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Introduction

Considérons le processus de dimension d Xε=̇ {Xε(t), 0 ≤ t ≤ 1} solu-
tion de l’équation différentielle stochastique (EDS)

dXε(t) = b(Xε(t))dt+ ε
1
2σ(Xε(t))dW (t), Xε(0) = x0, (1)

où ε > 0 et W est un mouvement brownien d-dimensionnel. Le principe de
grandes déviations pour la famille {Xε, ε > 0} est un résultat bien connu
sous la condition que le vecteur de dérive b(x) et la matrice de disper-
sion σ sont des fonctions régulières de x [13]. Toutefois, cette condition
peut être trop restrictive pour certaines applications, où les processus qui
violent cette dépendance se posent naturellement. Nous nous référons à ces
processus comme à des statistiques discontinues. Un exemple d’application
où des procédés discontinus avec des statistiques a été posé, est la modéli-
sation des canaux de communications incorporant un "limiteur dur" dans
une boucle à verrouillage de phase, qui est une forme de filtre non linéaire
sous-optimal [17]. Ces canaux de communications peuvent être modélisés
par une matrice de diffusion de dispersion continue, mais avec une variation
qui change de manière discontinue quand x franchit une limite lisse dans
Rd. Plus précisément dans ce mémoire on étudie le principe de grandes
déviations pour ce genre de processus.
Plusieurs articles ont étudié les grandes déviations pour les diffusions avec
des statistiques discontinues comme l’article "large deviation for small noise
diffusion with discontinuous statistique", du livre "probability theory", écrit
par P.Dupuis, R.S. Ellis et M. Boué [10]. Cet article nous a beaucoup
inspiré pour la réalisation de ce mémoire. En utilisant des techniques de
l’application continue, Korostelev et Leonov [15, 16] ont obtenu un prin-
cipe de grandes déviations pour une classe restreinte en deux dimensions
de diffusions qui satisfait certaines conditions de stabilité. Récemment,
Chiang et Sheu [6] ont considéré la diffusion d-dimensionnelle avec une
dérive continue, sauf à la traversée de l’hyperplan (d − 1)-dimensionnel
∂=̇{x ∈ Rd : x1 = 0} où l’indice 1 désigne la première composante du vec-
teur. Leurs résultats supposent que la matrice de dispersion σ est la matrice
identité de dimension d. Dans ce mémoire, nous étendons ces résultats de
manière significative, en permettant à la matrice de dispersion de dépendre
de x ∈ Rd. Bien que nous supposions toujours qu’une discontinuité se pro-
duise le long de l’hyperplan ∂, notre hypothèse est que (1) a une unique
solution forte. C’est notamment le cas lorsque σ(·) est la matrice identité
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ou lorsqu’elle est une matrice constante non dégénérée. En plus les condi-
tions générales pour l’existence et l’unicité de la solution forte peuvent être
trouvées dans [20]. Une méthode standard pour le traitement des grandes
déviations sur les diffusions est basée sur le temps discret. Cette situation
est le problématique dans le contexte de statistique discontinue, car il est
difficile de rapprocher le processus en temps continu avec précision par
l’analogue au temps discret au voisinage de la discontinuité. L’approche
de convergence faible pour les grandes déviations développée dans [7] nous
permet de contourner cette étape de discrétisation en temps. Bien que la
méthodologie ait été développée dans le contexte des processus en temps
discret, le document ici présent démontre l’équivalence de l’approche en
étendant son application en temps continu. En particulier, nos résultats
sont les analogues en temps continu de ce que l’on trouve dans le chapitre
7 du [7], concernant un modèle de marche aléatoire avec des statistiques
discontinues. En fait, la fonctionnelle d’action figurant dans notre théo-
rème principal, a la même forme que celle apparaissant dans le théorème
7.2.3 dans [7]. La similitude est également présente dans les preuves de plu-
sieurs résultats préliminaires. Par conséquent, toutes ces preuves peuvent
être réalisées comme des extensions évidentes de leurs homologues à temps
discret. Mais elles seront omises. Il est important de remarquer que malgré
les similitudes, l’extension présentée ici est importante et loin d’être im-
médiate, et sa preuve nécessite un certain nombre de nouvelles idées. La
preuve repose sur les propriétés générales de l’EDS et sur une formule de
représentation des fonctionnelles de solution forte de l’EDS de [5].
Le résultat principal de ce mémoire, le théorème 2.2.1, énonce le principe
de Laplace sur la famille {Xε, ε > 0}. Le terme du principe de Laplace se
réfère à l’analyse asymptotique des logarithmes normalisés des fonctions
continues évoquant l’espérance ; une définition précise est donnée dans le
chapitre 2. Ce principe de Laplace est équivalent à un principe de grandes
déviations avec la même fonctionnelle d’action et le principe de grandes
déviations pour la famille {Xε, ε > 0} est une conséquence directe du théo-
rème 2.2.1.
Le contenu de ce mémoire est organisé comme suit. La première partie du
chapitre 2 introduit la famille de diffusion avec des statistiques disconti-
nues considérées. Après les hypothèses nécessaires, le principe de Laplace
pour cette famille est énoncé dans le théorème 2.2.1. Dans le chapitre 3,
nous énonçons une formule de représentation des solutions d’EDS ainsi
que l’étude asymptotique de la famille de contrôle {vε, ε > 0}, consistant à
éliminer le mouvement brownien W qui seront nécessaires dans la preuve
du théorème 2.2.1. Ce chapitre comprend également les résultats généraux
de compacité et de convergence qui seront utilisés dans le chapitre suivant.
Enfin, le chapitre 4 est consacré à la preuve du principe de Laplace. La
preuve est divisée en limites supérieure et inférieure, chacune correspon-
dant à une sous-section. Un problème plus ambitieux que celui analysé dans
le présent document concerne les processus de diffusion, dont les dérives
présentent des discontinuités le long d’un nombre arbitraire d’ intersection
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lisse de variétés (d − 1)-dimensionnelles. Les difficultés rencontrées dans
l’analyse de ces processus sont discutées dans la section 7.1 de [7].
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Chapitre 1

Préliminaire

1.1 Définitions préliminaires

Définition 1.1.1. Une fonction I : X → [0,∞] est une fonctionnelle d’ac-
tion si elle est semi-continue inférieurement et I 6≡ +∞. De plus, si pour
tout a < ∞, {x ∈ X , I(x) ≤ a} est compact alors I est une bonne fonc-
tionnelle d’action.

Définition 1.1.2. Une fonction I : X → [0,∞] est semi-continue inférieu-
rement en x0 ∈ X si lim infx→x0 f(x) ≥ f(x0). La fonction I est dite tout
simplement semi-continue inférieurement si I est semi-continue inférieure-
ment en tout point de X .

Définition 1.1.3. Étant donnée une fonction I, la famille {Xε}ε>0 satisfait
un principe de grandes déviations avec une fonctionnelle d’action I si I est
une bonne fonctionnelle d’action et si pour tout Γ ∈ B(X),

− inf
x∈Γ◦

I(x) ≤ lim inf
ε→0+

ε log P(Xε ∈ Γ) ≤ lim sup
ε→0+

ε log P(Xε ∈ Γ) ≤ − inf
x∈cl(Γ)

I(x),

où cl(Γ) est la fermeture et Γ◦ l’intérieur de Γ.

Définition 1.1.4. {Xε}ε>0 satisfait un principe de Laplace avec une bonne
fonctionnelle d’action I si pour toute fonction F continue et bornée de X ,
on a

lim
ε→0+

−ε log E
[
exp

(
−1
ε
F (Xε)

)]
= inf

x∈X
{I(x) + F (x)}.
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1.2 Processus de diffusion

Définition 1.2.1. Un processus de diffusionXt est un processus de Markov
à trajectoire continue vérifiant la formule d’Ito

dXt = f(t,Xt)dt+ g(t,Xt)dBt

où Bt est un mouvement brownien standard, et une diffusion est caracté-
risée par :

(i) la dérive ; lim
h→0

E(Xt+h −Xt/Xt = x)
h

= f(t, x)

(ii) la limite donnant la diffusion ; lim
h→0

E((Xt+h −Xt)2/Xt = x)
h

= g(t, x)2

(iii) la condition de Dynkin ; lim
h→0

E(|Xt+h −Xt|/Xt = x)
h

= 0.

Définition 1.2.2. Soit (E, E) un espace mesuré, un noyau N sur E est
une application de E × E dans R+ ∪ {∞} tel que :
(i) Pour tout x ∈ E, l’application A 7→ N(x,A) est une mesure positive

sur E
(ii) Pour tout A ∈ E l’application x 7→ N(x,A) est E-mesurable.

Théorème 1.2.3 (Théorème de convergence dominé de Lesbegue). Soit
(fn) une suite de fonctions mesurables positives de (E,A, µ), on suppose
que :
(i) il existe une fonction f mesurable à valeurs dans C telle que fn(x)→

f(x) µ-presque partout
(ii) il existe une fonction g : E → R+ mesurable telle que ∫

gdµ < ∞ et
pour tout n, | ft |≤ g µ-presque partout.

Alors, f est intégrable et on a :
(i) lim

n→∞

∫
fndµ =

∫
fdµ

(ii) lim
n→∞

∫
| fn − f | dµ = 0.

1.3 Chaîne de Markov

Définition 1.3.1. Une filtration (Ω,F) est une famille croissante (Ft)t≥0
de sous-tribu de F si et seulement si

Ft ⊂ Ft+1.
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Définition 1.3.2. T est un temps d’arrêt relatif à la filtration (Ft)

T :Ω −→ [0,∞] tel que pour tout t {T ≥ t} ∈ Ft,
ω 7−→ T (ω).

Définition 1.3.3 (Suite tendue). Soit (X,T ) un espace topologique et soit
Σ une σ-algebre sur X qui contient la topologie T .
Ainsi, tout ensemble ouvert de (X,T ) est un ensemble mesurable de (X,Σ)
et Σ est au moins aussi fine que la tribu borélienne sur X.
Soit M une famille de mesures (éventuellement signées ou complexes) dé-
finies sur Σ.
La famille M est dit tendue ou parfois uniformément tendue si pour tout
ε > 0, il existe un ensemble compact Kε de X tel que pour toute mesure
µ de M :

| µ | (X\Kε) < ε

où | µ | est la mesure de variation totale de µ.
Dans le cas où la famille M consiste en une seule mesure µ, la famille
est alors appelée mesure tendue ou peut être une mesure intérieurement
régulière.

Définition 1.3.4. Soit (Zn) une suite de variables aléatoires de (Ω, A,F ,P)
à valeurs dans (E, E), où E est l’espace des états, alors, (Zn) est une chaîne
de Markov de loi initiale ν si

(i) P(Z0 = 0) = ν(0)
(ii) P(Zn+1 = zn+1/Z0 = z0, ..., Zn = zn) = P(Zn+1 = zn+1/Zn = zn)
(iii) Q(z, j) = P(Zn+1 = j/Zn = z) est indépendante de n pour tous

j, z ∈ E, où Q est la probabilité de transition relativement à la filtra-
tion Fn telle que E(Zn+1/F) = Qf(Zn).

Théorème 1.3.5 (Propriété de Markov). Soit (Xn, n ≥ 1) une chaîne de
Markov sur l’espace de probabilité filtré (Ω,A,F ,P), de matrice de tran-
sition Q et T un temps d’arrêt, alors, pour toute fonction f borélienne
bornée, on a :
(i) Ef(XT+k, k ≥ 0/FT ) = EXT

(f(Xk, k ≥ 0))
(ii) (XT+n, n ≥ 0) est une chaîne de Markov, de matrice de transition Q
(iii) (XT+n −Xn, n ≥ 0) est indépendant de FT .
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Définition 1.3.6. Une famille Φ des mesures de probabilité sur χ est dite
lisse : si pour chaque ε > 0, il existe un ensemble compact K tel que

inf
γ∈Φ

γ(K) ≥ 1− ε.
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Chapitre 2

Énoncé du théorème principal

Nous travaillons l’espace de probabilité canonique (Ω,F ,P), où Ω=̇C([0, 1] :
Rd) et P est la mesure de Winner d-dimensionnelle. L’espace C([0, 1] : Rd)
est doté de la métrique de sup-norme. Pour chaque
0 6 t 6 1, posons W(t, ω)=̇ω(t) et on définit la filtration augmentée Ft par

Ft=̇σ
(
FW
t ∪N

)
, 0 ≤ t ≤ 1,

où FWt =̇{σ(W(s); 0 6 s 6 t)} et N est la collection des ensembles P-
nuls. Ensuite, le processus W=̇{W(t),Ft, 0 6 t 6 1} est un mouvement
brownien d-dimensionnel. Pour préparer notre théorème principal, nous
introduisons le concept du principe de Laplace.

2.1 Introduction sur la famille de diffusion avec la
statistique discontinue

Par définition, la fonctionnelle d’action sur un espace polonais est une
application de l’espace polonais vers [0,∞] avec l’ensemble de niveaux com-
pact.

Définition 2.1.1. Soit {Yε, ε > 0} une famille de variables aléatoires pre-
nant ses valeurs dans un espace polonais Y et soit I une fonctionnelle
d’action sur Y . Nous disons que {Y ε} vérifie un principe de Laplace avec
comme fonctionnelle d’action I si pour toute fonction continue et bornée h
de Y dans R :

lim
ε→0

ε logE
exp

−h(Y ε)
ε

 = inf
y∈Y
{h(y) + I(y)}.

Un principe de Laplace est équivalent à un principe de grandes déviations
avec la même fonctionnelle d’action (voir théorème 2.2.1 et 2.2.3 dans [7]

8



pour plus de détail). Ainsi, au lieu de prouver un principe de grandes dé-
viations pour les diffusions avec des statistiques discontinues, nous nous
concentrons sur la preuve du principe de Laplace sur la même famille.
C’est le contenu du théorème 2.2.1.
Considérons le processus de diffusion Xε, solution de l’équation (1). La
matrice dispersion ∂ est une matrice d× d des fonctions boréliennes mesu-
rables d’une application Rd dans R. La dérive b est supposée être continue,
sauf à travers l’ hyperplan de dimension (d− 1) :

∂=̇
{
x ∈ Rd : x1 = 0

}
.

Plus précisément, on donne des fonctions continues b(1) et b(2), deux appli-
cations de Rd dans Rd, b est définie par

b(x) =
b

(1)(x) si x ∈ Λ(1),

b(2)(x) si x ∈ Λ(2),

où

Λ(1)=̇
{
x ∈ Rd : x1 ≤ 0

}
et Λ(2)=̇

{
x ∈ Rd : x1 > 0

}
.

L’inclusion de l’hyperplan ∂ avec le demi-espace ouvert à gauche est arbi-
traire. Le principe de Laplace dans le théorème 2.2.1 est valable si ∂ est
inclus dans le demi-espace ouvert à droite. Nous notons que le problème
général où ∂ est remplacé par une variété régulière de dimension (d − 1)
peut être réduit à celui présenté ici par le biais de technique de localisation
standard, cf [2]. Le théorème 2.2.1 énonce le principe de Laplace pour la
famille {Xε : ε > 0} dans les conditions suivantes.

Condition 2.1. (a) b(1), b(2) et σ sont continus et sont bornés par une
constante B1.

(b) σ est uniformément non dégénérée, c’est à dire σ(·)σT (·) > cI pour
c > 0.

(c) L’EDS (1) a une unique solution forte.

Notation et définitions nécessaires : cf[7]
Des notations et plusieurs définitions sont nécessaires. Étant donné une
mesure de probabilité µ dans Rd, Sµ désigne le support de µ, qui est le
plus petit ensemble fermé de µ-probabilité 1. Pour un sous-ensemble A de
Rd ConvA, affA , clA et intA désignent respectivement l’enveloppe convexe
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de A, l’extérieure (coque) affine de A, la fermeture de A et l’intérieur de
A.
Pour un sous-ensemble convexe C dans Rd, riC désigne l’intérieur relatif
de C, qui est l’intérieur qui se produit lorsque C est considéré comme un
sous-ensemble de affC. Bien entendu, si l’intérieur de C est non vide ou
équivalente, si l’extérieure (coque) affine de C est égale à Rd, alors riC =
intC. Enfin, pour une fonction convexe f sur Rd, domf désigne le domaine
effectif de f , qui est l’ensemble de x ∈ Rd pour lequel f(x) <∞.
Fonctions convexes : Dans le cas de Rd, un sous-ensemble χ d’un espace
linéaire est appelé convexe : si sx+(1−s)y inclus dans χ pour tout s ∈ (0, 1)
et tout x et y dans χ.

Remarques 2.1.2.
(i) Bien que dans la partie (a), de la condition 2.1, nous supposions que les
deux applications b(1)(x) et b(2)(x) sont des fonctions continues sur x ∈ Rd,
en général b(x) n’est pas continu dans ∂.
(ii) Pour simplifier, nous avons supposé que σ(x) est continue sur Rd (les
conditions suffisantes pour l’existence d’une solution unique forte présentée
dans [20] exigent cette condition). Toutefois, aussi longtemps que l’équation
différentielle stochastique (1) a unique solution forte, le résultat du théo-
rème 2.2.1 reste valable si σ(x) est également autorisé à être discontinu le
long de l’hyperplan ∂.
(iii) La partie (b) de la condition 2.1 est nécessaire pour la preuve du prin-
cipe de Laplace pour la borne inférieure.

Plus de commentaires sur cette hypothèse seront donnés ci-dessous. Pour
i = 1, 2 et x et β dans Rd, et soit L(i)(x, β) une fonctionnelle d’action
associée par le théorème de Cramer (cf : Annexe A) avec une mesure de
probabilité gaussienne sur Rd, avec le vecteur moyen b(i)(x) et la matrice
de covariance a(x)=̇σ(x)σT (x).

L(i)(x, β)=̇ sup
α∈Rd

{
〈α, β − b(i)(x)〉 − 1

2〈α, a(x)α〉
}
,

où 〈·, ·〉 désigne le produit scalaire euclidien sur Rd. Si β− b(i)(x) se trouve
dans l’image de a(x)·, alors L(i)(x, β) est définie par

L(i)(x, β) = 1
2〈α, β − b

(i)(x)〉,
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où α ∈ Rd est tout vecteur satisfaisant a(x)α = β − b(i)(x), sinon,
L(i)(x, β) est égal à∞. Le domaine effectif de L(i)(x, β) est donc donné par

domL(i)(x, β) =
{
β ∈ Rd : β − b(i)(x) = a(x)u pour chaque u ∈ Rd

}
.

Par conséquent, une partie (b) de la Condition 2.1 implique que
domL(i)(x, ·) = Rd, pour chaque x ∈ Rd. Il s’ensuit trivialement que ces
ensembles sont indépendants de x ∈ Rd et de i = 1, 2, que
0 ∈ ri(dom L(i)(x, ·)), et que ri(dom L(i)(x, ·)) n’ est pas un sous-ensemble
de ∂. Ces propriétés sont nécessaires pour la preuve du principe de Laplace
sur la limite inférieure.

Remarques 2.1.3. Nous pouvons en fait remplacer une partie de (b) de la
Condition 2.1 avec l’hypothèse plus faible que les ensembles ri(domL(i)(x, ·))
sont indépendants de x ∈ Rd et de i = 1, 2, et que 0 ∈ ri(domL(i)(x, ·), et
que ri(domL(i)(x, ·) n’est pas un sous-ensemble de ∂. Les preuves que nous
présentons ici peuvent être généralisées pour couvrir les cas de certaines
hypothèses qui sont plus faibles pour les rendre satisfaisantes.�

Avant de passer à la définition de la fonctionnelle d’action, nous indique-
rons d’abord la forme de L(i)(x, β), qui sera utilisée dans la démonstration
du principe de Laplace. La partie (b) de la Condition 2.1 nous permet
d’écrire :

L(i)(x, β) = 1
2 ‖ v ‖

2 pour v=̇σ−1(x)(β − b(i)(x)). (2.1)

Afin de préciser la fonctionnelle d’action pour la famille {Xε : ε > 0}, pour
x et β dans R, on définit

L(0)(x, β)=̇inf
{
ρ(1)L(1)(x, β(1)) + ρ(2)L(2)(x, β(2))

}
. (2.2)

La borne inférieure est prise sur tous les ρ(1) ∈ R, ρ(2) ∈ R, β(1) ∈ Rd et
β(2) ∈ Rd satisfaisant

ρ(1) ≥ 0, ρ(2) ≥ 0, ρ(1) + ρ(2) = 1, (2.3)
(β(1))1 ≥ 0, (β(2))1 ≤ 0, (2.4)
ρ(1)β(1) + ρ(2)β(2) = β. (2.5)

Ensuite nous définissons pour x et β dans Rd
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L̃(x, β)=̇


L(1)(x, β) si x1 < 0, (2.6)
L(0)(x, β) si x1 = 0,
L(2)(x, β) si x1 > 0.

La forme de la fonctionnelle d’action dans le théorème 2.2.1 est la même
que celle figurant dans le principe de Laplace pour le modèle de marche
aléatoire avec statistique discontinue étudiée dans le chapitre 7 de [7]. Par
conséquent, nous allons tout simplement énoncer le principe de Laplace en
utilisant cette fonctionnelle d’ action et de renvoyer le lecteur à [7, à la
page 221] pour une discussion détaillée de la façon dont cette fonctionnelle
d’ action peut être interprétée.

Théorème 2.1.4. Pour toute partie A dans Rd, on a ri(ccA) est égal
ri(convA).

Preuve. D’après le théorème 6.5 dans [19]

ccA = ∩{B : B est fermé convexe dans Rd, A ⊂ B}
= ∩{clC : C est convexe dans Rd, A ⊂ C}
= cl(∩{C : C est convexe dans Rd, A ⊂ C})
= cl(convA).

Le théorème 6.3 dans [19] nous garantit l’égalité de ri(ccA) = ri(cl(convA)) =
ri(convA).

Les conditions suivantes sont satisfaites, si pour chaque x ∈ Rd le sup-
port de la mesure µ(dy | x) est Rd. Nous rappelons que pour x ∈ Rd,
ri(convSµ(·|x)) désigne l’intérieur relatif de l’extérieur (coque) convexe du
support de µ(· | x). Soient f1 et f2 deux fonctions continues et bornées
lipschitziennes telles que

ri(domL(x, ·)) = {(β1, β2) : β1 = f1(x1) + f2(x2), β2 ∈ R},

en général, cet ensemble dépend toujours de x, et il ne contient pas 0. Et
on a besoin des deux conditions suivantes pour certain lemme qu’on trouve
dans le chapitre quatre.
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Condition 2.2. (a) Pour chaque α ∈ Rd,
maxi=1,2

(
supx∈Rd H(i)(x, α)

)
<∞.

(b) Pour chaque i = 1, 2, la fonction appliquant x ∈ Rd 7−→ µ(i)(dy | x)∈
P(Rd) est continue dans la topologie à convergence faible sur P(Rd).

Condition 2.3. (a) Les ensembles ri(convSµ(i)(·|x)) sont indépendants pour
x ∈ Rd et i = 1, 2.

(b) 0 ∈ Σ=̇ri(convSµ(i)(·|x)) et Σ n’est pas un sous ensemble de
∂=̇{x ∈ Rd : x1 = 0}.

2.2 Conséquence : le principe de Laplace pour la fa-
mille {Xε, ε > 0}.

Théorème 2.2.1. Nous supposons vérifier la condition 2.1 est vérifiée.
Pour tout x0 ∈ Rd et ε > 0, soit Xε=̇ {Xε(t), 0 ≤ t ≤ 1} l’unique solution
forte de l’EDS,

dXε(t) = b(Xε(t))dt+ ε
1
2σ(Xε(t))dW (t), Xε(0) = x0. (2.7)

Pour les fonctions absolument continues ϕ ∈ C([0, 1] : Rd), satisfaisant
ϕ(0) = x0, nous définissons

Ix0(ϕ)=̇
∫ 1

0
L̃(ϕ(t), ϕ̇(t))dt

où L̃ est défini dans les équations (2.2)(2.6) ce qu’on a vu précédemment.
Pour les autres ϕ ∈ C([0, 1] : Rd), nous prenons Ix0(ϕ)=̇∞. Alors la famille
{Xε : ε > 0} satisfait le principe de Laplace sur C([0, 1] : Rd) avec la
fonctionnelle d’ action Ix0(·). En fait, le principe de Laplace est valable
uniformément sur les compacts, c’est à dire que pour tous sous-ensembles
compacts K de Rd, le principe de Laplace tient uniformément quelque soit
x0 ∈ K.

Nous allons donner la preuve du principe de Laplace non uniforme dans
le chapitre 4. La preuve de la version uniforme utilise les mêmes arguments,
mais avec une notation plus lourde. La preuve que Ix0 a des ensembles de
niveau compact sera omise sous la condition 2.1, il est identique à celle de
la proposition 7.6.1 dans [7].
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Chapitre 3

Résultats Préliminaires

Soit Px0 la probabilité conditionnelle de Xε sachant que Xε(0) = x0 et
Ex0 désigne l’espérance correspondante. La preuve du théorème 2.2.1 exige
que nous analysons le comportement asymptotique des
W ε(x0)=̇ − εlogEx0{exp[−h(Xε)/ε]}. Une étape fondamentale dans l’ap-
proche de la convergence faible utilisée pour cette analyse est la représen-
tation de W ε(x) en terme de fonction de coût minimal d’un problème de
contrôle stochastique associé. Le but de ce chapitre est d’introduire cette
représentation, d’étudier la compacité et de limiter les propriétés de cer-
taines familles des contrôles et des processus contrôlés qui se posent dans
la représentation. Nous commençons par indiquer la formule de représen-
tation. Pour une dérivation heuristique de la forme de la représentation,
nous renvoyons le lecteur à la section 4.6 dans [7]. Une preuve est donnée
dans [5].

3.1 Introduction de la formule de la représentation
dans la solution de l’E.D.S

Théorème 3.1.1. On donne ε > 0, soit Xε le processus de diffusion qui est
l’unique solution forte pour (2.7). Alors pour toute fonction h Borélienne-
mesurable bornée appliquant C([0, 1] : Rd) dans R, la représentation sui-
vante est satisfaite :

W ε(x0) = inf
v∈A

Ex0

{1
2
∫ 1

0
‖ v(t) ‖2 dt+ h(Xv,ε)

}
,

où A est l’ ensemble de tous les processus d-dimensionnels, Ft-progressivement
mesurables, v=̇{v(t), 0 ≤ t ≤ 1} satisfaisant

E

[∫ 1

0
‖ v(t) ‖2 dt

]
<∞
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et Xv,ε=̇{Xv,ε(t), 0 ≤ t ≤ 1} est l’unique solution forte de

dXv,ε(t) = b(Xv,ε(t))dt+σ(Xv,ε(t))v(t)dt+ε 1
2σ(Xv,ε(t))dW (t), Xv,ε(0) = x0.

Nous nous référons à Xv,ε comme la diffusion contrôlée associée au
contrôle v. Soit {vε, ε > 0} une famille de contrôle dans A. On définit
X̄ε=̇Xvε,ε. Ainsi, pour chaque ε > 0 et t ∈ [0, 1], l’équation

X̄ε(t) = x0+
∫ t

0
[b(X̄ε(s))+σ(X̄ε(s))vε(s)]ds+ε 1

2

∫ t
0
σ(X̄ε(s))dW (s). (3.1)

tient avec la probabilité 1. Le reste de cet chapitre est consacrée à l’étude
des propriétés asymptotiques de {vε, ε > 0} et de {X̄ε, ε > 0}, sous l’hypo-
thèse que les contrôles vérifient la condition 3.1, voir ci-dessous. La condi-
tion sera automatiquement satisfaite pour les contrôles qui interviennent
dans la preuve du principe de Laplace.

Condition 3.1.

∆=̇ sup
ε>0

Ex0

{∫ 1

0
‖ vε(t) ‖2 dt

}
<∞.

Lorsque l’on étudie les propriétés asymptotiques des familles des contrôles
et des processus de contrôle, la discontinuité des statistiques donne lieu à
quelques difficultés. Tout d’abord, la présence de la discontinuité implique
que la famille des contrôles ne peut pas converger au sens usuel. Ce n’était
pas le cas dans tous les exemples traités dans [7], étant donné que les
contrôles admissibles ont toujours eu des valeurs dans l’espace des mesures
de probabilité sur un espace polonais, donc l’ existence des limites au sens
faible est assurée. Afin d’exploiter les idées de la convergence faible, nous
représenterons chaque contrôle vε comme une mesure sur l ’ ensemble boré-
lien de Rd. Sous la condition 3.1, nous montrerons ci-dessous qu’il n’ existe
pas une sous-suite de ces mesures qui converge faiblement. Pour tout A
borélien de Rd et B dans [0, 1] on a

νε(A | t)=̇ 1A(vε(t)), (3.2)
νε(A×B)=̇

∫
B

1A(vε(t))dt =
∫
B
νε(A | t)dt. (3.3)

Les quantités νε(· | t) et νε(·) ont pris des valeurs dans les espaces P(Rd)
et P(Rd× [0, 1]) des mesures de probabilité respectivement dans Rd et dans
Rd × [0, 1]. La quantité νε(A× B) représente le temps total dépensé dans
l’ensemble Borélien : B ⊂ [0, 1] et que le contrôle vε prend ses valeurs

15



dans l’ ensemble Borélien A ⊂ Rd. Grâce à ces mesures, on peut utiliser le
théorème de Fubini pour le produit de mesure, donc (3.1) peut être réécrit
comme

X̄ε(t)

= x0 +
∫ t

0

∫
Rd

(
b(X̄ε(s)) + σ(X̄ε(s))y

)
νε(dy | s)ds+ ε

1
2

∫ t
0
σ(X̄ε(s))dW (s)

= x0 +
∫
Rd×[0,1]

(
b(X̄ε(s)) + σ(X̄ε(s))y

)
νε(dy | s)ds+ ε

1
2

∫ t
0
σ(X̄ε(s))dW (s).

Une deuxième conséquence de la discontinuité des statistiques est qu’on
doit prendre soin quand on analyse la fraction asymptotique de temps que
les processus contrôlés X̄ε dépensent dans chacun des demi-espaces Λ(1) et
Λ(2). Pour cela, nous devons considérer des mesures supplémentaires. On
définit

ν(1),ε(A×B)=̇
∫
B

1{s∈[0,1]:(X̄ε(s))1≤0)}(t)νε(A | t)dt, (3.4)

ν(2),ε(A×B)=̇
∫
B

1{s∈[0,1]:(X̄ε(s))1>0)}(t)νε(A | t)dt. (3.5)

Ces quantités prennent des valeurs dans l’espaceM(Rd×[0, 1]) des mesures
de sous-probabilités dans Rd×[0, 1] c’est à dire pour tout i = 1, 2, ν(i),ε(Rd×
[0, 1]) ≤ 1. En termes de ces mesures, nous pouvons encore réécrire

X̄ε(t) = x0 +
∫
Rd×[0,t]

(
b(1)(X̄ε(s)) + σ(X̄ε(s)y)

)
ν(1),ε(dy × ds) (3.6)

+
∫
Rd×[0,t]

(
b(2)(X̄ε(s)) + σ(X̄ε(s)y)

)
ν(2),ε(dy × ds)

+ ε
1
2

∫ t
0
σ(X̄ε(s))dW (s).

Enfin, on définit γ(1),ε et γ(2),ε pour la deuxième marginale respective de
ν(1),ε et ν(2),ε. Ainsi

γ(1),ε(B)=̇ν(1),ε(Rd ×B) =
∫
B

1{s∈[0,1]:(X̄ε(s))1≤0}(t)dt (3.7)

et
γ(2),ε(B)=̇ν(2),ε(Rd ×B) =

∫
B

1{s∈[0,1]:(X̄ε(s))1>0}(t)dt. (3.8)
Ces quantités sont la mesure de Lebesgue sur les ensembles de temps
t ∈ B à laquelle X̄ε(t) reste dans les demi-espaces respectifs ; γ(1),ε et γ(2),ε

prennent des valeurs dansM([0, 1]). Pour i = 1, 2

ν(i),ε(A×B) =
∫
B
νε(A | t)γ(i),ε(dt).
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La proposition suivante donne la tension de la famille
{(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε), ε > 0} aussi bien que la propriété d’ uniforme
intégrabilité de {νε, ε > 0}, {ν(1),ε, ε > 0} et {ν(2),ε, ε > 0}.

Proposition 3.1.2. On donne x0 ∈ R, considérons la famille
{vε, ε > 0} des contrôles dans l ’ ensemble A satisfaisant la condition 3.1.
Alors, on a
(a) La famille {(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε), ε > 0} est tendue.
(b) Les familles {νε, ε > 0} et {ν(i),ε, ε > 0} pour i = 1, 2, ont les propriétés
de l’intégrabilité uniforme

lim
C→∞

sup
ε>0

Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ νε(dy × dt)
}

= 0 (3.9)

et

lim
C→∞

sup
ε>0

Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ ν(i),ε(dy × dt)
}

= 0. (3.10)

Preuve. D’après la preuve de la proposition 7.4.2 de [7], pour chaque
α ∈ Rd, si

H(i)(x, α) = log
∫
Rd

exp < α, y > µ(i)(dy | x),

on a maxi=1,2(supx∈Rd H(i)(x, α)) <∞ implique que supx∈Rd H(i)(x, α) <∞
et en utilisant la proposition 5.3.2 de [7] alors la quantité (3.9) implique
la tension de {νε, ε > 0}. Nous nous concentrerons donc sur la preuve
de (3.9), pour C > 0. Par définition de ‖ y ‖=‖ y ‖ 1{z∈Rd:‖z‖>C}(y)+
‖ y ‖ 1{z∈Rd:‖z‖≤C}(y) cf[7]. On a :

sup
ε>0

Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ νε(dy × dt)
}

+ sup
ε>0

Ex0

{∫
Rd×[0,1]

‖ y ‖ 1{z∈Rd:‖z‖≤C}(y)νε(dy × dt)
}
,

comme nous travaillons pour ‖ z ‖> C, z ∈ Rd. On a

sup
ε>0

Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ νε(dy × dt)
}

= sup
ε>0

Ex0

{∫
Rd×[0,1]

‖ y ‖ 1{z∈Rd:‖z‖>C}(y)νε(dy × dt)
}
.
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D’après la définition de νε(dy × dt)=νε(dy | t) ⊗ dt cf[7] et le produit de
mesure sur Rd. On a donc νε(dy | t) ⊗ dt=νε(dy | t)dt , et ce dernier est
égale à

= sup
ε>0

Ex0

{∫ 1

0

∫
Rd
‖ y ‖ 1{z∈Rd:‖z‖>C}(y)νε(dy | t)dt

}
.

Et comme ‖ y ‖ varie dans Rd et sous la condition 3.1 quantité première
ligne, en posant y = νε(t)

sup
ε>0

Ex0

{∫ 1

0

∫
Rd
‖ y ‖ 1{z∈Rd:‖z‖>C}(y)νε(dy | t)dt

}

= sup
ε>0

Ex0

{∫ 1

0
νε({vε(t) ∈ Rd :‖ vε(t) ‖> C} | t)dt

}
.

Sous l’action de la famille de contrôle {vε, ε > 0} et sous la condition 3.1
quantité deuxième ligne, on a l’égalité suivante

sup
ε>0

Ex0

{∫ 1

0
νε({vε(t) ∈ Rd :‖ vε(t) ‖> C} | t)dt

}
.

= sup
ε>0

Ex0

{∫ 1

0
1{vε(t)∈Rd:‖vε(t)‖>C} ‖ vε ‖ (t)dt

}

= sup
ε>0

Ex0

{∫
{t∈[0,1]:‖vε(t)‖>C}

‖ vε(t) ‖ dt
}

≤ sup
ε>0

Ex0

{ 1
C

∫
{t∈[0,1]:‖vε(t)‖>C}

‖ vε(t) ‖2 dt

}
≤ ∆
C
.

On fait tendre C →∞ pour avoir (3.9).
Comme νε = ν(1),ε + ν(2),ε, il s’ensuit que pour i = 1, 2 et toute fonction
mesurable positive ou nulle g de Rd × [0, 1] dans [0,∞], on a

0 ≤
∫
Rd×[0,1]

g(y, t)ν(i),ε(dy × dt) ≤
∫
Rd×[0,1]

g(y, t)νε(dy × dt).

Par conséquent, (3.9) implique (3.10), ce qui donne la tension des fa-
milles individuelles {ν(1),ε, ε > 0} et {ν(2),ε, ε > 0}. Les mesures aléa-
toires γ(1),ε et γ(2),ε prennent des valeurs dansM([0, 1]), qui est compact,
puisque [0, 1] est compact [7, corollaire A.3.16]. Nous concluons donc que
{(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε), ε > 0} est tendue.

Le théorème 3.2.1 ci-dessous analyse les propriétés de convergence des
mesures de contrôle et des processus contrôlés. Avant d’énoncer, nous don-
nons les décompositions de certaines quantités qui se trouvent dans ce
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théorème. Nous rappelons que si (V ,A) est un espace mesurable alors Y
est un espace polonais, la famille {τ(dy | x), x ∈ V} peut être une mesure
de probabilité (resp., sous-probabilité), mesure sur Y qui est un noyau sto-
chastique (resp., un noyau sous-stochastique) de Y donné par V si pour tout
sous-ensemble borélien B de Y l’application x ∈ V 7−→ τ(B | x) ∈ [0, 1]
est mesurable.
Soient {(ν, ν(1), ν(2), γ(1), γ(2))} les limites des sous-suites convergentes
{(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε), ε > 0}. Ces limites peuvent être définies sur
un espace de probabilité (Ω,F , P ), afin que les énoncés suivants soient sa-
tisfaits. Pour i = 1, 2 et pour tout sous-ensemble Borélien A de Rd et B
sur [0, 1], Px0 presque surement pour ω ∈ Ω,

ν(A×B | ω) =
∫
B
ν(A | t, ω)dt (3.11)

pour certains noyaux stochastiques ν(dy | t, ω) ;

ν(i)(A×B | ω) =
∫
B
ν(i)(A | t, ω)dt (3.12)

pour certains noyaux sous stochastiques ν(i)(dy | t, ω) et

γ(i)(B | ω) =
∫
B
γ̂(i)(t, ω)dt (3.13)

pour tout γ̂(i)(t, ω) fonction mesurable. En outre, nous avons, avec la pro-
babilité 1 et pour chaque t ∈ [0, 1],

ν(1)(dy | t, ω) + ν(2)(dy | t, ω) = ν(dy | t, ω) (3.14)

et pour chaque ω ∈ Ω et chaque t ∈ [0, 1]γ̂(i)(t, ω) = ν(i)(Rd | t, ω). Dans la
suite, les quantités (3.11) (3.12) seront résumées comme

ν(dy×dt) = ν(dy | t)⊗dt, ν(i)(dy×dt) = ν(i)(dy | t)⊗dt et γ(i)(dt) = γ̂(i)dt

respectivement. Les détails pour la dérivation de ces décompositions dans
une situation analogue peuvent être trouvés dans le lemme 7.4.3 de [7].
Nous faisons remarquer, cependant, que la preuve de ces décompositions,
la preuve de théorèmes 2.2.1 et le théorème 3.2.1 ci-dessous font usage
du théorème de représentation de Skorohod [11, Théorème 1,8], qui im-
plique l’introduction d’un nouvel espace de probabilité. Nous avons retenu
la notation (Ω,F , P ) pour ce nouvel espace, et nous allons suivre la même
convention dans toute la suite. Le théorème suivant concerne les points-
limites de la famille {(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε), ε > 0} avec les limites de
la famille {X̄ε, ε > 0}. En particulier, il tire plusieurs propriétés clés des
quantités-limites ν, ν(1), ν(2), γ(1), γ(2) et X̄.
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3.2 Les résultats généraux de compacité et de conver-
gence

Théorème 3.2.1. Supposons la condition 2.1. On donne x0 ∈ Rd, consi-
dérons la famille {vε, ε > 0} des processus A satisfaisant la condition 3.1.
Alors, on a
(a) Étant donnée une sous-suite de {(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε, X̄ε), ε > 0},
il existe une sous sous-suite, un espace de probabilité (Ω,F , P ), un noyau
stochastique ν sur Rd× [0, 1] donné dans Ω, des noyaux sous-stochastiques
de ν(1) et ν(2) sur Rd × [0, 1] donné dans Ω, des noyaux sous-stochastiques
γ(1) et γ(2) sur [0, 1] donné dans Ω, et une variable aléatoire X̄ appliquant
Ω dans C([0, 1] : Rd) tels que la sous sous-suite converge en distribution
vers (ν, ν(1), ν(2), γ(1), γ(2), X̄). Les (sous) noyaux stochastiques ont donné
les décompositions (3.11)− (3.14)
(b) Avec la probabilité 1, pour chaque t ∈ [0, 1]

X̄(t) = x0 +
∫
Rd×[0,t]

(
b(1)(X̄(s)) + σ(X̄(s))y

)
ν(1)(dy × ds)

+
∫
Rd×[0,t]

(
b(2)(X̄(s)) + σ(X̄(s))y

)
ν(2)(dy × ds) (3.15)

= x0 +
∫ t

0

∫
Rd

(
b(1)(X̄(s)) + σ(X̄(s))y

)
ν(1)(dy|s)ds (3.16)

+
∫ t

0

∫
Rd

(
b(2)(X̄(s)) + σ(X̄(s))y

)
ν(2)(dy|s)ds,

et X̄(t) est une fonction absolument continue dans t ∈ [0, 1]. Par consé-
quent, presque pour tout t ∈ [0, 1] la dérivée de X̄(t) est donnée par

˙̄X(t) =
∫
Rd

(
b(1)(X̄(t)) + σ(X̄(t))y

)
ν(1)(dy | t) (3.17)

+
∫
Rd

(
b(2)(X̄(t)) + σ(X̄(t))y

)
ν(2)(dy | t).

(c) Avec la probabilité 1, nous avons presque sûrement( par rapport à la
mesure de Lebesgue) pour tout t ∈ [0, 1],

(X̄(t))1 < 0 implique que γ̂(1)(t) = ν(1)(Rd | t) = 1 et

γ̂(2)(t) = ν(2)(Rd | t) = 0,
(X̄(t))1 > 0 implique que γ̂(2)(t) = ν(2)(Rd | t) = 1 et

γ̂(1)(t) = ν(1)(Rd | t) = 0, (3.18)
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et pour toute valeur de (X̄(t))1,

γ̂(1)(t) + γ̂(2)(t) = ν(1)(Rd | t) + ν(2)(Rd | t) = 1. (3.19)
(d) Avec la probabilité 1, nous avons presque sûrement pour tout t ∈ [0, 1]
lorsque (X̄(t))1 = 0(∫

Rd

(
b(1)(X̄(t)) + σ(X̄(t))y

)
ν(1)(dy | t)

)
1
≥ 0 (3.20)

et (∫
Rd

(
b(2)(X̄(t)) + σ(X̄(t))y

)
ν(2)(dy | t)

)
1
≤ 0. (3.21)

Preuve. (a) La tension de {X̄ε, ε > 0} peut être vérifiée sous les conditions
2.1 et 3.1. La convergence de la distribution affirmée dans la partie (a)
est une conséquence de la tension de cette famille avec la partie (a) de
la proposition 3.1.2. L’identification des quantités-limites est donnée dans
(3.11) - (3.13) et dans la partie (b) du présent théorème.
(b) La tension de la famille {X̄ε, ε > 0} implique que pour toute sous-suite
de ε > 0 il existe une sous sous-suite et une variable aléatoire X̄ à valeurs
dans C([0, 1] : Rd) telle que X̄ε D−→ X̄. Nous invoquons le théorème de
représentation de Skorohod (cf Annexe A), cela nous permet de supposer
que X̄ε → X̄ avec la probabilité 1.
Il reste à montrer qu’avec la probabilité 1, X̄(t) satisfait (3.15) et (3.16)
pour tout t ∈ [0, 1].
Nous commençons par montrer que pour chaque i = 1, 2, et t ∈ [0, 1] et
pour chaque fonction continue bornée g de Rd × Rd dans R, on a

lim
ε→0

∫
Rd×[0,t]

g(X̄ε(s), y)ν(i),ε(dy × ds) =
∫
Rd×[0,t]

g(X̄(s), y)ν(i)(dy × ds).
(3.22)

Grâce à [7, Théorème A.3.10], tout ce que nous avons besoin de vérifier est
que l’ensemble des points (y, s) ∈ Rd × [0, 1] tels que

g(X̄ε(sε), yε)1[0,t](sε) −→ g(X(s), y)1[0,t](s)

n’est pas toujours vraie pour une suite {(yε, sε), ε > 0} convergeant vers
(y, s) forme un ensemble de ν(i)-mesure nulle. Puisqu’ avec la probabilité
1 ν(i),ε ⇒ ν(i) et X̄ε convergent uniformément vers le processus continu
X, cet ensemble est un sous-ensemble de Rd × {t}. Puisque la seconde
marginale de ν(i) est égale à la mesure de Lebesgue λ dans [0, 1], avec la
probabilité 1 ν(i)(Rd × {t}) = λ({t}) = 0, ce qui donne (3.22).
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Puisque b(i) est bornée et continue pour chaque i = 1, 2, (3.22) implique
immédiatement

lim
ε→0

∫
Rd×[0,t]

b(i)(X̄ε(s))ν(i),ε(dy × ds) =
∫
Rd×[0,t]

b(i)(X̄(s))ν(i)(dy × ds)
(3.23)

avec la probabilité 1. Pour 0 < C < ∞ et soit ϕC(y)=̇y si ‖ y ‖≤ C et
ϕC(y)=̇C y

‖y‖ si ‖ y ‖> C. Aussi, pour i = 1, 2, on définit

ψ(i),ε(C)=̇Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ ν(i),ε(dy × ds)
}

et
ψ(i)(C)=̇Ex0

{∫
{y∈Rd:‖y‖>C}×[0,1]

‖ y ‖ ν(i)(dy × ds)
}
.

Comme on le voit dans le théorème 5.3.5 de [5], une version du lemme de
Fatou implique

ψ(i)(C) ≤ sup
ε>0

ψ(i),ε(C). (3.24)

Pour tout ξ > 0, nous utilisons ces définitions et l’inégalité de Tchebychev
pour écrire

Px0

{wwwww
∫
Rd×[0,t]

σ(X̄ε(s))yν(i),ε(dy × ds)−
∫
Rd×[0,t]

σ(X̄(s))yν(i)(dy × ds)
wwwww ≥ ξ

}

≤ 1
ξ
Ex0

{wwwww
∫
Rd×[0,t]

σ(X̄ε(s))yν(i),ε(dy × ds)−
∫
Rd×[0,t]

σ(X̄(s))yν(i)(dy × ds)
wwwww
}

≤ 1
ξ
Ex0

{wwwww
∫
Rd×[0,t]

σ(X̄ε(s))ϕC(y)ν(i),ε(dy × ds)
wwwww
}

−1
ξ
Ex0

{wwwww
∫
Rd×[0,t]

σ(X̄(s))ϕC(y)ν(i)(dy × ds)
wwwww
}

+2B1

ξ

[
sup
ε>0

ψ(i),ε(C) + ψ(i)(C)
]
.

Nous faisons tendre ε→ 0 puis C →∞. L’avant-dernière ligne dans la dé-
monstration ci-dessus converge vers zéro en raison de (3.22) et le théorème
de convergence dominée de Lebesgue. En combinant la proposition 3.1.2
avec (3.24), nous obtenons également la convergence de la dernière ligne
vers zéro. Par conséquent, quand ε→ 0 nous avons∫

Rd×[0,t]
σ(X̄ε(s))yν(i),ε(dy × ds)→

∫
Rd×[0,t]

σ(X̄(s))yν(i)(dy × ds) (3.25)
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en probabilité. De (3.6) nous avons

limε→0 X̄
ε(t)

= x0 + lim
ε→0

ε 1
2

∫ t
0
σ(X̄ε(s))dW (s) +

∑
i=1,2

[∫
Rd×[0,t]

b(i)(X̄ε(s))ν(i)(dy × ds)
]

+ lim
ε→0

 ∑
i=1,2

[∫
Rd×[0,t]

σ(X̄ε(s))yν(i),ε(dy × ds)
] . (3.26)

Le côté gauche de (3.26) converge avec la probabilité 1 vers X̄(t), en raison
de la convergence uniforme de X̄ε vers X̄. En prenant une sous-suite si
nécessaire, (3.23), (3.25) et la convergence avec la probabilité 1 de l’inté-
grale stochastique vers zéro implique que le côté droit de (3.26) est égal au
côté droit de (3.15), ce que nous voulions montrer. La formule (3.16) est
maintenant une conséquence de la décomposition de (3.14) et la borne

Ex0

{∫
Rd×[0,1]

‖ y ‖ ν(i)(dy × dt)
}
< ∞,

valable pour i = 1, 2. Il s ’ ensuit que X̄ est une fonction absolument conti-
nue de t ∈ [0, 1], et l’expression de X̄(t) est immédiate.
Pour le reste de la preuve nous invoquons à nouveau le théorème de repré-
sentation de Skorohod, ce qui nous permet de supposer que la convergence
affirmée dans la partie (a) et (b) a lieu avec la probabilité 1.
Pour la partie(c), elle est une conséquence relativement simple de la conver-
gence faible et de la définition des différentes mesures. En effet, on suppose
la mesure de Lebesgue sur [0,1] par λ. Puisque, pour tout n ∈ N on a
γ(1),n + γ(2),n = λ, nous avons avec la probabilité 1 γ(1) + γ(2) = λ. Ainsi
avec la probabilité 1, et à partir de la partie (c) du lemme 7.4.3 dans [7] ;
les densités respectives satisfont presque sûrement pour tout t ∈ [0, 1] et

γ̂(1)(t) + γ̂(2)(t) = ν(1)(Rd | t) + ν(2)(Rd | t) = 1.

Cela nous donne la quantité (3.19).
Nous pouvons ensuite prouver la première ligne de la quantité (3.18). Avec
la probabilité 1, et comme X̄(t) est une fonction continue sur t ∈ [0, 1], il
existe des variable aléatoires ai et bi satisfaisant 0 ≤ ai ≤ bi ≤ 1 et indexées
par i ∈ N telle que

{t ∈ [0, 1] : (X̄(t))1 < 0} = Ui∈N(ai, bi).
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Choisissons l’une des ω ∈ Ω̄ telle que (X̄(t, ω))1 < 0 pour tout t ∈
(ai(ω), bi(ω)). Puis, pour tout δ > 0, il existe N ∈ N telle que (X̄n(s))1 < 0
pour toute n ≥ N et pour tout s ∈ (ai + δ, bi − δ).
Par conséquent

ν(2),n(Rd × (ai + δ, bi − δ)) =
∫
Rd×[0,1]

1(ai+δ,bi−δ)(s)ν(2),n(dy × ds) = 0.

avec la probabilité 1, et comme ν(2),n =⇒ ν(2) , il en résulte que

ν(2)(Rd × (ai + δ, bi − δ)) =
∫ bi−δ

ai−δ
ν(2)(Rd | s)ds = 0.

On va faire tendre δ −→ 0, nous obtenons avec la probabilité 1
∫ bi−δ

ai−δ
ν(2)(Rd | s)ds = 0.

Avec la probabilité 1, cela implique que pour presque tout s ∈ (ai, bi)
γ̂(2)(s) = ν(2)(Rd | s) = 0 ainsi que ν(1)(Rd | s) = γ̂(1)(s) = 1 [7, Lemme
7.4.3 (c)]. Cela achève la démonstration de la première ligne de la quantité
(3.18). La deuxième ligne est prouvée de façon similaire.
(d) Nous fixons temporairement m > 0. La première étape de la preuve est
de construire une approximation de la fonction G de R dans R définie par

G(z)=̇
| z | si | z |≤ m

m si | z |> m.

Pour chaque κ > 0, soient Gκ(x) une fonction deux fois continûment diffé-
rentiable de z ∈ R\{0} tels que

| Gκ(z) |≤ 2m pour tout z ∈ R

Gκ(z) = G(z) pour | z |≤ m,

| d2Gκ(z)/dz2 |< B0 pour | z |> m/4,
où B0 <∞ dépend de κ > 0. On définit
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gκ(z)=̇
dGκ(z)/dz si z 6= 0
−1 si z = 0.

Par une suite appropriée définissant Gκ(z), nous pouvons supposer que,
pour | z |> m, gκ(z) → 0 si κ → 0 et qu’elle est uniformément bornée
pour κ > 0 et z ∈ R. Bien que gκ ne soit pas continue sur tout R, les
restrictions de gκ sur (−∞, 0] et sur (0,∞) sont bornées et continues, et
gκ est Lipschitzienne continue pour | z |≥ m/4 avec une constante B0.
Pour deux points quelconques x et y dans R, 4m ≥ Gκ(x) − Gκ(y). La
substitution x = (X̄ε(1))1 et y = (X̄ε(0))1 dans cette relation nous donne
4m ≥ Gκ((X̄ε(1))1) − Gκ((X̄ε(0))1). Comme Gκ peut être écrit comme la
somme d’une fonction deux fois continûment différentiable et d’une fonc-
tion convexe, nous pouvons appliquer la formule généralisée d’ Itô [14,
théorème 7.1] à la semi-martingale Gκ((X̄ε(t))1) pour obtenir

4m ≥Gκ((X̄ε(1))1)−Gk((X̄ε(0))1)

=
∫ 1

0
gκ((X̄ε(s))1)(b(X̄ε(s)) + σ(X̄ε(s))vε(s))1ds

+ ε
1
2

d∑
i=1

∫ 1

0
gκ((X̄ε(s))1)σ1i(X̄ε(s))dW (i)(s)

+ ε

2
∫ 1

0

d2Gκ

dx2 ((X̄ε(s))1)a11(X̄ε(s))ds+ 2Λ1(0).

Ici a(x) est la matrice diffusion a(x)=̇σ(x)σT (x) et Λt(0) désigne la semi-
martingale temps local de (X̄ε(·))1 à l’origine. La définition de Gκ, la condi-
tion 2.1, et la non-négativité du temps local impliquent que

4m ≥
∫
Rd×[0,1]

gκ((X̄ε(s))1)(b(X̄ε(s)) + σ(X̄ε(s))y)1ν
ε(dy × ds) (3.27)

+ ε
1
2

d∑
i=1

∫ 1

0
gκ((X̄ε(s))1)σ1i(X̄ε(s))dW (i)(s)− εB0B1

2 .

Soient g(1)
κ une extension continue bornée sur R de la restriction de gκ sur

(−∞, 0] et soit g(2)
κ une extension continue bornée sur R de la restriction

de gκ sur (0,∞). Avec la probabilité 1, ν(i),ε =⇒ ν(i) et X̄ε converge unifor-
mément sur [0, 1] vers le processus continu X̄. Donc le théorème 5.5 dans
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[3] et l’intégrabilité uniforme donnée dans la proposition 3.1, impliquent

lim
ε→0

∫
Rd×[0,1]

gκ((X̄ε(t))1)(b(X̄ε(t)) + σ(X̄ε(t))y)1ν
ε(dy × dt)

= lim
ε→0

∑
i=1,2

∫
Rd×[0,1]

g(i)
κ ((X̄ε(t))1)(b(i)(X̄ε(t)) + σ(X̄ε(t))y)1ν

(i),ε(dy × dt)

=
∑
i=1,2

∫
Rd×[0,1]

g(i)
κ ((X̄(t))1)(b(i)(X̄(t)) + σ(X̄(t))y)1ν

(i)(dy × dt).

Nous combinons maintenant cette expression avec l’expression (3.27) et
utilisons (3.14) avec le fait que si (X̄(t))1 < 0, alors ν(2)(dy | t) = 0 et si
(X̄(t))1 > 0, alors ν(1)(dy | t) = 0, il faut voir l’expression (3.18) pour une
explication précise, c’est à dire

(X̄(t))1 < 0
implique que γ̂(1)(t) = ν(1)(Rd | t) = 1 et γ̂(2)(t) = ν(2)(Rd | t) = 0,
(X̄(t))1 > 0
implique que γ̂(2)(t) = ν(2)(Rd | t) = 1 et γ̂(1)(t) = ν(1)(Rd | t) = 0.

Comme le long d’une sous-suite appropriée, le second terme du membre de
droite de (3.27) converge vers zéro avec la probabilité 1, nous obtenons
4m ≥∫ 1

0

∫
Rd

(b(1)(X̄(t)) + σ(X̄(t))y)1g
(1)
κ ((X̄(t))1)1(−∞,0]((X̄(t))1)ν(1)(dy | t)dt

(3.28)

+
∫ 1

0

∫
Rd

(b(2)(X̄(t)) + σ(X̄(t))y)1g
(2)
κ ((X̄(t))1)1[0,∞)((X̄(t))1)ν(2)(dy | t)dt.

L’ensemble des fonctions {g1
κ, κ > 0} et {g2

κ, κ > 0} sont uniformément
bornées et pour z ∈ R,

lim
κ→0

g(1)
κ (z)1(−∞,0](z) = −1[−m,0](z) et lim

κ→0
g(2)
κ (z)1[0,∞)(z) = 1[0,m](z).

Par le théorème de convergence dominée de Lebesgue, on fait tendre κ→ 0
dans la formule (3.28), on a avec la probabilité 1 l’inégalité suivante

4m ≥
∫ 1

0

∫
Rd

1[0,m]((X̄(t))1)(b(2)(X̄ε(t)) + σ(X̄ε(t))y)1ν
(2)(dy | t)dt

−
∫ 1

0

∫
Rd

1[−m,0]((X̄(t))1)(b(1)(X̄ε(t)) + σ((X̄ε(t))y)1ν
(1)(dy | t)dt.

Des preuves similaires qui sont basées sur l’ approximation
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G(z)=̇


z si | z |≤ m

m si z > m

−m si z < −m

et −G(z) montrent qu’ avec la probabilité 1

4m ≥ |
∫ 1

0

∫
Rd

1[0,m]((X̄(t))1)(b(2)(X̄ε(t)) + σ(X̄ε(t))y)1ν
(2)(dy | t)dt

+
∫ 1

0

∫
Rd

1[−m,0]((X̄(t))1)(b(1)(X̄ε(t)) + σ((X̄ε(t))y)1ν
(1)(dy | t)dt|.

La combinaison de ces équations donne avec la probabilité 1∫ 1

0

∫
Rd

1[−m,0]((X̄(t))1)(b(1)(X̄(t)) + σ((X̄(t))y)1ν
(1)(dy | t)dt ≥ −4m

et ∫ 1

0

∫
Rd

1[0,m]((X̄(t))1)(b(2)(X̄(t)) + σ(X̄(t))y)1ν
(2)(dy | t)dt ≤ 4m.

En faisant tendre m vers 0, nous concluons qu’avec la probabilité 1∫ 1

0

∫
Rd

1{0}((X̄(t))1)(b(1)(X̄(t)) + σ((X̄(t))y)1ν
(1)(dy | t)dt ≥ 0

et ∫ 1

0

∫
Rd

1{0}((X̄(t))1)(b(2)(X̄(t)) + σ(X̄(t))y)1ν
(2)(dy | t)dt ≤ 0.

Soit [α, β] est un intervalle fermé quelconque dans [0, 1]. En répétant l’ar-
gument menant aux deux dernières représentations, nous obtenons

θ(1)(α, β)=̇
∫ β
α

∫
Rd

1{0}((X̄(t))1)(b(1)(X̄(t)) + σ((X̄(t))y)1ν
(1)(dy | t)dt ≥ 0

et

θ(2)(α, β)=̇
∫ β
α

∫
Rd

1{0}((X̄(t))1)(b(2)(X̄(t)) + σ(X̄(t))y)1ν
(2)(dy | t)dt ≤ 0.

Avec la probabilité 1, ces inégalités tiennent simultanément pour tous les
intervalles [α, β] ⊂ [0, 1] avec des point finaux rationnels, et donc par conti-
nuité, ils tiennent simultanément pour tous les intervalles [α, β] ⊂ [0, 1].
Cela implique qu’avec la probabilité 1 θ(1)(0, β) est non décroissante et de
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même θ(2)(0, β) est aussi non croissante pour β ∈ [0, 1]. Puisqu’une fonc-
tion non décroissante (respectivement, non croissante), (respectivement,
non positive) a une dérivée non négative presque sûrement, il s’ensuit que
nous avons qu’avec la probabilité 1 pour presque tout t ∈ [0, 1], chaque fois
que (X̄(t))1 = 0

∫
Rd

(
b(1)(X̄(t)) + σ(X̄(t))y

)
1 ν

(1)(dy | t) ≥ 0
et ∫

Rd

(
b(2)(X̄(t)) + σ(X̄(t))y

)
1 ν

(2)(dy | t) ≤ 0.

Cela prouve la partie (d), complétant la preuve du théorème 3.2.1.
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Chapitre 4

Preuve du théorème 2.2.1

Nous avons divisé la preuve du principe de Laplace dans le théorème
2.2.1 en deux parties :
la borne supérieure du principe de Laplace et
la borne inférieure du principe de Laplace.

4.1 La preuve de la borne supérieure du principe de
Laplace

Pour chaque ε > 0, soit Xε l’unique solution forte de (2.7). Pour prouver
la borne supérieure du principe de Laplace, nous devons montrer que pour
toutes les fonctions continues bornées h de C([0, 1] : Rd) sur R, on a

lim
ε→0

sup ε logEx0

exp
−h(Xε)

ε

 ≤ − inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}.

Nous montrerons la limite inférieure équivalente

lim
ε→0

inf W ε(x0) ≥ inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}, (4.1)

où
W ε(x0)=̇− ε logEx0

exp
−h(Xε)

ε

 .
Il est suffisant de prouver la limite inférieure à partir de la quantité (4.1),
lorsque ε est remplacé par toute sous-suite le long de laquelle W ε(x0)
converge. Une telle sous-suite existe car | W ε(x0) |≤‖ h ‖∞. Nous allons
travailler avec une telle sous-suite et qui est fixée le reste de la preuve, et
pour plus de commodité, nous ré-étiquetons les indices avec ε > 0. La clé de
la preuve est l’utilisation de la formule de représentation deW ε(x0) donnée
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dans le théorème 3.1.1. Grâce à ce théorème, nous pouvons construire une
famille des contrôles {vε, ε > 0} dans A de sorte que pour chaque ε > 0

W ε(x0) ≥ Ex0

{1
2
∫ 1

0
‖ vε(t) ‖2 dt+ h(X̄ε)

}
− ε, (4.2)

où X̄ε est la diffusion contrôlée associée avec vε par (3.1). Puisque, par
définition | W ε(x0) |≤‖ h ‖∞, la famille {vε, ε > 0} satisfait à la condition
3.1. Donc, si nous utilisons la famille des contrôles {vε, ε > 0} pour définir
les mesures νε, ν(1),ε, ν(2),ε, γ(1),ε et γ(2),ε comme dans le chapitre 3, puis le
long de certaines sous sous-suites de ε > 0

(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε, X̄ε) D−→ (ν, ν(1), ν(2), γ(1), γ(2), X̄).

Les quantités limites ν, ν(1), ν(2), γ(1), γ(2) et X̄ satisfont aux conclusions
du théorème 3.2.1. Par le théorème de représentation de Skorohod, nous
pouvons supposer que la convergence dans la dernière quantité se produit
avec la probabilité 1. Nous pouvons maintenant évaluer la limite inférieure
de la quantité W ε(x0). Chaque étape du processus est expliquée après les
inégalités ci-dessous. Nous avons

lim
ε→0

inf W ε(x0) (4.3)

≥ lim
ε→0

inf
{
Ex0

{1
2
∫ 1

0
‖ vε(t) ‖2 dt+ h(X̄ε)

}
− ε

}

≥ lim
ε→0

inf Ex0

{1
2
∫
Rd×[0,1]

‖ y ‖2 νε(dy × dt) + h(X̄ε)
}

≥ Ex0

{1
2
∫
Rd×[0,1]

‖ y ‖2 ν(dy × dt) + h(X̄)
}

= Ex0

{1
2
∫
Rd×[0,1]

‖ y ‖2 ν(1)(dy × dt) + 1
2
∫
Rd×[0,1]

‖ y ‖2 ν(2)(dy × dt) + h(X̄)
}

= Ex0

{1
2
∫ 1

0

∫
Rd
‖ y ‖2 ν(1)(dy | t)dt+ 1

2
∫ 1

0

∫
Rd
‖ y ‖2 ν(2)(dy | t)dt+ h(X̄)

}

≥ Ex0

1
2
∫ 1

0

wwwwww 1
γ̂(1)(t)

∫
Rd
yν(1)(dy | t)

wwwwww
2

γ̂(1)(t)dt


+ Ex0

1
2
∫ 1

0

wwwwww 1
γ̂(2)(t)

∫
Rd
yν(2)(dy | t)

wwwwww
2

γ̂(2)(t)dt+ h(X̄)

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≥ Ex0


∫ 1

0
γ̂(1)(t)L(1)

X̄(t), b(1)(X̄(t)) + σ(X̄(t)) 1
γ̂(1)(t)

∫
R
yν(1)(dy | t)

 dt


+ Ex0


∫ 1

0
γ̂(2)(t)L(2)

X̄(t), b(2)(X̄(t)) + σ(X̄(t)) 1
γ̂(2)(t)

∫
R
yν(2)(dy | t)

 dt


+ Ex0

{
h(X̄)

}
≥ Ex0

{∫ 1

0
L̃
(
X̄(t), ˙̄X(t)

)
dt+ h(X̄)

}
≥ inf

ϕ∈C([0,1]:Rd)
{Ix(ϕ) + h(ϕ)} .

Les deux premières lignes de ces inégalités sont des conséquences de (4.2).
La troisième ligne utilise les représentations de mesures de contrôle νε pour
les contrôles vε donnés dans (3.3). Puisque h est continue sur C([0, 1] : Rd)
et avec la probabilité 1 {X̄ε} converge uniformément sur [0, 1] vers X̄,
h(X̄ε) → h(X̄) avec la probabilité 1. La quatrième ligne du (4.3) suit
maintenant du lemme de Fatou et de la convergence avec la probabilité 1
νε =⇒ ν et la cinquième ligne de l’égalité de la ν = ν(1) + ν(2). La sixième
ligne est obtenue à partir des décompositions de ν(i)(dy × dt) = ν(i)(dt |
y)⊗dt, avec la probabilité-1, et après la normalisation, la septième ligne et
huitième ligne suivent de l’inégalité de Jensen. La normalisation est bien
définie si nous adoptons la convention 0 · ∞ = 0. La neuvième ligne et
la dixième ligne suivent des expressions L(i)(x, β) donnée en (2.1), et la
onzième ligne du fait qu’avec la probabilité 1 et presque sûrement pour
tout t ∈ [0, 1] et en s’inspirant de la preuve de la proposition 7.4.1 dans
[7], par définition, pour tout x et β dans Rd. On a la quantité (2.6) et on
va définir

Ix(ϕ)=̇
∫ 1

0
L̃(ϕ(t), ϕ̇(t))dt,

donc avec la probabilité 1, et pour tout t ∈ [0, 1]

X̄(t) = x+
∫
Rd×[0,t]

yν(dy × ds)

= x+
∫ t

0

(∫
Rd
yν(dy | s)ds

)
.

Comme X̄(t) est absolument continue pour tout t ∈ [0, 1], donc elle est
dérivable quelque soit t ∈ [0, 1]. On a donc

˙̄X(t) =
∫
Rd
yν(dy | t)

et par définition de
ν(dy | t, w) = ν(1)(dy | t, w) + ν(2)(dy | t, w);
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on a
˙̄X(t) =

∫
Rd
yν(1)(dy | t) +

∫
Rd
yν(2)(dy | t)

et, enfin

˙̄X(t) = γ̃(1)(t)
 1
γ̃(1)(t)

∫
Rd
yν(1)(dy | t)

 + γ̃(2)(t)
 1
γ̃(2)(t)

∫
Rd
yν(2)(dy | t)

 .
En combinant les définitions de X̄(t) et ˙̄X(t) avec la définition de L̃(·, ·),
on a l’inégalité suivante

L̃(X̄(t), ˙̄X(t)) ≤ L(1)
X̄(t), 1

γ̃(1)(t)
∫
Rd
yν(1)(dy | t)

 γ̃(1)(t)

+L(2)
X̄(t), 1

γ̃(2)(t)
∫
Rd
yν(2)(dy | t)

 γ̃(2)(t)

avec 1
γ̃(1)(t)

∫
Rd yν(1)(dy | t) ≥ 0, 1

γ̃(2)(t)
∫
Rd yν(2)(dy | t) ≤ 0 et de l’inégalité

(7.37)de [7], pour i = 1, 2 1
γ̃(i)(t) ≤ b(i)(X̄(t))+σ(X̄(t)) donc, on a le résultat

suivant

L̃(X̄(t), ˙̄X(t)) ≤ γ̃(1)(t)L(1)
(
X̄(t), b(1)(X̄(t)) + σ(X̄(t))

∫
Rd
yν(1)(dy | t)

)

+γ̃(2)(t)L(2)
(
X̄(t), b(2)(X̄(t)) + σ(X̄(t))

∫
Rd
yν(2)(dy | t)

)
.

Cette formule est basée sur la définition de L̃(·, ·).
Enfin, la dernière ligne de (4.3) est une conséquence de la définition de la
fonctionnelle d’action. Nous avons montré que chaque sous-suite conver-
gente de {W ε(x0), ε > 0} a une sous sous-suite satisfaisant :

lim
ε→0

inf W ε(x0) ≥ inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}.

Un argument par l’absurde établit cette limite inférieure pour la famille
entière

{W ε(x0), ε > 0}.
Ainsi, la preuve de la borne supérieure du principe de Laplace est complète.
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4.2 La preuve de la borne inférieure du principe de
Laplace

La preuve de la borne inférieure du principe de Laplace nécessite cer-
taines propriétés de L(i)(x, β), i = 0, 1, 2 et de L̃(x, β). Nous les affirmons
dans le lemme suivant.

Lemme 4.2.1. Sous les conditions 2.1, 2.2 et 2.3, les fonctions L(0)(x, β),
L(1)(x, β), L(2)(x, β) et L̃(x, β), ont les propriétés suivantes.
(a) Pour x et β dans Rd, on a

L(0)(x, β) ≤ L(1)(x, β) si β1 ≥ 0 et L(0)(x, β) ≤ L(2)(x, β) si β1 ≤ 0

(b) Pour chaque x ∈ Rd, ri(domL(0)(x, ·)) est égale à Σ = int(convSµ(i)(·|x)).
(c) L(0)(x, β) est une fonction continue sur (x, β) ∈ Rd × (Σ ∩ ∂).
(d) Pour chaque x ∈ Rd, ri(domL̃(x, ·)) est égale à Σ.

Preuve. (a) Supposons que β ∈ Rd satisfait β1 ≥ 0. Si dans la définition
de L(0)(x, β) on prend ρ(0)=̇1, ρ(2)=̇0, β(1)=̇β et β(2)=̇0 alors
L(0)(x, β) ≤ L(1)(x, β). De même, si β ∈ Rd satisfaisant β ≤ 0, alors
L(0)(x, β) ≤ L(2)(x, β).
(b) La partie (a) du lemme implique que si L(1)(x, β) <∞ et L(2)(x, β)<∞,
on a donc L(0)(x, β) <∞.
Ainsi de la partie (a) du lemme 7.5.2 dans [5], L(0)(x, β) <∞ pour
(x, β) ∈ Rd × Σ. D’autre part, si (x, β) ∈ Rd × (clΣ)c, et puis, pour tout
ρ(1), ρ(2), β(1) et β(2) satisfaisant aux contraintes de

ρ(1) ≥ 0, ρ(2) ≥ 0, ρ(1) + ρ(2) = 1,

(β(1))1 ≥ 0, (β(2))1 ≤ 0,
ρ(1)β(1) + ρ(2)β(2) = β,

ρ(1) > 0 et β(1) ∈ (clΣ)c ou ρ(2) > 0 et β(2) ∈ (clΣ)c, alors L(0)(x, β) =∞.
(c) Dans la partie (a) du Lemme 7.5.5 dans [7], nous allons prouver que
sous les conditions 2.2 et 2.3, L(0)(x, β) est une fonction semi-continue in-
férieurement de (x, β) ∈ Rd × Rd. Afin de prouver la partie (c) du présent
lemme, nous montrons que L(0)(x, β) est une fonction semi-continue infé-
rieurement de (x, β) ∈ Rd × (Σ ∩ ∂).
En effet, on fixe (x, β) ∈ Rd × (Σ ∩ ∂) et on donne ε > 0. La condition 2.3
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implique que 0 ∈ Σ ∩ (intΛ(i)) pour i = 1, 2. Nous affirmons qu’il existe
ρ(1), ρ(2), β(1) et β(2) satisfaisant

ρ(1) > 0, ρ(2) > 0, (β(1))1 > 0, (β(2))1 < 0, β(1) ∈ Σ, β(2) ∈ Σ,

ρ(1) + ρ(2) = 1, ρ(1)β(1) + ρ(2)β(2) = β, (quantité A)
et

ρ(1)L(1)(x, β(1)) + ρ(2)L(2)(x, β(2)) ≤ L(0)(x, β) + ε. (quantité B)

Pour plus de détail, on commence par ρ(1), ρ(2), β(1) et β(2) satisfaisant

ρ(1) ≥ 0, ρ(2) ≥ 0, (β(1))1 ≥ 0, (β(2))1 ≤ 0, β(1) ∈ clΣ, β(2) ∈ clΣ,

ρ(1) + ρ(2) = 1, ρ(1)β(1) + ρ(2)β(2) = β,

et
ρ(1)L(1)(x, β(1)) + ρ(2)L(2)(x, β(2)) ≤ L(0)(x, β) + ε/4.

Premièrement, si l’un des ρ(i)est égale à 0, on va prendre le correspondant
β(i)=̇0 et on perturbe ρ(1) et ρ(2) afin que les deux soient positifs et les
quantités (A) et (B) tiennent avec ε remplacé par ε/3.
Deuxièmement, si β(1) ou β(2) est inclus dans ∂Σ, alors on utilisera le fait
que β ∈ Σ, β1 = 0, la convexité de Σ et une propriété de continuité de
L(1)(x, ·) et L(2)(x, ·) [7, Théorème D.2.2 (c) ] pour perturber β(1) et β(2)

sur Σ, afin que (β(1))1 ≥ 0, (β(2))1 ≤ 0, (A) et (B) continueront à tenir avec
ε/3 remplacé par ε/2.
Enfin, si (β(1))1 = 0 ou (β(2))1 = 0, on utilise la continuité de L(i)(x, ·) dans
Σ[7, Lemma 7.5.2 (b)] pour perturber β(1) et β(2) à l’intérieur de Σ pour
que (β(1))1 > 0, (β(2))1 < 0, et en tenant compte de (A) et (B).
Maintenant, soit (ξ, v) un point quelconque dans Rd×Σ et soit v(1) et v(2)

des points dans Rd satisfaisant

(v(1))1 ≥ 0, (v(2))1 ≤ 0, ρ(1)v(1) + ρ(2)v(2) = v.

alors

L(0)(ξ, v)− L(0)(x, β) ≤ ρ(1)L(1)(ξ, v(1)) + ρ(2)L(2)(ξ, v(2)) (quantité C)

−ρ(1)L(1)(x, β(1))− ρ(2)L(2)(x, β(2)) + ε.

Nous définissons maintenant

v(1)=̇β(1) et v(2)=̇v − ρ
(1)v(1)

ρ(2) = v − ρ(1)β(1)

ρ(2) .
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alors (v(1))1 = (v(1))1 > 0, v(1) ∈ Σ,

(v(2))1 = (v − β)1

ρ(2) +(β − ρ(1)β(1))1

ρ(2) = (v − β)1

ρ(2) +(β(2))1 ≤
‖ v − β1 ‖

ρ(2) +(β(2))1,

et
‖ v(2) − β(2) ‖≤ 1

ρ(2) ‖ v − β ‖ .

Puisque (β(2))1 < 0 et β(2) sont inclus dans l’ensemble ouvert Σ, nous
pouvons garantir que (v(2))1 < 0 et que v(2) est inclus dans Σ en faisant
‖ v − β ‖ soit suffisamment petit. Nous insérons maintenant v(1) et v(2)

dans la quantité (C). La continuité de L(1)(·, ·) et L(2)(·, ·) dans Rd × Σ
implique que si ‖ (ξ, v)− (x, β) ‖ est suffisamment petit, alors

L(0)(ξ, v)− L(0)(x, β) ≤ 2ε.

Cela prouve que L(0)(·, ·) est semi-continue supérieurement dans Rd×Σ et
termine la preuve de la partie (c).
(d) En utilisant la partie (a) du lemme 7.5.2 du [7] et la partie (b) du
présent lemme. En effet, pour chaque x ∈ Rd l’ ensemble ri(dom L(i)(x, ·))
= ri( conv Sµ(i)(·|x)) est égale à Σ, et en combinant avec ri(dom L(0)(x, ·))
égale à Σ. Donc on a ri(dom L̃(x, ·)) égale à Σ pour chaque x ∈ Rd.

Remarques 4.2.2. La preuve de la partie (b) découle directement des
conditions 2.1 et 2.2.

Afin de prouver la borne inférieure du principe de Laplace, nous devons
vérifier que

lim
ε→0

inf ε logEx0 {exp[−h(Xε)/ε]} ≥ − inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}.

Pour prouver cette affirmation, nous adaptons une procédure d’ approxi-
mation présentée dans le chapitre 7 de [7]. Soit N0 la classe des fonctions
ψ∗ ∈ C([0, 1] : Rd) qui répondent aux conditions suivantes :
(a) ψ∗(t) est constante par morceaux avec seulement un nombre fini de
sauts dans l’intervalle (0, 1).
(b) Ou bien (ψ∗(t))1 6= 0 ou bien (ψ∗(t))1 = 0 sur chaque intervalle de la
constance de ψ∗.
Afin d’avoir ψ∗(t) défini pour tout t ∈ [0, 1], on remplace la fonction défi-
nie presque partout dans ψ∗ par sa régularisation continue à droite. Nous
allons montrer que, quel que soit x0 ∈ Rd on a l’inégalité
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lim
ε→0

supW ε(x0)=̇ lim
ε→0

sup−ε logEx0{exp[−h(Xε)/ε]} ≤ Ix0(ψ∗) + h(ψ∗),
(4.4)

valable pour tout ψ∗ ∈ N0. Grâce au lemme 4.2.3, voir ci-dessous, dont
la preuve peut être trouvée dans [7. Théorème 7.5.4], cette propriété peut
ensuite être étendue à tout l’espace C([0, 1] : Rd).

Lemme 4.2.3. Supposons que la Condition 2.1 soit vraie. On donne
x0 ∈ Rd, et soit ψ ∈ C([0, 1] : Rd) satisfaisant à Ix0(ψ) <∞. Ensuite, pour
chaque η > 0, il existe ψ∗ ∈ N0 tels que

‖ ψ∗ − ψ ‖∞≤ η et Ix0(ψ∗) ≤ Ix0(ψ) + η

et pour chaque k ∈ {1, 2, ..., r} soit (ψ∗(t))1 6= 0 pour tout t ∈ (tk, tk+1) ou
(ψ∗(t))1 = 0 pour tout t ∈ (tk, tk+1). Les intervalles (tk, tk+1), k = 1, 2, ..., r
désignent l’intérieur des intervalles successifs sur lesquels ψ∗ est constante.

Supposons que (4.4) soit vraie pour ψ∗ ∈ N0. Nous décrivons maintenant
comment compléter la preuve de la borne inférieure du principe de Laplace.
On se donne η > 0, et soit ψ ∈ C([0, 1] : Rd) satisfaisant

Ix0(ψ) + h(ψ) ≤ inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}+ η <∞.

Puisque h est bornée, cela implique que Ix0(ψ) < ∞. Puisque h est conti-
nue, il existe ψ∗ ∈ N0 telle que

h(ψ∗) ≤ h(ψ) + η et Ix0(ψ∗) ≤ Ix0(ψ) + η.

Il s’ ensuit que

lim
ε→0

inf ε logEx0

exp
−h(Xε)

ε


≥ −Ix0(ψ∗)− h(ψ∗)
≥ −Ix0(ψ)− h(ψ)− 2η
≥ − inf

ϕ∈C([0,1]:Rd)
{Ix0(ϕ) + h(ϕ)} − 3η.

Puisque η > 0 est arbitraire, cette inégalité donne la borne inférieure du
principe de Laplace .
Nous allons maintenant montrer que (4.4) est valable pour tout ψ∗ ∈ N0.

36



A cette fin, prenons ψ∗ ∈ N0 satisfaisant à Ix0(ψ∗) < 0. Pour chaque
k ∈ {1, ..., r} et soit βk=̇ψ∗(t), où t est un point quelconque de l’intérieur
de l’intervalle de constance (tk, tk+1) de dérivées. Soient β(1)

k et β(2)
k définis

comme suit : si (ψ∗(t))1 6= 0 pour tous t ∈ (tk, tk+1), prenons β(1)
k = β

(2)
k =̇βk.

Dans le cas contraire, si (ψ∗(t))1 = 0 pour tous t ∈ (tk, tk+1), étant donné
η > 0, β(1)

k et β(2)
k sont choisis en même temps avec les constantes ρ(1)

k et
ρ

(2)
k de sorte que

ρ
(1)
k > 0, ρ(2)

k > 0, (β(1)
k )1 > 0, (β(2)

k )1 < 0, (4.5)
ρ

(1)
k + ρ

(2)
k = 1, ρ

(1)
k β

(1)
k + ρ

(2)
k β

(2)
k = βk,

et

ρ
(1)
k L(1)(ψ∗(t), β(1)

k ) + ρ
(2)
k L(2)(ψ∗(t), β(2)

k ) ≤ L(0)(ψ∗(t), βk) + η (4.6)

pour tout t ∈ (tk, tk + λ), où λ > 0. L’existence de β(1)
k , β

(2)
k ρ

(1)
k etρ(2)

k

satisfaisant (4.5) et (4.6) suit de la continuité de L(1)(·, ·) et L(2)(·, ·) dans
Rd × Rd (Lemme 4.2.1), comme dans la démonstration du lemme 7.5.2
dans [7] qui ont des résultats principaux : la propriété de la continuité et
de la fonctionnelle de Cramer. L’égalité ri(domL(i)(x, ·) = ri(convSµ(i)(·|x))
est définie à partir du lemme 6.2.3 dans[7], en utilisant le partie (a) de la
condition 7.2.2 dans [7], elle est égale à l’ensemble Σ=̇int(convSµ(i)(·|x)) et
puis L(i)(x, β) est une fonction continue sur (x, β) ∈ Rd × Σ .
Les propriétés de continuité de L(0), L(1), L(2) et ψ∗ impliquent, que si besoin
est nous pouvons ajouter de point à la subdivision originale 0 = t1 < t2 <

... < ts < ... < tk+1 = 1 dans (0, 1) pour obtenir une subdivision plus fine
0 = t̂1 < t̂2 < ... < t̂s+1 = 1 dans (0,1) pour laquelle (ψ∗(t))1 = 0 pour
tout t ∈ (t̂k, t̂k+1), (4.6) est valable pour tout t ∈ (t̂k, t̂k+1). Pour simplifier,
nous conserverons la même notation pour la subdivision d’origine et la
subdivision raffinée.
Nous décrivons ci-dessous comment utiliser les vecteurs β(i)

k , k ∈ {1, ..., r},
i = 1, 2 pour désigner une famille de contrôles {vε, ε > 0} dans A et une
famille correspondante de processus contrôlés {X̄ε, ε > 0}. Ces familles
seront utilisées pour prouver (4,4) grâce à la formule de représentation
donnée dans le théorème 3.1.1. Pour chaque x ∈ Rd, i = 1, 2 et t ∈ [0, 1]
tels que t ∈ [tk, tk+1) pour certains k ∈ {1, ..., r} définissons

v(i)(x, t)=̇σ−1(x)(β(i)
k − b(i)(x)).
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D’après (2.1), ces vecteurs satisfont

1
2 ‖ v

(i)(x, t) ‖2= L(i)(x, β(i)
k ).

Maintenant définissons

f(x, t)=̇v(1)(x, t)1{x1≤0}(x) + v(2)(x, t)1{x1>0}(x)
et soit X̄ε la solution de l’E D S

X̄ε(t) = x0+
∫ t

0
b(X̄ε(s))ds+

∫ t
0
σ(X̄ε(s))f(X̄ε(s), s)ds+ε 1

2

∫ 1

0
σ(X̄ε(s))dW (s).

Enfin, posons
vε(t)=̇f(X̄ε(t), t),

les contrôles vε ont les propriétés suivantes.
Tout d’abord, pour chaque ε > 0, le contrôle vε est un élément de A.
En effet, puisque X̄ε et t, sont progressivement mesurables, vε est aussi
progressivement mesurable. Alors vε est aussi bornée, vε ∈ A. Ensuite, si
t ∈ [tk, tk+1) et (X̄ε(t))1 ≤ 0, alors

1
2 ‖ v

ε(t) ‖2= L(1)(X̄ε(t), β(1)
k ) et β

(1)
k = b(1)(X̄ε(t)) +σ(X̄ε(t))vε(t) (4.7)

et si (X̄ε(t))1 > 0, alors
1
2 ‖ v

ε(t) ‖2= L(2)(X̄ε(t), β(2)
k ) et β

(2)
k = b(2)(X̄ε(t))+σ(X̄ε(t))vε(t). (4.8)

Enfin, nous affirmons que la famille {vε, ε > 0} satisfait la condition 3.1.
Pour chaque ε > 0 l’ égalitée de (4.7) et (4.8) donnent

Ex0

{1
2
∫ 1

0
‖ vε(t) ‖2 dt

}
= Ex0


r∑

k=1

∫ tk+1

tk

[
L(1)(X̄ε, β

(1)
k )1{(X̄ε(t))1≤0}

]
(4.9)

+ Ex0

{[
L(2)(X̄ε, β

(2)
k )1{(X̄ε(t))1>0}

]}

≤ sup
x∈Rd

‖ a−1(x) ‖
r∑

k=1

[
‖ β(1)

k − b(1)(x) ‖2 + ‖ β(2)
k − b(2)(x) ‖2

] .
La condition 2.1 implique donc que la suite des valeurs attendues dans le
dernière quantité est bornée pour ε > 0.
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Puisque la condition (3.1) est satisfaite, nous pouvons appliquer les ré-
sultats de compacité et de convergence obtenue dans le chapitre 3. L ’
utilisation de la famille {vε, ε > 0} construite ci-dessus, nous permet de
définir les mesures νε, ν(1),ε, ν(2),ε, γ(1),ε et γ(2)ε comme dans (3.2)- (3.8).
La proposition 3.1.2 implique que la famille{(
νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2)ε, X̄

)
, ε > 0

}
est tendue. Le théorème 3.2.1 et le

théorème de Prohorov impliquent alors que, étant donné une suite, il existe
une sous-suite satisfaisant à

(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε, X̄) D−→ (ν, ν(1), ν(2), γ(1), γ(2), X̄).
Les quantités limites ν, ν(1), ν(2), γ(1), γ(2) et X̄ satisfont (3.11)-(3.14) et la
conclusion du théorème 3.2.1. Par le théorème de représentation de Skoro-
hod, nous pouvons supposer que la convergence a lieu avec la probabilité
1. Notre prochaine étape est de montrer que X̄(s) = ψ∗(s) pour tout
s ∈ [0, 1]. Il suffit de montrer qu’avec la probabilité 1, X̄(s) = ψ∗(s) pour
chaque k ∈ {1, 2, ..., r+1} et tout s ∈ [0, tk]. La preuve de cette affirmation
est démontrée par récurrence sur k. Pour k = 1, l’égalité est valable parce
que pour t = 0 et avec la probabilité 1 X̄(0) = x0 = φ∗(0). Supposons
qu’avec la probabilité 1, X̄(s) = ψ∗(s) pour tous k ∈ {1, 2, ..., r} et tous
s ∈ [0, tk], nous devons démontrer qu’avec la probabilité 1 X̄(s) = ψ∗(s)
pour tout s ∈ [0, tk+1]. Considérons d’abord le cas où (ψ∗(s))1 6= 0 pour
tout s ∈ (tk, tk+1). En utilisant le quantité (4.7) et (4.8) et le fait que, par
définition, βk est égale à la valeur constante ψ∗ pour tout s ∈ (tk, tk+1). On
obtient

X̄(t)− X̄(tk) = lim
ε→0

∫
Rd×(tk,t]

(
b(1)(X̄ε(s)) + σ(X̄ε(s))y

)
ν(1),ε(dy × ds)

+
∫
Rd×(tk,t]

(
b(2)(X̄ε(s)) + σ(X̄ε(s))y

)
ν(2),ε(dy × ds)

= lim
ε→0

∫
Rd×(tk,t]

βkν
ε(dy × ds)

=
∫ t
tk
ψ̇∗(s)ds = ψ∗(t)− ψ∗(tk),

est valable avec la probabilité 1 pour tout t ∈ [tk, tk+1). L’égalité X̄(t) −
X̄(tk) = ψ∗(t)−ψ∗(tk) s’étend par continuité à t = tk+1. Grâce à l’hypothèse
de récurrence, ceci implique qu’avec la probabilité 1 pour tout t ∈ [tk, tk+1],
X̄(tk) = ψ∗(t) et donc pour tout t ∈ [0, tk+1].
Supposons maintenant que (ψ∗(s))1 = 0 pour tout s ∈ (tk, tk+1). On donne
les nombres α et t satisfaisant tk < α < t < tk+1.
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∫
Rd×(α,t]

(
b(1)(X̄ε(s)) + σ(X̄ε(s))y

)
ν(1),ε(dy × ds)

+
∫
Rd×(α,t]

(
b(2)(X̄ε(s)) + σ(X̄ε(s))y

)
ν(2),ε(dy × ds)

= β
(1)
k γ(1),ε((α, t]) + β

(2)
k γ(2),ε((α, t]).

Selon (3.13), avec la probabilité 1 γ(i) est absolument continue par rapport
à la mesure de Lebesgue sur [0.1]. Ainsi, après la normalisation, la partie
(e) du théorème de Portmenteau [3, théorème 2.2.1] appliquée aux suites
faiblement convergentes {γ(i),ε} implique qu’avec la probabilité 1, pour tout
α et t satisfaisant tk < α < t < tk+1.

X̄(t)− X̄(α) =
∫
Rd×(α,t]

(
b(1)(X̄(s)) + σ(X̄(s))y

)
ν(1)(dy × ds)

+
∫
Rd×(α,t]

(
b(2)(X̄(s)) + σ(X̄(s))y

)
ν(2)(dy × ds)

= β
(1)
k γ(1)((α, t]) + β

(2)
k γ(2)((α, t]).

Comme dans la proposition 7.5.1 dans [7], cette relation implique qu’avec
la probabilité 1

γ̂(1)(s) = ρ
(1)
k et γ̂(2)(s) = ρ

(2)
k (4.10)

et que X̄(s) = ψ∗(s) pour tout s ∈ [tk, tk+1] et donc pour tout s ∈ [0, tk+1],
comme nous voulons montrer.
Pour évaluer la limite supérieure de W ε(x0), nous avons besoin d’intro-
duire la notation supplémentaire. Pour k ∈ {1, 2, ..., r} et s ∈ [0, 1], nous
définissons

gk(t)=̇


L(1)(ψ∗(t), βk) si (ψ∗(t))1 < 0
L(2)(ψ∗(t), βk) si (ψ∗(t))1 > 0
ρ

(1)
k L(1)(ψ∗(t), β(1)

k ) + ρ
(2)
k L(2)(ψ∗(t), β(2)

k ) si (ψ∗(t))1 = 0.

Il s’ensuit que

gk(t) ≤ L̃
(
ψ∗(t), ψ̇∗(t)

)
+ η. (4.11)
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Nous utilisons cette propriété dans les dernières expositions suivantes, où
la limite supérieure de W ε(x0) est évaluée sur une sous-suite de ε > 0 pour
laquelle avec la probabilité 1

(νε, ν(1),ε, ν(2),ε, γ(1),ε, γ(2),ε, X̄ε) → (ν, ν(1), ν(2), γ(1), γ(2), X̄).

Nous avons :

lim
ε→0

supW ε(x0) = lim
ε→0

sup inf
v∈A

Ex0

{1
2
∫ 1

0
‖ v(t) ‖2 dt+ h(Xv,ε)

}

≤ lim
ε→0

supEx0

{1
2
∫ 1

0
‖ vε(t) ‖2 dt+ h(X̄ε)

}

≤ lim
ε→0

Ex0


r∑

k=1

∫ tk+1

tk
L(1)

(
X̄ε(t), β(1)

k

)
γ(1),ε(dt)


+ lim

ε→0
Ex0


r∑

k=1

∫ tk+1

tk
L(2)

(
X̄ε(t), β(2)

k

)
γ(2),εdt+ h(X̄ε)


= Ex0


r∑

k=1

∫ tk+1

tk

[
L(1)

(
X̄(t), β(1)

k

)
γ̂(1)(t) + L(2)

(
X̄(t), β(2)

k

)
γ̂(2)(t)

]
dt


+ Ex0

{
h(X̄)

}
=

r∑
k=1

∫ tk+1

tk
gk(t)dt+ Ex0{h(X̄)}

≤
∫ 1

0
L̂
(
ψ∗(t), ψ̇∗(t)

)
dt+ h(ψ∗) + η

= Ix0(ψ∗) + h(ψ∗) + η.

La première ligne de la démonstration est une suite de la formule de re-
présentation donnée dans le théorème 3.1.1. Dans la deuxième ligne, nous
introduisons la famille des contrôles {vε, ε > 0}. L’équation (4.9), les défi-
nitions des mesures γ(i),ε et des processus contrôlés X̄ε donnent la troisième
et la quatrième ligne. Avec la probabilité 1 pour i = 1, 2 et γ(i),ε ⇒ γ(i),
ce qui est absolument continue par rapport à la mesure de Lebesgue et
a la décomposition γ(i)(dt) = γ̂(i)(t)(dt). Par conséquent, la convergence
uniforme de X̄ε vers X̄ avec la probabilité 1 dans Rd de L(i)(·, β) pour
chaque β ∈ Rd. Le théorème 5.5 dans [3], la continuité de h sur C([0, 1]),
et le théorème de la convergence dominée de Lebesgue donnent les lignes
cinq et six. Avec la probabilité 1 X̄(t) = ψ∗(t) pour tout t ∈ [0, 1]. Les trois
dernières lignes de la démonstration suivent maintenant des propriétés de
γ̂(i) donné à partir de (3.29) et (4.10), l ’ inégalité (4.11) relative à gk et
L̂(·, ·), et la définition de Ix0(ψ∗).
Puisque η > 0 est arbitraire, nous avons montré que la limite supérieure
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lim
ε→0

supW ε(x0) ≤ Ix0(ψ∗) + h(ψ∗)

est valable pour la sous-suite convergente. Un argument par l’absurde ap-
pliqué à une suite arbitraire de la famille d’origine {W ε(x0), ε > 0} donne
la même limite supérieure pour toute la famille. Ceci termine la preuve de
la borne supérieure du principe de Laplace . Puisque Ix0(·) a un ensemble
de niveau compact [7, théorème 7.6.1], ceci termine la preuve du principe
de Laplace indiqué dans le théorème 2.2.1.
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Conclusion

Cette étude nous a permis de déduire le principe de Laplace pour la
famille {Xε, ε > 0} dans l’espace de probabilité canonique (Ω,F ,P), cf le
théorème 2.2.1. En bref, ce principe de Laplace est valable uniformément
sur le compact K ∈ Rd.
Il a également permis d’énoncer une formule de représentation, ainsi que des
résultats généraux sur la compacité et la convergence. Cela exige l’analyse
du comportement asymptotique de ωε(x0)=̇− logEx0{exp[−h(Xε)/ε]}.
Cette analyse limite les propriétés de certaines familles de contrôles, étudie
la compacité et introduit le processus contrôlé dans la représentation. Cette
recherche a aussi contribué à prouver le principe de Laplace qui est de
montrer que

lim sup
ε−→0

εlogEx0

exp
−h(Xε)

ε

 ≤ − inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)}

et

− inf
ϕ∈C([0,1]:Rd)

{Ix0(ϕ) + h(ϕ)} ≤ lim inf
ε−→0

εlogEx0

exp
−h(Xε)

ε


pour toute fonction continue bornée h de C([0, 1] : Rd) sur R, et de dire la
nécessité de certaines propriétés de L(i)(x, β), pour i = 0, 1, 2 et de L̃(x, β).
Donc, en conclusion, le principe de Laplace est équivalent à un principe
de grandes déviations avec la même fonctionnelle d’action et le principe de
grandes déviations pour la famille {Xε, ε > 0} est la conséquence directe
du théorème 2.2.1 qui est le résultat principal de ce mémoire.
Un sujet d’étude possible est "d’étudier le coefficient de diffusion
où le σ présente de discontinuité, ou bien le processus est avec
réflexion à la frontière mais il y a de discontinuité sur la dérive
et le coefficient de diffusion".
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Annexe A

Théorème classique

Théorème de représentation de Skorohod

Théorème A.1. Soit Xn, n ≥ I, une suite de variables aléatoires à valeurs
dans un espace topologique S, de Lusin. Supposons que Xn converge en loi
vers une variable aléatoire X à valeurs dans S quand n −→ ∞. Alors il
existe un espace probabilisé (Ω,A,P) tel que :

* pour chaque entier n, Yn et Xn ont même loi ;

* les variables aléatoires Y et X ont même loi ;

* Yn converge (Ω,A,P)-presque sûrement vers Y.

Mode de convergence : théorème de Prohorov

Théorème A.2. Soit µn une suite de probabilités sur R. Pour que la suite
µn soit tendue if faut et il suffit qu’on puisse extraire de µn une sous-suite
µnk

qui converge vers une probabilité µ.

Cramer dans le cas général

Théorème A.3. Le système (Σ) admet une solution unique (χ1;χ2; ..., χn)
si et seulement si c’est un système de Cramer.
Dans ce cas, cette solution est donnée par les formules de Cramer :

pour tout i ∈ {1, 2, ..., n}, χi = ∆i

∆ .
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Dans ces formules, ∆ désigne le déterminant de (Σ), et ∆i le déterminant
obtenu en remplaçant, dans ∆, la i-ème colonne par la colonne des bk qui
figurent dans le second membre de (Σ).
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Annexe B

Quelques inégalités importantes

Probabilité :

Inégalité de Chebychev :
Soit φ une fonction non décroissante de R et φ(t) > 0. Alors P (X ≥ t) ≤
φ(t)−1E[φ(X)]. Les exemples généralement utilisés de l’inégalité de Cheby-
shev sont P{|X| ≥ t} ≤ t−pE[|X|p] et P{X ≥ t} ≤ e−λtE[eλX ] pour tout
t, p et λ positifs.

Inégalité de Jensen :
Soit −∞ ≤ a < b, P (a < X < b) = 1, et soit φ une fonction convexe sur
(a, b). Supposons que EX et E[φ(X )] sont tous définies. Alors
φ(EX ) ≤ E[φ(X )]. Si φ est strictement convexe alors φ(EX ) = E[φ(X )]
si et seulement si P (X = EX ) = 1.

Inégalité de Cauchy-Swartz

E[|XY |] =≤ E[X2]1/2.E[Y 2]1/2.

Mesure et intégrale :

Inégalité de Hölder : Soient p et q deux réels tels que p > 1 et q > 1
et 1

p + 1
q = 1. Alors, pour 2 fonctions mesurables f et g on a

∫
|fg|dµ ≤

(∫
|f |pdµ

) 1
p
.
(∫
|g|qdµ

) 1
q
.

Lemme de Fatou : Soit {fn} des fonctions non négatives de Borel.
Alors ∫

X
(lim inf
n→∞ fn)dµ ≤ lim inf

n→∞

∫
X
fndµ.
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Annexe C

Calcul stochastique :

Chaîne de Markov :

Définition C.1. Soit E = 1, 2, ...,m un ensemble fini. Une chaîne de
Markov sur E est une suite de variables aléatoires (X0, X1, ...), prenant
leurs valeurs dans E, telle que

P{Xk = j/X1 = i1, ..., Xk−1 = ik−1} = P{Xk = j/Xk−1 = ik−1}.

Cette dernière probabilité ne dépendant que de j et ik−1, mais pas de k. La
matrice de transition de la chaîne est la matrice P de la taille m×m dont
les éléments sont donnés par : pij = P{Xk = j/Xk−1 = i}.

Mouvement Brownien :[12]

Définition C.2. Soit (Bt)t≥0 un processus stochastique tel que Bt : Ω→ R
est un mouvement brownien standard si :
— B0 = 0
— Bt est un processus à accroissement indépendant
— Bt+h −Bt → N(0,

√
h) pour tout t ≥ 0 et h > 0

— t ∈ Rt → Bt ∈ R P-p.s continue.

Comme précédemment, soit (Wm,B, θ) l’espace canonique de probabi-
lité pour le mouvement brownien de dimensionm dans l’intervalle de temps
[0, T ], et soit (Gt) un filtration θ−augmenté produit par le processus de
même rangW . SoitM2[0, T ] l’espace de tous les processus (Gt)−prévisibles
de carré intégrable à valeur dans Rm. Le théorème 3.1 dans Boué et Dupuis
[1998] fournit la représentation suivante pour les fonctions de Laplace du
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mouvement brownien W . Pour tout F :Wm → R bornée et mesurable,

− log E
[
e−F (W )] = inf

υ∈M2[0,T ]
E
[1
2
∫ T

0
|υs|2ds+ F

(
W +

∫ ·
0
υsds

)]
, (C.1)

où E dénote l’espérance par rapport à la mesure de Wiener θ. Soit b(· , · )
et σ(· , · ) des fonctions prévisibles de [0, T ] × Wd vers Rd et vers Rd×m,
respectivement. Fixons x ∈ Rd, et on considère l’équation différentielle
stochastique

dXt = b(t,X)dt+ σ(t,X)dWt (C.2)
pour t ∈ [0, T ] et avec la condition initiale X0 = x. Supposons que l’équa-
tion (C.2) a une solution forte. Alors il existe une fonction B(Wm)\B(Wd)-
mesurable h : Wm → Wd tel que X = h[W ] θ-presque sûrement ; par le
théorème 10.4 dans Rogers et Williams [2000, p.126]. Par conséquent, pour
tout F : Wd → R bornée et mesurable, F ◦ h est bornée et mesurable de
Wm vers R. Dans la formule de représentation (C.1) pour le mouvement
brownien, il suit que

− log E
[
e−F (X)] = − log E

[
e−F◦h(W )] (C.3)

= inf
υ∈M2[0,T ]

E
[1
2
∫ T

0
|υs|2ds+ F ◦ h

(
W +

∫ ·
0
υsds

)]
.

Pour υ ∈M2[0, T ], considérons l’équation différentielle stochastique contrô-
lée

dXυ
t = b(t,Xυ)dt+ σ(t,Xυ)υtdt+ σ(t,Xυ)dWt (C.4)

pour t ∈ [0, T ] et avec la condition initiale Xυ
0 = x. Si l’existence forte et

l’unicité de la trajectoire se tiennent pour l’équation (C.2), alors la limite
F ◦ h(W + ∫ ·

0 υsds) dans (C.3) peut être réécrite en terme de solutions de
l’équation (C.4). Le lemme C.3 devrait être comparé au Théorème 4.1 dans
Boué et Dupuis [1998].

Lemme C.3. Soit υ ∈ M2[0, T ] tel que ∫ T
0 |υs|2ds ≤ N θ-presque sûre-

ment pour quelque N > 0. Supposons que l’existence forte et l’unicité de la
trajectoire soient vérifiées pour l’équation (C.2) avec la condition initiale
X0 = x. Alors l’équation (C.4) a une unique solution forte Xυ avec Xυ

0 = x
et

h
(
W +

∫ ·
0
υsds

)
= Xυυ θ − p.s.
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Démonstration. On va définir le processus

W̃t = Wt +
∫ t
0
υsds, t ∈ [0, T ].

Puisque ∫ t0 |υs|2ds ≤ N θ−presque sûrement, le théorème de Girsanov est
applicable ; par conséquent, il existe une mesure γ dans Wm équivalente
à θ telle que W̃ soit un Gt-mouvement Brownien sur [0, T ] (par exemple,
Théorème 5.2 dans Karatzas et Shreve [1991, p.191]). Par rapport à la
mesure γ, l’équation contrôlée (C.4) devient

dXυ
t = b(t,Xυ)dt+ σ(t,Xυ)dW̃t. (C.5)

L’unicité des solutions de l’équation (C.4) suit de l’hypothèse d’unicité de
la trajectoire pour l’équation (C.2). En effet, si X et Y sont deux solutions
de l’équation (C.4) contrôlées par θ et dirigée par W , alors elles sont des
solutions de l’équation (C.5) contrôlée par γ et par rapport à W̃ . Par l’uni-
cité des trajectoires, X, Y sont indistinguables. Nous prouvons maintenant
l’existence des solutions. Pour la continuité du processus Z, (Gt)-adapté,
définissons l’application Ψ(Z) :Wm →Wd par

Ψ(Z)(w) = x+
∫ ·

0
b(s, h[Z(w)])ds+

(∫ ·
0
σ(s, h[Z(w)])dZs

)
(w).

L’application Ψ(Z) est certainement bien définie quand Z est donnée par

Zt(w) = W̃t(w) = w(t) +
∫ t

0
υs(w)ds

avec υ ∈M2[0, T ]. Dans cette situation, pour θ-presque tout w ∈ Wm,

Ψ(W̃ )(w) = x+
∫ ·

0
b(s, h[W̃ (w)])ds (C.6)

+
∫ ·

0
σ(s, h[W̃ (w)])υs(w)ds+

(∫ ·
0
σ(s, h[W̃ ])dWs

)
(w),

où W est le processus coordonnée sur Wm. Puisque h[W ] est une solution
de l’équation (C.2), par construction nous avons

h[W (w)] = Ψ(W )(w) pour θ-presque tout w ∈ Wm.

Par le théorème 10.4 dans Rogers et Williams [2000, p.126], h(W̃ ) satisfait

h[W̃ ] = x+
∫ ·

0
b(s, h[W̃ ])ds+

∫ ·
0
σ(s, h[W̃ ])dW̃s γ-p.s.

Puisque γ est équivalent à θ, il suit que

h[W̃ ] = Ψ(W̃ ) θ-p.s.
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Grâce à (C.6), ceci implique que θ-presque sûrement,

h[W̃ ]t = Ψ(W̃ )t
= x+

∫ t
0
b(s, h[W̃ ])ds+

∫ t
0
σ(s, h[W̃ ])υsds+

∫ t
0
σ(s, h[W̃ ])dWs,

montrant que h[W̃ ] est une solution forte de l’équation (C.4) par rapport
à W et θ. Nous avons déjà vu que l’unicité de la trajectoire se tient pour
l’équation (C.4). Il suit que

h
(
W +

∫ ·
0
υsds

)
= W υ θ-p.s

pour toute solution Xυ de (C.4) avec Xυ
0 = x.

Le lemme suivant fournit une estimation de croissance si les coefficients
b, σ satisfont une condition de croissance sous linéaire. La preuve utilise
seulement des arguments standard comprenant la localisation le long des
périodes de sortie, de l’inégalité de Burkholder-Davis-Gundy, et du lemme
de Gronwall.

Lemme C.4. Soit υ ∈M2[0, T ] tel que ∫ T0 |υs|2ds ≤ N θ-presque sûrement
pour N > 0. Supposons que b, σ sont tels que, pour une certaine constante
positive M ,

|b(t, ϕ)| ∨ |σ(t, ϕ)| ≤M

1 + sup
s∈[0,t]

|ϕs|


pour tout t ∈ [0, T ], tous ϕ ∈ Wd. Si Xυ est une solution de l’équation
(A.4) avec Xυ

0 = x, alors pour tout p ≥ 2,

E
 sup
t∈[0,T ]

|Xυ
t |p

 ≤ Cp(T,N,M)(1 + |x|p),

où Cp(T,N,M) est non décroissante dans chacun de ses trois arguments.

Processus indistinguable

Deux processus X et Y sont dits indistinguables si P (∀t ∈ T, Xt =
Yt) = 1 (On admet implicitement que l’évènement {∀t ∈ T,Xt = Yt} est
mesurable.
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Annexe D

Girsanov

Théorème de Girsanov

[Geneviéve Gauthier. Changement de mesure et théorème de Girsanov,80-
646-08, Calcul stochastique.HEC Montréal]

Théorème D.1 (Théorème de Girsanov I). ? Nous nous concentrons sur
un intervalle de temps borné [0, T ].

? Soit W = {Wt : t ∈ [0, T ]} représente un mouvement brownien
construit sur un espace probabilisé filtré (Ω,F , {Ft}, P ) tel que la
filtration {Ft} est celle engendrée par le mouvement brownien, aug-
mentée de tous les événements de probabilité nulle, c’est-à- dire que
pour tout t ≥ 0,

Ft = σ (N et Ws : 0 ≤ s ≤ t) .

? Le théorème suivant nous permettra de construire nos mesures risque-
neutre.

Théorème D.2 (Théorème de Cameron-Martin-Girsanov). Soit
γ = {γt : t ∈ [0, T ]}, un processus {Ft}-prévisible tel que

EP
[
exp

(1
2
∫ T
0
γ2
t dt

)]
<∞.

Il existe une mesure Q sur (Ω,F) telle que
(CMG1) Q est équivalente à P.
(CMG2)

dQ

dP
= exp

[
−
∫ T

0
γtdWt −

1
2
∫ T

0
γ2
t dt

]
.
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(CMG3) Le processus W̃t =
{
W̃t : t ∈ [0, T ]

}
définit par W̃t = Wt + ∫ t

0 γsds est
un ({Ft}, Q)-mouvement brownien.

Théorème D.3 (Théorème de Girsanov III). (ref. Baxter et Rennie, page
74 ; Lamberton et Lapeyre, page 84).
La condition EP

[
exp

(1
2
∫ T
0 γ

2
t dt

)]
< ∞ est une condition suffisante mais

non nécessaire. Elle est connue sous l’appellation de condition de Novikov

Théorème D.4 (Théorème de Girsanov IV). ? Considérons l’équation
différentielle stochastique

dXt = b(Xt, t)dt+ a(Xt, t)dWt

oùW représente un mouvement brownien sur l’espace probabilisé filtré
(Ω,F , {Ft}, P ).

? Nous supposons que les coefficients de dérive et de diffusion sont tels
qu’il existe une unique solution à l’équation que nous notons X.

? Nous cherchons une mesure de probabilité Q qui fasse en sorte que sur
l’espace (Ω,F , {Ft}, Q), la dérive de X soit b̃(Xt, t) au lieu de b(Xt, t).

En effet, on va prendre d’abord

dXt = b(Xt, t)dt+ a(Xt, t)dWt

= b̃(Xt, t)dt+ a(Xt, t)
b(Xt, t)− b̃(Xt, t)

a(Xt, t)

 dt
+ a(Xt, t)dWt

tel que a(Xt, t) soit différent de 0.

= b̃(Xt, t)dt+ a(Xt, t) d

Wt +
∫ t

0

b(Xs, s)− b̃(Xs, s)
a(Xs, s)

ds


= b̃(Xt, t)dt+ a(Xt, t)dW̃t

où

W̃t = Wt +
∫ t

0
γsds et γt = b(Xt, t− b̃(Xt, t))

a(Xt, t)
.

Théorème D.5 (Théorème de Girsanov V ). ? si
EP

[
exp

(1
2
∫ T
0 γ

2
t dt

)]
< ∞ alors par les théorèmes de Radon-Nikodym

et de Cameron-Martin-Girsanov,

Q(A) = EP
[
exp

[
−
∫ T

0
γtdWt −

1
2
∫ T

0
γ2
t dt

]
δA

]
, A ∈ F
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et W̃ = {W̃t : t ∈ [0, T ]} est un (F, Q)-mouvement brownien.
? En pratique, nous n’avons pas besoin de déterminer la mesure Q.
Il nous suffit de savoir qu’elle existe et de connaître l’équation dif-
férentielle stochastique du processus qui nous intéresse sur l’espace
(Ω,F , {Ft}, Q).

Lemme de Gronwall : Soient ϕ,ψ et y trois fonctions continues sur
un segment [a, b] , à valeurs positives et vérifiant l’inégalité

∀t ∈ [a, b], y(t) ≤ ϕ(t) +
∫ t
a
ψ(s)y(s)ds

alors

∀t ∈ [a, b], y(t) ≤ ϕ(t) +
∫ t
a
ϕ(s)ψ(s) exp

(∫ t
s
ψ(u)du

)
ds.

En effet, posons F (t) = ∫ t
a ψ(s)y(s)ds. En multipliant les deux membres de

l’inégalité donnée en hypothèse par ψ(t), on obtient

F ′(t)− ψ(t) ≤ ϕ(t)ψ(t),

ce qui s’écrit aussi

G′(t) ≤ ϕ(t)ψ(t) exp
(
−
∫ t
a
ψ(s)ds

)
avec G(t) = F (t) exp

(
−
∫ t
a
ψ(s)ds

)
.

Comme G(a) = F (a) = 0, on en déduit, par intégration

G(t) ≤
∫ t
a
ϕ(s)ψ(s) exp

(
−
∫ s
a
ψ(u)du

)
ds.

Or par hypothèse, y(t) ≤ ϕ(t) + G(t) exp (∫ ta ψ(s)ds), d’où le résultat en
utilisant l’inégalité ci-dessus.
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Annexe E

Kolmogorov

Critère de Kolmogorov(sur le processus X) :
Supposons que le processus X = {Xt; 0 ≤ t ≤ T} dans l’espace de proba-
bilité (Ω,F , P ) satisfaisant à la condition

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

pour tout α, β et C ∈ R+. Alors il existe une modification continue
X̃ = {X̃t; 0 ≤ t ≤ T} dans X, donc elle est localement Hölderienne conti-
nue d’exposant γ pour chaque γ ∈ (0, β/α), c’est à dire,

P

w; sup
0<t−s<h(w)s,t∈[0,T ]

|X̃t(w)− X̃s(w)|
|t− s|γ

≤ δ

 = 1,

où h(w) est presque sûrement aléatoire positive et δ > 0 est une constante
quelconque.

Démonstration. cf.Loannis Karatzas et Steven E. Shreve.

Critère de Kolmogorov(sur la mesure Q) :
Soit Q une mesure absolument continue par rapport à P sur F∞. On sup-
pose que (Zt)t est continue. Alors,

i) chaque P−semi-martingale est une Q−semi-martingale.
ii)siM est une P-martingale locale continue et siM ′ = M− 1

Z < M,Z >,
alors M ′ est bien définie sur (Ω,F , (Ft)t,Q) et (M ′

t)t est une Q-martingale
locale. De plus

< M ′,M ′ >=< M,M > Q− ps.
Soit Xt un processus de Rn vérifiant une équation da la forme

dXt = a(t, w)dt+ b(t, w)dBt
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pour tout t ∈ [0,+∞[, où les processus a et b sont Ft-adaptés et Bt est un
mouvement brownien m-dimensionnel. On suppose qu’il existe des proces-
sus θ(t, w) ∈ Rm et α(t, w) ∈ Rn tels que

b(t, w)θ(t, w) = α(t, w)− a(t, w)

vérifiant la condition de Novikov

E
[
exp

(1
2
∫ t

0
θ2
sds

)]
<∞.

Lemme de Kolmogorov Soit X = (Xt, t ∈ I) un processus aléatoire
indexé par un intervalle borné I de R, à valeurs dans un espace métrique
complet (E, d). Supposons qu’il existe trois réels q, ε, C > 0 tels que, pour
tous s, t ∈ I,

E[d(Xs,Wt)q] ≤ C|t− s|1+ε,

alors, il existe une modification Y de X dont les trajectoires sont höldé-
riennes d’exposant α pour tout α ∈]0, εq [ : pour tout α ∈]0, εq [ il existe une
constante Cα(w) telle que, pour tous s, t ∈ I,

d(Ys(x), Yt(w)) ≤ Cα(w)|t− s|α.

En particulier, Y est une modification continue de X (unique à indistin-
guabilité près d’après ci-dessus).
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