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Introduction

Considérons le processus de dimension d X¢={X*(¢), 0 <t <1} solu-
tion de I’équation différentielle stochastique (EDS)

AXE(t) = b(X°(8))dt + e2a(X°(£))dW (1), X°(0) = o, (1)

oue > 0 et W est un mouvement brownien d-dimensionnel. Le principe de
grandes déviations pour la famille {X¢ ¢ > 0} est un résultat bien connu
sous la condition que le vecteur de dérive b(x) et la matrice de disper-
sion o sont des fonctions régulieres de = [13]. Toutefois, cette condition
peut étre trop restrictive pour certaines applications, ou les processus qui
violent cette dépendance se posent naturellement. Nous nous référons a ces
processus comme a des statistiques discontinues. Un exemple d’application
ou des procédés discontinus avec des statistiques a été posé, est la modéli-
sation des canaux de communications incorporant un "limiteur dur' dans
une boucle a verrouillage de phase, qui est une forme de filtre non linéaire
sous-optimal [17]. Ces canaux de communications peuvent étre modélisés
par une matrice de diffusion de dispersion continue, mais avec une variation
qui change de maniére discontinue quand z franchit une limite lisse dans
R?. Plus précisément dans ce mémoire on étudie le principe de grandes
déviations pour ce genre de processus.

Plusieurs articles ont étudié les grandes déviations pour les diffusions avec
des statistiques discontinues comme l’article "large deviation for small noise
diffusion with discontinuous statistique", du livre "probability theory", écrit
par P.Dupuis, R.S. Ellis et M. Boué [10]. Cet article nous a beaucoup
inspiré pour la réalisation de ce mémoire. En utilisant des techniques de
I'application continue, Korostelev et Leonov [15, 16] ont obtenu un prin-
cipe de grandes déviations pour une classe restreinte en deux dimensions
de diffusions qui satisfait certaines conditions de stabilité. Récemment,
Chiang et Sheu [6] ont considéré la diffusion d-dimensionnelle avec une
dérive continue, sauf a la traversée de I'hyperplan (d — 1)-dimensionnel
0={x € R?: x; = 0} ou I'indice 1 désigne la premiére composante du vec-
teur. Leurs résultats supposent que la matrice de dispersion o est la matrice
identité de dimension d. Dans ce mémoire, nous étendons ces résultats de
maniere significative, en permettant a la matrice de dispersion de dépendre
de z € RY. Bien que nous supposions toujours qu’une discontinuité se pro-
duise le long de I'hyperplan 0, notre hypothese est que (1) a une unique
solution forte. C’est notamment le cas lorsque o(+) est la matrice identité
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ou lorsqu’elle est une matrice constante non dégénérée. En plus les condi-
tions générales pour 'existence et I'unicité de la solution forte peuvent étre
trouvées dans [20]. Une méthode standard pour le traitement des grandes
déviations sur les diffusions est basée sur le temps discret. Cette situation
est le problématique dans le contexte de statistique discontinue, car il est
difficile de rapprocher le processus en temps continu avec précision par
I’analogue au temps discret au voisinage de la discontinuité. L’approche
de convergence faible pour les grandes déviations développée dans [7] nous
permet de contourner cette étape de discrétisation en temps. Bien que la
méthodologie ait été développée dans le contexte des processus en temps
discret, le document ici présent démontre 1’équivalence de ’approche en
étendant son application en temps continu. En particulier, nos résultats
sont les analogues en temps continu de ce que I'on trouve dans le chapitre
7 du [7], concernant un modele de marche aléatoire avec des statistiques
discontinues. En fait, la fonctionnelle d’action figurant dans notre théo-
reme principal, a la méme forme que celle apparaissant dans le théoreme
7.2.3 dans [7]. La similitude est également présente dans les preuves de plu-
sieurs résultats préliminaires. Par conséquent, toutes ces preuves peuvent
étre réalisées comme des extensions évidentes de leurs homologues a temps
discret. Mais elles seront omises. Il est important de remarquer que malgré
les similitudes, 1’extension présentée ici est importante et loin d’étre im-
médiate, et sa preuve nécessite un certain nombre de nouvelles idées. La
preuve repose sur les propriétés générales de I’ DS et sur une formule de
représentation des fonctionnelles de solution forte de TEDS de [5].

Le résultat principal de ce mémoire, le théoreme 2.2.1, énonce le principe
de Laplace sur la famille {X¢ e > 0}. Le terme du principe de Laplace se
réfere a 'analyse asymptotique des logarithmes normalisés des fonctions
continues évoquant l’espérance ; une définition précise est donnée dans le
chapitre 2. Ce principe de Laplace est équivalent a un principe de grandes
déviations avec la méme fonctionnelle d’action et le principe de grandes
déviations pour la famille {X¢, ¢ > 0} est une conséquence directe du théo-
reme 2.2.1.

Le contenu de ce mémoire est organisé comme suit. La premiere partie du
chapitre 2 introduit la famille de diffusion avec des statistiques disconti-
nues considérées. Apres les hypotheses nécessaires, le principe de Laplace
pour cette famille est énoncé dans le théoreme 2.2.1. Dans le chapitre 3,
nous énoncons une formule de représentation des solutions d’E DS ainsi
que 1’étude asymptotique de la famille de controle {v°, e > 0}, consistant a
éliminer le mouvement brownien W qui seront nécessaires dans la preuve
du théoreme 2.2.1. Ce chapitre comprend également les résultats généraux
de compacité et de convergence qui seront utilisés dans le chapitre suivant.
Enfin, le chapitre 4 est consacré a la preuve du principe de Laplace. La
preuve est divisée en limites supérieure et inférieure, chacune correspon-
dant a une sous-section. Un probleme plus ambitieux que celui analysé dans
le présent document concerne les processus de diffusion, dont les dérives
présentent des discontinuités le long d’un nombre arbitraire d’ intersection



lisse de variétés (d — 1)-dimensionnelles. Les difficultés rencontrées dans
'analyse de ces processus sont discutées dans la section 7.1 de [7].



Chapitre 1
Préliminaire

1.1 Définitions préliminaires

Définition 1.1.1. Une fonction I : X — [0, oo] est une fonctionnelle d’ac-
tion si elle est semi-continue inférieurement et I # +o00. De plus, si pour
tout a < oo, {v € X, I(z) < a} est compact alors I est une bonne fonc-
tionnelle d’action.

Définition 1.1.2. Une fonction I : X — [0, 0o] est semi-continue inférieu-
rement en xy € X si liminf, ,,, f(x) > f(zo). La fonction I est dite tout
simplement semi-continue inférieurement si I est semi-continue inférieure-
ment en tout point de X.

Définition 1.1.3. Etant donnée une fonction I, la famille { X}, satisfait
un principe de grandes déviations avec une fonctionnelle d’action I si I est
une bonne fonctionnelle d’action et si pour tout I' € B(X),

. < Tim i e <1 e o
xlgrfol(:c)_hc_rgégrlfglogP(X EF)_hgriS}rlpglogP(X el < xelg(fr)l(x),

ou cl(I") est la fermeture et I'° 'intérieur de I.

Définition 1.1.4. {X*°}.. satisfait un principe de Laplace avec une bonne
fonctionnelle d’action I si pour toute fonction F' continue et bornée de X,
on a

lim —elogE
e—0+

exp (-iF(XE))] = inf {I(x) + F(2)}.



1.2 Processus de diffusion

Définition 1.2.1. Un processus de diffusion X; est un processus de Markov
a trajectoire continue vérifiant la formule d’Ito

dXt = f(tu Xt)dt + g(ta Xt)dBt

ou B, est un mouvement brownien standard, et une diffusion est caracté-
risée par :
E(Xt—i—h — Xt/Xt = .’,U)

(i) la dérive; }Llir(l) ; = f(t,z)
E(Xn — X0/ X, =
(ii) la limite donnant la diffusion ; }13H(1) (K ht) /X = z) = g(t, x)?
%
E(| X — Xy /Xy =
(iii) la condition de Dynkin; }Lirr(l) (X ) /X =) = 0.
ﬁ

Définition 1.2.2. Soit (£, ) un espace mesuré, un noyau N sur £ est
une application de £ x & dans Ry U {oco} tel que :

(i) Pour tout x € E, I'application A — N(z, A) est une mesure positive
sur £

(ii) Pour tout A € £ lapplication x — N(x, A) est E-mesurable.
Théoréme 1.2.3 (Théoréme de convergence dominé de Lesbegue). Soit

(fn) une suite de fonctions mesurables positives de (E, A, 1), on suppose
que :

(i) il existe une fonction f mesurable d valeurs dans C telle que f,(x) —
f(x) p-presque partout

(7i) 1l existe une fonction g : E — R, mesurable telle que [ gdp < oo et
pour tout n, | fi |< g p-presque partout.

Alors, f est intégrable et on a :
(i) Jim, [ fudye = [ fo
(i) Jimy [ | fo—f|dp=0.

1.3 Chaine de Markov

Définition 1.3.1. Une filtration (2, F) est une famille croissante (F;)i>o
de sous-tribu de F si et seulement si

Fi C Fiqa.
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Définition 1.3.2. T est un temps d’arrét relatif a la filtration (F;)

T:Q — [0,00] tel que pour tout t {T >t} e F,
wr— T(w).

Définition 1.3.3 (Suite tendue). Soit (X, T") un espace topologique et soit
) une o-algebre sur X qui contient la topologie T

Ainsi, tout ensemble ouvert de (X, T') est un ensemble mesurable de (X, X))
et X est au moins aussi fine que la tribu borélienne sur X.

Soit M une famille de mesures (éventuellement signées ou complexes) dé-
finies sur X..

La famille M est dit tendue ou parfois uniformément tendue si pour tout

e > 0, il existe un ensemble compact K. de X tel que pour toute mesure
wde M :

| [ (X\K:) <&

ou | p | est la mesure de variation totale de p.

Dans le cas ou la famille M consiste en une seule mesure p, la famille
est alors appelée mesure tendue ou peut étre une mesure intérieurement
réguliere.

Définition 1.3.4. Soit (Z,,) une suite de variables aléatoires de (2, A, F,P)
a valeurs dans (E, &), ou E est 'espace des états, alors, (Z,,) est une chaine
de Markov de loi initiale v si

(i) P(Zo = 0) = v(0)

(1) P(Zns1 = 2n41/20 = 205 -y Zn = 2n) = P(Zns1 = 201/ Zn = 2n)
(iii) Q(z,75) =P(Z,41 = j/Z, = 2) est indépendante de n pour tous

j,z € E, ou Q est la probabilité de transition relativement a la filtra-
tion JF,, telle que E(Z,11/F) = Qf(Z,).

Théoréeme 1.3.5 (Propriété de Markov). Soit (X,,,n > 1) une chaine de
Markov sur U'espace de probabilité filtré (Q, A, F,P), de matrice de tran-
sition Q et T un temps d’arrét, alors, pour toute fonction f borélienne
bornée, on a :

(i) Ef(Xrsk, k > 0/Fr) = Ex,(f(Xg, k > 0))
(7i) (X7in,n > 0) est une chaine de Markov, de matrice de transition Q

(7ii) (X7in — Xp,n > 0) est indépendant de Fr.
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Définition 1.3.6. Une famille ® des mesures de probabilité sur y est dite
lisse : si pour chaque € > 0, il existe un ensemble compact K tel que

: S 1_ .
;Iécfl;’y(K)_l 3



Chapitre 2

Enoncé du théoreme principal

Nous travaillons I'espace de probabilité canonique (2, F, P), ou Q=C([0, 1] :
R?) et P est la mesure de Winner d-dimensionnelle. L’espace C([0, 1] : R?)
est doté de la métrique de sup-norme. Pour chaque
0 <t <1, posons W(t,w)=w(t) et on définit la filtration augmentée F; par

Fi=o (FVUN), 0<t<l,

ot FV={oc(W(s);0 < s < t)} et N est la collection des ensembles P-
nuls. Ensuite, le processus W={W(t), F;,0 < t < 1} est un mouvement
brownien d-dimensionnel. Pour préparer notre théoreme principal, nous
introduisons le concept du principe de Laplace.

2.1 Introduction sur la famille de diffusion avec la
statistique discontinue

Par définition, la fonctionnelle d’action sur un espace polonais est une
application de I’espace polonais vers [0, co] avec ’ensemble de niveaux com-
pact.

Définition 2.1.1. Soit { Y*,e > 0} une famille de variables aléatoires pre-
nant ses valeurs dans un espace polonais ) et soit I une fonctionnelle
d’action sur ). Nous disons que {Y“} vérifie un principe de Laplace avec
comme fonctionnelle d’action I si pour toute fonction continue et bornée h

de ) dans R :
h(Y)

€

} } = inf {h(y) + ()},

Un principe de Laplace est équivalent a un principe de grandes déviations
avec la méme fonctionnelle d’action (voir théoreme 2.2.1 et 2.2.3 dans [7]

ll_{% elog B {exp
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pour plus de détail). Ainsi, au lieu de prouver un principe de grandes dé-
viations pour les diffusions avec des statistiques discontinues, nous nous
concentrons sur la preuve du principe de Laplace sur la méme famille.
C’est le contenu du théoreme 2.2.1.

Considérons le processus de diffusion X¢, solution de ’équation (1). La
matrice dispersion 0 est une matrice d X d des fonctions boréliennes mesu-
rables d’'une application R? dans R. La dérive b est supposée étre continue,
sauf & travers I’ hyperplan de dimension (d — 1) :

O={z € R": 21 =0}.

Plus précisément, on donne des fonctions continues b et b2, deux appli-
cations de R? dans R, b est définie par

() = bW (x) size AW,
| (2) sizeA®,

ou

AN = {xERd:xlgO}et AP = {xGRd:x1>0}.

L’inclusion de I’hyperplan 0 avec le demi-espace ouvert a gauche est arbi-
traire. Le principe de Laplace dans le théoreme 2.2.1 est valable si O est
inclus dans le demi-espace ouvert a droite. Nous notons que le probléeme
général ou O est remplacé par une variété réguliere de dimension (d — 1)
peut étre réduit a celui présenté ici par le biais de technique de localisation
standard, cf [2]. Le théoreme 2.2.1 énonce le principe de Laplace pour la
famille { X : € > 0} dans les conditions suivantes.

Condition 2.1. (a) b, b?) et ¢ sont continus et sont bornés par une
constante Bj.

(b) o est uniformément non dégénérée, c’est a dire o(-)ol(-) > ¢l pour
c > 0.

(c) L’EDS (1) a une unique solution forte.

Notation et définitions nécessaires : cf[7]
Des notations et plusieurs définitions sont nécessaires. Etant donné une
mesure de probabilité ;i dans RY, S,, désigne le support de pu, qui est le
plus petit ensemble fermé de u-probabilité 1. Pour un sous-ensemble A de
R? ConvA, affA , clA et intA désignent respectivement I’enveloppe convexe
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de A, lextérieure (coque) affine de A, la fermeture de A et I'intérieur de
A.

Pour un sous-ensemble convexe C' dans R, riC' désigne l'intérieur relatif
de C', qui est l'intérieur qui se produit lorsque C' est considéré comme un
sous-ensemble de affC'. Bien entendu, si l'intérieur de C' est non vide ou
équivalente, si 'extérieure (coque) affine de C' est égale & R?, alors 1iC' =
intC. Enfin, pour une fonction convexe f sur R?, domf désigne le domaine
effectif de f, qui est 'ensemble de # € R? pour lequel f(z) < oo.
Fonctions convexes : Dans le cas de R?, un sous-ensemble y d’un espace
linéaire est appelé convexe : si sx+(1—s)y inclus dans y pour tout s € (0,1)
et tout x et y dans Y.

Remarques 2.1.2.

(i) Bien que dans la partie (a), de la condition 2.1, nous supposions que les
deux applications bV (z) et b (x) sont des fonctions continues sur z € R?,
en général b(x) n’est pas continu dans 0.

(i) Pour simplifier, nous avons supposé que o(x) est continue sur R? (les
conditions suffisantes pour I'existence d’une solution unique forte présentée
dans [20] exigent cette condition ). Toutefois, aussi longtemps que I’équation
diftérentielle stochastique (1) a unique solution forte, le résultat du théo-
reme 2.2.1 reste valable si o(x) est également autorisé a étre discontinu le
long de I’hyperplan 0.

(iii) La partie (b) de la condition 2.1 est nécessaire pour la preuve du prin-
cipe de Laplace pour la borne inférieure.

Plus de commentaires sur cette hypothese seront donnés ci-dessous. Pour
i = 1,2 et x et B dans R?, et soit L (z, 3) une fonctionnelle d’action
associée par le théoreme de Cramer (cf : Annexe A) avec une mesure de
probabilité gaussienne sur RY, avec le vecteur moyen b)(z) et la matrice
de covariance a(r)=c(z)oT (z).
. _ . 1
lﬂw(xvﬁ):: sSup {<Q75'_l%w($)>__ <a7a(x)Q>}7

acRd 2
ol {-,-) désigne le produit scalaire euclidien sur R?. Si 3 — b)) (x) se trouve
dans I'image de a(x)-, alors £ (z, 3) est définie par
1

£0w,8) = glo = 0@)),
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oit & € R? est tout vecteur satisfaisant a(x)a = B — b (z), sinon,

o
LU (x, B) est égal & co. Le domaine effectif de L (z, 3) est donc donné par
dom LW (z,8) = {6 eR?: g — b(i)(a:) =a(x)u pour chaque u € Rd}.

Par conséquent, une partie (b) de la Condition 2.1 implique que
domL¥(z,-) = R, pour chaque z € R% 1l s’ensuit trivialement que ces
ensembles sont indépendants de z € R? et de i = 1,2, que

0 € ri(dom L9 (x,-)), et que ri(dom L% (z,-))n’ est pas un sous-ensemble
de 0. Ces propriétés sont nécessaires pour la preuve du principe de Laplace
sur la limite inférieure.

Remarques 2.1.3. Nous pouvons en fait remplacer une partie de (b) de la
Condition 2.1 avec I’hypothése plus faible que les ensembles ri(dom L™ (x, -))
sont indépendants de x € R? et de i = 1,2, et que 0 € ri(domL" (x,-), et
que ri(domL(i)(a:, -) n’est pas un sous-ensemble de 0. Les preuves que nous
présentons ici peuvent étre généralisées pour couvrir les cas de certaines
hypothéses qui sont plus faibles pour les rendre satisfaisantes.[]

Avant de passer a la définition de la fonctionnelle d’action, nous indique-
rons d’abord la forme de L(i)(x, B), qui sera utilisée dans la démonstration
du principe de Laplace. La partie (b) de la Condition 2.1 nous permet
d’écrire :

. 1 )
LYz, 3) = 5 oI pour v=o"'(2)(8 — b (). (2.1)

Afin de préciser la fonctionnelle d’action pour la famille { X< : ¢ > 0}, pour
x et # dans R, on définit

LO(z, B)=inf {fVLD(z, B0) + gL (@, B2)} . (2.2)

La borne inférieure est prise sur tous les pV) € R, p® e R, s € R? et
B2 ¢ R? satisfaisant

Ensuite nous définissons pour x et # dans R?

11



LW(x,B) six <0, (2.6)
L(z,8)={LO(z,8) sixz =0,
L®(x,8) sixzy >0.

La forme de la fonctionnelle d’action dans le théoreme 2.2.1 est la méme
que celle figurant dans le principe de Laplace pour le modele de marche
aléatoire avec statistique discontinue étudiée dans le chapitre 7 de [7]. Par
conséquent, nous allons tout simplement énoncer le principe de Laplace en
utilisant cette fonctionnelle d” action et de renvoyer le lecteur a [7, a la
page 221] pour une discussion détaillée de la fagon dont cette fonctionnelle
d’ action peut étre interprétée.

Théoréme 2.1.4. Pour toute partie A dans RY, on a ri(ccA) est égal
ri(convA).

Preuve. D’apres le théoreme 6.5 dans [19]

ccA=n{B:B est fermé convere dans R’ A C B}
= N{clC : C est convexe dans R?, A c C}

= cl(N{C : C est convexe dans R A cC C})
= cl(convA).

Le théoreme 6.3 dans [19] nous garantit I’égalité de ri(ccA) = ri(cl(convA)) =
ri(convA). O

Les conditions suivantes sont satisfaites, si pour chaque z € R? le sup-
port de la mesure p(dy | x) est RY. Nous rappelons que pour x € RY,
ri(convS,(|y)) désigne l'intérieur relatif de I'extérieur (coque) convexe du
support de p(- | x). Soient f; et fo deux fonctions continues et bornées
lipschitziennes telles que

m’(domL(m, )) - {(61762) D p = fl(x1> + f2($2)7ﬁ2 < R}7

en général, cet ensemble dépend toujours de x, et il ne contient pas 0. Et
on a besoin des deux conditions suivantes pour certain lemme qu’on trouve
dans le chapitre quatre.
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Condition 2.2. (a) Pour chaque a € R,
Max;—1 2 (supxeRd HO (x, a)) < 00.

(b) Pour chaque i = 1,2, la fonction appliquant © € R* — p(dy | z)€
P(R?) est continue dans la topologie & convergence faible sur P(R?).

Condition 2.3. (a) Les ensembles ri(convS,,m.|,)) sont indépendants pour
reRYeti=1,2.

(b) 0 € X=ri(convS,u/y)) et X n'est pas un sous ensemble de
0={r € R?: 2, = 0}.

2.2 Conséquence : le principe de Laplace pour la fa-
mille {X*® ¢ > 0}.

Théoréme 2.2.1. Nous supposons vérifier la condition 2.1 est vérifiée.
Pour tout zg € RY et ¢ > 0, soit X°={X(t),0 <t < 1} l'unique solution
forte de 'EDS,

AXE(t) = b(XE(t))dt + 2o (XE(4)dW (1), X°(0) =x.  (2.7)

Pour les fonctions absolument continues ¢ € C([0,1] : R?), satisfaisant
©(0) =z, nous définissons

1~

Liy(p)= [ L(p(t), p(1))dt

ott L est défini dans les équations (2.2)(2.6) ce qu'on a vu précédemment.
Pour les autres ¢ € C([0,1] : RY), nous prenons I,,(¢)=o0c. Alors la famille
{X¢ : & > 0} satisfait le principe de Laplace sur C([0,1] : R?) avec Ia
fonctionnelle d’ action I,,(-). En fait, le principe de Laplace est valable
uniformément sur les compacts, c’est a dire que pour tous sous-ensembles
compacts K de R, le principe de Laplace tient uniformément quelque soit
xy € K.

Nous allons donner la preuve du principe de Laplace non uniforme dans
le chapitre 4. La preuve de la version uniforme utilise les mémes arguments,
mais avec une notation plus lourde. La preuve que I, a des ensembles de
niveau compact sera omise sous la condition 2.1, il est identique a celle de
la proposition 7.6.1 dans [7].
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Chapitre 3

Résultats Préliminaires

Soit P,, la probabilité conditionnelle de X© sachant que X¢(0) = x et
E,, désigne I'espérance correspondante. La preuve du théoreme 2.2.1 exige
que nous analysons le comportement asymptotique des
We(xy)= — elogE, {exp[—h(X*®)/e]}. Une étape fondamentale dans I’ap-
proche de la convergence faible utilisée pour cette analyse est la représen-
tation de W¢(x) en terme de fonction de colit minimal d’'un probléme de
controle stochastique associé. Le but de ce chapitre est d’introduire cette
représentation, d’étudier la compacité et de limiter les propriétés de cer-
taines familles des controles et des processus controlés qui se posent dans
la représentation. Nous commencons par indiquer la formule de représen-
tation. Pour une dérivation heuristique de la forme de la représentation,

nous renvoyons le lecteur a la section 4.6 dans [7]. Une preuve est donnée
dans [5].

3.1 Introduction de la formule de la représentation
dans la solution de I’E.D.S

Théoreme 3.1.1. On donnee > 0, soit X© le processus de diffusion qui est
lunique solution forte pour (2.7). Alors pour toute fonction h Borélienne-
mesurable bornée appliquant C([0,1] : R?) dans R, la représentation sui-
vante est satisfaite :

€ o I 2 V,E
W (o) = int B, {5 [0 I e+ h(X)

ou A est I’ ensemble de tous les processus d-dimensionnels, JF;-progressivement
mesurables, v={v(t), 0 <t <1} satisfaisant

B[ o) |
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et X"e={X"%(t),0 <t <1} est l'unique solution forte de
AX(t) = b(X (1)) dt+o (X 5 () v(t)dt+e2o (XU (1)dW (t), X(0) = .

Nous nous référons a X"° comme la diffusion contrélée associée au
contrdle v. Soit {v°,& > 0} une famille de controle dans A. On définit
Xe=X""*. Ainsi, pour chaque € > 0 et t € [0, 1], I'’équation

Xe(t) = xo—l—/ot[b()_(g(s))—|—0()_(€(5))v€(s)]ds—l—5§ /Ota()_(e(s))dW(s). (3.1)

tient avec la probabilité 1. Le reste de cet chapitre est consacrée a 1’étude
des propriétés asymptotiques de {v°, e > 0} et de {X¢, e > 0}, sous 'hypo-
these que les controles vérifient la condition 3.1, voir ci-dessous. La condi-
tion sera automatiquement satisfaite pour les controles qui interviennent
dans la preuve du principe de Laplace.

Condition 3.1.
1
A= sup B, {/ | o) |2 dt} < 0.
e>0 0

Lorsque 'on étudie les propriétés asymptotiques des familles des controles
et des processus de controle, la discontinuité des statistiques donne lieu a
quelques difficultés. Tout d’abord, la présence de la discontinuité implique
que la famille des controles ne peut pas converger au sens usuel. Ce n’était
pas le cas dans tous les exemples traités dans [7], étant donné que les
controles admissibles ont toujours eu des valeurs dans I’espace des mesures
de probabilité sur un espace polonais, donc 1’ existence des limites au sens
faible est assurée. Afin d’exploiter les idées de la convergence faible, nous
représenterons chaque controle v° comme une mesure sur 1 * ensemble boré-
lien de R?. Sous la condition 3.1, nous montrerons ci-dessous qu’il n’ existe

pas une sous-suite de ces mesures qui converge faiblement. Pour tout A
borélien de RY et B dans [0, 1] on a

(A= 14(05(1)), (3.2)
V(Ax B)= [ i (t)dt = [ v (A ] t)dt. (3.3)

Les quantités v°(- | t) et v°(-) ont pris des valeurs dans les espaces P(RY)
et P(R?x [0,1]) des mesures de probabilité respectivement dans R? et dans
R? x [0,1]. La quantité v°(A x B) représente le temps total dépensé dans
I'ensemble Borélien : B C [0,1] et que le contréle v prend ses valeurs
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dans 1’ ensemble Borélien A C R?. Grace & ces mesures, on peut utiliser le
théoreme de Fubini pour le produit de mesure, donc (3.1) peut étre réécrit
comme

X5(1)
—ay+ [ [, (0(X(5)) + 0 (X)) v7(dy | 5)ds +<F [ o(X(s))dW (s)

=ao+ [, (X)) + o (X)) v (dy | s)ds+ e [ o(X7(s))dW (s).

4% [0,1]

Une deuxieme conséquence de la discontinuité des statistiques est qu’on
doit prendre soin quand on analyse la fraction asymptotique de temps que
les processus controlés X¢ dépensent dans chacun des demi-espaces A et
A® . Pour cela, nous devons considérer des mesures supplémentaires. On

définit
YA X B)= [ 1o cve(spzon (D7 (A | D)t (3-4)
V(A x B)i/B Lseo1):(%e(s) 00 (V7 (A | 1)dt. (3-5)

Ces quantités prennent des valeurs dans I’espace M (R?x [0, 1]) des mesures
de sous-probabilités dans R?x [0, 1] c’est & dire pour tout i = 1,2, (0 (R%x
[0,1]) < 1. En termes de ces mesures, nous pouvons encore réécrire

Xe(t) =wo+ [, (BW(X(s) +a(X(s)y)) vV (dy x ds)  (3.6)
(B2 (X5(s)) + o (X (s)y)) v (dy x ds)

et [ o(X5(s)dW (s).

4% [0,t]

t Jpas [0,1]

Enfin, on définit vV et 42 pour la deuxiéme marginale respective de
v et (22 Ainsi

Y DB =D ERY x B) = [ 1o (o <0y (Dt (3.7)

et
Y24(B)=/P4(R? x B) = /B Liseqo): (%2 (s)), 03 (E)dt. (3-8)
Ces quantités sont la mesure de Lebesgue sur les ensembles de temps

t € B alaquelle X ¢(t) reste dans les demi-espaces respectifs ; A (D) et ~(2)e
prennent des valeurs dans M ([0, 1]). Pour i = 1,2

V(A X B) = [ v (A] )y D (dt).
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La proposition suivante donne la tension de la famille
{(ve, v @ 4D 1(2)2) o > 0} aussi bien que la propriété d’ uniforme
intégrabilité de {v°,¢ > 0}, {vV< e > 0} et {v?¢ ¢ > 0}.

Proposition 3.1.2. On donne xy € R, considérons la famille
{v®,e > 0} des contréles dans | ” ensemble A satisfaisant la condition 3.1.
Alors, on a

(a) La famille {(v°, )=, v (02 42)2) ¢ > 0} est tendue.

(b) Les familles {v°, e > 0} et {vD e > 0} pouri = 1,2, ont les propriétés
de l'intégrabilité uniforme

dm s B {f Ay xdn) = 0 (39)
et
dmswp B {f Ly Oy <an | = 0. (3.0)

Preuve. D’apres la preuve de la proposition 7.4.2 de [7], pour chaque
a € R si
HO(x,a) =log [ exp < a,y > u(dy | x),

on a max;—_; o(sup,cgs H'" (z,)) < oo implique que sup,cgs H (2, ) < 0o
et en utilisant la proposition 5.3.2 de [7] alors la quantité (3.9) implique
la tension de {v°,e > 0}. Nous nous concentrerons donc sur la preuve
de (39), pour C' > 0. Par définition de || Y H:H Y H l{zeRd:||z||>C}(y)+

|y | Lizerezy<cy(y) cf[7]. On a :

Iy | Gy x o)}

sup F,
5>%) {/{yGRd ly[[>C}x[0,1]

tp By { [y 0 19 1 Lsemeggey vy x d) ).

comme nous travaillons pour || z [|[> C, z € R%. On a

B, d dt
i {/{yew s | Y 117y )}
::iggLEgo{/gdme}\|yi|1{zeRdﬂzn>cq<y>v8<dy <)
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D’apres la définition de v°(dy x dt)=v°(dy | t) ® dt cf][7] et le produit de
mesure sur R%. On a donc v°(dy | t) ® dt=v°(dy | t)dt , et ce dernier est
égale a

1
= sup Fuy { [ [ 1011 1ecmstapocy (V" (dy | )t}

Et comme || y || varie dans R? et sous la condition 3.1 quantité premiere
ligne, en posant y = v°(t)

1
sup B { [ fou 10 ooy (90" (dy | )}

= sup I, {/01 V({0 (1) € RY o] oF (1) |> CY | t)dt} |

Sous l'action de la famille de contréle {v®,e > 0} et sous la condition 3.1
quantité deuxieme ligne, on a ’égalité suivante

sup Es, {/01 (1) €RY 1| o (1) ||> C) | t)dt} |

e>0

1
=50 {/0 L ert: o>y | 07 1 (£)d }
- S‘c‘l>1%)) {/{t€01 J:[Jv (&) >C} H v (t> H dt}
{ A

£ 2 =
C' J{te[01]:]vs (1)]|>C} o () | dt} < b

On fait tendre C' — oo pour avoir (3.9).
Comme 1° = v 4 p(2)e il gensuit que pour i = 1,2 et toute fonction

= sup b,

< sup b,
e>0

mesurable positive ou nulle g de R? x [0, 1] dans [0, o], on a
(i), e
0% fou o 9 WOy x i) < [ gy, 1) (dy x d).

Par conséquent, (3.9) implique (3.10), ce qui donne la tension des fa-
milles individuelles {v< ¢ > 0} et {v®< ¢ > 0}. Les mesures aléa-
toires 7= et 72 prennent des valeurs dans M([0,1]), qui est compact,
puisque [0, 1] est compact [7, corollaire A.3.16]. Nous concluons donc que
{(ve, v p@e 4 (De 4(2)5) = > 0} est tendue. ]

Le théoreme 3.2.1 ci-dessous analyse les propriétés de convergence des
mesures de controle et des processus controlés. Avant d’énoncer, nous don-
nons les décompositions de certaines quantités qui se trouvent dans ce
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théoreme. Nous rappelons que si (V, . A) est un espace mesurable alors )
est un espace polonais, la famille {7(dy | =),z € V} peut &tre une mesure
de probabilité (resp., sous-probabilité), mesure sur ) qui est un noyau sto-
chastique (resp., un noyau sous-stochastique) de ) donné par V si pour tout
sous-ensemble borélien B de ) l'application z € V —— 7(B | z) € [0, 1]
est mesurable.

Soient {(v, M, 1) ~1) 42 les limites des sous-suites convergentes
{(v°, v M= e 4 De 4(2)5) o > 0}, Ces limites peuvent étre définies sur
un espace de probabilité (€2, F, P), afin que les énoncés suivants soient sa-
tisfaits. Pour i = 1,2 et pour tout sous-ensemble Borélien A de R? et B
sur [0, 1], P,, presque surement pour w € €,

V(A X B|w)= [ v(A|t,w)dt (3.11)
pour certains noyaux stochastiques v(dy | t,w);
V(Ax Blw)= [ V(A tw)dt (3.12)
pour certains noyaux sous stochasthues v (dy ] t w) et
(B | w) / AU (£, w) (3.13)

pour tout ’Ay(i)(t, w) fonction mesurable. En outre, nous avons, avec la pro-
babilité 1 et pour chaque ¢ € [0, 1],

Wdy [ t,0) +vP(dy | t,w) = v(dy | t,w) (3.14)

et pour chaque w € Q et chaque ¢t € 0,157 (¢t,w) = v (R? | ¢,w). Dans la
suite, les quantités (3.11) (3.12) seront résumées comme

v(dyxdt) = v(dy | t)@dt, v (dyxdt) = v (dy | t)@dt et v (dt) = 7D dt

respectivement. Les détails pour la dérivation de ces décompositions dans
une situation analogue peuvent étre trouvés dans le lemme 7.4.3 de [7].
Nous faisons remarquer, cependant, que la preuve de ces décompositions,
la preuve de théorémes 2.2.1 et le théoreme 3.2.1 ci-dessous font usage
du théoreme de représentation de Skorohod [11, Théoreme 1,8], qui im-
plique I'introduction d’'un nouvel espace de probabilité. Nous avons retenu
la notation (€2, F, P) pour ce nouvel espace, et nous allons suivre la méme
convention dans toute la suite. Le théoréme suivant concerne les points-
limites de la famille {(v°, ()=, p2)e y1)f 42)5) ¢ > 0} avec les limites de
la famille {)_( ¢, > 0}. En particulier, il tire plusieurs propriétés clés des
quantités-limites v, v, ) A1) 4 2) ot X
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3.2 Lesrésultats généraux de compacité et de conver-
gence

Théoréme 3.2.1. Supposons la condition 2.1. On donne xy € R%, consi-
dérons la famille {v°,e > 0} des processus A satisfaisant la condition 3.1.
Alors, on a

(a) Etant donnée une sous-suite de {(v°, 1) v(2e 42 22 Xe) o > 0},

il existe une sous sous-suite, un espace de probabilité (€2, F, P), un noyau
stochastique v sur R? x [0, 1] donné dans €, des noyaux sous-stochastiques
de v et v sur R? x [0, 1] donné dans Q, des noyaux sous-stochastiques
A et 42 sur 0, 1] donné dans §2, et une variable aléatoire X appliquant
Q) dans C([0,1] : RY) tels que la sous sous-suite converge en distribution
vers (v, v v AW ~2) X)) Les (sous) noyaux stochastiques ont donné
les décompositions (3.11) — (3.14)

(b) Avec la probabilité 1, pour chaque t € [0, 1]

X(t) = wot [ 00 0VE () +0(X(s)y) " (dy x ds)
/Rdxm (bP(X(5)) + o(X(5))y) vP(dy x ds)  (3.15)
=zt [ [, (VX)) +o(X()y) vV (dyls)ds  (3.16)
[ L 0P (X)) + (X (s)y) v (dyls)ds,

et X (t) est une fonction absolument continue dans t € [0,1]. Par consé-
quent, presque pour tout t € [0, 1] la dérivée de X (t) est donnée par

X = /[, <b<1><5<<t>> +o(X(0)y) v (dy | 1) (3.17)
+ [ 0P(X®) + (X (#)y) v (dy | 1).

(c) Avec la probabilité 1, nous avons presque siirement( par rapport a la
mesure de Lebesgue) pour tout t € [0, 1],

(X (1)1 <0 implique que 4V(t) =vD(R|t) =1 et
(1) = AR | 1) =0

5
(X()1 >0 implique que 47(t) =vP R |1) =1 et
F0(#) = v W(R [ 1) =0, (3.18)
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et pour toute valeur de (X (t))1,

FO®) +42(#) = v R | ) + VP (R | ¢) = 1. (3.19)

(d) Avec la probabilité 1, nous avons presque siirement pour tout ¢ € [0, 1]
lorsque (X (t)); =0

(L 6O @) +o(X(0)) W Vdy [ 9), 20 (3:20)

(Jou 0P X 0) + (X (1)) P (dy | 1)), < 0. (3.21)

Preuve. (a) La tension de {X?, ¢ > 0} peut étre vérifiée sous les conditions
2.1 et 3.1. La convergence de la distribution affirmée dans la partie (a)
est une conséquence de la tension de cette famille avec la partie (a) de
la proposition 3.1.2. L’identification des quantités-limites est donnée dans
(3.11) - (3.13) et dans la partie (b) du présent théoreme.

(b) La tension de la famille {X¢, ¢ > 0} implique que pour toute sous-suite
de € > 0 il existe une sous sous-suite et une variable aléatoire X & valeurs
dans C(]0,1] : R%) telle que X° 25 X. Nous invoquons le théoreme de
représentation de Skorohod (cf Annexe A), cela nous permet de supposer
que X¢ — X avec la probabilité 1.

Il reste & montrer qu’avec la probabilité 1, X (¢) satisfait (3.15) et (3.16)
pour tout ¢ € [0, 1].

Nous commengons par montrer que pour chaque i = 1,2, et t € [0,1] et
pour chaque fonction continue bornée g de R x R¢ dans R, on a

g(X* () gy x ds) = [

g(X(5),y)vV(dy x ds).

(3.22)
Grace a [7, Théoreme A.3.10], tout ce que nous avons besoin de vérifier est
que Pensemble des points (y,s) € R? x [0,1] tels que

9(X*(s), ") pg(s7) — 9(X(s), y)1y(s)

n’est pas toujours vraie pour une suite {(y°,s°),e > 0} convergeant vers
(y,s) forme un ensemble de v(W-mesure nulle. Puisqu’ avec la probabilité

ll—{% /]Rd x[0,t]

1 02 = ) et X° convergent uniformément vers le processus continu
X, cet ensemble est un sous-ensemble de RY x {t}. Puisque la seconde
marginale de () est égale & la mesure de Lebesgue A dans [0, 1], avec la

probabilité 1 v(R? x {t}) = A({t}) = 0, ce qui donne (3.22).
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Puisque b est bornée et continue pour chaque i = 1,2, (3.22) implique
immédiatement

lim /. o DX ()W D (dy x ds) = [, (X (s)pD(dy x ds)
(3.23)
avec la probabilité 1. Pour 0 < C' < oo et soit po(y)=y si || vy ||< C et

@c(y)iCﬁ si||y]||> C. Aussi, pour i = 1,2, on définit

dx[0,t]

VOUCI=E { [ ity 1011775y x ds)}

VNCIEu [ oy 19177y x ds)}.

Comme on le voit dans le théoreme 5.3.5 de [5], une version du lemme de
Fatou implique

w(i)(C') < sup ¢(i)75(0). (3.24)

e>0
Pour tout £ > 0, nous utilisons ces définitions et 1'inégalité de Tchebychev
pour écrire

1
g |

Nous faisons tendre ¢ — 0 puis C' — oo. L’avant-derniere ligne dans la dé-
monstration ci-dessus converge vers zéro en raison de (3.22) et le théoréme
de convergence dominée de Lebesgue. En combinant la proposition 3.1.2
avec (3.24), nous obtenons également la convergence de la derniere ligne
vers zéro. Par conséquent, quand € — 0 nous avons

€ (i),e
/]R 0 O XN (dy x ds) = [
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en probabilité. De (3.6) nous avons

o ¥y x a9)] |

= 2 + lim {55 [ o(Xe()dW (s) + 3

i=1,2

+lim{ >

=0 (512

/Rdx[(),t] o (X5(s))yr' (dy x ds)]} : (3.26)

Le c6té gauche de (3.26) converge avec la probabilité 1 vers X (¢), en raison
de la convergence uniforme de X¢ vers X. En prenant une sous-suite si
nécessaire, (3.23), (3.25) et la convergence avec la probabilité 1 de l'inté-
grale stochastique vers zéro implique que le coté droit de (3.26) est égal au
coté droit de (3.15), ce que nous voulions montrer. La formule (3.16) est
maintenant une conséquence de la décomposition de (3.14) et la borne

Beo{ [ 119 170y x )} < o0,

valable pour i = 1,2. Il s ’ ensuit que X est une fonction absolument conti-
nue de ¢ € [0, 1], et I'expression de X (¢) est immédiate.

Pour le reste de la preuve nous invoquons a nouveau le théoréme de repré-
sentation de Skorohod, ce qui nous permet de supposer que la convergence
affirmée dans la partie (a) et (b) a lieu avec la probabilité 1.

Pour la partie(c), elle est une conséquence relativement simple de la conver-
gence faible et de la définition des différentes mesures. En effet, on suppose
la mesure de Lebesgue sur [0,1] par A. Puisque, pour tout n € N on a
AW 4 4@ = X nous avons avec la probabilité 1 vV + ~+(2) = X. Ainsi
avec la probabilité 1, et a partir de la partie (¢) du lemme 7.4.3 dans [7];
les densités respectives satisfont presque stirement pour tout ¢ € [0, 1] et

A0 +42(t) = DR | 1) + P (R [ 1) = 1.

Cela nous donne la quantité (3.19).

Nous pouvons ensuite prouver la premiere ligne de la quantité (3.18). Avec
la probabilité 1, et comme X (¢) est une fonction continue sur ¢ € [0, 1], il
existe des variable aléatoires q; et b; satisfaisant 0 < a; < b; < 1 et indexées
par ¢ € N telle que

{t € [O, 1] : (X(t))l < 0} = UiEN(a’i7bi)'

23



Choisissons I'une des w € Q telle que (X(t,w)); < 0 pour tout t €
(ai(w), bi(w)). Puis, pour tout § > 0, il existe N € N telle que (X"(s)); <0
pour toute n > N et pour tout s € (a; + 9,b; — 6).

Par conséquent

VMR X (a;+8,b; = 8)) = |, o0 et ()" (dy x ds) = 0,
avec la probabilité 1, et comme v@" = 2 il en résulte que
VORY x (a; +6,b; — 8)) = [ ”‘; VAR | 5)ds = 0.
On va faire tendre 6 — 0, nous obtenons avec la probabilité 1

b¢f5
/4_5 V(R | s)ds = 0.

Avec la probabilité 1, cela implique que pour presque tout s € (a;, b;)
4@ (s) = vA(R? | s) = 0 ainsi que VW (R? | s) = 4W(s) = 1 [7, Lemme
7.4.3 (¢)]. Cela acheve la démonstration de la premiere ligne de la quantité
(3.18). La deuxieme ligne est prouvée de fagon similaire.

(d) Nous fixons temporairement m > 0. La premiére étape de la preuve est
de construire une approximation de la fonction G de R dans R définie par

m s z]|>m.

G(z);{z si|z|<m

Pour chaque k > 0, soient G, (x) une fonction deux fois contintiment diffé-
rentiable de z € R\{0} tels que

| Gx(2) |<2m pour tout z € R

Gu(z) = G(2) pour |z|<m,

| d*G(2)/dz* |< By pour |z |>m/4,
ou By < oo dépend de k > 0. On définit
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()= {dGK(z)/dz siz#0

B —1 siz=0.

Par une suite appropriée définissant G (z), nous pouvons supposer que,
pour | z |> m, g.(2) — 0 si Kk — 0 et quelle est uniformément bornée
pour Kk > 0 et z € R. Bien que g, ne soit pas continue sur tout R, les
restrictions de g, sur (—oo,0] et sur (0,00) sont bornées et continues, et
g est Lipschitzienne continue pour | z |> m/4 avec une constante By.
Pour deux points quelconques x et y dans R, 4m > G.(x) — G.(y). La
substitution z = (X¢(1)); et y = (X(0)); dans cette relation nous donne
4m > G.((X2(1)1) — GL((X?(0))1). Comme G, peut étre écrit comme la
somme d’'une fonction deux fois continiment différentiable et d'une fonc-
tion convexe, nous pouvons appliquer la formule généralisée d’ 1t6 [14,
théoreme 7.1] & la semi-martingale G,.((X¢(t));) pour obtenir

Am =G (X)) — Gi((X=(0))
= [1 gl (X)) ((X=(5)) + o(X2(5))0(5))1ds

et 3 [ 0u(CE () )on (X))

+o [ ddf;(()_(E(s))l)an()_(g(s))ds +2A4(0).

Ici a(z) est la matrice diffusion a(x)=c(z)o”’ (z) et Ay(0) désigne la semi-
martingale temps local de (X¢(+)); a l'origine. La définition de G, la condi-
tion 2.1, et la non-négativité du temps local impliquent que

w2 [ a((ROOE(E) + o (X () (dy x ds) - (327)
e 3 [ guCE (o (X)) s) -

Soient g,g) une extension continue bornée sur R de la restriction de g, sur
(—00,0] et soit g une extension continue bornée sur R de la restriction

de g, sur (0, 00). Avec la probabilité 1, v g V) et X¢ converge unifor-
mément sur [0, 1] vers le processus continu X. Donc le théoreme 5.5 dans
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[3] et intégrabilité uniforme donnée dans la proposition 3.1, impliquent

lim /[ <oy I XD BXE(0)) + o (X (0))yhw~(dy x di)

e—0

= li 3 /Rd o 9 (XN (XE®) + o (X5(0)y)10 (dy x dt)

-3 /Rd o I (X)) OO X)) + o (X (1)y)1V(dy x dt).

Nous combinons maintenant cette expression avec l’expression (3.27) et
utilisons (3.14) avec le fait que si (X(¢)); < 0, alors v®)(dy | t) = 0 et si
(X ()1 > 0, alors vV (dy | t) = 0, il faut voir 'expression (3.18) pour une
explication précise, c’est a dire

(X(t)1 <0

implique que AY(t) =vWRI ) =1 et 32 ) =P[R t) =0

(X(t))l >0

implique que AP(@t) =v@ @RI ) =1 et AV @) =vD(RY|¢) =0
Comme le long d’une sous-suite appropriée, le second terme du membre de

droite de (3.27) converge vers zéro avec la probabilité 1, nous obtenons
4dm >

[ L&) + o (X)) (KO g (X)) (dy | t)de
(3.28)
+/ /Rd + (X 0))Y)192 (X ())1)Lp.00) (X)) P (dy | t)dt

L’ensemble des fonctions {g},x > 0} et {g?,x > 0} sont uniformément
bornées et pour z € R,

lim gi(2)1 (oo 0)(2) = —1-m)(2) et lim g2 (2) 1) (2) = Lo (2)-

Par le théoreme de convergence dominée de Lebesgue, on fait tendre Kk — 0
dans la formule (3.28), on a avec la probabilité 1 I'inégalité suivante

1 _ _ _
dm 2/0 /Rd Lom) (X (£))1) 0P (X*(8)) + o (X°(t))y)1vP (dy | t)dt
1 _ _ _
[ L (O OO X0 + o (X (1)) (dy | 1)
Des preuves similaires qui sont basées sur I’ approximation
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2 si|z|<m
G(z)=<{m siz>m

—m siz< —m

et —G(z) montrent qu’ avec la probabilité 1

am > | [* [ 1o (X@))OP (X5 (1)) + o (X (0)y)r® (dy | 1)t
[ L g (X)) OV (XE(0)) + o (X2 (0)y) D (dy | £)d.

La combinaison de ces équations donne avec la probabilité 1

/ [ g (KOO D) + o (X)) (dy | dt > —dm

/ [ L (XE)D)OP (X (1)) + o (X (£)y) P (dy | t)dt < 4m.

En faisant tendre m vers 0, nous concluons qu’avec la probabilité 1

/01 Lo Loy (X)) ED(X @) + o (X (1)y) D (dy | £)dt > 0
et
[ L e (X)) 0P (X (1) + o (X (0)y)w® (dy | t)dt < 0.

Soit [, 8] est un intervalle fermé quelconque dans [0, 1]. En répétant 1’ar-
gument menant aux deux dernieres représentations, nous obtenons

D= [7 [ Lo (XOEOE @) + o (X (0)y)iV(dy | )t > 0

et

3= [ [ 1o (X)) (X (@) + o(X(0)y)1? (dy | t)de <o.

Avec la probabilité 1, ces inégalités tiennent simultanément pour tous les
intervalles [a, 8] C [0, 1] avec des point finaux rationnels, et donc par conti-
nuité, ils tiennent simultanément pour tous les intervalles [«, 5] C [0, 1].
Cela implique qu’avec la probabilité 1 §(V(0, 3) est non décroissante et de
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méme 0 (0, 3) est aussi non croissante pour 3 € [0,1]. Puisqu'une fonc-
tion non décroissante (respectivement, non croissante), (respectivement,
non positive) a une dérivée non négative presque siirement, il s’ensuit que
nous avons qu’avec la probabilité 1 pour presque tout ¢ € [0, 1], chaque fois

que (X(t))1 =0

L (09X @) + 0 (X (1)), V(dy | 1) > 0
et
L (02X (1) + o (X (1)), v (dy | 1) < 0.

Cela prouve la partie (d), complétant la preuve du théoreme 3.2.1. O
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Chapitre 4

Preuve du théoreme 2.2.1

Nous avons divisé la preuve du principe de Laplace dans le théoreme
2.2.1 en deux parties :
la borne supérieure du principe de Laplace et
la borne inférieure du principe de Laplace.

4.1 La preuve de la borne supérieure du principe de
Laplace

Pour chaque € > 0, soit X¢ I'unique solution forte de (2.7). Pour prouver
la borne supérieure du principe de Laplace, nous devons montrer que pour
toutes les fonctions continues bornées h de C([0,1] : R?) sur R, on a

_h(XE)]}g— inf  {L,(¢) + h(g)}

ll_I)I(l) sup € log £, {exp -

Nous montrerons la limite inférieure équivalente

}:13% inf W¢(xo) > (pec(l[&g]:Rd){ffo(so) + h(p)}, (4.1)
ol h(XE
We(xg)= — elog F,, {exp [— (5 )] } :

Il est suffisant de prouver la limite inférieure a partir de la quantité (4.1),
lorsque ¢ est remplacé par toute sous-suite le long de laquelle We(z)
converge. Une telle sous-suite existe car | We(zg) |<|| ~ ||o. Nous allons
travailler avec une telle sous-suite et qui est fixée le reste de la preuve, et
pour plus de commodité, nous ré-étiquetons les indices avec € > 0. La clé de
la preuve est 1'utilisation de la formule de représentation de W¢(xy) donnée
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dans le théoreme 3.1.1. Grace a ce théoreme, nous pouvons construire une
famille des controles {v°, ¢ > 0} dans A de sorte que pour chaque £ > 0

W/x0>£%{t/ﬂv |Pﬁ+h@ﬂ} (4.2)

oit X¢ est la diffusion controlée associée avec v° par (3.1). Puisque, par
définition | We(z0) |<|| b ||, la famille {v®, e > 0} satisfait a la condition
3.1. Donc, si nous utilisons la famille des contrdles {v°, e > 0} pour définir
D:e p@2e 4 ot v2) comme dans le chapitre 3, puis le

les mesures 12, v(e pl

long de certaines sous sous-suites de £ > 0

(5, @2 e 4202 X2y 2y (1,003 41 1) X)),

Les quantités limites v, v, v?) (1) 42 et X satisfont aux conclusions
du théoreme 3.2.1. Par le théoreme de représentation de Skorohod, nous
pouvons supposer que la convergence dans la derniere quantité se produit
avec la probabilité 1. Nous pouvons maintenant évaluer la limite inférieure
de la quantité We(x(). Chaque étape du processus est expliquée apres les
inégalités ci-dessous. Nous avons

lim inf W¢(x) (4.3)
>gyﬁ{ { JNRC \Fﬁ+mXﬂ} }

> li_r)r(l)infExo {;/Rdx[o,l] |y H2 ve(dy x dt) + h()_(s)}

> Euy {5 founioy 19 P 70y x @) + ()]

1@d Iy 12 vy x di) + é@ Nyl 2y x o)+ ()|

/@Jyw (dy | t)dt + /@Jyw ?(dy | t)dt + h(¥)|

2

1
- (1) (1)
1] 1 2
- - (2) 2~ (2) \
+ E,, 2/0 S0 e yv'? (dy | t)‘ A (t)dt + h(X)}
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X))
L(X(0),X(1)) dt + h(X )}
gy o (9) + ()}

Les deuX premieres lignes de ces inégalités sont des conséquences de (4.2).
La troisieme ligne utilise les représentations de mesures de controle v pour
les controles v° donnés dans (3.3). Puisque h est continue sur C([0,1] : RY)
et avec la probabilité 1 {X¢} converge uniformément sur [0,1] vers X,
h(X?) — h(X) avec la probabilité 1. La quatriéme ligne du (4.3) suit
maintenant du lemme de Fatou et de la convergence avec la probabilité 1

IV
ASY
M
aQ
e
eB
H'_h

V¥ = v et la cinquieme ligne de 1'égalité de la v = 1) + 2 La sixiéme
ligne est obtenue & partir des décompositions de v (dy x dt) = v (dt |

y) @dt, avec la probabilité-1, et apres la normalisation, la septieme ligne et
huitieme ligne suivent de I'inégalité de Jensen. La normalisation est bien
définie si nous adoptons la convention 0 - oo = 0. La neuvieme ligne et
la dixieme ligne suivent des expressions L) (z, 3) donnée en (2.1), et la
onzieme ligne du fait qu’avec la probabilité 1 et presque stirement pour
tout t € [0, 1] et en s’inspirant de la preuve de la proposition 7.4.1 dans
7], par définition, pour tout x et 3 dans R?. On a la quantité (2.6) et on
va définir

. 1 r .
L(p)= [ L(p(t), ¢(t))dt,
donc avec la probabilité 1, et pour tout ¢ € [0, 1]

X(t)::c+ o)

+/ (/ yv dy\s)ds>

Comme X () est absolument continue pour tout ¢ € [0,1], donc elle est
dérivable quelque soit ¢ € [0, 1]. On a donc

X(t)= [, yv(dy | )

yv(dy x ds)

et par définition de
v(dy | t,w) = v (dy | t,w) + v (dy | t,w);
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on a
X(t) = [[,ydy | t)+ [,y (dy | 1)

et, enfin

1 1
_ <0 1 (2 2
X0 =500 (g5 L 10) 4390 (i o an|0).
En combinant les définitions de X (t) et X (t) avec la définition de L(-,-),
on a l'inégalité suivante

LK@ X0) < 1 (X0, 5 w10 5000

) < 0 et de I'inégalité

avec ﬁfw yrW(dy | t) > 0, 1 Jre _\ t
J(X(t))+0(X(t)) donc, on a le résultat

5
(7.37)de [7], pouri = 1,2 W}(t) <

suivant

LX), X(1) < 5DOLD (X (1), 60X (1) + o (X (1) [,y (dy | 1))

+3D )LD (X (1), 62X 1) + o(X (1)) [,y (dy 1))

Cette formule est basée sur la définition de L(-,-).
Enfin, la derniére ligne de (4.3) est une conséquence de la définition de la
fonctionnelle d’action. Nous avons montré que chaque sous-suite conver-
gente de {W¢(xy),e > 0} a une sous sous-suite satisfaisant :

lim inf W*¢(xq) > inf 1, h .

g inf W) > _int (Lo () + h())
Un argument par ’absurde établit cette limite inférieure pour la famille
entiere

(W#(x0),e > 0}

Ainsi, la preuve de la borne supérieure du principe de Laplace est complete.
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4.2 La preuve de la borne inférieure du principe de
Laplace

La preuve de la borne inférieure du principe de Laplace nécessite cer-
taines propriétés de L (x,3),i = 0,1,2 et de L(x, 3). Nous les affirmons
dans le lemme suivant.

Lemme 4.2.1. Sous les conditions 2.1, 2.2 et 2.3, les fonctions L\ (z, 3),
LW (x, B), L®(x,B) et L(x,3), ont les propriétés suivantes.

(a) Pour z et 3 dans R?, on a
LOx,8) < LW(w. ) si pr20 et LOx,5) < L2, 8) si fi <0

(b) Pour chaque x € R?, ri(dom L") (x,-)) est égale & ¥ = int(convS, i .|y))-
(c) LO)(x, B) est une fonction continue sur (z,3) € R? x (XN ).
(d) Pour chaque = € R?, ri(domL(z,-)) est égale a .

Preuve. (a) Supposons que 3 € R? satisfait 5, > 0. Si dans la définition

de LO)(x, 3) on prend pV=1, p?=0, V=3 et FP)=0 alors

L(O)(:U,B) < LW(x,3). De méme, si B € R? satisfaisant 3 < 0, alors
O(z,8) < LP)(x, B).

(b) La partie (a) du lemme implique que si LW (z, 8) < oo et L&) (z, B)< o0,

on a donc L(z, B) < oo.

Ainsi de la partie (a) du lemme 7.5.2 dans [5], L9 (x, 3) < co pour

(z,8) € R? x X. D’autre part, si (x,8) € R? x (cIX), et puis, pour tout

o) p@ B0 et B2 satisfaisant aux contraintes de

p>0,p® >0,p0 +p® =1,

(BY)1 2 0,(8%) <0,

p(1)5(1) + ,0(2)5(2) = B,
PV >0 et BV € (cX) ou p@ >0 et B2 € (cIX)e, alors LO (2, B) = oco.
(c) Dans la partie (a) du Lemme 7.5.5 dans [7], nous allons prouver que
sous les conditions 2.2 et 2.3, L) (z, 3) est une fonction semi-continue in-
férieurement de (z,3) € R? x R?. Afin de prouver la partie (c) du présent
lemme, nous montrons que L(O)(x, f) est une fonction semi-continue infé-
rieurement de (z, 3) € R? x (X N 9).
En effet, on fixe (x, 8) € R? x (XN d) et on donne £ > 0. La condition 2.3
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implique que 0 € ¥ N (intA®) pour i = 1,2. Nous affirmons qu'’il existe
p, p s et B2 satisfaisant

pP >0,p% >0,(8Y); >0,(8%), <0,80 e x,8% €%,

P+ p? =1, pMpW 4 P2 = g, (quantité A)
et

pPVL (z, V) + pP L (2, %) < LO(x, 8) + 2. (quantité B)
Pour plus de détail, on commence par p™), p®. B et 52 satisfaisant
PV >0, p% >0, (M), >0,(8%); <0,8Y ecx, % ey,

pM 4 p? =1, MM 4 252 — g
et
p(l)L(l)(sc, @(1)) 4+ p(2)L(2)($7 5(2)) < L(O)(x’ B) + /4.

Premiérement, si I'un des pest égale & 0, on va prendre le correspondant
BU=0 et on perturbe p(!) et p® afin que les deux soient positifs et les
quantités (A) et (B) tiennent avec € remplacé par /3.

Deuxiemement, si S ou 52 est inclus dans 9%, alors on utilisera le fait
que § € X, f1 = 0, la convexité de X et une propriété de continuité de
LY (z,-) et L®(x,-) [7, Théoreme D.2.2 (c) | pour perturber 3 et 3
sur ¥, afin que (M), >0, (5?); <0, (A) et (B) continueront & tenir avec
/3 remplacé par /2.

Enfin, si (B1); = 0 ou (8?); = 0, on utilise la continuité de L (z,-) dans
%[7, Lemma 7.5.2 (b)] pour perturber S et ) & lintérieur de ¥ pour
que (BM); >0, (BP); < 0, et en tenant compte de (A) et (B).
Maintenant, soit (£, v) un point quelconque dans R? x ¥ et soit v(!) et v(?)
des points dans R? satisfaisant

(WD), > 0, (@), < 0, po® 4 pRp@ =

alors

LOE v) = LO(z, 8) < pO LI (&, 0W) + pP L@ (e v®))  (quantité C)
—pWLW(z, WY — pA L@ (z, ) 4 ¢,

Nous définissons maintenant

1),,(1 1 1
Umiwwetv®i“_ﬂhﬂ):“_p”ﬂx
0@ 0@
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alors (vV); = (vW); > 0,0 € %,

_ ,()aQA) _ _
= (8 2(2)5 ho_ (Up(Q)ﬁ)1+(ﬁ(2))1 cNv=5 ||+(5(2))17

1
|0 =8 1< 5 v =31

Puisque (8?); < 0 et B? sont inclus dans l'ensemble ouvert ¥, nous
pouvons garantir que (0(2))1 < 0 et que v est inclus dans ¥ en faisant
| v — B || soit suffisamment petit. Nous insérons maintenant v et v
dans la quantité (C). La continuité de LW (-,-) et LP)(--) dans R? x ¥
implique que si || (§,v) — (z, 8) || est suffisamment petit, alors

LOE,v) = Lz, 8) < 2e.

Cela prouve que L) (-,-) est semi-continue supérieurement dans R? x 3 et
termine la preuve de la partie (c).
(d) En utilisant la partie (a) du lemme 7.5.2 du [7] et la partie (b) du
présent lemme. En effet, pour chaque 2 € R? I’ ensemble ri(dom L (z,-))
= 1i( conv S, (|y)) est égale a X, et en combinant avec ri(dom LO)(z,-))
égale & . Donc on a ri(dom L(z,-)) égale a ¥ pour chaque = € R%

[l

Remarques 4.2.2. La preuve de la partie (b) découle directement des
conditions 2.1 et 2.2.

Afin de prouver la borne inférieure du principe de Laplace, nous devons
vérifier que

- e |
lnyinf e log B, {eapl—h(X°)/el} = = _inf  {1.,(0) + (o)}

Pour prouver cette affirmation, nous adaptons une procédure d’ approxi-
mation présentée dans le chapitre 7 de [7]. Soit N la classe des fonctions
Y* € C([0,1] : RY) qui répondent aux conditions suivantes :

(a) ¥*(t) est constante par morceaux avec seulement un nombre fini de
sauts dans l'intervalle (0, 1).

(b) Ou bien (1*(¢))1 # 0 ou bien (¢*(¢)); = 0 sur chaque intervalle de la
constance de ¥*.

Afin d’avoir ¢*(t) défini pour tout ¢ € [0, 1], on remplace la fonction défi-
nie presque partout dans ¢* par sa régularisation continue a droite. Nous
allons montrer que, quel que soit 2y € R? on a I'inégalité
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lim sup 1V ()= lim sup < log Ey, {eap[~h(X%)/e]} < L, (6") + h(u"),

(4.4)
valable pour tout ¥* € Nj. Grace au lemme 4.2.3, voir ci-dessous, dont
la preuve peut étre trouvée dans [7. Théoréme 7.5.4], cette propriété peut
ensuite étre étendue a tout l'espace C([0, 1] : R?).

Lemme 4.2.3. Supposons que la Condition 2.1 soit vraie. On donne
zo € R?, et soit ¢ € C([0, 1] : RY) satisfaisant a I, (1)) < co. Ensuite, pour
chaque n > 0, il existe ¢* € Ny tels que

| " =9 <7 et I, (V") < Ixo(@b) +n

et pour chaque k € {1,2,...,7} soit (¢*(t)); # 0 pour tout t € (t;,tr+1) ou
(¥*(t))1 = 0 pour tout t € (tg,tgp1). Les intervalles (ty, tii1), k= 1,2,...,7
désignent l'intérieur des intervalles successits sur lesquels 1* est constante.

Supposons que (4.4) soit vraie pour * € N. Nous décrivons maintenant
comment compléter la preuve de la borne inférieure du principe de Laplace.
On se donne 1 > 0, et soit 1 € C([0,1] : R?) satisfaisant

Lo() + W) S _inf - 1Ly (9)+ hlg)} +1 < ox.

Puisque h est bornée, cela implique que 1,,(1) < oo. Puisque h est conti-
nue, il existe ¢¥* € Nj telle que

h(*) < h(p) +n et L, (¥*) < L,(¥) +n.

Il s’ ensuit que

- h(XF)
ll_r% inf e log £, {exp [— ] }

— Loy (%) = h(7)
_]xo(¢) o h(?vb) - 277

- %C(l[g{]w){fxo(@ + h(p)} — 3.

AVAR VARV

Puisque 1 > 0 est arbitraire, cette inégalité donne la borne inférieure du
principe de Laplace .
Nous allons maintenant montrer que (4.4) est valable pour tout ¥* € Nj.
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A cette fin, prenons ¢¥* € Nj satisfaisant a I, (¢*) < 0. Pour chaque
ke {1,...,r} et soit Br=1*(t), ou t est un point quelconque de I'intérieur
de l'intervalle de constance (ty,tx,1) de dérivées. Soient 5,@” et ﬁ](f) définis
comme suit : si (¢*(t)); # 0 pour tous t € (t, tr41), prenons 5,21) = B,(f)iﬁk.
Dans le cas contraire, si (¢*(t)); = 0 pour tous t € (tg,tx11), étant donné
n > 0, B,gl) et 6]9) sont choisis en méme temps avec les constantes p,il) et
pgf) de sorte que

>0, >0, (B >0,(87) <0, (4.5)

oV =1, pMB 4 pPpR = By,

et

PV LD (t), BY) + o7 L (05 (1), BY) < LOW (), Br) + 1 (4.6)

pour tout t € (tx,tx + A), ou A > 0. L’existence de 5,21),5;(3) p,(gl)etp,(f)
satisfaisant (4.5) et (4.6) suit de la continuité de LM (-,-) et LA)(-,-) dans
R? x R? (Lemme 4.2.1), comme dans la démonstration du lemme 7.5.2
dans [7] qui ont des résultats principaux : la propriété de la continuité et
de la fonctionnelle de Cramer. L’égalité ri(dom L (z,-) = ri(convsS i (.|z))
est définie & partir du lemme 6.2.3 dans|7], en utilisant le partie (a) de la
condition 7.2.2 dans [7], elle est égale a I'ensemble Y=int(convS,u.,)) et
puis L¥(x, 3) est une fonction continue sur (z,3) € R x ¥ .

Les propriétés de continuité de L, LM, L3 et ¢»* impliquent, que si besoin
est nous pouvons ajouter de point a la subdivision originale 0 = t; < ts <
. <ty < ..<tpyy =1dans (0,1) pour obtenir une subdivision plus fine
0=1, <y <..<te =1dans (0,1) pour laquelle (¢*(¢)); = 0 pour
tout ¢ € (g, r11), (4.6) est valable pour tout ¢ € (i1, f41). Pour simplifier,
nous conserverons la méme notation pour la subdivision d’origine et la
subdivision raffinée. _

Nous décrivons ci-dessous comment utiliser les vecteurs BS), ked{l,..r},
i = 1,2 pour désigner une famille de controles {v°,e > 0} dans A et une
famille correspondante de processus contrdlés {X¢ e > 0}. Ces familles
seront, utilisées pour prouver (4,4) grace a la formule de représentation
donnée dans le théoréme 3.1.1. Pour chaque z € R, i = 1,2 et t € [0, 1]
tels que t € [tx, tx+1) pour certains k € {1,...,r} définissons

v (2, 1) =0 (2)(8 — b9(x)).
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D’apres (2.1), ces vecteurs satisfont

L ; i
5 100 (@ 1) [P= 29, 5).

Maintenant définissons

Fl, ) =0 (@, )1, <01 () + 0P (2, 1) 15,50y (2)
et soit X¢ la solution de 'ED S

_ t _ t — — 1 —
X°(t) = 2o+ /0 b(X*(s))ds+ /O o(X°(3)) f(X(s), s)ds+e? /0 o (X5(s))dW (s).
Enfin, posons )

vt (1)=f(X5(1), 1),
les contréles v° ont les propriétés suivantes.
Tout d’abord, pour chaque € > 0, le controle v est un élément de A.
En effet, puisque X¢ et ¢, sont progressivement mesurables, v° est aussi

progressivement mesurable. Alors v° est aussi bornée, v* € A. Ensuite, si
t € [tr, tre1) et (X(t)); <0, alors

) = LK) et 50 = 00X (0) + o (K507 (r) (A7)

et si (X°(t)); > 0, alors

) = LK), B et B = b2 (X(0) 4o (X (1) (). (48)

Enfin, nous affirmons que la famille {v°, ¢ > 0} satisfait la condition 3.1.
Pour chaque € > 0 1’ égalitée de (4.7) et (4.8) donnent

Ba {5 [ 170 P e} = xo{Z/W[ (X5 B e, SO}}}

(4.9)
T 1>0}H
< ISEREI{H a () | zi: [H 5k — W () |I> + | 6}22) — b (z) Hﬂ}

La condition 2.1 implique donc que la suite des valeurs attendues dans le
derniere quantité est bornée pour € > 0.

+Ex0{[L< (X*
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Puisque la condition (3.1) est satisfaite, nous pouvons appliquer les ré-
sultats de compacité et de convergence obtenue dans le chapitre 3. L’
utilisation de la famille {v°, ¢ > 0} construite ci-dessus, nous permet de
définir les mesures 5, v, p2)g (e o 42 comme dans (3.2)- (3.8).
La proposition 3.1.2 implique que la famille

{(Va, e p2)e ~()e ~(2)e X) ,E > O} est tendue. Le théoreme 3.2.1 et le
théoreme de Prohorov impliquent alors que, étant donné une suite, il existe
une sous-suite satisfaisant a

(F, e @ AMe (@ ) Dy, 0 L2) 41 40 %),

Les quantités limites v, (M), 1) 4 ~?) et X satisfont (3.11)-(3.14) et la
conclusion du théoreme 3.2.1. Par le théoreme de représentation de Skoro-
hod, nous pouvons supposer que la convergence a lieu avec la probabilité
1. Notre prochaine étape est de montrer que X(s) = 1*(s) pour tout

€ [0,1]. Tl suffit de montrer qu’avec la probabilité 1, X (s) = ¥*(s) pour
chaque k € {1,2,...,r+1} et tout s € [0, t;]. La preuve de cette affirmation
est démontrée par récurrence sur k. Pour £ = 1, I’égalité est valable parce
que pour ¢t = 0 et avec la probabilité 1 X(0) = zy = ¢*(0). Supposons
quavec la probabilité 1, X (s) = ¢*(s) pour tous k € {1,2,...,r} et tous
s € [0,t], nous devons démontrer qu’avec la probabilité 1 X (s) = 1)*(s)
pour tout s € [0,;41]. Considérons d’abord le cas ou (¢*(s)); # 0 pour
tout s € (tx, tp+1). En utilisant le quantité (4.7) et (4.8) et le fait que, par
définition, [j est égale a la valeur constante ¢* pour tout s € (¢, t5+1). On
obtient

X(0) = K(t) =l [, OO (5)) + o (X(3))y) < (dy x d)

# foony P OE() + 0(X5(5))y) v =(dy x ds)
= lim/Rd . ﬁku (dy x ds)

e—0
= [ (s)ds = () — & (1),

est valable avec la probabilité 1 pour tout ¢ € [ty, tpy1). L'égalité X (¢) —
X(ty) = *(t)—1*(t;,) s’étend par continuité a ¢ = t;,1. Grace a ’hypothese
de récurrence, ceci implique qu’avec la probabilité 1 pour tout ¢t € [tg, tg11],
X (tp) = ¥*(t) et donc pour tout ¢ € [0, t4y1].

Supposons maintenant que (¢*(s)); = 0 pour tout s € (t, tx+1). On donne
les nombres « et t satisfaisant t; < a <t < tp.q.
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Jor V() + 0 (X5 (5))y) v (dy x ds)

T Jpa (6(2)()_(6(5)) + U(XE(S))?J) V(2)’€(dy X ds)

X (a,t]
= B0 (e 1) + 577D ((a, 1),

Selon (3.13), avec la probabilité 1 ~) est absolument continue par rapport
a la mesure de Lebesgue sur [0.1]. Ainsi, aprés la normalisation, la partie
(e) du théoréeme de Portmenteau [3, théoreme 2.2.1] appliquée aux suites
faiblement convergentes {v(i)f } implique qu’avec la probabilité 1, pour tout
a et t satisfaisant ¢, < o <t < tgyq.

* R (]

= 8D (@, 1)) + B4 (as 1)

Comme dans la proposition 7.5.1 dans [7], cette relation implique qu’avec
la probabilité 1

A 1 N 2
A0(s) = oV et 4@ (5) = pi? (4.10)

et que X (s) = ¢*(s) pour tout s € [tg, t+1] et donc pour tout s € [0, 1],
comme nous voulons montrer.

Pour évaluer la limite supérieure de W¢(xg), nous avons besoin d’intro-
duire la notation supplémentaire. Pour k € {1,2,...,r} et s € [0, 1], nous
définissons

ge(t) < L (¢ (1), 9*(1)) + . (4.11)



Nous utilisons cette propriété dans les dernieres expositions suivantes, ou
la limite supérieure de W¢(zy) est évaluée sur une sous-suite de € > 0 pour
laquelle avec la probabilité 1

(V7 V(l)ﬁ’ ,/(2),6’7(1)7677(2)767)(6) — (v, 1/(1), ,/(2)77(1)77(2),)_()_
Nous avons :

lim sup We(xy) = lim sup inf E., { / | v(t) ||* dt + k(X" 5)}

e—0

<hmE$0{Z/kHL ( “(t), 8y ) (dt)}

<11msupEI{ / | v° (¢ H2dt+h(XE)}

e—0

r

@%Em{z [ e (%20, 87 )+ 5dt+h(Xf>}

k=1

= B {7 B (R0.8) A0 + 22 (X0 7)1 200 ar)

< VB (" (6), 4" () dt + B+
— L, (") + h(&") + 11

La premiere ligne de la démonstration est une suite de la formule de re-
présentation donnée dans le théoreme 3.1.1. Dans la deuxieme ligne, nous
introduisons la famille des contrdles {v°, & > 0}. L’équation (4.9), les défi-
nitions des mesures ~(V¢ et des processus controlés X donnent la troisiéme
et la quatrieme ligne. Avec la probabilité 1 pour i = 1,2 et 4(1)F = ~0)
ce qui est absolument continue par rapport a la mesure de Lebesgue et
a la décomposition A )(dt) 4@ (t)(dt). Par conséquent, la convergence
uniforme de X¢ vers X avec la probabilité 1 dans RY de LC )( S) pour
chaque B € RY. Le théoréme 5.5 dans [3], la continuité de h sur C([0, 1]),
et le théoreme de la convergence dominée de Lebesgue donnent les lignes
cinq et six. Avec la probabilité 1 X (¢) = *(t) pour tout ¢ € [0, 1]. Les trois
dernieres lignes de la démonstration suivent maintenant des propriétés de
4@ donné & partir de (3.29) et (4.10), 1’ inégalité (4.11) relative a g; et
L(-,-), et la définition de I, (¢*).

Puisque n > 0 est arbitraire, nous avons montré que la limite supérieure
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}:ii% sup We(xg) < I, (¥") + h(¥")

est valable pour la sous-suite convergente. Un argument par I'absurde ap-
pliqué & une suite arbitraire de la famille d’origine {W¢(x),e > 0} donne
la méme limite supérieure pour toute la famille. Ceci termine la preuve de
la borne supérieure du principe de Laplace . Puisque I, (-) a un ensemble
de niveau compact [7, théoréme 7.6.1], ceci termine la preuve du principe
de Laplace indiqué dans le théoréeme 2.2.1.

42



Conclusion

Cette étude nous a permis de déduire le principe de Laplace pour la
famille {X¢, & > 0} dans l'espace de probabilité canonique (2, F,P), cf le
théoreme 2.2.1. En bref, ce principe de Laplace est valable uniformément
sur le compact K € R
Il a également permis d’énoncer une formule de représentation, ainsi que des
résultats généraux sur la compacité et la convergence. Cela exige ’analyse
du comportement asymptotique de w®(xy)= — log E,, {exp[—h(X¢)/e|}.
Cette analyse limite les propriétés de certaines familles de controéles, étudie
la compacité et introduit le processus contrélé dans la représentation. Cette
recherche a aussi contribué a prouver le principe de Laplace qui est de
montrer que

lim sup elogE,, {exp {—h(XE)] } < - e inf  {I,,(¢)+ h(p)}

e—0

et

9
el () + MY < gt etogE fean |- ||
pour toute fonction continue bornée h de C([0,1] : R?) sur R, et de dire la
nécessité de certaines propriétés de L) (x, 3), pour i = 0,1,2 et de L(z, ).
Donc, en conclusion, le principe de Laplace est équivalent & un principe
de grandes déviations avec la méme fonctionnelle d’action et le principe de
grandes déviations pour la famille {X¢ e > 0} est la conséquence directe
du théoreme 2.2.1 qui est le résultat principal de ce mémoire.

Un sujet d’étude possible est "d’étudier le coefficient de diffusion
ou le ¢ présente de discontinuité, ou bien le processus est avec
réflexion a la frontiere mais il y a de discontinuité sur la dérive
et le coefficient de diffusion”.
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Annexe A

Théoreme classique

Théoreme de représentation de Skorohod

Théoreme A.1. Soit X,,, n > I, une suite de variables aléatoires a valeurs
dans un espace topologique S, de Lusin. Supposons que X,, converge en loi
vers une variable aléatoire X a valeurs dans S quand n — oo. Alors il
existe un espace probabilisé (2, A, P) tel que :

* pour chaque entier n, Y,, et X,, ont méme loi ;
* les variables aléatoires Y et X ont méme loi ;

*Y,, converge (2, A, P)-presque siirement vers Y.

Mode de convergence : théoreme de Prohorov

Théoreme A.2. Soit y,, une suite de probabilités sur R. Pour que la suite
1y, soit tendue if faut et il suffit qu’on puisse extraire de ji, une sous-suite
[n, qui converge vers une probabilité p.

Cramer dans le cas général

Théoréme A.3. Le systeme (X) admet une solution unique (x1; X2; s Xn)
si et seulement si c¢’est un systeme de Cramer.
Dans ce cas, cette solution est donnée par les formules de Cramer :

A,

pour tout i€ {1,2,...n},x; = N
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Dans ces formules, A désigne le déterminant de (X), et A; le déterminant
obtenu en remplacant, dans A, la i-éme colonne par la colonne des b, qui
figurent dans le second membre de (3).
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Annexe B

Quelques inégalités importantes

Probabilité :

Inégalité de Chebychev :
Soit ¢ une fonction non décroissante de R et ¢(t) > 0. Alors P(X >t) <
(1) LE[¢(X)]. Les exemples généralement utilisés de I'inégalité de Cheby-
shev sont P{|X| >t} <t PE[|X|] et P{X >t} < e ME[eM] pour tout
t, p et A positifs.

Inégalité de Jensen :
Soit —oo < a < b, Pla <X <b)=1, et soit ¢ une fonction convexe sur
(a,b). Supposons que EX et E[p(X)] sont tous définies. Alors
O(EX) < E[p(X)]. Si ¢ est strictement convexe alors ¢p(EX) = E[p(X)]
si et seulement si P(X = FEX) = 1.

Inégalité de Cauchy-Swartz
E[|XY|] =< E[X?V2. E[Y}'/?

Mesure et intégrale :

Inégalité de Holder : Soient p et ¢ deux réels tels que p > 1et ¢ > 1
et ]% + % = 1. Alors, pour 2 fonctions mesurables f et g on a

[1glan < ([177an)" ([ lglodp)"

Lemme de Fatou : Soit {f,} des fonctions non négatives de Borel.
Alors

[ (i inf £,)d, <liminf [ fud,

46



Annexe C

Calcul stochastique :

Chaine de Markov :

Définition C.1. Soit E = 1,2,....m un ensemble fini. Une chaine de
Markov sur E est une suite de variables aléatoires (Xo, X1, ...), prenant
leurs valeurs dans E, telle que

P{Xy=j/X1=11,...., X1 =151} = P{X}, = j/Xp-1 = 111}

Cette derniere probabilité ne dépendant que de j et ix_1, mais pas de k. La
matrice de transition de la chaine est la matrice P de la taille m x m dont
les €léments sont donnés par : p;; = P{X}, = j/X}_1 = i}.

Mouvement Brownien :[12]

Définition C.2. Soit (B;)i>o un processus stochastique tel que By : 0 — R
est un mouvement brownien standard si :

— By=0

— B, est un processus a accroissement indépendant
— Byy, — B, — N(0,v/h) pour toutt >0 et h >0
— t e R, — B; € R P-p.s continue.

Comme précédemment, soit (W™, B, ) 'espace canonique de probabi-
lité pour le mouvement brownien de dimension m dans l'intervalle de temps
[0,T], et soit (G;) un filtration §—augmenté produit par le processus de
méme rang W. Soit M?[0, T] espace de tous les processus (G;)—prévisibles
de carré intégrable a valeur dans R™. Le théoreme 3.1 dans Boué et Dupuis
[1998] fournit la représentation suivante pour les fonctions de Laplace du
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mouvement brownien . Pour tout F': W™ — R bornée et mesurable,

—logE [e_F(W)] = inf E

el ;/OT vg|?ds + F (WjL/o. vsds>

, (C.1)

ou E dénote I'espérance par rapport a la mesure de Wiener 6. Soit b(-, -)
et o(-,-) des fonctions prévisibles de [0, 7] x W? vers R? et vers R>™,
respectivement. Fixons x € R? et on considere I'équation différentielle
stochastique

dX; = b(t, X)dt + o(t, X)dW; (C.2)

pour t € [0,7] et avec la condition initiale X, = =. Supposons que ’équa-
tion (C.2) a une solution forte. Alors il existe une fonction BOAV™)\B(W?Y)-
mesurable h : W™ — WY tel que X = h[W] -presque stirement ; par le
théoreme 10.4 dans Rogers et Williams [2000, p.126]. Par conséquent, pour
tout £ : W? — R bornée et mesurable, F o h est bornée et mesurable de
W™ vers R. Dans la formule de représentation (C.1) pour le mouvement
brownien, il suit que

—logE [e*F(X)} = —logE [e*FOh(W)} (C.3)
: L '
- UG,/\I/IHQ{O,T} B 2/0 [vf*ds + F o h (W + /0 U8d5> '

Pour v € M?[0, T], considérons I’équation différentielle stochastique contro-
1ée
dXy =b(t, X")dt + o(t, X" )wndt + o(t, X")dW,; (C4)

pour t € [0,7] et avec la condition initiale X = x. Si 'existence forte et
I'unicité de la trajectoire se tiennent pour ’équation (C.2), alors la limite
F o h(W + [jvsds) dans (C.3) peut étre réécrite en terme de solutions de
I'équation (C.4). Le lemme C.3 devrait étre comparé au Théoreme 4.1 dans
Boué et Dupuis [1998].

Lemme C.3. Soit v € M?[0,T] tel que JI |vs]*ds < N O-presque siire-
ment pour quelque N > 0. Supposons que [’existence forte et ['unicité de la
trajectoire soient vérifiées pour l'équation (C.2) avec la condition initiale
Xo = x. Alors U'équation (C.4) a une unique solution forte XV avec X§ = x
et

h <W+/O.Usds> = Xv" 60 —np.s.
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Démonstration. On va définir le processus
- t
W, =W, +~/O veds, t € [O,T]

Puisque [} |vs|?ds < N O—presque stirement, le théoréme de Girsanov est
applicable ; par conséquent, il existe une mesure v dans W™ équivalente
a 6 telle que W soit un G;-mouvement Brownien sur [0, 7] (par exemple,
Théoreme 5.2 dans Karatzas et Shreve [1991, p.191]). Par rapport a la
mesure 7, I"équation controlée (C.4) devient

dX? = b(t, X°)dt + o(t, X)dW. (C.5)

L unicité des solutions de I’équation (C.4) suit de '’hypothese d’unicité de
la trajectoire pour I'équation (C.2). En effet, si X et Y sont deux solutions
de I'équation (C.4) contrdlées par 6 et dirigée par W, alors elles sont des
solutions de I’équation (C.5) contrdlée par v et par rapport a V. Par 'uni-
cité des trajectoires, X, Y sont indistinguables. Nous prouvons maintenant
'existence des solutions. Pour la continuité du processus Z, (G;)-adapté,
définissons I'application ¥(Z) : W™ — W9 par

W(Z)(w) =z + [ b(s, AlZ(w)])ds + [ o(s, h[Z(w)])dZ,) (w).
L’application W(Z) est certainement bien définie quand Z est donnée par
YA ( ) Wt +/ US

avec v € M?2[0,T]. Dans cette situation, pour -presque tout w € W™,

U(W)(w) =z + [ b(s, h[W (w)])ds (C.6)
+ /(; o(s, h[W(w)])vS(w)dS -+ (/0 o(s, h[W])dWs> (w),

ou W est le processus coordonnée sur W™. Puisque h[WW] est une solution
de I’équation (C.2), par construction nous avons

hIW (w)] = ¥ (W)(w) pour f-presque tout w € W™.
Par le théoréme 10.4 dans Rogers et Williams [2000, p.126], h(W) satisfait
W) =z + [ b(s, h[W))ds + [ o(s, A(IW])dW,  7-pss.
Puisque vy est équivalent a 6, il suit que
hW] = W(W)  6-ps.
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Gréce a (C.6), ceci implique que #-presque slirement,
h[W]t - ‘P(W)t
t - t - t -
=+ [ b(s, A{W))ds + [ o(s, (W )vsds + [ (s, h[IW])dW,,

montrant que h[IW] est une solution forte de I'équation (C.4) par rapport
a W et 6. Nous avons déja vu que 'unicité de la trajectoire se tient pour
I'équation (C.4). Il suit que

h <W —I—/O USdS) =W 0-p.s
pour toute solution X" de (C.4) avec X = x. O

Le lemme suivant fournit une estimation de croissance si les coefficients
b, o satisfont une condition de croissance sous linéaire. La preuve utilise
seulement des arguments standard comprenant la localisation le long des
périodes de sortie, de I'inégalité de Burkholder-Davis-Gundy, et du lemme
de Gronwall.

Lemme C.4. Soit v € M?[0,T] tel que J{ |vs|*ds < N 0-presque stirement
pour N > 0. Supposons que b, o sont tels que, pour une certaine constante
positive M,

e VIatto) <3 (14 sup [

s€[0,¢]

pour tout t € [0,T], tous o € W, Si XV est une solution de [’équation
(A.4) avec X = x, alors pour tout p > 2,
E [ sup | X/|P| < C,(T, N, M)(1 + |=]F),

t€[0,T

ou Cp(T, N, M) est non décroissante dans chacun de ses trois arguments.

Processus indistinguable

Deux processus X et Y sont dits indistinguables si P(Vt € T, X; =
Y;) = 1 (On admet implicitement que I'événement {Vt € T, X; = Y;} est
mesurable.
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Annexe D

Girsanov

Théoreme de Girsanov

[Geneviéve Gauthier. Changement de mesure et théoréme de Girsanov,80-
646-08, Calcul stochastique. HEC Montréal]

Théoréme D.1 (Théoreme de Girsanov I). % Nous nous concentrons sur
un intervalle de temps borné [0, T.

*x Soit W = {W; : t € [0,T]} représente un mouvement brownien
construit sur un espace probabilisé filtré (2, F,{F:}, P) tel que Ia
filtration {F;} est celle engendrée par le mouvement brownien, aug-
mentée de tous les événements de probabilité nulle, c’est-a- dire que
pour tout t > 0,

Fi=0N et Ws:0<s<t).
* Le théoreme suivant nous permettra de construire nos mesures risque-
neutre.

Théoréme D.2 (Théoreme de Cameron-Martin-Girsanov). Soit
v ={v:t€l0,T]}, un processus {F;}-prévisible tel que

exp <2 /0 V; dt)
II existe une mesure Q sur (2, F) telle que

(CMG1) Q est équivalente a P.
(CMG2)

EP < 0.

dQ
—— = exp

T 1,
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(CMG3) Le processus W; = {Wt 1t €10,T]} définit par Wy = Wi + J¢yeds est
un ({F:}, Q)-mouvement brownien.

Théoréme D.3 (Théoreme de Girsanov II1). (ref. Baxter et Rennie, page
74 ; Lamberton et Lapeyre, page 84).

La condition E* [exp (% I %th)] < oo est une condition suffisante mais
non nécessaire. Elle est connue sous I'appellation de condition de Novikov

Théoréme D.4 (Théoreme de Girsanov IV).  x Considérons I'équation
différentielle stochastique

dXt = b(Xt, t)dt + CL(Xt, t)th
ou W représente un mouvement brownien sur I’espace probabilisé filtré
(Q, F,{F:}, P).

* Nous supposons que les coefficients de dérive et de diffusion sont tels
qu’il existe une unique solution a I’équation que nous notons X.

* Nous cherchons une mesure de probabilité Q qui fasse en sorte que sur
Lespace (), F,{F:},Q), la dérive de X soit b(X3,t) au lieu de b( Xy, t).

En effet, on va prendre d’abord

dXt = b(Xt, t)dt + CL(Xt, t)th

— B(X, )t + (X, 1) (b(Xt’jz - i()X“ t)) dt

—I—a(Xt,t)dVVt
tel que a(Xy,t) soit dif férent de 0.

= b( Xy, t)dt + a( Xy, t) d (Wt + /Ot b(XS’;()X_fS(;(S’ S)ds)

= b( Xy, t)dt + a( Xy, t)dW;

ou
- t b(X,,t — (X, t
Wf:Wﬁ/o Vsds et = ( ta(X (t)t .
ty
Théoréeme D.5 (Théoreme de Girsanov V ). % si

E? [exp (% I3 %thﬂ < o0 alors par les théoremes de Radon-Nikodym
et de Cameron-Martin-Girsanov,

T 1 /T
Q(A) = E” |exp [—/0 wdWy — o [ opde|6a| A€ F
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et W ={W,:t€c0,T]} est un (F,Q)-mouvement brownien.

* En pratique, nous n’avons pas besoin de déterminer la mesure Q.
Il nous suffit de savoir qu’elle existe et de connaitre I’équation dif-
férentielle stochastique du processus qui nous intéresse sur l’espace

(Qva {ft}a Q)

Lemme de Gronwall : Soient ¢, et y trois fonctions continues sur
un segment [a, b] , a valeurs positives et vérifiant I'inégalité

Vi€ fa.bl, y(t) < e(0)+ [ v(s)y(s)ds

alors
Ve € la.bly(0) < olt) + [ plo)us)exp ([ ww)dn) ds

En effet, posons F(t) = [!1(s)y(s)ds. En multipliant les deux membres de
I'inégalité donnée en hypothese par 1 (t), on obtient

F(t) = (t) < o(t)(t),

ce qui s’écrit aussi

G'(t) < p(t)(t) exp( /w ds) avec G(t) = exp( /w ds)

Comme G(a) = F(a) =0, on en déduit, par intégration

Gt)g/atgo(s) exp( /¢ du)ds

Or par hypothese, y(t) < ¢(t) + G(t) exp (L ¥(s)ds), d’ou le résultat en
utilisant I'inégalité ci-dessus.
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Annexe E

Kolmogorov

Critére de Kolmogorov(sur le processus X) :
Supposons que le processus X = {X;;0 <t < T} dans l'espace de proba-
bilité (2, F, P) satisfaisant a la condition

E|X,— XJ*<COlt—s|""P 0<s,t<T,

pour tout o, 5 et C' € R*. Alors il existe une modification continue
— {X,;0 <t < T} dans X, donc elle est localement Holderienne conti-
nue d’exposant v pour chaque v € (0, 5/«), c’est a dire,

Xi(w) — X,
Ple sw [Xi(w) = Xs(w)| 5l _
O<t—5<h(w)s,t€[O,T] ‘t - Sl’Y

ou h(w) est presque siirement aléatoire positive et 6 > 0 est une constante
quelconque.

Démonstration. cf.Loannis Karatzas et Steven E. Shreve. (]

Critere de Kolmogorov(sur la mesure Q) :
Soit () une mesure absolument continue par rapport a P sur F.,. On sup-
pose que (Z;); est continue. Alors,

i) chaque P—semi-martingale est une QQ—semi-martingale.

ii)si M est une P-martingale locale continue et si M’ = M —— < M, Z >,
alors M’ est bien définie sur (Q, F, (Ft)t, Q) et (M]); est une Q martingale
locale. De plus

<M M >=<M,M> Q — ps.

Soit X; un processus de R" vérifiant une équation da la forme

dX; = a(t,w)dt + b(t, w)dB;
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pour tout ¢ € [0, +o00[, ol les processus a et b sont Fi-adaptés et By est un
mouvement brownien m-dimensionnel. On suppose qu’il existe des proces-
sus O(t,w) € R™ et a(t,w) € R" tels que

b(t, w)0(t,w) = a(t,w) — a(t, w)
vérifiant la condition de Novikov
L gt o,
exp (2/0 Qsdsﬂ < 00.
Lemme de Kolmogorov Soit X = (X;,t € I) un processus aléatoire
indexé par un intervalle borné I de R, a valeurs dans un espace métrique

complet (E,d). Supposons qu'il existe trois réels ¢, e, C' > 0 tels que, pour
tous s,t € I,

E

Eld(X,, W)Y < C|t — 5|,

alors, il existe une modification Y de X dont les trajectoires sont holdé-
riennes d’exposant o pour tout a €]0, £[ : pour tout a €]0, £[ il existe une
constante C,(w) telle que, pour tous s,t € I,

d(Ys(x), Yi(w)) < Co(w)]t — s[*.

En particulier, Y est une modification continue de X (unique a indistin-
guabilité pres d’apres ci-dessus).
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