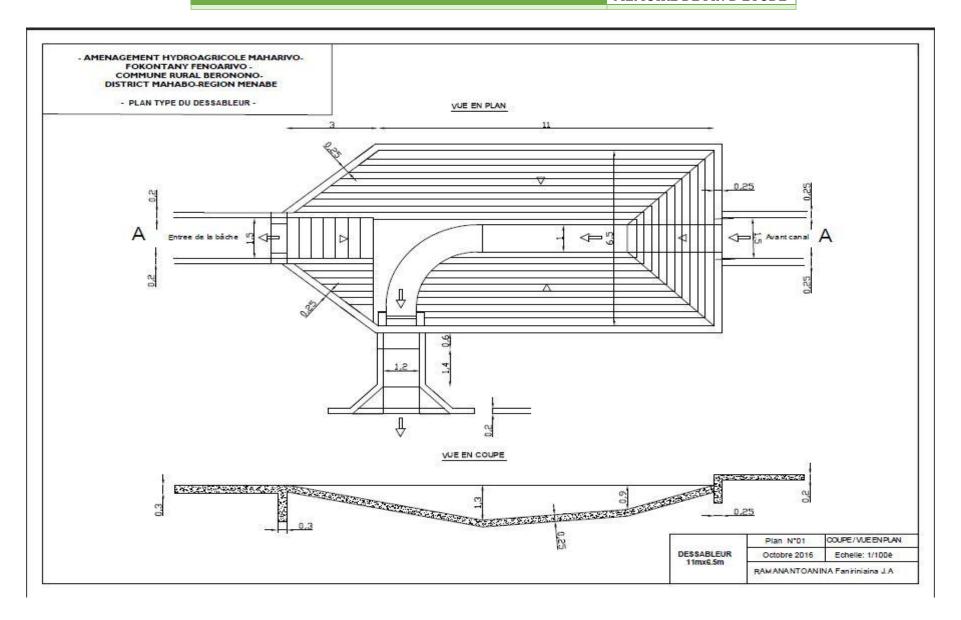
Débit (m³/s)	400,0
Longueur seuil (m)	42,0
Lame d'eau (m)	2,6
Hauteur seuil (m)	2,00
Largeur crète (m)	1,0
Talus paroi aval	1,0
Radier amont (m)	4,0
Radier aval (m)	4,5

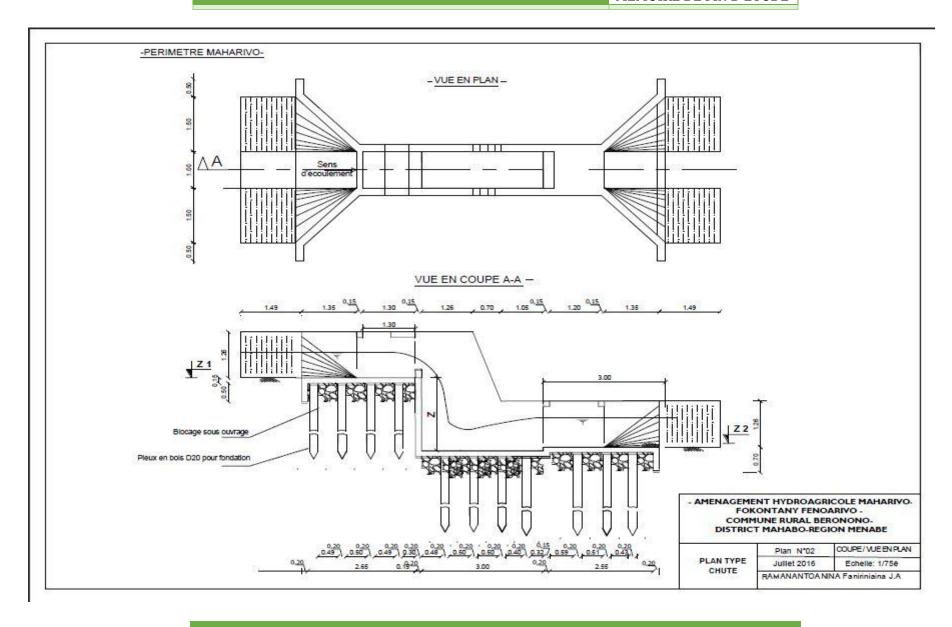
Epaisseur radier (m)	0,60
Parafouille amont (m)	4,00
Parafouille aval (m)	2,50
Seuil aval (m)	0,20
Base (m)	3,00
H amont (m)	4,60
H aval (m)	2,00
Pesanteur (m/s²)	9,81

Masse vol barrage	2 500
Mas vol im sédiments	1 600
Hauteur de sédiments	0,25
Angle Frot int	25
Largeur fondation	11,50
Epaisseur parafouille	0,70

STABILITE


INTERNE


FORCES (kg)		BRAS DE LEVIER % à G (m)		MOMENTS % à G (kg.m)	
Poids du barrage		Poids du barrage	Poids du barrage		
W1 (massif)	5 000	dW1	1,25	MW1	6 250
W2 (masif)	5 000	dW2	0,08	MW2	417
W3 (radier)	17 250	dW3	0,00	MW3	0
W4 (paraf amont)	5 100	dW4	5,45	MW4	27 795
W5 (paraf aval)	2 850	dW5	-5,45	MW5	-15 533
W6 (seuil aval)	300	dW6	-5,45	MW6	-1 635
Total W	35 500			Total M(W)	17 294
Poussée de l'eau		Poussée de l'eau		Poussée de l'eau	
P1 (lame d'eau)	5 200	dP1	-1,30	MP1	-6 760
P2 (res eau)	2 000	dP2	-0,97	MP2	-1 933
Poussée de sédiments		Poussée de sédiments		Poussée de sédiments	
Ps	20	dPs	-0,38	MPs	-8
Total P	7 220			Total M(P)	-8 701
Sous-pression		Sous-pression		Sous-pression	
U1	11 500	dU1	0,00	MU1	0
U2	7 475	dU2	-1,92	MU2	-14 327
Total U	18 975			Total M(U)	-14 327
	_	Moment % à G (kg.m)	-5 734	_	
		□N (kg)	16 525	\square max (T/m^2)	1,18
		v (m)	5,75		1,70
		Moment d'inertie (m ⁴)	126,74	\Box s (T/m ²)	50
		Section (m ²)	11,50	STABLE	


Annexe 9 : Description d'une irrigation par bassin de submersion

L'irrigation par inondation ou submersion consiste, comme son nom l'indique, à recouvrir d'eau la parcelle. C'est la technique appliquée dans les rizières. L'aménagement est fait suivant la courbe de niveau, et le plus souvent le bassin est de forme rectangulaire, parallélogramme ou carré de superficie variable suivant la forme du terrain. La différence d'altitude dans un même bassin à tolérer varie de 5 à 8 cm, les diguettes longitudinales sont établies en suivant les courbes de niveau et de 0,3 m de hauteur et 1,5m de base avec une revanche de 1/1, et le canal arroseur permet l'alimentation des prises pour l'irrigation de la parcelle.

Annexe 10: Plan des ouvrages

TABLE DES MATIERES

REMEI	RCIE	MENTS	i
LISTE	DES T	FABLEAUX	iii
LISTE	DES A	ABREVIATIONS	v
LISTES	S DES	FIGURES	vii
LISTE	DES (CARTES	vii
LISTE	DES A	ANNEXES	viii
SOMM	AIRE		ix
	(GENERALITES	3
СНАРІТ	TRE I:	PRESENTATION GENERALE DE LA ZONE D'ETUDE	4
1.1	Loc	calisation	4
1.1	1	Localisation administrative	4
1.1	2	Localisation géographique	4
1.2	Ac	cessibilité dans la zone	7
1.3	Cli	mat	7
1.4	Ну	drographie	9
1.5	Gé	omorphologie [3]	11
1.6	Pé	dologie	11
1.7	Gé	ologie [3]	11
1.8	Co	uverture végétale	11
CHAPIT	TRE II:	ASPECTS AGRO-SOCIO-ECONOMIQUES DE LA ZONE D'ETUDE	12
II. 1	Sit	uation démographique	12
II.:	1.1	Population	12
II.:	1.2	Composition ethnique [11]	12
II.2	Ası	pects sociaux [12]	13
11.2	2.1	Santé	13
11.2	2.2	Accès en eau potable	13
11.2	2.3	Enseignement et éducation	13
11.2	2.4	Sécurité	13
II.3	Act	tivité économique	14
11.3	3.1	Agriculture [12]	14
11.3	3.2	Elevage [12]	14

II	.3.3	Autres activités économiques [11]	15
11.4	Situ	uation actuelle du périmètre de Maharivo	15
	(i	(i) ETUDE TECHNIQUE DE BASE	17
СНАРІ	TRE III:	: ETUDES PLUVIOMETRIQUES	18
III.1	But	t [7]	18
III.2	Cho	oix de la station de référence	18
III.3	Ехр	ploitation des données pluviométriques	18
II	I.3.1	Pluviométrie moyenne mensuelle [mm]	18
	III.3.1.	.1 Pluviométrie moyenne interannuelle [mm]	19
	III.3.1.	.2 Ecart-type	19
II	1.3.2	Pluviométries de différentes fréquences	19
	III.3.2.	.1 Pluviométrie quinquennale et décennale	19
	III.3.2.	.2 Répartition mensuelle de la pluviométrie de différentes fréquences	20
II	1.3.3	Pluviométrie maximale journalière	21
CHAPI	TRE IV:	: ETUDES HYDROLOGIQUES	23
IV.1	. Bas	ssin versant	23
۱۱	/ .1.1	Notion du bassin versant	23
I۱	/ .1.2	Délimitation du bassin versant [19]	23
I۱	/ .1.3	Caractéristique physique du bassin versant	25
IV.2	. Esti	imation des apports	26
۱۱	/.2.1	Méthode CTGREF	26
	IV.2.1.	1 Apport moyen annuel	26
	IV.2.1.	2 Apport moyen mensuel	27
۱۱	/ .2.2	Méthode de STATION DE REFERENCE	28
	IV.2.2.	Apports interannuels des diverses fréquences à la station de Dabara	28
	IV.2.2.	Apports interannuels des diverses fréquences du Bassin versant	28
	IV.2.2.	2.3 Apports moyens mensuels	29
I۱	/.2.3	Synthèse des résultats	29
IV.3	Esti	imation des débits de crues	30
I۱	/.3.1	Méthode d'ORSTOM	30
۱۱	/ .3.2	Méthode de LOUIS DURET	31
I۱	/ .3.3	Synthèse de résultat	32
CHAPI	TRE V:	ETUDES DES BESOINS EN EAU	33
V.1	Тур	pe de culture et calendrier cultural	33

V.2	Var	iété culturale	33
V.3	Coe	efficient cultural [15]	34
V.4	Plu	e efficace [15]	34
V.5	Per	tes d'eau par évapotranspiration potentielle	34
V.6	Per	tes d'eau par infiltration	35
V.7	Bes	oin propre de la plante BP	35
V.8	Bes	oin lié à la pratique culturale (<i>Babsolue</i>) [15]	35
V.8	3.1	Mise en boue (MB)	36
V.8	3.2	Remplissage des clos (RC)	36
V.8	3.3	Mise à sec (AS)	36
V.8	3.4	Entretien (E)	36
V.9	Bes	oin net Bn	36
V.10	Effi	cience <i>Et</i>	37
V.11	Bes	oin total brut	37
V.12	Dél	oit fictif continu (dfc)	37
V.13	Adé	equation ressource-besoin	37
V.14	Cal	cul des débits	39
V.1	4.1	Débit fictif continue de pointe (dfcp) en [l/s/ha]	39
V.1	4.2	Débit d'équipement <i>QE</i> en [l/s/ha]	39
V.1	4.3	Débit nominal	45
V.1	4.4	Main d'eau	45
CHAPITI	RE VI:	ETUDES TOPOGRAPHIQUES	46
VI.1	Ter	mes de référence pour les travaux topographiques	46
VI.2	Tra	vaux préliminaires	46
VI.	2.1	Délimitation du périmètre d'étude	47
VI.	2.2	Reconnaissance	48
VI.	2.3	Choix des moyens utilisés	48
\	/I.2.3	.1 Moyens personnels	48
\	/I.2.3	.2 Moyens matériels	49
VI.	2.4	Divers logiciels utilisés par la SIMTEPHA pour le traitement des données	50
VI.3	Dér	oulement des travaux topographique	50
VI.	3.1	Rattachement du levé	50
\	/I.3.1	.1 Paramétrage du GPS portable	50
	VI.3	3.1.1.a. Système géodésique	51

VI.3	1.1.b. Format de position	51
VI.3.1.	2 Calibrage du GPS portable	51
VI.3.2	Etablissement du polygonaux primaires	52
VI.3.2.	1 Calcul de gisement A1A2	52
VI.3.2.	2 Calcul de coordonnée définitif de A2	53
VI.3	2.2.a. Détermination planimétrique du point	53
VI.3	2.2.b. Détermination altimétrique	53
VI.3.2.	3 Déterminations des autres points polygonaux primaire	54
VI.3.3	Etablissement des polygonaux secondaires	54
VI.3.4	Levé de détail	55
VI.3.4.	1 Détails à lever [1]	55
VI.3.4.	2 Précision du levé [17]	55
VI.3.4.	3 Mesures à effectuer	55
VI.3.5	Remarques et Recommandations	57
VI.3.5.	1 Remarques	57
VI.3.5.	2 Recommandations	58
VI.3.6	Modélisation du terrain	59
VI.3.7	Filage des courbes de niveau	60
`	ii) PROPOSITION D'AMENAGEMENT, RESULTAT ET	
	MPLANTATION	
	CONCEPTION ET DIMENSIONNEMENT DES OUVRAGES	
VII.1 Barı	age de dérivation	62
VII.1.1	Choix du site du barrage	62
VII.1.2	Choix du type de barrage	62
VII.1.3	Dimensionnement du barrage	63
VII.1.3	1 Longueur L du barrage	63
VII.1.3	2 Côte de la crête du barrage	63
V/II 1 2		
VII.1.3	3 Hauteur du barrage	63
VII.1.3 VII.1.3	•	
	4 Calcul du niveau des plus hautes eaux HNPHE	64
VII.1.3	.4 Calcul du niveau des plus hautes eaux HNPHE	64 64
VII.1.3 VII.1.3	.4 Calcul du niveau des plus hautes eaux HNPHE	64 64
VII.1.3 VII.1.3 VII.1.3	.4 Calcul du niveau des plus hautes eaux HNPHE	64 64 64
VII.1.3 VII.1.3 VII.1.3	.4 Calcul du niveau des plus hautes eaux HNPHE	

VII.1.4.1	L Rè	gle de LANE	66
VII.1.4.2	2 Sta	abilité au glissement	67
VII.1.4.3	3 Sta	abilité au renversement	68
VII.1.4.4	1 Sta	abilité élastique	68
VII.1.	4.4.a.	Vérification de la règle du tiers central	68
VII.1.	4.4.b.	Vérification des contraintes au sol de fondation	69
VII.2 Systè	me d'ir	rigation [14]	70
VII.2.1	Propos	ition mode de distribution d'eau d'irrigation	70
VII.2.2	Technic	que d'irrigation [11]	70
VII.2.3	Découp	page hydraulique du périmètre [11]	70
VII.3 Résea	aux hyd	droagricoles	72
VII.3.1	Réseau	x d'irrigation	72
VII.3.1.1	L Dé	finition	72
VII.3.1.2	2 Pr	incipe du tracé des réseaux d'irrigation	72
VII.3.1.3	3 Tr	acé de l'axe du réseau d'irrigation	73
VII.3.1.4	l Di	mensionnement des ouvrages	73
VII.3.	1.4.a.	Prise	73
VII.3.	1.4.b.	Bâches	74
VII.3.	1.4.c.	Dessableur dynamique	75
VII.3.	1.4.d.	Chute	77
VII.3.1.5	5 Di	mensionnement des canaux	78
VII.3.	1.5.a.	Avant canal	81
VII.3.	1.5.b.	Canal tête morte	81
VII.3.	1.5.c.	Canal principal	82
VII.3.	1.5.d.	Canal secondaire	82
VII.3.1.6	5 Cu	ibature de terrassement	82
VII.3.2	Réseau	de drainage	87
VII.3.2.1	L Tr	acé des drains	87
VII.3.2.2	2 Pa	ramètre de base d'un réseau de drainage [2]	87
VII.3.	2.2.a.	Durée admissible de submersion	87
VII.3.	2.2.b.	Profondeur de la nappe	87
VII.3.	2.2.c.	Pluie critique	88
VII.3.	2.2.d.	Débit caractéristique	88
VII.3.2.3	3 Ca	ractéristique du réseau de drainage	89
VII.3.	2.3.a.	Profondeur de drain	89

VII.3.2.3.b. Ecartement de drain	89
VII.3.2.3.c. Débit à évacuer	90
VII.3.2.3.d. Dimensionnement de drain	90
VII.3.3 Réseau de piste	91
VII.3.3.1 Pistes d'exploitation	91
VII.3.3.2 Pistes d'entretien	91
VII.3.3.3 Pistes de liaison	91
CHAPITRE VIII: PROPOSITION D'IMPLANTATION	92
VIII.1 Définition	92
VIII.2 Matériels utilisés	92
VIII.3 Implantation des ouvrages	92
VIII.3.1 Barrage	93
VIII.3.2 Ouvrage de prise	96
VIII.3.3 Dessableur	96
VIII.3.4 Bâche	96
VIII.3.5 Chute	97
VIII.4 Implantation du tracé en plan du canal	97
VIII.4.1 Implantation des alignements droits	97
VIII.4.1.1 Eléments à implanter	97
VIII.4.1.2 Méthodes d'implantations	98
VIII.4.2 Implantation des arcs de cercle	99
VIII.5 Implantation des profils en long et profils en travers du projet [8]	100
VIII.6 Contrôles d'implantations	101
(iv) ANALYSE DES IMPACTS ENVIRONNEMENTAUX	K, COUT et
ANALYSE MULTICRITERE DU PROJET	103
CHAPITRE IX: ANALYSES DES IMPACTS ENVIRONNEMENTAUX	104
IX.1 Objet de l'étude	104
IX.2 Cadre de l'étude :	104
IX.3 Description du milieu récepteur	104
IX.3.1 Milieu physique	104
IX.3.2 Milieu humain	104
IX.3.3 Milieu biologique	104
IX.4 Analyse des impacts environnementaux	104
IX.4.1 Identification des Impacts	106

IX.4.2	Evaluation des impacts potentiels et résiduels du projet	108
IX.4.2.	1 Classification des impacts	108
IX.4.2.	2 Durée de l'impact	108
IX.4.2.	3 Intensité des impacts	108
IX.4.2.	4 Etendue de l'impact	109
IX.4.2.	5 Attribution de notes	109
IX.4.2.0	5 Importance des impacts	109
IX.4.2.	7 Analyse des impacts	110
IX.4.3	Proposition des mesures d'atténuation et optimisation	112
IX.5 Plan	de Gestion Environnemental	114
IX.5.1	Plan de mise en œuvre de la mesure proposé	114
IX.5.2	Suivi environnemental	117
CHAPITRE X:	COUT DU PROJET	118
X.1 Coû	t des travaux topographique	118
X.2 Coû	t des constructions des ouvrages et du canal principal	118
CHAPITRE XI:	ANALYSE MULTICRITERE	123
XI.1 Crite	eres d'analyses [15]	123
XI.1.1	Coût de l'aménagement par ha (appelé ratio) :	123
XI.1.2	Augmentation de production par ha :	123
XI.1.3	Intérêt économique de l'aménagement :	123
XI.1.4	Intérêt social de l'aménagement :	124
XI.1.5	Motivation des usagers au vu de l'expérience des années passées	124
XI.1.6	Aspects environnementaux :	124
XI.1.7	Analyse des risques, tant techniques que socio-économiques	124
XI.2 Résu	ıltat de l'analyse	125
XI.2.1	Coût d'aménagement par ha (ratio)	125
XI.2.2	Augmentation de la production par ha	125
XI.2.3	Intérêt économique de l'aménagement (retour sur investissement)	125
XI.2.4	Intérêt socio-économique de l'aménagement et motivation des usagers	125
XI.2.5	Motivation des usagers au vue de l'expérience des années passées	125
XI.2.6	Impacts environnementaux	126
XI.2.7	Risques techniques, socio-économiques	126
CONCLUSION	V	127
REFERENCE		128

		MEMOIRE DE FIN D'ETUDE
ANNEXES		130
TABLE DES	MATIERES	155

Nom et Prénoms: RAMANANTOANINA Faniriniaina Jean Arthur

Adresse de l'auteur : Lot IPT 88 bis Antanety Bemasoandro Atsimondrano

Contact: 033 29 162 42 / 034 16 064 35 / <u>rantfart@gmail.com</u>

Titre du mémoire : « Contribution à l'élaboration d'un plan d'aménagement hydroagricole cas du périmètre irrigué de Maharivo d'une superficie de 832 ha dans le Fokontany de Fenoarivo, Commune rurale de Beronono, District de Mahabo et Région de Menabe ».

Nombre de page : 164 Nombre de figure : 21 Nombres des annexes : 10

Nombre de tableau : 59 Nombre de carte : 3

RESUME

Le présent mémoire a pour objectif d'étudier la faisabilité de création d'un nouveau périmètre irrigué de 832 Ha dans le FKT Fenoarivo, Commune Rurale de Beronono, District Mahabo et Région Menabe en proposant la réalisation d'un barrage de dérivation, de l'avant canal en rive gauche, et des canaux tête morte et principal. La méthodologie adoptée commence par les collectes des données de base de divers calculs, ainsi que la reconnaissance sur terrains. Puis des levés topographiques suivis de traitement des données afin d'aboutir à un plan d'aménagement de la zone et la proposition de l'implantation de ce plan. L'étude est terminée par l'analyse des impacts environnementaux, le coût et l'analyse multicritères du projet. Le coût des travaux est estimé à 8,87 Millions d'Ar/ha qui sont particulièrement chère mais possible.

Mots clés: Aménagement hydroagricole, barrage, réseau d'irrigation, levé, implantation

SUMMARY

The aim of this final dissertation is to study the feasibility of creating a new irrigated perimeter of 832 ha in the FKT Fenoarivo, Beronono's common rural, Mahabo District and Menabe Region. In this thesis, we will study the latter by proposing a construction of a diversion dam, a front canal on the left bank, and headrace and main canals as well. The adopted methodology starts with the collection of basic data from various calculations, and a preliminary field investigation. Then, topographic surveys are carried out, followed by data processing of the results. All these steps will allow us to get the area development plan and also the proposal for its implementation. The study is completed by an analysis of the environment impacts, the costs of this project, and an advanced (multi-criteria) analysis of this latter. Let's finally note that the cost of works is estimated at 8.87 million Ar per ha, a cost that looks particularly expensive but completely possible.

Keywords: agricultural infrastructures, dam (barrage), irrigation network, survey, implementation

Encadreurs:

- > Monsieur RAMANANTSIZEHENA Pascal, Professeur titulaire au sein de l'ESPA.
- Monsieur RAMILISON Jean Marie Louis Bernard, Ingénieur Topographe, Géomètre Expert, Directeur Technique de la société SIMTEPHA-sarl.