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Résumé Soit m un entier naturel supérieur ou égal a 2. On s’intéresse aux m-dérivations
des algebres de Lie 8 de champs de vecteurs polynomiaux sur R” qui contiennent tous les
champs constants et le champ d’Euler. Si m est pair, elles sont des représentations adjointes
par rapport au normalisateur de 3. Pour m impair, toute m-dérivation est une somme de
dérivée de Lie par rapport a un champ du normalisateur de ‘B3 et, de m-dérivation de 3 qui a
un champ quadratique fait corrrespondre un champ constant et qui s’annule sur les champs
homogenes non quadratiques. On donne une condition nécessaire et suffisante pour qu’une
application linéaire de 3 vers elle-méme soit de ce dernier type de m-dérivation. En général,
sous une certaine condition sur B, toute m-dérivation du normalisateur de P est intérieure.
Ainsi, les m-dérivations de 1’algebre de Lie de tous les champs polynomiaux (resp. des
champs affines) de R” sont des m-dérivations intérieures.

Abstract Let be m > 2 a natural integer. We study the m-derivations of the Lie algebras
B of polynomial vector fields on R” which contain all constant vector fields and the Euler’s
vector field. They are Lie derivative with respect to a R” polynomial vector fields on the
normalizer of 3, when m is even. If m is odd, all m-derivation of 9 is a sum of a Lie
derivative with respect to a normalizer’s vector fields and, a m-derivation of ‘3 which acts on
a quadratic vector fields to give a constant vector fields and which vanishes otherwise. We
give a necessary and sufficient condition for a linear map of 3 into it self to be a previous
last type of m-derivation. Generally, under some conditions on 3, all m-derivation of the
normalizer of 8 is inner. Hence, the m-derivation of Lie algebra of all polynomial vector
fields respectively of affine vector fields on R”, is an inner m-derivation.
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”Institute for the Conservation of Tropical Environments” (ICTE) Madagascar.
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1 Introduction

Définition 1.1 Une (m > 2)-dérivation D d’une algébre de Lie 2( est une application
R—linéaire de 2 dans 2 telle que VX1, X2, ..., X, € &,

DXy, [X2. ..., [Xm—1. Xn] .. ]] = [D XD [X2s o [Xn—1, Xi] -]
+[X1, [DX2) s [ Xt X -]+
+[X1. [ X2 o [D X)) - X ] - ]]
+[X1. [ X2 o X1 DX)] -] D

On note Der” (2) Ialgebre de Lie des m-dérivations de 2. Si m = 2, alors Der? () coincide
avec I’algebre de Lie Der () des dérivations de 2( . Dans le cas ou m = 3, Der? (1) est
I’ensemble des triple dérivations de 2.

Définition 1.2 On dit qu’une m-dérivation de 2l est intérieure par rapport a une algébre de
Lie B contenant , si elle est de la forme Ly, une dérivée de Lie par rapport a X élément
de 8. En particulier, Ly est une m-dérivation intérieure si X € 2. L’ensemble de ces m-
dérivations est noté par adg. Une m-dérivation D est dite sous-forme standard si elle est la
somme d’une 2-dérivation de 2 et d’une application R-linéaire L de 2 dans le centre de 2
telle que L [, [2(, [..., [, A]...]] = {0}.

Les m-dérivations ou m > 2 d’une algebre de Lie sont naturellement une généralisation
de la notion de dérivation et de triple dérivation. Récemment, [1] a traité les m-dérivations de
I’algebre des matrices triangulaires supérieures. Dans notre papier, on se propose d’étudier
les m-dérivations d’une R-algebre de Lie B formée de champs de vecteurs polynomiaux
sur R” contenant tous les champs constants et le champ d’Euler. D’apres un résultat de [5],
I’algebre de Lie P est graduée en une somme directe d’espaces vectoriels consistant a des
champs polynomiaux homogenes de méme degré supérieur ou égal a -1. On remarque que
cette graduation est différente de celle de [3]. On sait que, toute 2-dérivation de 3 est une
dérivée de Lie par rapport a un élément du normalisateur 91 de 3. De plus, 91 est une sous-
algebre de Lie de I’algebre de Lie des champs de vecteurs polynomiaux de R”. Comme le
centre de B est réduit a zéro, alors toutes les m-dérivations sous-forme standard sont des
dérivées de Lie par rapport a un champ de vecteurs de 1. On généralise la maniere d’étudier
les 2-dérivations de ‘B dans [5], ou m est inférieur ou égal au degré de nilpotence de P (si P
n’est pas nilpotent alors ce degré est égal a 4-00). Car si m est dans un cas contraire, toute
application R-linéaire de 3 est une m-dérivation de 3. Ainsi, on constate que si ‘3 contient
des champs quadratiques, il existe des m-dérivations homogenes de degré —2 s’annulant sur
les champs homogenes non quadratiques. Dans le cas ou m est pair, ces derniers types de
m-dérivations sont identiquement nulles. C’est-a-dire que 1’algebre de Lie des m-dérivations
est identique a celle des 2-dérivations de 3. Pour le cas ou m est impair, on donne une
condition nécessaire et suffisante pour qu’une application R-linéaire de 3, envoyant un
champ quadratique a un champ constant et s’annulant autrement, soit une m-dérivation.
Ce dernier type de m-dérivations est non-standard. Par ailleurs, un champ homogene de
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degré k > —1, X = Xy iy <<y
sur la sommation d’indices) de 3 est séparé dans B, si pour chaque ig et ji, j2,..., Jjp,
O o<y R
champs polynomiaux est séparé si tous ses éléments homogenes non nuls sont séparés dans
ce sous-ensemble. Par la présence du champ d’Euler dans 3, tout champ quadratique de 3
appartient a son idéal dérivé. En utilisant la propriété de la m-dérivation de degré —2 sur cet
idéal, on détermine entierement I’image d’un champ quadratique quelconque de 3 par ce
dernier type de m-dérivation, si 3 est séparé.

Comme ‘P est inclus dans son normalisateur, en général, on peut alors déterminer toutes
les m-dérivations de ce normalisateur. Cependant, on cherche des conditions pour n’avoir
que des m-dérivations intérieures de . En rectifiant une preuve de [5], on peut montrer
que le normalisateur de 91 coincide avec 91 lui-méme si et seulement si 3 est un idéal
caractéristique de 91. Dans ce cas, avec m pair, toute m-dérivation de 91 est intérieure. En
outre, on peut affirmer que si tous les champs diagonaux sont inclus dans 3 (en particulier
si I’idéal dérivé de B coincide avec 3), alors toute m-dérivation (avec m > 2 un entier
arbitraire) est intérieure par rapport a un champ de B. Si B est séparé, tous les champs
linéaires diagonaux appartiennent au normalisateur de 3. Ainsi, toute m-dérivation de N
est une representation adjointe par rapport a 9. Alors, on propose quelques illustrations des
résultats par des exemples de m-dérivations non standards d’algebres de Lie 13, pour le cas ou
B est séparé ou non séparé. Toutes les m-dérivations de I’algebre de Lie de tous les champs
polynomiaux (des champs affines) de R” sont intérieures. De plus, on peut montrer que toute
les m-dérivations d’une sous-algebre de Lie de 1’algebre de Lie des champs affines contenant
E et les champs constants sont des dérivations intérieures par rapport a un champ affine. Si
les champs constants ou le champ d’Euler ne sont pas contenus dans une algebre de Lie de
champs de vecteurs polynomiaux, les résultats sur ses m-dérivations peuvent étre différents.
Un exemple d’une telle algebre de Lie est celle des champs linéaires triangulaires supérieurs,
qui est isomorphe a 1’algebre des matrices carrées triangulaires supérieures d’ordre n a
coefficients réels cf. [4]. D’apres un résultat de [1], la m-dérivation correspondante est sous-
forme standard cf. Définition 1.2. Dans le méme contexte, on peut aussi consulter d’autres
exemples de dérivations dans la remarque 2.16 de [5] ou le champ d’Euler n’appartient pas
a B. Dans un autre article, on traitera les m-dérivations des algebres de Lie attachées a une
distribution involutive dans une variété différentiable.

x'xtz . .x’l’% (ici on suit la convention d’Einstein

xJixdz | xdp

€ PB. Un sous-ensemble non vide de 1’algebre de Lie des

2 Préliminaire

Soit B une R-sous-algebre de Lie de 1’algebre de Lie des champs de vecteurs polynomiaux
sur R”, contenant tous les champs constants et le champ d’Euler E. Dans la suite, on adopte
la convention d’Einstein sur la sommation d’indices. En coordonnées locales (xi)1 i< de
R”, le champ E s’écrit x' 3,- . On note H; I’ensemble des champs polynomiaux homogenes
de degré i > —1. L’algebre de Lie B est graduée de la maniére suivante:

P = &i>—1P; , ot tout P; = P N H; est un sous-espace vectoriel de dimension finie de H;,
tels que

[Bo1.P_1] ={0}etVi,j>—1,0ui+j=>—1 [P, P;] CPis;. 2.1)
De plus, un champ X de ; est déterminé par [E, X] = iX et tout Y € P s’écrit en

2 1<j<k Yjtelque V), ¥; € B cf. [5]. Donc, on peut définir une m-dérivation D de P a
partir des images par D des champs homogenes de ‘3.
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Dans toute la suite, m est un entier naturel plus grand ou égal a 2. 1l est clair que toute 2-
dérivation d’une algebre de Lie 2 est une m-dérivation avec m > 2, en utilisant les définitions
d’une m-dérivation. Alors, on a Der? (2) C Der™ ().

Nous désignons par x (R") 1’algebre de Lie des champs de vecteurs de R” munie du
crochet de champs de vecteurs. On rappelle que le normalisateur 91 de 3 est défini par 0t =
{X € x (R") /[X,B] C P}, c’est une sous-algebre des champs de vecteurs polynomiaux de
R". Comme E € ‘B, alors on a une somme directe d’espaces vectoriels 91 = P & My, avec
No la partie d’éléments homogenes de degré 0 de 91 non contenue dans ‘B — {0}. En effet,
B C N est un idéal de N, alors le quotient N/P = Ny est une algebre de Lie et donc un
espace vectoriel. Le centralisateur de 3 qui est égal a {X € x (R") /[X, P] = {0}}, est réduit
a zéro cf. [5].

Remarque 2.1 Dans le cas de 1’algebre de Lie 3, une m-dérivation sous-forme standard est
une 2-dérivation car le centralisateur de ‘B3 est nul. Alors, elle est sous une forme de dérivée
de Lie par rapport a un champ du normalisateur de I3 cf. [5].

Définition 2.2 Soit 2 une algebre de Lie, sa série centrale descendante est définie par
¢® () = Aet pour tout p > 0, € (A) = [A, €771 (A)] cf. [2]. L'algebre de Lie A est
nilpotente d’ordre k > 0 si k est le plus petit entier tel que ¢¥ () = {0}. Cette série est
décroissante au sens de I’inclusion: €1 () c &k () pour tout k > 0.

Remarque 2.3 La série centrale descendante de 3 vérifie €7 () # {0} pour 0 < p < 1.
Cette assertion découle directement du fait que ‘P contient tous les champs constants et le
champ d’Euler. En effet, ¢! (P) contient ’ensemble de tous les champs constants.

Proposition 2.4 Si [’algebre de Lie B est nilpotente d’ordre k > 2 avec m > k, alors toute
application R-linéaire de 3 dans 3 est une m-dérivation de *B.

Démonstration Compte tenu de laRemarque 2.3,k > 2, considérons la série centrale descen-
dante de 1’algebre de Lie 3. Alors si m > k, la relation (1.1) est triviale; d’ou le résultat.

Alors, dans toute la suite, si 3 est nilpotente d’ordre k, on ne s’intéresse qu’a ses m-
dérivations avec m < k.

3 Etude des m-dérivations des algebres de Lie 3
Dans cette section, on examine les m-dérivations des algebres de Lie attachées a ‘P et les
applications des résultats obtenus.

Proposition 3.1 Une m-dérivation D de B, nulle sur tous les champs constants et le champ
d’Euler, est nulle sur tous les champs homogeénes de degré 0 de 3. Avec ces conditions, cette
m-dérivation s’annule sur tous les champs quadratiques de 3 si et seulement si D est nulle.

Démonstration Supposons que D(E) = D(C) = 0, ou C € H_;. On peut considérer
P € Py comme dans [5], o k € NU {—1} et on raisonne par récurrence.
Pour P € H_1, on a par hypothe¢se D(P) = 0. De méme, soit P € L, on obtient

DI[E,[E,[...,[E,[C, P]]...]]]=0. (3.1)
Par définition d’une m-dérivation (1.1) et par hypothese pour tout C,ona D(P) € H_;. Or
DIE,[E,[...,[E,[E, P]].. ]Il =0,

par définition d’une m-dérivation et le résultat précédent, D(P) = 0.
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Soientk > 2 et P € Py, supposons que pourtout Q € P,ou—1 <r <k—1,D(Q) =0.
Une relation analogue a (3.1) s’écrit

DIE,[E,[...,[E,[C, PII.. ]Il = (k = )" >D(Q),
ou le champ Q appartient a P;_1. Par hypothese, D(Q) est nul. Donc
[E,[....[E,[DC), P]l... 1]+ [E,[....[E,[C,D(P)]]...]1 =0,

1
C € H_jeti > —1, on obtient la nullité de (i — 1)~ [C, P/]. Ainsi, >, _| P/ est dans
PB_1 ®P.0r,onal’égalité entre D [E, [E, ..., [E, P]...]]et k"=1D(P). Par conséquent
et par définition, on a k" ~! (PL1 + Pl’) = (—1)’”—1PL1 + P[,ainsi P/ | = P{ = 0. D’ol
Vk > —1, D(P)=0et D =0.
La réciproque est évidente. O

par la relation (1.1). On pose D(P) = > ;. | P/ ot chaque P/ € ;. Alors pour tout

Proposition 3.2 Soit D une m-dérivation de *B nulle sur E, vérifiant pour touti # 1, —1 de
NU{—1}, D (B;) C Bi, Dip_, et Dy, sont avaleurs dans ‘B _1 &P . Alors la m-dérivation
s’écrit D = Lx + Do avec X un champ de vecteurs polynomiaux homogene de degré 0, Dy
une m-dérivation nulle sur B3; aveci # —1, 1 et que Do(P—1) C P1, Do(P1) C P_1.

Démonstration Soit D une telle m-dérivation, alors pour C € B_1, D(C) = W_1 + Wy,
ou W_; € P_; et W; € B1. Comme D est une application R—linéaire, alors il existe un
seul X € Hy tel que D(C) = [X, C] + W pour tout C € H_;. En effet, il suffit d’écrire
I’équation [X, C] = W_; en coordonnées usuelles de R” pour tout C et la résoudre. Par
ailleurs, on obtient D(E) = 0 = [X, E]. Soient V| € Py, Vo € Po — {E}etC € H_1,ona

D[V, I[E,...,[E,C]...]]=[D W), I[E,...,[E,C].. ]]+[Vo,[E,...,[E, D (C)]...]]
(3.2)
et
DI[C,[E,...,[E,Vi]...]]
=[[X,Cl+ W, [E,....[E,V1]...]]1+I[C.[E,....[E.D(VD]...]l. (3.3)

Par la relation (3.2) et ce qui précede, on a
[X, [Vo. C11 = [D (Vo) , C1+ [Vo, [X, C1]. (3.4

En utilisant 1’identité de Jacobi, on obtient [X, Vo] — D (V) € H_1 N Hy. Ce qui entraine
la nullité de cette derniere expression pour tout Vo € . Par conséquent, D (Vp) = [X, Vo]
pour tout Vy € Po.

D’apres ce qui précede, D[C,[E,...,[E, V1]...]] = [X,[C, Vi]]. En identifiant
I’égalité précédente avec larelation (3.3), [Wy, Vi]et[C, [X, Vi] — [E, ..., [E, D (V]]...]]
deviennent nuls, pour tout C de _;. Donc,ona [X, Vi]—[E,...,[E,D (V})]...] € H_;.
Ennotant D(Vy) = W', +W{, D(Vi) = W_,+[X, Vi]pour tout V| € P;. Maintenant, soit
k > 2etonsupposequepour —1 <r <k—1,lesD(V,) =[X, V,][+Wou W € L_; UP,.
C’est-a-dire, on raisonne par récurrence, prenons Vi € Py et écrivons

DI[Vi, |E,...,[E,C]...]]
=[DWVy),[E,....[E,C]...]]+[Vk,[E,....[E,D(C)]...]],

qui donne en terme d’égalité entre les champs homogenes de méme degré

D[Vi. C1=[D (Vi) , Cl+ [Vi, W]
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Par hypothese de récurrence et par identification, on déduit de cette égalité
[X, [V, Cll = [D(Vi), C1+ [V, [X, CII.
On utilise I’identité de Jacobi pour tout C etona D(Vy) —[X, Vi ] € Px NP_1 = {0}. Ainsi,

D est la somme de Ly et d’une m-dérivation Dg susmentionnée. ]

Définition 3.3 On dit qu’une m-dérivation D de 3 est homogene de degré k si D (;) C
Bitk pour tout i > —1.

Proposition 3.4 Une m-dérivation homogéne de degré 0 sur P qui s’annule en E est une
dérivée de Lie par rapport a un champ polynomial homogéne de degré 0.

Démonstration La Proposition 3.2 est une extension de la présente proposition. En effet, il
suffit de remarquer que dans ce cas, la m-dérivation Dy est nulle. On peut aussi prouver notre
proposition autrement en admettant la démonstration de la Proposition 3.2 ou on se contente
de chercher D(Vy) avec k = —1, 1; alors la Proposition 3.1 permet de conclure. O

Remarque 3.5 On peut déduire de cette proposition qu’une dérivation homogene de degré 0
sur P qui s’annule en E est une dérivée de Lie par rapport a un champ de vecteurs polynomial
homogene de degré O cf. [5].

Théoreme 3.6 Toute m-dérivation D de B ont m > 1 un entier naturel pair, est intérieure
par rapport au normalisateur N de B. De plus, cette m-dérivation est égale a Lr4x avec
X € Hyet F € B S Hy. Ainsi, on a des isomorphismes entre Der™ (%3), Der (3), adm et 9.

Démonstration Soit D une m-dérivation de 3. On considere D (V;), ou V; est un champ de
B homogene de degré t > —1.

On écrit comme dans [5], D(V;) = >, Wiet D(E) = > |, Ei,avec W;, E; €
Bi-

Par définition d’une m-dérivation:
DIE,[E,...,[E,V]...]]
=[D(E), [E,....[E.Vi]... 1]+ +[E,[E,...,[E, D(V)]...]].
Alors, on obtient

—Pour—1 <i<t—2eti>t+1 (""" =)W, =0= W; = 0 carm est pair.
—Pourt—1<i<t+I,

(" =YW (TR S i) [Eis, V] =0 (35)

et
[Eo, Vi]=0. (3.6)

Par factorisation et simplification, on a:

1
DV)=Wi+ > (ﬁ)[EH,Vz]

—lsist+l N
=W+ | Ne.v, 3.7)
- t ‘ i 1y Vit . .
i#0
Ennotant F = 3 ;o () Ei, qui est un élément de B, on obtient D(V;) = W, +
[F, Vi].
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On pose D' = D — L, c’est bien une m-dérivation homogeéne de degré 0 de 3. D’apres
(3.6) et le fait que P contient tous les champs constants, on a [Ep, C] = 0 VC € H_;. Par
conséquent, Eg = 0 et D’'(E) = 0. D’apres la Proposition 3.4, D’ = Ly ol X € Hy. Alors,
la m-dérivation D est une dérivée de Lie par rapport a un champ de vecteurs polynomiaux
de R", qui est F' + X. Par conséquent, F' + X appartient au normalisateur 91 de B3, avec F'
élément de 3 — Hy. Ainsi, pour tout m pair, Der” (3) = adg;. Ces dernieres algebres de Lie
sont isomorphes a 91 et Der(J3) en adaptant une preuve de [5]. O

Remarque 3.7 Dans le cas restrictif m = 2, ce théoréme est exactement celui de [5] pour les
dérivations de ‘B.

Dans toute la suite, on suppose que m > 3 impair.

Proposition 3.8 Soit D une m-dérivation nulle sur3; aveci # —1, 1 etque D ((B_1) C By,
D (B1) C PB_1. Etant donnés (V_1, Vi) € P_1 x P

1. Ona D (V_1)=0.
2. Pour tout V; € Pyzo, [D (V1), Vi1 =0.
3. Pour tout Vo € Bo, ona [Vo, D (V1)] = =D [Vy, Vi1.

Démonstration Soientt,1 € NU {—1} et (V;, V/) € P; x P,, et D une telle m-dérivation.
On écrit
D[V/.[E.[....IE.Vi]..1] = [D (V) .[E.[....[E. Vi].. ]]
+ [V IE.L....[E.D(VD].. ] (3.8)
On identifie (3.8) en terme de champs homogenes de méme degré et on suppose que:
l.I=1letr>2alorsona[D(V;), V/] =0.
2. 1=1letr=0,0nal[Vj,D (V)] =-D[V}, V]
3. [ =1ett =1, on doit avoir [D VD, V{| = [Vl, D (Vl’)]
4. 1=—letr=—1alors [D(V_y), V. | =[V-1.D (V)]
Or, pour V", € P_i,

D[V [VLL[E.....[E. Vo). ]l = [V [P (VD) V] + [V, D (voD]]-
(3.9)
D’apres larelation 4. et pour tout V", de By, (3.9) donne [V/ |, D (V_)] = 0et D (V_)) =
0.
Par ailleurs,

D[V_i, [V, IE.[....[E.Vi].. ]] = [D (V=) , [V[.LE, ..., [E. Vi]...]1]]
+ Vo [D (V). [E.[....[E. Vi]..01]]
+ [V [V IE ... [E. D (VD]..]1]]
Y (V_1, V{, V1) € B_1 x B1 x P1. On peut dire que D[[V_l,[[E, [E.[....[E.1V]. Vi]]

...]]] = 0ot E se repete m — 2 fois. Alors, on obtient [V_y, [V{, D (V})]] = 0 d’apres 3.
de la présente preuve. Ainsi, on établit I’égalité [Vl’ ., D (V])] = 0. D’ou les résultats. O

Théoreme 3.9 Pour m > 3 impair, toute m-dérivation D de B est la somme d’une dérivée
de Lie par rapport a un champ du normalisateur de 3 et d’une m-dérivation homogene de
degré —2 nulle sur B; 1.
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Démonstration On peut faire le méme raisonnement que dans la preuve du Théoréme 3.6
avec les modifications suivantes:

— Pour—1<i<t—2eti >1‘—i—l,ona(im_1 —t’"_])Wi =0:
dansle casour = 1 eti = —1, on a une indétermination sur W;, sinon W; = 0.
— Pourtr —1 <i <t+1,onobtient (3.5), et on a une indétermination sur W; sit = —1 et

i = 1, sinon W; est bien déterminé. On a [Ez, V,l] = 0 pour tout V_j; ce qui entraine
la nullité de E;.

On obtient (3.7), pour tout ¢ # —1, 1.

Notant a nouveau F = Z—lgifi,i;éo (7—1) E; e B,ona D(V;) = W; +[F, V;] pour tout
t#—1, 1.

On pose D' = D — L, ¢’est une m-dérivation vérifiant les hypothéses de la Proposition
3.2. Eneffet, d’apres (3.6) et le fait que tous les champs constants sont dans 3, ona [Eg, C] =
0 VC € H_;. En conséquence, Eg = 0 et D'(E) = 0. D’apres la Proposition 3.2, D' =
Lx + Do ou X € Hy et Dy une m-dérivation définie par la Proposition 3.2. Cette application
Dy est nulle sur B_; d’apres la Proposition 3.8. Alors, D = Ly x + Do avec F' + X estun
champ de vecteurs polynomial de R". Par le méme raisonnement que celui de la preuve du
Théoréme 3.6, on montre que F 4+ X € 91 ou F appartient a ‘B S Po. O

Théoreme 3.10 On suppose que m > 3 est impair. Pour qu’une application R-linéaire D
de B, nulle sur 3 © P et dont I'image est incluse dans P_1, soit une m-dérivation, il faut
et il suffit que:

[D(B1). B —Pol = {0} (3.10)
D[X,Y]=[DX),X]V(X,Y) ePo xPy; 3.11)

[D (B1) . [B. BN Pol = {0}; (3.12)

si [X], [Xz, o [X,-, o, [mel, Xm] .. ]]] € Py ou i le premier indice tel que X; € B

avec lexistence de 1 < j < i tels que X; € P_1 U P2, alors
D[X1, [X2, ... [Xiv oo [Xm—1, Xm] .. ]]] =0 (3.13)

Démonstration On suppose que D est une m-dérivation de 3 nulle sur B © P et telle
que D(P1) C P_;. Les deux premieres conditions nécessaires sont obtenues en utilisant
la Proposition 3.8. En outre pour (X, X1, X») dans P x P x P avec [X1, X2] € PBo, on
applique D a [E, ..., [E, [X, [X1, X2]]...]]. On a alors [D (X), [X, X2]...] = O par la
relation 3. de laProposition 3.8. Pour montrer (3.13), soient X1, X2, ..., X, ..., X;, ..., X
vérifiant les conditions susmentionnées. Si [Xit1, ..., [Xm—1, Xm]...] € PBo. [D (X)),

oy [Xm=1, Xm]...] est égal & D (Y € Py) par (3.11), sinon est égal a 0 par (3.10).
Par les relations (3.11) et (3.10), [ X1, [Xj52.. .. [D(Xi) ... [Xm—1. Xu] .. ]]] =
D (Z € B1) ou 0 (cette technique (T) sera utilisée dans la suite de notre démonstration). Or
Xj € P-1 UP;>2, alors

(X, [Xjs1o o [DXD oo [Xm—1. X - ]]] =0
par (3.10). A I’aide de (T), on peut affirmer aussi que
(X0, [Xj o [DXO) ooy [ X1, X - ]]] =0, Yk > i ouXy € P

Ainsi, la relation (3.13) est obtenue en utilisant (1.1).
Par construction, un endomorphisme D de 3 qui s’annule sur P & P et tel que D(P) C
B_1; est une m-dérivation si et seulement si les trois assertions suivantes sont satisfaites:
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(a) Pour Xq,..., X, € P — P tels que [X], [Xz,..., [Xm—l, Xm]]] =V € Py,
alors D (V7) est nul.

(b) Pour X;,,..., X;, € Pyaveci) <ip <-+- < ipetlesautresX,-pH,...,X,-m € B—Pi,
ot les indices deux a deux différents iy sont dans {1, ..., m} tels que

(X1, [X2, o [ Xt oo Xi] - ]] € B0,
alors
[Xi. [X2, .. [D(Xi)) oo [Xi oo [Xmmt o X )]+ -
+ [ X1 [ X2 [Xigs o [Xig - [D (X)) o X ]

(c) PourXi,,...,X[p €Praveci) <ip <...<ip etlesautreinpH,...,X,-m € BP—Pi,
ou les indices deux a deux différents iy sont dans {1, ..., m} tels que

[X1. [ X2, [Xm—ts oo, X - ]] = Vi € B,
alors

D) =X, [Xo, ... [D(Xi)) oo [Xip oo [Xmmts oo X ]]]] 4 - -
+ X1 [Xoe o [ X [ X [D(XG,) oo X )] BS)

En effet, il suffit de vérifier la relation (1.1) pour D a partir de a) b) c) et le cas trivial qu’on
appelle d) obt X1, ..., X,y € P — Py tels que [ X1, [ X2, ..., [Xw—1. Xin] .. .]] € D1

Maintenant, démontrons la réciproque de notre théoréme a partir de ces dernieres consid-
érations. On suppose que (3.10), (3.11), (3.12) et (3.13) soient satisfaites et montrons que a),
b), c) et d) sont vraies pour I’endomorphisme D.

Les preuves de a) et d) pour D sont immédiates. Les preuves de b) et de c¢) qui vont
suivre sont divisées en 3 astérisques résumant tous les cas possibles correspondants a b) et 3
astérisques résumant tous ceux de c).

— Pour la démonstration de b), considérons [Xl, [Xz, R [Xm_l, R Xm] .. ]] ¢ P ol
il existe un premier indice 7; tel que X;, appartient a *B;:

xSiip =1,alors [X2, ..., [Xm=1,.... Xm]...] € Bo. En vertus de (3.10),
[D XD, [X2, ... [Xm—1. Xm]...]] = 0.
Par (T) obtenu a partir de (3.11) et (3.10), on aura
[X1. [ X2 oo [D (X)) o s [Xiye oo X)L ]]] =0V <k < p.

On obtient alors (3.14) en sommant ces expressions.

* Siles X1, ..., X;;—1 (i1 > 1) appartiennent a Py, alors [ X;, 41, ..., [Xm_l, R
Xml...] ¢ PBo.Par conséquent, [Xl, cey [D (Xil) oo | Xm—1, Xm] .. ]] = O par
(3.10). De méme, pour tout 1 < k < p, [Xl, R [D (Xik) R [Xm_l, Xm] .. ]]
= 0 d’apres (T). On en tire I’égalité (3.14).

+ Si j est le dernier indice tel que X j;; € B_1 U P;>2, on a en utilisant (T),

pour 1 <k <p, [X1,....[Xj.....[D(Xip) oo [Xm—1. Xm] . ]]] = 0.
Ainsi, on peut affirmer que (3.14) est vrai.

— Pour la preuve de ¢), soient [X1, [X2, ..., [Xm—1...., Xn]...]] € B1 ob X;, estle
premier champ qui appartient a 31:

@ Springer



P. Randriambololondrantomalala

Sitousles X1, ..., Xj—1 € Poaveciy # malors [Xi 41, ..., [Xm—1, Xn]...] €
PBo. D’apres (3.11),
D[X1,....[Xiy, - [ X1, X] - ]]
= D" [X1, L [D (X)) [ Xt X -]

On aura a I’aide de (T)
pourl <k <p, [X1,....[D (X)), ... [Xm—1. Xu]...]] = 0.

En rassemblant ces deux resultats, on obtient (3.15) pour i; pair. Pour i| impair,
d’apres (3.12)

[Xi,....[D(Xi) ooy [Xm—1, Xm] .- ]] =0,

et on a encore (3.15).
* Siles X1, ..., X;;—1 € Po avec i1 = m. En vertus de (T), on obtient

D[Xi,....[Xm-1, Xu]...] = D" ' [X1, .., [Xm—1, D (X)] .. ]

Ainsi, ’égalité (3.15) est vraie.

* Supposons que j soit le dernier indice tel que X;;; € B U P;>2. Alors, le
premier membre de I’égalité (3.15) est nul par (3.13). De méme, chaque élément de
la somme dans son deuxieme membre est identiquement nul d’apres (T). Ainsi, la
relation (3.15) est satisfaite.

D’ou, D est une m-dérivation de 3 et on acheve la preuve. O

Dans toute la suite, on notera par (Z) I’R-espace vectoriel engendré par un élément Z € L.

Théoreme 3.11 Soit D une m-dérivation de B, de degré -2 et nulle sur B; oni # 1. Pour
Vi e B —{0}:

— On suppose que les éléments de By sont séparés. S’il existe X € Po © (E) tel que
[X, Vil = Vi, alors D (V;) = 0.

— Les éléments de 31 sont supposés séparés. S’il existe (X , Vl/) e (Po© (E)) x P tel
que [X, V]| est égal a Vi # V], ot div (V]) # 0 ou la composante de V| est différente
de celle de V| a multiplication par une constante pres, alors D (V1) est nul. Dans le cas
contraire, on peut choisir un D (V1) non nul sauf's’il y a des hypotheses supplémentaires.

— Si pour chaque X € PBo © (E), [X, V1] = 0, alors [D (V1),Y] = 0 pour tout Y €
PO (E).

— S’il existe X, Y € B — Py tels que [X, Y] = Vi, alors D (V1) = 0.

Démonstration Soient (x'); un systeme de coordonnées de R" et V| € P — {0}. Pour
simplifier, on montre les résultats de chaque tiret pour un champ fixé.

Pour la démonstration du premier tiret, on suppose que I’ensemble 31 est séparé. S’il
existe X € Po © (E) tel que [X, V(] = Vi, alors V; est de I'un des types de champs
quadratiques suivants a une multiplication par une constante pres:

e Pour V| = (xl)2 5,7 existence de tous les champs constants dans 93 entraine qu’on
peut trouver un X = x! al € P tel que [X, Vi] = Vj. D’apres la relation (3.11),
D(V)=—[X,D(V)D]=a:=5 ax . En vertus de 1’égalité (3.10), on obtient & = 0.
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e Pour V| = x!x?2 o l,511 existe X € Po © (E) tel que [X, Vi] = Vi, alors X —xzﬁ

D’aprés I'égalité (3.11), D (V}) = —[ . D(V])] -0, Parla relation (3.10), on
aurao = 0.

e Pour V| = xl)czaa avect % 1, 2,5l exmteX € Po © (E) tel que [X, V1] = Vi, alors
X = xlﬁ ouX = xzf ou X = —x! W' Dans ces cas, les relations (3.11) et (3.10)
nous donnent D (Vl) =0.

e Pour V| = (x1)2 3527 S ‘il existe X € Pp o (E) tel que [X, V1] = Vi, alors X = 2x 32

ouX = —x?2 %. Par les mémes raisons que précédemment, on peut obtenir D (V1) = 0.

Pour la preuve du deuxieme tiret, s’il existe X € Po © (E) tel que [X s Vl’ ] =V, £V,
on procede comme suit:

e Pour V| = ()cl)2 P les V| non nuls possibles sont de la forme ax ' x’ =27 ou B (x ( ) dx’
avect # leta, ,3 des réels. Ainsi, D (V1) = 0 en utilisant le resultat précédent et la
relation (3.11).

e Pour V| = xlx? )31,

2 [
ou B ((xl) az xlx2aiz) aoX’xzaal , fox! a)
réels. Ainsi, D (V1) = 0 en vertus des résultats précédents et de I’ egahte (3.1 1) avec des
champs X de 3 convenables.

2)2 K

les champs V| non nuls possibles sont de la forme o (x s

e Pour V| = xlx? aa, avec t # 1, 2, les champs V; non nuls possibles sont de
1\2 3 2\2 3 2.9 1.2 1.9 1,28
laformea(x)W,a(x)w,ﬂ(x’xa, xxﬁ) ,Bo(xxax, xx;)

apx xza -, B1x! x| ad,, o1x xza‘; ol o, g, a1, B, Po, P1desréelseti # 1, 2, t.
En utilisant les résultats précédents, la relation (3.11) et en choisissant des champs X
de P8 convenables, D (V1) = 0 sauf pour le dernier champ ot on a D (V}) = (){10!2%
(a2 € R). Si on peut trouver un champ non nul de 3 ayant une composante comportant
x!, alors ce dernier D (V;) =0 d’apres la relation (3.11).

e PourV/= (xl)2 %,les V) possibles non nuls sont de laforme o (2x1xt367 — (xl)2 ﬁ)
ou ﬁxlxi%, o ()cl)2 % avec t # 1,1 # t, 1 avec a, B, «ap des réels. Ainsi,
D (V1) = 0 d’apres le résultat précédent et la relation (3.11), sauf pour le dernier champ
ou D (V) = ajap aii (o; € R). Mais s’il existe un champ non nul de Py ayant une
composante x', alors par 1’égalité venant de (3.11), D (V;) devient nul.

Pour démontrer le troisiéme tiret, on exploite les relations (3.10), (3.11). Le dernier tiret

se montre en utilisant 1’égalité (3.13) du Théoreme 3.10. O

On identifie d’une maniere unique un champ de Hp a un élément de gl (n, R) cf. [4] p.5.
On I’appelera champ linéaire. On suppose dans la suite, que m est un entier naturel supérieur
ou égal a 2.

Corollaire 3.12 On a les résultats suivants:

— Le normalisateur de 2t coincide avec M lui-méme si et seulement si P est un idéal
caractéristique de N, dans ce cas, toute m-dérivation de N est intérieure pour m pair.

— Si ’ensemble des champs linéaires diagonaux H(‘)i est inclus dans Py, alors toute m-
dérivation de B3 est intérieure. En particulier, on aura les mémes résultats si l'idéal
déerivé [, B] coincide avec L.

— Si B est séparé, alors toute m-dérivation du normalisateur de B est intérieure dans son
normalisateur.
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Démonstration Soient D une dérivation de 91 et N le normalisateur de 91. D’aprés nos
théoremes, D = Lx avec X € N. Ainsi, B est un idéal caractéristique de DN équivaut a P est
un idéal de V. Par définition d’un normalisateur, cette assertion est équivalente a ' = 91.
Le reste de la preuve de ce premier tiret découle de ce dernier résultat et de nos théoremes.

Soit D une m-dérivation de 3. Par le fait que Hg C PBo, P est séparé. Pour tout V| € Py,
il existe X € Po © (E) tel que [X, V1] = Vj. D’apres le Théoreme 3.11, le Théoreme 3.9
et le Théoreme 3.6, D est une dérivée de Lie par rapport a un champ du normalisateur de
B. On peut méme dire que cette m-dérivation est intérieure par rapport a ‘3 d’apres la fin
de la preuve du Théoreme 2.12 de [5]. Dans ce cas, le normalisateur de ‘B est 3 lui-méme.
Par ailleurs, si ['B, B] = B, alors tous les champs diagonaux sont dans 3 et on a le résultat
d’apres ce qu’on a démontré précédemment.

Si P est séparé, alors Hod est inclus dans le normalisateur de . Or, le normalisateur de
B est une algebre de Lie de champs polynomiaux de R”, alors, on a le résultat d’aprés une
partie de la démonstration de 1’assertion du tiret précédent de cette preuve. O

Remarque 3.13 La démonstration du Corollaire 2.13 de [5] est rectifiée par celle du premier
tiret du corollaire précédent. En effet, les champs diagonaux ne sont pas forcémment dans
le normalisateur de ; comme le montre r exemple suivant. Sur R?, soit 3 1’algebre de Lie
engendrée par dx, day, daz’ 3 B, x4 dz yor’ ()c)2 -+ (y)2 . La m-dérivation D = Ly

telle que X = xax vérifie D (()c)2 + (y)2 ) ¢ P.

Remarque 3.14 Toute m-dérivation du normalisateur 9t de ‘P est une somme de dérivée de
Lie par rapport a un champ de vecteurs de son normalisateur, et d’une m-dérivation de degré
—2. On sait que 9 contient B, alors ce résultat découle du Théoreme 3.6 et du Théoreme
3.9.

Corollaire 3.15 Toute m-dérivation de 1’algebre de Lie de tous les champs polynomiaux
(resp. de l’algebre de Lie affine H-1 @& Hp) de R" est une m-dérivation intérieure. Toutes
les m-dérivations des sous-algebres de Lie des champs affines de la forme H_1 & Bo sur R"
sont des dérivées de Lie par rapport a un champ affine.

Démonstration Lapremiere assertion vient du Corollaire 3.12 en utilisant le fait que I’algebre
de Lie de tous les champs polynomiaux de R” contient tous les champs linéaires diagonaux.
Comme le normalisateur d’une sous-algebre de Lie des champs affines est inclus dans H_; &
H)y, alors la suite de la démonstration découle du fait que la sous-algebre ne contient pas de
champs quadratiques et des Théoreme 3.6, 3.9. O

On peut se demander s’il existe des m-dérivations non nulles de degré —2 compte tenu des
nombreuses contraintes qu’elles doivent vérifier. L’ exemple suivant ou 1’algebre de Lie 3
est séparée ou non séparée, nous éclaire sur ce point,

Exemple 3.16 La série centrale descendante de chacune des deux algebres de Lie suivantes
est constante égale a 1’algebre de Lie elle-méme © 1’algebre de Lie engendrée par E.

Dans R3, soit la R—algebre de Lie engendrée par Bax’ de d(iz E, xd‘)Z (x)2

L application R—linéaire Do définie par Dy ((x)zﬁ) = a% et nulle autrement, est une 3-
dérivation non intérieure de champs de vecteurs.
9 9 0

La R—algébre de Lie engendrée par les champs de vecteurs polynomiaux 3, 3y 52
E, x+= 3z -y 3z, xy— — f(x)z— — f(y)z " admet une 3-dérivation non intérieure de champs

de vecteurs définie par, l’apphcatlon R— hnealre D; telle que la seule image non nulle est

D( WP P ) =
"\ a2 )_8x y
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Abstract

We consider a (real or complex) analytic manifold M. Assuming that F is a ring of all analytic functions, full
or truncated with respect to the local coordinates on M; we study the (m > 2)-derivations of all involutive analytic

distributions over F and their respective normalizers.
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Introduction and Preliminary

We know several embedding theorems in differential geometry,
some of them are of John F. Nash in Riemannian manifolds [1,2], of
Whitney [3] in differentiable manifolds and of Grauert in analytic
manifolds cf. [4]. They make easy certain study on a differentiable
manifold. Here, we are interested to a real or complex analytic
n-dimensional manifold M and let F(M) be the ring of all analytic
functions on M. We know that these manifolds can be considered as
smooth manifolds. But certain property on a smooth manifold cannot
be true on M, for example the global representation of a smooth
function germ theorem. Grabowski had this problem when he studied
derivations of the real or complex analytic vector fields Lie algebra cf.
[5] and he used Stein manifolds to avoid technical difficulties in them.
Here, we examine not only the derivations but the (i > 2)-derivations
(generalization of derivation’s notion) of a Lie subalgebra of the
real or complex analytic vector fields Lie algebra on M, using Lie
algebra tools. In advance, we state that the considered Lie algebras
have enough sections more than constant ones in the Lie algebra of
all analytic vector fields. Then, we consider only Stein spaces unless
expressly stated in a complex analytic case. In the real analytic one,
we don’t need more hypothesis because of the imbedding theorem of
Grauert and Cartan theorems [6]. More precisely, any real analytic
manifold can be considered as a closed submanifold of a certain R’
(a 7 real Stein manifold”). Now, an m-derivation of a Lie algebra A
is a linear map from A to itself which is distributive on the brackets
[X,,[X,,...[X,,X,]..]], where all X, are in A. On the one hand, we
have studied the m-derivations of polynomial vector fields Lie algebras
on R" in studies of 7. Randriambololondrantomalala [7], an important
Lie subalgebra of analytic vector fields, we found that Lie algebras
of derivations are different to those of (m > 2)-derivations. One can
see the following example, on R? the Lie R-algebra is spanned by

o 8 & o o p2

0
T A A Tty —tz—,
0r Oy Oz v Y

oz oy 22V on o7 and let’s define the R-linear

ox

a derivation, but a 3-derivation. On the other hand, all m-derivations of
a distribution over the full or truncated rings of smooth functions on a
differentiable manifold in literature of Randriambololondrantomalala
[8], are derivations. These facts lead us to ask if a distribution Lie
algebra on an analytic manifold has results as the one or the other
above results. So, we will divide our paper into three parts. First, we
take a real or complex analytic involutive distribution Q over M. That
is to say, Q is a F(M)-submodule of the analytic vector fields Lie algebra

0 0
map Dby D ((y)z aj =—— whichiszero otherwise. It's clear that Dis not

x(M) on M. We can find some examples of these distributions and the
interests for studying their derivations in literature of Grabowski and
Cartan [5,6]. Here, we find the Q’s centralizer and the derivative ideal
of Q). We can say also that the normalizer of () is a Lie subalgebra of
analytic vector fields. In addition, we find out that all m-derivations of
Q (resp. of the normalizer of Q) are inner with respect to a normalizer’s
vector field (resp. are inner). Second, assuming that Q is an involutive
distribution on M over a subring F of F(M), namely an F-submodule
of x(M) stable by the vector fields bracket, where F# F(M). One can
consider a system of commuting vector fields on M as in studies of
Randriambololondrantomalala [8] and all distribution Lie subalgebras
of the Lie algebra of analytic vector fields which commute with this
system. The normalizer of ) is an analytic vector fields Lie algebra and
contains locally all constant vector fields and Euler’s vector field. But in
general, we can’t use the reasoning by Randriambololondrantomalala
[7] to characterize m-derivations of Q2. We make more explicit all
m-derivations of Q) and of some of its normalizer. Whereas, in the end,
we discuss the Lie algebras of holomorphic vector fields, especially
when the holomorphic manifold is not a Stein one, and Lie algebras
of locally polynomial vector fields on an analytic manifold M. Their
m-derivations as well as their normalizers can be characterized by
using some results of Randriambololondrantomalala [7].

Therefore, we have found the m-derivations of all distributions
over a set of full or truncated analytic functions with respect to the
local coordinates on M. When m = 2, we deduce from our results some
[5]’s theorems. Third, we can apply our theorems on Lie algebras of
real or complex analytic vector fields on M, of generalized foliation on
M cf. [9], a Lie subalgebra of analytic vector fields on S? and on T?
Riemann surfaces, etc. Relations between the Lie algebra of compactly
supported vector fields and the compactness of M are discussed.
Moreover, we emphasize the extensions of our theorems when the
studied distributions are singular, by using the complexification of a
real analytic manifold, Hartogs and Riemann extension theorems. Of
course, in these circumstances, we can use theory of coherent sheaves
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made by Cartan [6] in a Stein case or pass into Grabowski’s conjecture
cf. [9]. We interpret our results in Chevalley-Eilenberg cohomology
sense when m = 2.

Following the above notations, let M be a real or complex analytic
n-dimensional manifold. In complex case, we regard a Stein manifold
unless special mention. We denote by y(M) the Lie algebra of
analytic vector fields on M and F(M) the ring of analytic functions on
M. Throughout this paper, we take an atlas in which every chart are
connected. Then, the open subset of a chart U where a non-trivial subset
of X (M ) doesn’t vanish, is dense on U (non-trivial means different
to {0}). We can use certain results of Randriambololondrantomalala
[7,8] because in the proofs of theorem of these papers we consider
only analytic functions (polynomials, exponentials). In the same way,
we don’t need partition of the unity to make global some local results
cf. [10]. In all sections of this article, we set an integer m > 2, recall
that D is an m-derivation of a Lie algebra A if for (X)), © 4, we get
DX [ Koo X, X, ] T = [ DO X [ X, ] Tt [ X X [ X0 D(X,)] ]
This D is said inner on a Lie algebra B containing A, if D is a Lie
derivative with respect to an element of B. Recall us another basic
definition cf. [11].

Definition 1.1. A complex manifold M is a Stein manifold, if we
have simultaneously the three following conditions: For every x # y,
both in M; there is a holomorphic function f over M such that f (x) #
f (). For all x € M, it exists n holomorphic functions (f,) over M such
that df, are linearly independent over C on x. If K is a compact set of M,
the following set is compact (holomorphic convexity of M)

{ e M /[f(@)| <sup | /()
yek

From these assertions, every local ring of holomorphic functions
around x € M is spanned by holomorphic functions on M cf. [12].

,forallholomorphic functions f over M } .

Some results of the Lie algebra of compactly supported vector
fields C_relative to a Stein manifold are the following,

Proposition 1.2. A complex analytic manifold M is compact iff C,
is non trivial, particularly if M is a Stein holomorphic manifold, C_is
trivial.

Proof. It’s obvious that if M is compact, then €, = (M) and C, is
not trivial. Conversely, suppose that M isn’t a compact set and there is
X € C_such that K = Supp(X) # @. We can consider K # M because M
is not compact. Then, we have the nullity of X in the open set (x = & .
By analyticity, X vanishes in whole M. Hence, we have a contradiction
about K # @ and we obtain M is a compact set. It’s clear that a Stein
space is never a compact set by definition, then its Lie algebra of
compactly supported vector fields is trivial.

The m-derivations defined by distributions on F(M)

Let Q be a non-trivial involutive analytic distribution over the
analytic functions ring on M. Let N be the normalizer of Q in x(M)
, that is to say that the set of all X € ¥(3) such that [X,Q] cQ, and
B={zeM/Qz)=#{0}}. We can choose a connected domain U, of a
chart. If we suppose that it exists an open set O, in U, where (2 vanishes,
then Q, ={0} by analyticity. Otherwise, every open set in U, contains
an element of B. So, BN U, is dense over U. Moreover, the collection
of U, forms an atlas of M, then B is dense over M. The set B is an open
analytic submanifold of M. Particularly, B is a Stein cf. [13]. Thus,
every vector field defined over B admits a continuous extension on M,
and if this last one is analytic, then it’s necessarily an element of the
normalizer of Q). We use this last fact when we deal with extension
theorems.

We know by literature of Nagano’s [14] result that Q is integrable,
then it yields a generalized foliation F on M cf. [10]. So, Q is the Lie
algebra of tangent vector fields to the foliation and L, the one of all
foliation preserving vector fields. It is known that the normalizer N in
(M) of Q) contains L, cf. [10]. Hence, the restriction of the foliation
in B is non singular.

Proposition 2.1. The centralizer of Q vanishes and the derivative
ideal of Q coincides with Q itself.

Proof. We say that X € y(M) is in the centralizer of Q if [X, Q]={0};
and the derivative ideal of denoted by [Q), Q1] is the Lie algebra spanned
by all brackets of two elements of Q). Suppose there is an non zero
element X of the centralizer, we have [X,/Q]=(X(f))Q={0}, for
all f € F(M). It’s not possible in a Stein manifold or in a real analytic
manifold if X doesn’t vanish identically over M and if Q # {0}. Along
with this result, we can adapt the proof of Proposition 2.28 of studies of
Randriambololondrantomalala [15] and assert that [Q, Q] = Q.

Let’s recall an Hartogs’s extension theorem and Riemann extension
theorem.

Theorem 2.2. (Hartogs [16]) Let be t > 2 and D be a bounded
domain in C'. In addition, K be a compact subset of D such that D — K
is a connected set. Then all holomorphic functions f over D — K can be
extended holomorphically to D.

Theorem 2.3. (Riemann extension theorem) Let U be an open set
in C and z, € U. If f:U~{2}—C is holomorphic function such that
z, is a removable singularity of f, then f can be extended into an unique
holomorphic function f in Uwhere f(z,)= lim.:, f(2) -

Theorem 2.4. In holomorphic case, all m-derivations of Q, L, and
of N are Lie derivatives with respect to elements belonging to N. In real
analytic one, we have the same results if B = M.

Proof. We can prove this assertion over B by Theorem 2.1 of
studies of Randriambololondrantomalala [8] using Proposition 2.1 and
partially Theorem 3.7 of literature of Randriambololondrantomalala
[10]. For the corresponding extension theorem over M, we adopt
the following arguments. We know that B is dense over M, then the
restriction of B in each domain of a chart U is dense over U (U is a
bounded set). The complement of this BNU in U can be considered as
a compact set of the chart such that BNU is connected. In holomorphic
case, when 7 > 2, we use Hartogs’s theorem in a domain of the chart, so
the extension theorem over M holds. If n = 1, we know by the isolated
zeros principle that the domain of chart contains only a finite number
of zeros in the corresponding restriction of B. By continuity at these
zeros, which are removable singularities, the Riemann extension
theorem can be used. Of course, if B = M in real analytic situation, the
extension theorem is applicable.

Definition 2.5. The complexification of a real analytic manifold
M is a holomorphic manifold H such that there is a real analytic
embedding £ M > H where H has a holomorphic atlas (U,.¢,), and
o,(f(M)nU,)=¢,(U;)nR". We have a Stein complexification if H is
Stein.

The next theorem is due by Grauert cf. [4,12].

Theorem 2.6. Every real analytic manifold has a Stein
complexification and can be analytically properly embedded into an
Euclidean space R" .

The following complexification of a Lie subalgebra G of the real
analytic vector fields Lie algebra of M is in the following sense: if M can
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be embedded in a holomorphic manifold H, the complexification G of
G in His such that G, =G -

Theorem 2.7. If the complexification of Q) in a Stein space T is still
an involutive distribution, then the first result of the Theorem 2.4 holds
in real analytic case.

Proof. We use the complexification of M on a Stein space T.
Consequently, let be o the complexification over T of Q. Recall that
Q is an involutive distribution over T where its normalizer on x(7)
is denoted by N,. So, all m-derivations of Q, of L, and of N have their
complexified m-derivations over T on respectively ¢, the Lie algebra
of all foliation preserving vector fields Z; on T and N,. By the results
of Theorem 2.4, these last m-derivations are Lie derivatives with
respect to elements belonging to N,. We can affirm that M, =9 and
L;,, =L; by Qu =Q. Thus, we have the same result as in the first part
of Theorem 2.4.

By definition, the first space of Chevalley-Eilenberg’s cohomology
of a Lie algebra A denoted by H'(A) is Der(.A)/ad, with Der(A) the
Lie algebra of all derivations of A and ad , the set of inner derivations

of A.

Throughout this paper, we suppose that all hypothesis of Theorem
2.7 are satisfied or B = M, in real analytic case.

Following ideas of Theorem 3.7, Corollary 2.14 and Remark 2.15 of
literature of Randriambololondrantomalala [10], we state

Corollary 2.8. The first space of Chevalley-Eilenberg’s cohomology of
Q, L, and of N is respectively isomorphic to the following respective Lie
algebras, N/Q, N/L, {0}.

Remark 2.9. By Theorem 2.4, we deduce Theorem 3.2 and 4.1 of
studies of Grabowski [5].

The m-derivations associated to a distribution over a subring
of F(M)

Let be an atlas of M such that Q) is locally spanned by (i‘) over
T Jisisn

the ring F, of real or complex functions depending only on (x");c ;<

with respect to the atlas (where 1 < k < n). We can consider Q to be
a Lie algebra which commutes with a system S of commuting vector
fields by the usual bracket. That is to say, S={X,,...,X,} such that
[X,,X,] =0 and Sislocally of rank n — k (0 < g < n). It is easy to check
that [Q,Q]=Q because of Randriambololondrantomalala’s [8] result.
So with the same reason, every m-derivation of Q is local. Moreover,
the normalizer N of Q) is locally isomorphic to Q@ g/(n—k,R or C) asa
vector space. We consider the closed 1-differential forms o’ and w' over
a (n — k)-dimensional distinguished connected chart of the generalized
foliation generated by S, where i=k+1,...,n and an m-derivation of
Q, Dl = (aj +w ) ® % such that ker(w’)> F,(U) <i> and

k+1<j<n 07" [ \<ici

. 0 . . . 0
ker(a/)DFo(U)<ax, >k+l£i£n (S in this chart is {@}mgsw F(4)

denotes a module spanned by A over a ring F) cf. [8]. We have omitted
all singular charts of the foliation because the open set R of all regular
points is dense over M cf. [10], we have no problem for the extension
of our results from R towards M as in the previous section. By adapting
Theorem 3.12 of literature of Randriambololondrantomalala [8], we
obtain easily

Theorem 3.1. All m-derivations of Q (resp. of ) are a sum of a Lie
derivative with respect to one element of M and a derivation D" as
denoted before (resp. are similar to m-derivations of Q).

Hence, adopting the arguments of Theorem 3.19 of studies of
Ravelonirina [17], we hold the following

Corollary 3.2. When the rank of S is a positive constant n — k, the
first spaces of Chevalley-Eilenberg’s cohomology of Q) and of N are both
isomorphic to (H,(B))"" X(R“’“z*””‘ or (C‘"’“z*”’k) with H, (B) is the de
Rham cohomology of foliation basic forms of M.

As we know, we can split the above Q into a semi-direct sum of
Lie algebras Q and Q} as in studies of Randriambololondrantomalala
(8], where they are modules on the ring F (M) of constant functions
over the leaves relative to the above generalized foliation. We notice
that QF is spanned by S on F (M). We can reason on a distinguished

chart Uwith the coordinates (x),,., . The F,(U) is the set of all analytic

functions depending only on (x),.; » QIS‘U is spanned by (60’ j
o X 1<isk

2 —
and Qg by |5y ey O0 F0U)

Now, we discuss the m-derivations of Q). The normalizer
N' of this Lie algebra can be written as a direct sum of Lie algebras

n' = [QLQ‘SJ ®[Q,Q], where Q is the centralizer of Qf in (M) and

ox'

ring of all analytic functions depending only on (x'),, ., ). By a

1 . 0
the center of € is zero (Q is locally spanned by [7] on the
k+1<i<n

similar argument of Nakanishi [18], we deduce that all m-derivations

of N' are a direct sum of those of Q) and of Q. By Theorem 2.4, it’s
clear that

Theorem 3.3. Each m-derivation of Qf (resp. of ') is a Lie
derivative with respect to an element of N'.

The normalizer of € is locally the sum of the F(U) -module

o i
spanned by 77 and a vector space generated by * ¢ . Thatis to
1<I<n k+1<i, [<n

say, its normalizer is 91. In addition, its centralizer is QF itself. Because

of [Qi,QS] ={0} or Q; is nilpotent of order 1, we obtain easily
Theorem 3.4. Every endomorphism of @ is an m-derivation of Q.
So, it’s immediate that

Corollary 3.5. The first space of Chevalley-Eilenberg’s cohomology of
Qy, Q; and of N' are respectively isomorphic to the following respective
Lie algebras, M'/ Q! , End(Q5)/Q5 ) {03,

Let’s consider € the Lie subalgebra of Q), spanned by X, over aring
Fc F(M). That is to say, F is locally the set of all analytic functions
depending only on (x'),.., where0<I<k+1 (resp.k+1<I<n+1).

When F = F(M) (resp. F=F,(M)), it is a special case of Lie algebras
defined in Theorem 2.4 (resp. in Theorem 3.1) when the submodule is

generated by X In the distinguished local coordinates, ©Q is spanned

0
by ( ) over F. The normalizer 9° of Q coincides with the
k+1<j<n

o’
sum of Q5 and Q! where the element of this last one is locally the
i 0, i d
following analytic vector fields / (#'./<t<k)—+g' (@ 1<t<k)—
1<i<k 1<j<i-
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resp. fi(z',1<t < k)i,+ W' l<t<n)’ ij . In the first case, we can

<i<k k1< j<i-1

adapt Theorem 2.4 because all analytic functions depending on (x f)
where k+1< j<n, are in the base ring of €5 . In the following case, it is
easy to see that Theorem 3.1 can be adapted to Q5. Thus

Theorem 3.6. In the first case, every m-derivation D of Q} is a Lie
derivative with respect to a W’s element; in the second, it is a sum of a Lie
derivative of an element of 9 and a D analogous to that of Theorem
3.1. In addition, the corresponding extension theorems hold.

Corollary 3.7. The first space of Chevalley-Eilenberg’s cohomology of
Q) is respectively isomorphic to Qf in the first case;

Q; ® ((HR (B'))HH % (R(M)(HH) ou (C(I—k)(l—k—l)))

in the other one if S has a constant rank (€ is a module direct sum and
B’ is the set of the corresponding foliation basic forms of M).

When we regard all the above normalizers on a distinguished
chart, they contain locally all constant fields and Euler vector field. So,
we ask one question: could we adapt Theorem 3.6 and Theorem 3.9
in [7] to these normalizers? The following remark shows us that this
argument is false.

Remark 3.8. On R’ we consider the Lie R-algebra A spanned by
0 9 90 & 0. 8 8 ,,0 ,0 ,8 ,,0
or 0y’ 02 anrya—erza,yg,(y) a,e a,ye a,ye IR
Lemma 2.3 of literature of Randriambololondrantomalala [10] is not
true for A, so the arguments proposed in the proof of Theorem 3.6 of

Princy [7] don’t hold in this situation.

Whereas, let P be a Lie subalgebra consisting locally of polynomial
vector fields in (M), where the Euler vector field and all constant
vector fields are locally in P. Especially, M is not supposed to be a Stein
in the holomorphic case. Let’s recall a well known theorem,

Theorem 3.9. (The maximum principle) [12] Let be M a connected
holomorphic manifold and f a holomorphic function on M such that
‘f(z)‘ < V(Zo) , where z, € M for all z € M; then f is a constant function.

One consequence of the maximum principle is the following, if
the holomorphic manifold M is compact, every holomorphic function
on M is constant in every connected component of M. We know that
M is locally connected, then each function over M is locally constant.
Therefore, it’s clear that if M is a compact and connected holomorphic
manifold, the ring of all holomorphic functions on M is the complex
constant functions ring. It’s confirm that results of the following
theorem complete our study about an involutive analytic distribution
when F(M) is reduced to C.

By adapting Randriambololondrantomalala’s [7] theorems and
taking account that the vector field found in the proof of Theorem 3.6
of Princy [7] is analytic, it follows that

Theorem 3.10. When m is even, all m-derivations of 3 (resp. of the
normalizer N'of Bin y (M) ) are a Lie derivative with respect to one and only
one vector field belonging to N (resp. to the normalizer of N'in y(M) ). If
m is an odd number, they are sum of a Lie derivative with respect to one
element of N (resp. of the normalizer of N) and an m-derivation of local
homogeneous degree -2 of B.

So, taking into account: the vanishing of the centralizer of I3
cf. [19] p.91; both the proofs of Theorem 2.12 of Ravelonirina [19],

Corollary 3.12 of Randriambololondrantomalala [7] and Theorem 3.7
in literature of Randriambololondrantomalala [10], we obtain

Corollary 3.11. The first space of Chevalley-Eilenberg’s cohomology
of B, of N'and of N is respectively isomorphic to the following respective
Lie algebras N'/ 3, N / N, {0}, where N is the normalizer of N.

Illustrations
Some illustrations of our theorems are given in this section.

Example 4.1. It’s clear that Theorem 2.4 works well on the Lie
algebra of all analytic vector fields y(7) , thatis to say, all m-derivations
of y(M) are Lie derivatives by elements of y(M). We can define the
Lie algebra of compactly supported real analytic vector fields C and this
theorem holds for this last one. In particular, H'(¢)= y(M)/¢ for a
non-trivial €. More, H'(¢) = {0} ifand only if M is compact. Obviously,
we can use the above cited theorem on the Lie algebras of vector fields
relative to a generalized foliation over M. We can cite some well known
Stein spaces, C", an open poly-disc in C”, non-compact Riemann
surfaces, ... and build our results in these.

Example 4.2. Let be S? a holomorphic compact connected
manifold. It’s not a Stein manifold nor a submanifold of C* for any u,
it’s a compact Riemann surface. We choose the modified stereographic
coordinates over this manifold. The S* has an atlas composed by two
charts (U, z) and (V, z,) with the overlap map y(2)=2" in UN V. We
remark that the Lie algebra L of vector fields on M spanned over C by
Y, Y, and Y, is the one of all polynomial vector fields in S* where

il in U , 0
.oz —(2) — in U
Y - > y R
2y2 O 2+ >
—(z in vV
) 02* 6% in ¥V
—! i in
Y, oz . By Theorem 3.10, all m-derivations of L are Lie
0
2= in V
02*

derivatives with respect to a vector field in LL itself. That is to say, if D is
an m-derivation of L defined by D(Y,)=a'Y,, D(Y,)=BY,, D(Y,)=7r'Y;;
we have D= L,ylyﬁyzyzwlyz .

When we look at S? as a real analytic manifold, we set the charts
(U,(z',2%) and (7,(y',y*)) with the overlap map

1 2
ooy z 2 _ z
¢(‘T »T ) [y (xl)2+(1,2)2 Y (./I;I)Z+(‘/I;2)Z]‘
LR
T €T
We set the real analytic vector field s : 2 2 on $?
yl—l+ Z—Z inV
oy %y

and the Lie algebra A of real analytic vector fields which commute with
Y,. This 2 consists of real analytic vector fields Y such that

z? z! o .
F‘[?]IIEJJ{TZ]IZW inU
2 1
F{y—,jyli,+ﬂ[%j?iz in
y )" oy Yy oy
whereinthe UN V,

F [4] = % [—ZFz [y*l] +H [ijj](yz)z - [gj(yl)z and
Yy ) +@) y Yy y
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F, [y*;j = % (—2171 {ij +F, [%D(y' Y -F, [y*;] W)
y ) +@) Yy y Yy

with F,_are arbitrary convenient functions of one variable. So, we can
apply all theorems in Section 3 to 2. Particularly H'(IL) = {0} and
H'(A)= H(B)xR*.

Example 4.3. Indeed, Theorem 3.10 can be applied to a polynomial

vector fields Lie algebra on the real analytic manifold R” or the Stein
manifold C” having the corresponding hypothesis.

Example 4.4. We set the Lie algebra A over the Stein manifold C?
aali , O 3 Za(Zz)Zil.The
0z

0
—, =, +2 ==+ =, =
02" 02" 07 07’ 027" a2’

normalizer of A is N, = A + R, where R is the space over C generated

by z‘il,zz ip; i},zziz,fil- It is permit to use Theorem 3.10
0z 0z 0z 0z 0z

and when m is even, every m-derivation of A is inner on ./\/:] If mis odd,

the m-derivation is a sum of an inner derivation on J\/; with a C-linear

map D defined by D((Zz)2 %):

spanned over C by 5,

a P which is zero otherwise («
z

€ C). Moreover, all m-derivations of ./\/0 are inner for all m > 2. So,

H‘(A);R®<zl%”2%”3%> and H'(N) = {0}

Remark 4.5. In the following example, Theorem 3.10 cannot be
applied. We take the 2-torus T? = C/(Z+iZ), which is a holomorphic
connected compact manifold cf. [20], it’s not a Stein. All overlap maps
are translations, that is to say, they are holomorphic. We can define
globally the Lie algebra of all constant vector fields Q on M and find
that £ is the Lie algebra of all holomorphic vector fields over M. All
endomorphisms of each Lie subalgebra of £, which is inevitably
nilpotentof order 1,are m-derivations of this subalgebra. The normalizer
of this subalgebra or its centralizer is the Lie algebra of all vector fields
over T2 But H'(Q)=End(Q)/ad, and H'(y(M))=End(y(M))/ad

since H'(y(M))={0} in smooth cases.

2(M)
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Editorial Open Access

A Meeting of Great Minds, Sophus Lie and John Nash throughout their

Works

Randriambololondrantomalala P*

Faculty of Science, Department of Mathematics and Computer Science, University of Antananarivo, Antananarivo 101, BP 906, Madagascar

Keywords: Lie; Nash; Differential geometry

It is well known that Marius Sophus Lie (1842-1899) and John
Forbes Nash (1928-2015) are great mathematicians. Sophus Lie comes
from Norway and John Nash from United States of America. Their
stories have certain resemblances and remarkable relations. This
editorial would emphasize some of them. When they have started their
university studies, their respective first interests were not mathematics.

That is to say, Lie has been in Astronomy and Nash in Chemical
Engineering. Whereas, when they worked on mathematics, the first had
Lobatchevski award in 1897 and the second, Nobel prize 1994 and Abel
award 2015 (Niels Abel is the uncle of the wife of Sophus Lie: Anna
Birch). In addition, their contributions in geometry are considerable,
particularly in differential equations. Lie worked on transformation
groups relative to partial differential equations, in other words, on Lie
groupsand on special non-associative algebras named Lie algebras. Nash
discovered an important isometrically embedding theorem for a C*-
Riemannian manifold into an Euclidian space (k=1,3,4... ), by studying
an undetermined partial differential equations. Now, the methods they
used offer us an important tool for continuing researches in differential
geometry and in other fields cf. [1-9]. Next, these exceptional persons
have continued to put more efforts into their mathematics works, even
if they had a serious health problem in the middle of their careers. We
hope that several mathematicians continue to make profits from results
of Lie and Nash for the mathematics’s promotion.

This special issue “Recent Advances of Lie Theory in Differential
Geometry, in memory of John Nash” honored both Sophus Lie and
John Nash as well as their works. John Nash died recently with his
wife in a car crash on May 23, 2015. We are grateful regarding their
contributions in differential geometry, generally in mathematics.
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Sur les algebres de Lie associées a une
connexion

Princy Randriambololondrantomalala, H. S. G. Ravelonirina
et £ M. Anona

Abstract. LetT be a connection on a smooth manifold M. In this paper we give some properties of T
by studying the corresponding Lie algebras. In particular, we compute the first Chevalley-Eilenberg
cohomology space of the horizontal vector fields Lie algebra on the tangent bundle of M, whose the
corresponding Lie derivative of T is null, and of the horizontal nullity curvature space.

Résumé. Etant donné une connexion I' sur une variété différentiable M, dans ce papier on se pro-
pose de donner quelques propriétés de I' en étudiant les algébres de Lie associées a cette connexion.
En particulier, on calcule le premier espace de cohomologie de Chevalley-Eilenberg de la partie ho-
rizontale de l'algébre de Lie des champs de vecteurs sur le fibré tangent de M dont la dérivée de Lie
correspondante de I' est nulle, et de I'espace de nullité horizontal de la courbure.

Introduction

Nous avons étudié dans [1-3] certains types de sous-algebres de Lie de champs de vec-
teurs sur une variété différentiable M de classe C*. Dans ce papier, nous proposons
quelques propriétés d’'une connexion sur M en étudiant certaines algébres de Lie qui
lui sont attachées.

Soit I une structure presque-produit sur le fibré tangent T M, ot I'* est égal  T'iden-
tité. Cette structure est une connexion au sens de Grifone définie sur M, cf. [5]. La
donnée d’une telle connexion réalise une décomposition de TTM du fibré tangent
de TM en une somme directe despace horizontal h(TM) et despace vertical v(TM),
ou h et v sont respectivement le projecteur horizontal et le projecteur vertical de la
connexion correspondant a la valeur propre respective 1 et —1. Soient TM le fibré tan-
gent TM privé de la section nulle, et R la courbure de I'. On s’interesse a l'algébre de
Lie 2 des champs de vecteurs sur TM dont la dérivée de Lie correspondante de T est
nulle, f. [6], et a Palgébre de Lie de lespace de nullité horizontal de la courbure 9t%. On
étudie le premier espace de cohomologie de Chevalley-Eilenberg de lespace de nullité
horizontal de la courbure. On donne quelques propriétés de la connexion a partir du
normalisateur de D% et a partir de lespace de cohomologie de Chevalley-Eilenberg
de 2(r. En effet, on peut appliquer un résultat dans [2] pour le calcul cohomologique

Regu par la rédaction le 8 aott 2013.
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de lespace de nullité horizontal. En utilisant certaines propriétés d’'une distribution
de classe C*, on trouve que la partie horizontale du normalisateur de D% est égale
a M si et seulement si la connexion est plate. isomorphisme (en tant que module)
entre le premier espace de cohomologie de Chevalley-Eilenberg de 9% et la partie
verticale du normalisateur de 9 dans y(TM) est équivalente a la nullité de la cour-
bure. Lintersection de 2( avec lespace de nullité de la courbure 91z est un produit
direct de Palgebre de Lie 24! des champs de 21 dans lespace horizontal et de Palgébre
de Lie 2% des champs de 2 dans lespace vertical. En particulier, l'algebre de Lie A%
coincide a l'intersection de la distribution 91z avec lensemble des champs horizon-
taux projetables. Compte tenu du fait que A% est une distribution involutive de M,
les résultats de [2] sappliquent a 2% Ainsi, lidéal dérivé de 2L est A% lui-méme. Si
pour tout x € TM, il existe X € A tel que X(x) # 0, alors le centre de A% est ré-
duit a zéro. Alors le premier espace de cohomologie de Chevalley-Eilenberg de 2A%
(resp. du normalisateur quotienté avec le centralisateur de 2% dans y(TM)) est égal
au quotient de ce normalisateur avec 2% (resp. a {0}). Par ailleurs, on trouve quun
champ de vecteurs est un élément de 2(r si et seulement s’il laisse invariant les sous-
espaces propres correspondants aux valeurs propres de I'. La partie verticale 2} est
le centralisateur de l'algébre de Lie engendré par tous les champs horizontaux et pro-
jetables. On en tire que le premier espace de cohomologie de Chevalley-Eilenberg
de l'algébre de Lie A N Dk est le produit direct des premiers espaces de cohomolo-
gie de Chevalley-Eilenberg de A et de 2%. Cet espace de cohomologie est nul si et
seulement si la connexion est plate. De méme, on a [équivalence entre la nullité de la
courbure et la nullité de la partie verticale du centralisateur de A} dans y(TM).

2 Préliminaires

Dans toute la suite, M est une variété différentiable de dimension n, TM est le fibré
tangent de M. On note TM le fibré TM privé de la section nulle. Tous les objets uti-
lisés sont supposés C* sur M ou sur TM, sauf mention expresse. Lensemble y(M)
(resp. x(TM)) désigne l'algébre de Lie des champs de vecteurs sur M (resp. sur TM)
avec le crochet habituel de champs de vecteurs. On notera dans la suite par 2 un iso-
morphisme d’algebres de Lie.

Un sous-ensemble S de y(M) (resp. x(TM)) vérifiant (H) signifie que pour tout
x € M (resp. x € TM), il existe X € S tel que X(x) # 0. Une distribution sur M
(resp. sur TM) est un F(M)-sous-module de y(M) (resp. F(TM)-sous-module de
x(TM)). On adopte la convention d’Einstein sur la sommation d’indices, sauf men-
tion expresse.

Définition 2.1 On a une suite exacte de fibrés vectoriels sur TM, cf. [5] :

0> 7 (TM) > TTM % 7*(TM) - 0,

ou m: TM — M la projection du fibré tangent a M ; P: TTM — TM la projection du
fibré tangenta TM, i : linjection naturelle; j = (P, 7, ) ol 7, est lapplication linéaire
tangente de 7. Lapplication ] = i o j est la structure tangente sur T M.
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Définition 2.2  On appelle connexion au sens de Grifone sur M, cf. [5], une 1-forme
vectorielle I de TM, C* sur TM — {0} telleque JT = J,TJ = —].

On a l¢égalité T? = T ot I est lapplication identité de y(TM) et T a deux valeurs
propres 1 et —1. La connexion ainsi définie est une structure presque-produit sur 7M.
Le projecteur horizontal (resp. le projecteur vertical) de ' est défini par h = Z(I+T)
(resp. par v = 2(1-T)).

Une connexion I' permet dobtenir une décomposition de TTM, le fibré tangent
de TM, en somme despaces horizontal et vertical :

TTM = H(TM) & V(TM)

avec
H(TM) =Im(h) =Ker(v) et V(TM)=1Im(v)=Ker(h).
Dans tout ce qui suit, I' est une connexion au sens de Grifone.

Définition 2.3 La courbure de la connexion I' est définie par la 2-forme vectorielle
R=-1[h,h] ou

1
E[h,h](X, Y)=[hX,hY]+h[X,Y]-h[hX,Y]-h[X,hY], VX, Yex(TM).
En coordonnées locales (x’, y/) de TM, T sécrit dx' ® ai,- —Zl"fdxi ® % -dy'® a%,»,
cf [5]:
1. . 9 ) ) or! oTi
- _pi j k \ i k _ J 1] l k
R 2Rjkdx ANdx" ® oy ou  Rj S 9k +Fk—ayl J—ayl.

Lespace de nullité de la courbure de T est

MNrp={Xexy(TM) telque R(X,Y) =0,VY € x(TM)}.

Lespace D1y est une distribution de TM. Comme la courbure R est semi-basique,
espace vertical est inclus dans 9. En général, lespace de nullité I nlest pas involutif,
comme le montre lexemple suivant.

Exemple 2.4 Soient M = R?, (x', y")1<ic3 le systéme de coordonnées dans TR?
et T une connexion linéaire au sens de Grifone telle que I} = x?y°, I} = x'y?, et les
autres nuls. Les coefficients de la courbure R sont R} | = y°, R}, = -y, et les autres
nuls.
Lespace de nullité de la courbure 91y est
2 0 0 ; 0
Ne(y® #0) = {%)@@ fX layi}

et
X’ 9 0 ; 0
3 _ _ 2 3 i 3 _
Nr(y —0)—{(}/ 3 o +X —ax3+Y Byf)(y —0)},

ot les X’ et Y’ sont des fonctions C* de R*. Le crochet de champs de lespace de

nullité ai;ﬂ et yzﬁ + y%%s est %, nappartenant pas a g.
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Remarque 2.5 Sin =1, compte tenu de 'antisymétrie de la courbure, la connexion
est trivialement plate. De méme, si n = 2 et si on suppose que Nk # {0} alors la
connexion est plate.

En tenant compte de la remarque précédente, on suppose dans toute la suite que
n>2.

3 Etude de quelques algebres de Lie rattachées a I’espace horizontal
Définition 3.1 TLespace de nullité horizontal est défini par 9% = Mg N h( x(TM )) .

Dans [8], on a montré que cet espace de nullité horizontal est involutif. Ici, on
s'intéresse sur quelques algébres de Lie qui sont liées a .

Proposition 3.2 S’il existe un sous-ensemble de lalgébre de Lie des champs de vecteurs
projetables engendrant la distribution %, alors Ny est involutive.

Démonstration Comme les N et v( x(TM )) sont des distributions involutives et
que le module Ny = N & v( x(TM)), il suffit de vérifier que [ N, v( y(TM)) ] est
une partie de Dg. Cest le cas, car cet ensemble est inclus dans v( x(TM )) c Mg par
le fait que 9% soit engendré par des champs projetables. ]

Définition 3.3 Une dérivation D d’une R-algébre de Lie A est une application R-
linéaire de A dans A telle que VX,Y € A, D[X, Y] = [D(X), Y]+ [X, D(Y)].

Définition 3.4 On appelle premier espace de cohomologie de Chevalley-Eilenberg
d’une algebre de Lie A, cf. [9], lespace quotient H'(A) = Der(A)/ad(A) ot Der(A)
(resp. ad(A)) est lensemble des dérivations (resp. des dérivations intérieures) de A.

Théoréme 3.5  Lidéal dérivé de N coincide a M. Si lalgebre de Lie M vérifie (H),
le centralisateur de M est nul et, si on note Ny le normalisateur de % dans y(TM),
alors

H'(ME) = Np/Nk et H'(Ng) = {0}.
La partie horizontale du normalisateur de % coincide avec MY si et seulement si la
connexion est plate.

Démonstration Lalgébre de Lie 9% est une distribution involutive de classe C*
de TM, alors la premiére partie des résultats découlent directement de ceux de [2,
pp. 140-141].

Si la connexion est plate, alors il existe une structure de feuilletage régulier § de
dimension n sur TM, cf. [6, p. 6], telle que % est égal a lalgebre de Lie Ly des champs
de vecteurs tangents au feuilletage. Le normalisateur de L coincide a I'algébre de Lie
des champs infinitésimaux de §. Ainsi, en utilisant la propriété du feuilletage, la partie
horizontale de ce normalisateur est 915.

Rappelons qu'un point x d’une variété différentiable est un point régulier d'une
distribution A §’il existe un voisinage de x tel que la restriction de A sur ce voisinage
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est réguliére (ou de rang constant). Réciproquement, on suppose que la connexion est
non plate. Lensemble des points réguliers d'une distribution est un ouvert dense dans
la variété ou elle est définie. Comme TM est localement connexe et la courbure est
non nulle, alors il existe un ensemble ouvert de TM ot le rang de la distribution est
une constante 0 < k < n — 2. Par suite, on peut trouver une carte adaptée de systeme
de coordonées (x*, y') o N% est { X' % }<i<k- Ainsi, le normalisateur sur cette carte

ient I J(xt i VAN J(xt i AN
contient lensemble des X/ (x*,i #1,...,k; y )axi kHSanJrY (xitl,....ky )ayi'

jo(vi ; N i srjo 9 . s

Donc, X7 (x',i #1,...,k; y )670 - I‘J.OXJOB—W. avec jo > k + 1 sont des éléments de

la partie horizontale du normalisateur de 9% dans cet ouvert. Par suite, #(Ng) est
différente de MN%. ]

En utilisant la décomposition de Ny en une somme directe de modules h(Ng)
et v(Ng), on a le suivant.

Corollaire 3.6 La connexion est plate si et seulement si le premier espace de coho-
mologie de Chevalley-Eilenberg de % est isomorphe (en tant que module) & la partie
verticale du normalisateur de W% dans y(TM).

Remarque 3.7 1l est & noter que la partie horizontale h(Ng) du normalisateur
de M est différente de lensemble Ny N h( x(TM )) . S'il existe une carte ott M4 est

derang k > O et ‘ﬁﬁ(l"fo) = {0} pour un k < jo < n et pour tout j, alors I est plate

si et seulement si Ny N h( x(TM )) coincide a 9. La démonstration de cette der-
niére assertion est la méme que celle de la deuxiéme partie du théoréme 3.5 mais avec
quelques petites modifications.

Définition 3.8 On définit I'algebre de Lie Ar = {X € y(TM) tel que [X,T] =0} ou
[X,T] = 0 veut dire que T'[X, Y] = [X,T(Y)] pour tout Y € y(TM). Localement, si

9
oxi?

et X=X a?ci appartient 3 A si et seulement §'il satisfait le systéme de 4n* équations
linéaires aux dérivées partielles, cf. [6] :

Wt
oxi  Toxk K oyi

(x")i=1,....2n sont les coordonnées naturelles sur TM, la connexion T = Fl.]dx’ ®

=0.

On essaie de déterminer les dérivations de 2y dont on examinera particuliérement
par la suite sa partie horizontale.

Désignons par A lensemble {X € Ay tel que h(X) = X} et par AL celui des X
appartenant a 2r tel que v(X) = X. En utilisant directement la définition 3.8, on a
Ar = Ay. La proposition sen suit.

Proposition 3.9  Tous les éléments de lalgébre de Lie Uy sont projetables.

Démonstration Soit X € Ay, daprés ce qui précéde VY € y(TM), on a Iégalité
[X,hY] = h[X, Y]. Comme h est semi-basique, alors il sannule sur lespace vertical,
cf. [5]; on obtient h[X,JY] = [X,h]JY] = 0. Et par lexpression de J, J/[X,JY] = 0
pour tout Y € y(TM). Alors X est projetable, cf. [6]. [ |
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Proposition 3.10  Les ensembles Ql? et Af sont des idéaux de Ar NNy et de Ar. Ces
idéaux forment un produit direct.

Démonstration Soient X € A% et Y € 2Ar, I[Y,X] = [Y,IX] = [Y, X]. Donc
[Y,X] €Al et A% est un idéal de Ar. Par ailleurs, A% est contenu dans A N Ng. En
effet, lexpression de R est

(1) R(X,Y)=[TX,TY]-T[TX,Y]+T%[X,Y]-T[X,TY], VY e y(TM).

Enutilisant I'[X, Y] = [X,TY],ona R(X,Y) = 0. Ainsi, il est immédiat que l'algébre
de Lie Ql? est un idéal de Ar N Np.

On raisonne de la méme maniere que précédemment pour 2.

Soient X € A et Y e A%, alors T[X, Y] = [X,T(Y)] = [[(X), Y]. On en tire que
[X,Y]=-[X,Y], et [X,Y] = 0. Dot le résultat. [ |

Remarque 3.11 On peut méme montrer que A est un idéal de tout sous-module
de Ar qui le contient.

Proposition 3.12  On note par H lensemble des champs horizontaux projetables,
alors AL = H® 0 N.

Démonstration D’apres la proposition 3.9 et la proposition 3.10, on peut montrer
que A% ¢ H nNg.

Soit X € H°n91g, un champ X € g signifie d'apreés lexpression de R que [ X, h]-
h[X,h] = 0.Orle champ X est projetable alors [ 1 X, h] = 0. Donc le champ horizontal
hX e A, = Ar. Comme X est horizontal alors hX = X. Ainsi X € Ql? et Hn9ig
AL, |

Remarque 3.13  On constate d'apres la proposition 3.12 que 'idéal horizontal A% est
inclus dans lespace de nullité horizontal, car il est I'intersection de lespace de nullité
horizontal et de lensemble des champs de vecteurs projetables. En général, A% nest
pas un idéal de 9Nk, Lalgebre de Lie peut étre réduit a zéro, cest le cas de celui de
lexemple 2.4.

Proposition 3.14  On suppose que lalgebre de Lie A% vérifie (H). On note par Cr le

centralisateur de A" dans y(TM). Alors la partie horizontale de ce centralisateur est
nul et Cr N A = AL

Démonstration Si X est dans ce centralisateur horizontal, alors [X, 2] = {0}.
D’aprés la proposition 3.12, lalgébre de Lie 2P est un F(M)-module; pour tout f €
E(M), [X, fAR] = X(f)AL = {0}. Par suite, X(f) = 0 car AP vérifie (H). Le
champ X étant horizontal, alors X = 0. Par ailleurs, dapres ce qui préceéde, le centrali-
sateur de A dans Ay est inclus dans sa partie verticale C%. Donc C% N Ar est contenu

dans Y. car €% est vertical. D’aprés la proposition 3.10, 2% commute avec A%, alors
Ql;ceerlr:G;Oer. |
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Définition 3.15 Le relévement complet de X € y(M) sur le fibré TM est noté X. En

coordonnées locales sur TM, (x*, y/)1<i,jen 00 X = X ai,. ,ona
; 0 10X’
=X'—+y —— aveci,j=1,...,n.
oxi 7 oxi oy’ /

Le relévement complet d’une partie A de y(M) est A = {X tel que X € A}.

Proposition 3.16  Soient lapplication I1: TM — M, le fibré des vecteurs non nul tan-
gent a M et I1,. son application tangente, lalgébre de Lie A% est isomorphe a TL, (A%).

Démonstration Daprés la proposition 3.12, T [, A% ] = [TL, (AL), [T, (AL)]. De
la relation [, A%] c A%, on a [TL, (AL), [T, (AL)] T (AL).

En considérant lapplication f:T1, () — IL.(2A) avec f(X) = X, on peut véri-
fier que f est bijective.

Ona[X,Y]=[X,Y]VX,Y e IL(AL), alors

[TL (Ap), T (Ap) ] = [T (AR), L (AP)]-

Ce qui donne [IT, (), IT, (A")] c I, (AL). Bt IT. (AL) est une algebre de Lie, et
IT, (A%) est isomorphe a IT, (2A1).

Par suite, soit la restriction de h suivante h:I1,(HO nNg) — AL 1 est facile
de montrer quelle est bien définie et surjective. On a de méme Ker(h) = 0 sur
I, (H® n9g). Donc cette restriction de h est bijective.

Le champ de vecteurs X étant projetable ; d’aprés la preuve de la proposition 3.12
ona[hX,h]=0eth[X,Y]=h[X,hY] pourtout Y € y(M). Ainsi R sécrit

R(X, T) = [hX, hY] - h[X, hT] = [hX, h¥] - h[X, T].

Si X,Y eIL.(AN), dapres ce qui précéde hX, hY € L. Par conséquent, R(X, Y) est
horizontal. Comme R est semi-basique alors R(X,Y) = 0 et h[X, Y] = [hX, hY].

On démontre alors que IT, (A%) est isomorphe & A% en considérant Iapplication
hof. ]

Proposition 3.17  On note par Ny le normalisateur de A% dans y(TM). On a désigné
par €Y. lensemble Cr nv( y(TM)), on obtient Ny = h(Nr) @ C}. en tant que module.

Démonstration Soient X! € A" et Y € Ny. En décomposant Y sur les sous-espaces
propresde I, ona ¥ = Y' + Y? avec Y' € h( x(TM)), Y? € v( x(TM)). Donc on
obtient que [Y', X'] + [ Y2, X'] appartient . Par ailleurs, les égalités suivantes sont
obtenues en utilisant directement la définition du champ de vecteurs Xj,

(YL, x']=[rv,, x'7=[v4, x']
et
r[Y% x']=[ry3 x']=-[v% x".
On en déduit que
3.2) T, X'+ Y2 X') = [YL X' - Y2 X' e A,
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Alors les [YY, X'] et [Y2, X'] sont dans A" et donc Y!, Y2 € Nr. Or 'image par T de
[YY, X'+ [Y% X"] est égal a [Y!, X'] + [Y2, X'] par définition de A%, Ainsi par la
relation (3.2) ona [Y?2, X'] = 0 et Y? € C}. Do le résultat. [ |

Proposition 3.18  Lalgébre de Lie CY est un idéal de Ny. On note par N le normali-
sateur de TL, (A) dans y(M), si lalgebre de Lie A% vérifie (H) alors les éléments de
h(Nt) sont projetables et

Nz Nr/e; .

Démonstration

* Le centralisateur Cr étant toujours un idéal de Nr ¢f. [4], on a une somme directe
de modules Cr = €I @ Y. De la proposition 3.14, on trouve que C}. est un idéal de
Nr.

s Soient Y € Ny et A vérifiant (H). D’apres le théoréme de Frobenius et la pro-
position 3.12, il existe en tout point de TM une carte qui le contient, de systeme
de coordonnées (x', y7) tels que Y(F(x")) = Yj%xxj’) c f(xi) et Y7 e F(x'), ot
F(x") lensemble des fonctions qui ne dépendent que des x’. Donc tous les éléments
de Nt sont projetables, ainsi que ceux de h(Nt). En utilisant la proposition 3.17, on
aNr = h(Np)®Cy. Alorsla restriction de IT,, IT.: N — IT, (N ) est un homomor-
phisme d’algébres et a pour noyau C}. Donc, lapplication IT,: Nr/C} — IT.(Nt)
est un isomorphisme d’algebres de Lie.

Montrons que TT,(Nr) = N. Si X € Ny alors IT,[X, %] c TI, (). Dapres la
proposition 3.12, [T, (X), I (A%)] est inclus dans IT, (2}). Donc, on en déduit que
H*(Nr) cN.

Réciproquement, si X € N alors de la proposition 3.16, [ X, IT, (})] < IT, (AL).
De méme, on obtient h[X, IT, (A8)] c AL Or X est projetable, par la preuve de la
proposition 3.16, on a

WX, IL(AR)] = h[ X, h(TL.(AR)) | = A[X, AF] c AL

Or AL c Ay alors K[ X, AL] = [AX,AL]. Ainsi [hX,A] c AL et hX € Ny avec
I, (hX) = X e N.Donc X € IT, (Nr) et N c IT, (N ). Dot IT, (N7 ) est égal aN. W

Théoréme 3.19 ([2]) Une distribution Q de M est involutive si et seulement si
[Q,Q]=0Q.

Démonstration Immeédiate en utilisant la proposition 2.9 de [2, p. 141]. ]

Théoréme 3.20

(i) Lalgebre de Lie AP (resp. Cr) est un idéal caractéristique de r et de Ny (resp. de
Nr). Plus précisement, on a [}, 2AL] = AL,

(ii)  Silensemble AL vérifie (H), alors lalgebre de Lie des dérivations de A% correspond
a la représentation adjointe de son normalisateur Ny et les premiers espaces de
cohomologie de Chevalley-Eilenberg sont :

H' (A7) = IL.(Np)/TL (A7), H'(Nr/Cr) = {0}



700 P. Randriambololondrantomalala, H. S. G. Ravelonirina et F. M. Anona

Démonstration (i) Il estimmédiat que A" est un idéal de Nr. De la proposition 3.12,
IT, (A) est une distribution involutive de classe C> de M. Donc en vertu du théo-
réme 3.19, on obtient [IT, (AL), [T, (A*)] = I, (AL). Par lisomorphisme de la pro-
position 3.16,on a [A%, A1 = AL, Alors A" est un idéal caractéristique de Ay et de Ny
d’aprés une démonstration classique de [4]. Par I'identité de Jacobi, la propriété de Cr
et le fait que 2P est un idéal caractéristique de Ny, Cr est un idéal caractéristique
de Nr.

(ii) Si AL vérifie (H), alors par isomorphisme, IT, (%) vérifie (H). D’aprés un
théoréme de [2], toutes ses dérivations sont des dérivées de Lie par rapport a un
champ du normalisateur N. En utilisant les isomorphismes de la proposition 3.16 et
de la proposition 3.18, toute dérivation de A est la dérivée de Lie par rapport a un
champ de Nr. Ainsi, dapreés [2], H'( IL, (A})) = IL.(Np)/IL(2A}), et H'(AL) =
IT, (N7 )/TL. (A) en vertu de la proposition 3.16. De méme, toute dérivation de N
est intérieure, alors H'(N) = {0}, et H'(Ny/€r) = {0} en appliquant la proposi-
tion 3.18. u

4 Propriétés de la connexion par I’étude de quelques algebres de Lie
qui lui sont associées

Proposition 4.1  Un champ de vecteurs X de TM est un élément de Uy si et seulement
si X laisse invariant les distributions généralisées définies par les sous-espaces propres
deT.

Démonstration Soient X € Ar et Y € h(X(‘J'M)) (resp. Y € v(X(‘J'M))). On
obtient I[X, Y] = [X,TY],donc T[X, Y] = [X, Y] (resp. T[X, Y] = -[ X, Y]).
Réciproquement, soit X € y(TM) préservant h( x(TM)) et v( x(TM)). Soit Y
dans y(TM), Y se décompose en une somme Y" + Y¥ avec Y" ¢ h(X(‘TM)) etY”
appartienta v( x(TM)).OnaT[X,Y]-[X,TY] = ([X, Y"]-[X,Y"]) - ([X, Y"]-
[X,Y"]) = 0. Dou le résultat. [ |

Proposition 4.2 Un champ vertical X est un élément de 2. si et seulement si X com-
mute avec tout champ horizontal projetable. Si on note par Ao lalgébre de Lie engendrée
par les champs horizontaux projetables, alors U} est son centralisateur dans y(TM).

Démonstration On sait que tout champ vertical peut sécrire comme /X avec X €
h( x(TM )) Lespace vertical est toujours involutif, alors JX est dans r si et seule-
ment si JX laisse invariant lespace horizontal.

Soient U un domaine d’une carte de systéme de coordonnées (x?, y*) de TM, et

X € h(x(TU)). Lensemble h( x(TU)) étant engendré par h( ai, ) sur F(TU). On

a[JX, fh( aii 1=(JX(f)) h(%) + fJX, h(%)] e h( x(TU)) pour tout f dans
F(TU) est équivalent a [JX, h(%)] = 0. Comme A po est un F(M)-module, alors
son centralisateur dans lespace horizontal est nul en raisonnant comme dans la pro-
position 3.14. Donc, son centralisateur est inclus dans lespace vertical. D’aprés ce qui
précede, A7 est le centralisateur de A o. |
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Théoréme 4.3  Si lalgebre de Lie Al vérifie (H), alors le premier espace de cohomo-
logie de Chevalley-Eilenberg de 2r NNy est le produit direct de ceux de A et de AY.

Démonstration D’aprés la proposition 3.10, 2 = 2% x 2. est un produit direct. En
vertu du théoréme 3.20, [2A%, A] = AL ; et de la premiére partie de la proposition 3.14,
le centre de A% est nul. Ainsi, dapres le lemme 3.7 de [7, p. 8], on a le résultat. ]

Théoréme 4.4  Le premier espace de cohomologie de Chevalley-Eilenberg de 2dr 0N
est nul si et seulement si la connexion I est plate.

Démonstration On suppose que toute dérivation de A N D1y est intérieure. Or, on
aAr NNy = AL @AY, alors en vertu de la proposition 4.2, A% = Ao, Sur un domaine
d’une carte U de coordonnées locales (x', y'), (Ugo)y contient chaque élément de

base de lespace horizontal aii -T/ aiyf' Comme lespace vertical est contenu dans g,

par suite, chaque % € (Mr)uy. Or (Ngr)u est une distribution de TU, donc y(U) c
(Mr) v, pour tout U. Ainsi, Mg = x(TM) et que R = 0. Cest-a-dire que la connexion
est plate.

Réciproquement, si la connexion est plate, la distribution A:x € TM +~ Imh,
est intégrable, cf. [6]. Pour cette raison, il existe une structure de feuilletage sur TM.
Par ailleurs, lespace de nullité de la courbure 9 est y(TM). Daprés la proposi-
tion 3.12, on a 2% = H°. En tenant compte du feuilletage sur TM, on peut affirmer
que A" = y(M). Et par la proposition 4.2, 2% est localement y(R"). Alors, a l'aide
de la proposition 4.3 et d’'un résultat de [2], le premier espace de cohomologie de
Chevalley-Eilenberg de 2Ar n 91 est nul. ]

Remarque 4.5 Ce théoréme est en partie une réponse a une question posée par
[6, p. 6] dans le cas ol la forme vectorielle est une connexion au sens de Grifone.

Proposition 4.6  La connexion T est plate si et seulement si le centralisateur de ],
dans lespace vertical est réduit a zéro.

Démonstration Dans le cas ol la connexion est plate, 2} est localement égal
a y(R™). Ainsi son centralisateur dans lespace vertical est égal a {0} dapres [2].
Réciproquement, par la proposition 4.2, Ao est inclus dans le centralisateur de 2(}. Si
le centralisateur vertical de 2(}. est nul, alors v(2Ago ) est réduit a zéro car 2} ¢ Ar. De
Téquation (3.1), R(X, Y) c v(go) pour tous X, Y € H®. Ona R(X, Y) = 0 pour tous
X,Y € H°. Par le fait que les éléments de H engendrent h( x(TM )) et que R est li-
néaire et semi-basique, alors R(X, Y) = 0 pour tous X, Y € y(TM). Do, la courbure
est nulle et la connexion est plate. ]

Remarque 4.7 La connexion est plate si et seulement si Ialgeébre de Lie AP

(resp. %) est engendrée par tous les champs horizontaux projetables sur F(M) (resp.
sur F(TM)).

Exemple 4.8 Soient M = R* de systéme de coordonnées dans TR* (xi,yi)lgjs4,
2 2 1
et I' une connexion telle que I} = —Z-¢*, I} = £, I7 = Z, et les autres nuls. Les
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coeflicients de la courbure R sont
2 1

R! :Lexl’ R2 __)
2175 2,1 4
et les autres nuls.
Les expressions X' et Y’ sont dans toute la suite des fonctions C* de TR*.
Lespace de nullité de la courbure 91 est,
0 0 )
3 4
Mg {Xa3 Xa4+Yayi}.

Ici, lespace de nullité est involutif car il est engendré par des champs projetables.

On a 3 3
3 4 0
nh {X S X }
Le centralisateur de ‘ﬁﬁ est réduit a zéro, son normalisateur est
d 0 Ao 0 N N0
Neg={X— +Xx*— + X' 3,x4 — +Y(x7,x .
K { ox3 " oxt (1*3 ) Jow T Y 9yt }

A
ot dans toute la suite, X (x') désigne que lexpression de X ne dépend pas de x'.
2

)/2 ay
partenant pas a la partie horizontale de lespace de nullité. Ce qui confirme que la
connexion est non plate.

Dans la suite, A désigne la classe déquivalence de A définie par un quotient d’alge-
bres de Lie.

On obtient H'(Ng) = {0}. Et H (M%) = Np/M% qui est

Le champ % — - =% est dans la partie horizontale de ce normalisateur mais n'ap-

; ) ; AL O
(Xl (280 5+ Y00 52
Lalgebre de Lie A" est donnée par

A = {X3(x )= XA )%}

Le normalisateur de 2] dans y( TR*) est donc

No = { X0 () 50 0 ) 4 K (£ 23,4) Y (o,

Ixct
Et le centralisateur de 2" dans y(TR*) coincide a
_ i t
(?r—{Y(x,y, ay"}'
Ainsi N1 /Cr est
0
{X3(xt)—+X4(x ) +Xll¢34)(x t#3, 4)—}

On a alors H'(Np/Cr) = {0}, et HI(Q[?) =TT, (N ) /TL (AF) est

,. 3
{ X3,y (x5 1% 3, 4)5}-
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Abstract

Let M be an N-dimensional smooth differentiable manifold. Here, we are going to analyze (m>1)-derivations of
Lie algebras relative to an involutive distribution on subrings of real smooth functions on M. First, we prove that any
(m>1)-derivations of a distribution Q on the ring of real functions on M as well as those of the normalizer of Q are
Lie derivatives with respect to one and only one element of this normalizer, if Q doesn’t vanish everywhere. Next,
suppose that N = n + g such that n>0, and let S be a system of g mutually commuting vector fields. The Lie algebra
of vector fields 2gon M which commutes with S, is a distribution over the ring F, (M) of constant real functions on
the leaves generated by S. We find that m-derivations of 2are local if and only if its derivative ideal coincides with
U, itself. Then, we characterize all non local m-derivations of 2. We prove that all m-derivations of 2 and of the
normalizer of 2L, are derivations. We will make these derivations and those of the centralizer of 2 more explicit.

AMS Subiject Classification: Primary 17B66, 17B40, Secondary 53C12, 53B15, 47B47, 53B40.

Keywords: m-derivations; Vector fields Lie algebras; Distributions;
Commuting vector fields; Generalized foliations; Compactly supported
vector fields; p-projected vector fields; Nullity space of curvature

Introduction and Preliminary

Let m be a natural integer greater than or equal to 2. We recall that
an m-derivation D of a Lie R -algebra 2[is an endomorphism of%{,
such that for all X, X,,....X, e

DX, [ X, [X, . X, ] ]| =[ () [ Ko [ X, 00X, ] ]+

A XD [X, o X, ] ]t

X[ X [D(x, )%, 1]
[ X[ [ X, D(X,)]-

This map is inner with respect to Lie algebra  if D equals to a Lie
derivative with respectto X e 98;if X € 2, itisan inner m-derivation. A
standard m-derivation Disasum of derivations of 2 and R -linear maps

of 2 into the center of 2 such that D[2L,[2L,[...,[2(,2]...]]] = {0}.

Is it sufficient to study derivation of Lie algebras? What is the
reason for studying the more general notion:” (m>2)-derivation™?
In other words, can we find (m>2)-derivations of vector fields Lie
algebra which are not derivations? In [1], we found m-derivations of all
polynomial vector fields Lie algebras P onR”, where P contains Euler
vector fields E and all constant vector fields. We remark that all these
m-derivations are derivations when m is even. If m is an odd number,
m-derivations are generally sum of derivations and m-derivations with
homogeneous degree -2. Over R?, we can take a simple example where

o 0 0 , 0
= Ez—,(2) — h
5% (2) axandt e R

—+

the Lie R -algebra is spanned by%

0 0
linear map D is defined by D{(Z)2 a) = aand vanishing otherwise. It

is a 3-derivation, but not a derivation. In [2], some graded Lie algebra
m-derivations are discussed. Here, we are interested in m-derivations
of distribution Lie algebra on an N-smooth manifold M over an M-real
functions ring. We know that all smooth vector fields can be locally
approximated to polynomial vector fields, so we think that all results in
[1] are naturally true in the case of distributions. But, the results which

follow are different. The differential operator theory see [3] is the main
tool throughout our proofs.

We denote by F(M) the ring of all real functions on M, ¥(M)
(resp.y(TM)) the vector fields Lie algebras over M(resp. over the
tangent bundle TM).

At first, we consider an involutive distribution Q over F(M). That
is to say, Q is an F(M)-sub-module of the module of all vector fields on
M. Assuming that the open set O, ={x € M/ Q(x) # {0}} equals M, we
are looking for characteristics of m-derivations of Lie algebras relative
to Q and applications of the obtained results on some remarkable
distributions. We propose to prove that each m-derivation of Q (resp.
of the normalizer in ¥ (M) of Q) is simply a Lie derivative with respect
to one and only one normalizer’s vector fields (resp. is inner). These
theorems can be extended where Oy is dense over M.

Secondly, let be N=n+g with n > 1 and ¢>0, S a system of g non-
vanishing vector fields which commute mutually. We know by results in
[4] that S yields a generalized foliation on M. We assume that all leaves
are regular and we notice that (M) , the ring of real smooth functions
which are constant on the leaves over M. Let U be a p-dimensional

adapted chart domain relative to the foliation and (U X7, y‘) (resp.
(U,x”)), where 1<a<n+q—p,1<i<pif p>1(resp. where
1 <a <n+gqif p=0). Then, there are two modules over F, (U) , AL (U)
spanned by [%) and 2 (U)generated by[dﬁ] . These

previous modules are Lie algebras such that 2 (U)is equal to the semi-

1<a<ntq-p
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direct product of these two algebras: 2 (U)=2(U)®A; (U) for all
distinguished U. We can say that 2 is a smooth distribution of M over
F, (M . Throughout this paper, we assume that this chart is (p>0)

-dimensional in the sense of the foliation, unless expressly stated. Our
aims are to characterize all m-derivations of 2l s» of the normalizer of
le and of the centralizer of le inX(M). The corresponding work
where S = {0} has been done in the previous section. Because of A $’S
lower central series constancy, which coincides with the module direct
sum of Ql‘s @ [Ql;,%lé , our work on these m-derivations is non-trivial.
The main results of this section are: every m-derivation is local iff the
derivative ideal of 2 ols A s itself, which is equivalent to the fact that
A (Fﬂ (M)>has non-vanishing element over the whole M. Moreover,
all m-derivations of 2 or of the normalizer 9 of 2 are sums of a Lie
derivative with respect to one {T} ’s element, of one local m-derivation
which takes its value in 2Agdepending on two non-vanishing
1-differential forms over 2 5> and of a non-local m-derivation of A s

. We give some recommendations for constructing all these non local
m-derivations. In addition, all R -linear maps of (S)the centralizer
of 2 into itself are m-derivations. We characterize all local R

-endomorphisms of (S)in the case where all elements of S are densely
supported or (S)is spanned by singleton, and those which are non
local. It is well known that the open set of all foliation regular points
is dense in M, then one can extend these results where the foliation is
singular and if the above 1-forms prolong smoothly on M.

Several applications of our results about Lie algebras relative to:
all vector fields, all compactly supported vector fields, generalized
foliations, 4 -projected vector fields cf. [5], k-nullity space of
connection curvature, and vector fields Lie algebras on TM commuting
with Liouville vector fields cf. [6]; are given at the end of this paper.

Throughout thisarticle, the Lie derivative with respectto X € x(M)
is denoted L. We adopt the Einstein index summation and suppose
that all considered objects are smooth.

The m-derivations of Lie algebras attached to Q

According the hypothesis about ), we can affirm that Q is a Lie
sub-algebra of (M) . A generalization of [7,8]’s theorems in the sense
of derivation or triple derivation can be stated as follows:

Theorem 2.1. All m-derivations of Q (resp. of the normalizer of Q0 in
x(M)) are Lie derivative with respect to one and only one vector field of
the normalizer of Q (resp. is inner).

Proof. Assume that x€M, IX €Q such that X(x)=0. By
Frobenius theorem, we find one chart (U, ,¢, which contains X

and local coordinate system (xl,-n,x" l,y) where szag Letting D
%

be an m-derivation of Q, we know that the Lie algebra spanned by
brackets of all elements in Q) is the derivative ideal of Q2 denoted by [();
Q]. Local behavior of D can be proved by adapting one of Proposition
24 in [7] and using that the derivative ideal of Q) is Q itself. Therefore DU‘

is an m-derivation of €, . Let’s give/ € F(U,), as we know, Qeszb.
0 o9 L pap 0. . . Y g

then D, (/ 87] =D (N5, +D°(/)7 ~is uniquely determined, where each Df
y )y o<ain OX

is differential operator over the trivial bundle U, xR cf. [3]. Thus, if

Z X.mim ‘(B'q “)‘EM +\/0-'i
ppoiaetz s Ot T Xty T oy

necessary we can writeD’ = , where A, B

are multi-indices corresponding to coordinates.
) \ o .0 ]

;0

v’ lyﬁ
definition of m-derivations and when fis replaced by monomials, we have:

x

Let’s apply Dy to ||, where x"= y. By

- Ifdeg(f)>2, D°(f)(0.....0)=0Oexcept for f = y?.
- Ifdeg(f)>1, D*(f)(0,...,0)=0except for f=yP(x',i=n)
where P (xi) are free X" monomials.

By reasoning as in the

0 |0 0 ; 0
1< P
—ay —ay —,y"P(x',i= n)—ay

dy
previous relation and the previous proof, to obtain the nullity of

previous, we compute

s, , Il It is easy, using both the

D ( yP(x' ))(0,...,0). By coordinates translations, we can affirm that
each D/, j =0 is a differential operator of order 0 and D° is a sum of
82

0.2
one of order 1 with one other X (ay) of order 2.

Computing in the same way as the previous calculus,

o o ) N
Du, jny' ‘a y[)fvﬁiyl glves.

-for £ =v,p __

f =y.D0 dy 8X(o.. 20,1,,0,...,0)

- for f = x/except j = n ,D/(1)=——"———(1, means 1 is in
. dy ’
Jj-th rank).

0 0 o°f 0

By these results, Dy, [f o =L oo, e ;[f gy]+ X" 0 j;z P

Consequently, » o 4
02 OF g . ..
D, =x" ®— is an m-derivation of the FU,) -sub-module

(ay) Oy

0 . ,0 |0 0 .0
spanned by—. Applying D to |y*——,|——,....,]=—,»""—|...||, we have
P Yy 8}/ pplying 0 dy dy dy 3}/
x"*(y = 0) = 0. By coordinate’s translations, we can write that

Xo,z =0.

We take Proposition 2.6 of [7] and we have D, =L

010 (0..00,0..0) 0

+
X o X

ox*
Following the arguments of the proof of Theorem 2.7 in [7], we end
the demonstration of the first assertion of our theorem. Taking that the
derivative ideal of Q) is Q itself into account, we can adapt the proof of
Theorem 2.12 in [7] to state the second assertion.

Remark 2.2. These theorems are correct if we consider O, to be
dense over M and if the corresponding vector of the Lie derivative
relative to the m-derivation cited by Theorem 2.1 can be smoothly
extended towards M.

The m-derivations of Lie algebras defined by 2

We know that nilpotency of order m—1 of g forces any
endomorphism of 2 to be an m-derivation. To avoid this triviality,
we prove that:

Proposition 3.1. The lower central series of U are constant and
1

equal to the module 2 @[QLS,Q@],

Proof. Thelower central seriesof  is determined by e’ (le ) =2

and forallp >0,

Q:p(gls):[msﬁﬂ (A )] cf.[1]. By Proposition 3.7 of [4], the
derivative ideal of %A is 2} @[Q(L,Qli] . From the linearity of brackets,
the Jacobi identity and the fact that 91; is an ideal of 5 We have
[9(5,[%'5 EB[QUSQ(;]H =2l ®[2},2(|. Then, we deduce the result.

We assume the following conventions about the indices,

i, jykefl,...,p},ab,c€fl,...,n+q— p}, and each index indexed by 0
is fixed.
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Proposition 3.2. Let D be an m-derivation of *Ugand U a domain
ofdzstmgmshed chart such that if X € 2 over U vanishes, then D(X)
over U on 2 is zero.

Proof. Let D be a such m-derivation and X an element of %
satisfying the above hypothesis. We assume that2(X),, =0, then it
exists an open set J containing z, such that the a-th component of
D(x )H; on V_is everywhere non zero. Let’s consider f € F, (M)such
that f, = (xa“)zwhere Supp(f)CU, and Y, X,,..., X, are elements of

0 . 0 0
Bn,’Xw: =X ’ -
Yy

=X — = .
m—1|V, I > mly, Ax
By definition, we obtain

DX [ 7. [ X, X,

Q[S with Y"V =

Xm]...m(z):[D(X),[ﬂ/,[/\’y...[X . ]”(z)+ [X.2](2) (1)

with Z € D/ contradiction.

Proposition 3.3. The centralizer ¢ of A ® [Qlls, ng] coincides with
the vector R -space (S) spanned by S.

Proof. Recall that

C={x e x(M)/[x,20 o2, 2] = (01},

Choose X €(C and let be U a distinguished connected chart
domain of the foliation. When p =0, we have X =0. For P >1 , we
putx, :X“%Jr)(”aiy,eev. By the fact[X,ng] ={0}, x* = (for all
a and each x" e (F(U)-F,(U))U(F (U)NF,(U))- Therefore, X, =0
and X = /'X, whereall /' € (F(M)fFO (M))U(F(M)ﬁ FO(M)). Assume
Y (gi)X, € [Ql's,mé] withg/x e,y e}, It’s
[l o[22 = 10ysov! (g) X, ()
Then all f” are in F, (M) and consequently they are constant, and C

is a subset of the [R -vector space spanned by S. The converse inclusion
is obvious.

known that

X/,:O for all giand Y.

Proposition 3.4. All non-local m-derivations of 2gvanish

onaly o[y, |and take their values in (S). Conversely, all R
-endomorphisms D of A  which have these properties, is an m-derivation
of . All theses maps are standard m-derivations.

Proof. To simplify, we pose a such m-derivation D. Then there
is X € and a distinguished chart domain U so that X, =0with
D( )(z €U)=0. Thus, we have an open set V_in U contammg
z, with D(X)everywhere non-vanishing. Recall that the center of
Agis the intersection of its centralizer with itself. We reason by
contradiction, we suppose that D(X) doesn’t belong to the center
of 2. By Proposition 3.2, we claim that on V,, the i-th component
of D(X) is everywhere non vanishing. So, this component is not
a constant function. Consequently, we can assume that its partial
derivative with respect to a x® is non-zero at z. Then, we consider
X,,...,X,to be elements of A such that Supp(X,)CUand

. 0 0
Xy ==X,y =

x0— X . = . m-derivation
Ix“ mlV; Hx“

By the
definition,
D[X [X,.[ %X,

X ,]H(z):[D(X),’Xz,[X3,,.,[X”H,Xm]..,m(z)+[X,Z](z)

where Z € le, we have a contradiction. Moreover, Proposition 3.1
and the previous result lead to nullity of D over A | Ag, 25|

It is easy to prove the last assertions of our proposition.

We can note immediately that,

Lemma 3.5. For all k>2, if D is a k-derivation of Lie a
algebra 2 then the center Cof 9 satisfies the following equation

[D(C),e* 2 ()| = {0}.
Proposition 3.6. Local m-derivations of U stabilize Ql§ .

Proof. We set a local m-derivation D, D, is still an m-derivation.
Without trivial case p = 0, let a, b, i be some fixed indices, we write

DU xb ai _ D[Cb 6( +Dijb+m+q*ﬂ 8
ay B 8){ o 8y/
and
(o o, o o 9
_lm—](szv =D b%, "7,'”, @ |- ,V .
=1 aPu [8)/] U lx 8y‘ [X o [x Ox° axa} ] a (32)

By using the equality (3.2), Lemma 3.5 and Proposition 3.3, we

deduce that each D, is constant.

Let f be an element of F, (U), we remark that

0

.0
o

_8)6” ol

f

*

c8 b8
8x" 'l

By mapping D), to (3.3) in the case where f is a polynomial of degree

greater or equal than two, the previous result and the fact that D/, is a

differential operator over U xR, prove that D, [ f le A5 (U)for

all 7. Furthermore, combining the previous results and the obtained

relation by
DU (Xb)Zib’ x”i’” s Ci a 2D b 8
ox ox* ox° Ox" 8y’
we see that D], = 0. Then, D, [ 6912 U)~

In addition,

Dy {fi‘]:DL

0
o' 1

axt’

.0 .0, 0
X=X =, —...
Ox* ox“ Oy

A3 (U) for all U.

and the previous statement lead to Du [f 8%}, €
Proposition 3.7. The Lie algebra Qlé is stabilized by m-derivations
of A
Proof. We deduce the result from Propositions 3.4, 3.6.
Theorem 3.8. We have equivalences between:
1. All m-derivations of U g are local.
2. Thereisan X € Agandh € Fy (M) such that X (h)(x)=0VxeM,
3. The derivative ideal of U, [U, U] coincides with 2 itself.

Proof. In2.=-1., we use the same reasoning as the one of the
proof of Theorem 3.11 in [4]. As for 1.= 2. we suppose that there is
an f ¢ F, (M)24 (F, (M)). Since S == 0, then it exists k such that X, is non-
zero on the open set U,, and g € F; (M)vanishing on U,  with fg)

So, it is immediate that the R -linear map defined by
0 if X e A-{Rfg X, },

DX)=1., ey j i
D'X, if X=fg X, where D’ € R forall j=1,...,q.
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is a non-local m-derivation when pf - . Thus 1. & 2..
We reason in the same way as in [4] for | < 3..

Remark 3.9. We assert that if the derivative ideal of 2 doesn’t
coincide with g, then it exists /' & F, (M) (Fo (M)) , zero on
the open set where one X, is non-vanishing. To realize a non-local
m-derivation D, we exploit the non-vanishing on 2 7(212 @[QIL,Q@D
of the following IR -linear map:

_ — D/
ForX =gx,, D(X)= D] X where
Dﬁ_,‘ =0or
if there is a non-vanishing X, over the previouscited open set and D}, = Oor
Fiy, josh & Fy (M)A (FO (M))/Supp(/\’,U ) = Mand [:Supp(X/o ) « Supp()(,o)HDj;‘{/U =0

oritexists X,  and h & F, (M)A (FO (M)) such that their multiplication is zero on an

open set V" without non-vanishing both over V" and if there is X, onV’ D:f’k, =0

These results are immediate by using Theorem 3.8, Proposition 3.4
and the definition of non-local Q[ s m-derivations.

() s

locally isomorphic to A5 ®gl(p,R)as a vector space, where p is

Proposition 3.10. The normalizer Yt of 2 in

the corresponding leaf local dimension. So [M,2As|=2A, locally
[‘)T,QUYEB[QQ,Q@HZQLY. Moreover, all local m-derivations of N
stabilize U ;.

Proof. We define 91 by the set of all vector fields X such that
[X, 2] C A So, we are in a distinguished chart U, all 91, 's elements
are obtained with direct use of the definition of the normalizer of
2 (U).Indeed, M is the sum of 2 (U)and the vector R -space

spanned by 3’ . It’s clear that, this last space is isomorphic to

9
gl(p.R). The two results which follow are easily proved by the same
argument as the previous. As for the last assertion, let’s take X, LEM,

X,,...,X, €A and D a local m-derivation of 1. In accordance with
the m-derivation definition, we haveD|X,,[X,,....[X, . X,]..[]|€ 2.
By local equation[‘)?,%['s @{Qlfg,ng]] =2, Proposition 3.1 and the
previous result where each X, runs through over the respective sets,
we affirm that D, (%) is a subset of 2.

Theorem 3.11. Given that we have a local m-derivation D of U

towards 2[; We find 1-differential closed forms o' and w'over U,
a a,w

where i=1,..., pwith DU:(a’er’)@w denoted D such that

ker(a”) SASWU) andker(w’) > A(U). Besides,

o [ X, X, ] =X o' (X,)- X, o (X))
VX, X, €A (U).

Furthermore, the condition that the maple(J‘"“j, with a:(al,...,a">
andw:(wl,m,

The converse of this result is also true.

w”), are inner is equivalent to, for all i, w' =0 and o'
are exact. Then we get Dy = —L[,i where, o/ = df" with freF,U).
' .
Generally ifa =0, then DS"”) =L , where C/ cR.
Yo — !
ay/
. . . ;0
Proof. Agreeing with thg abov.e hypothesis, we pose D, =~ v
the ' =7idx* ++/'dy’ with Y, , ’y;’ belong to £, (U). By the relations of
m-derivations which come from

, where

9
ayjo

« 0

w,...,

. 0 0

Ox Ox“ |

X

U )

Page 4 of 6
li .
we state thataib{":()for all Joandd,. We write the subsequent
equality Ox
0 0 0 0
Ul A o Xa—,..., Xa—,—b ...|| at (0,,0)
ox™ ox” ox* Ox™
9, O,
— 2 0,...,0)=0 a,,b
Then, we can have o ( ) , for all 4,,0,. So,

with the help of coordinate’s translations, we get the previous equality
at other arbitrary points in U. Thus, each 7 is closed. By exploiting all
these assertions, we can adapt the demonstrations of Proposition 3.14,
3.15 et 3.16 of [4] and we achieve our proof.

Let J¢ be the set of pair of forms (c,w) quoted before. We will
denote by 3(U), the complement set of those of (c,w) € R such that a
isexactand w = 0or o = (. We might assume that 3 = 3(M).

Theorem 3.12. The form of m-derivations of % is L, + D%+ D,
where X €, for every distinguished chart U, D', = 0if the leaf
dimension over U is zero; D, = D% otherwise. And D, is a non
-local m-derivation analogous to the one of Remark 3.9. Particularly,
these m-derivations are derivations.

Proof. Taking D an m-derivation of (, it is split into a sum of
local m-derivation D, and of a non-local m-derivation D, of le. So,
D, has the same form as the one of Remark 3.9. We can write D, as
D'+ D)’ +D;'+ D)’ with D) the R -linear component of D,
mapping A to 2L, where [, =1,2.By Proposition 3.7, D;' =0. In
accordance with the same proposition, we can divide &g by 91; and
the quotient m derivation of D, is denoted D, . The map Eobecomes
an m-derivation of (| by the splitting of D . We know that Q[é
is locally isomorphic tox(]R"*'H’). Then ﬁocoincides with L,
where X € Qll . Consequently, D, =L, + D“*'with Y ¢ 9tand pv),

(a,w) € 3is defined by Theorem 3.11. With the help of Proposition
3.4, respectively Theorem 3.11, D, respectively D, is a derivation.

Proposition 3.13. Each m-derivation of the Lie TR -algebra of all
linear fields taking value in the constant fields Lie TR -algebra of R!is
Lie derivative with respect to one constant field.

one coordinates
1<I<t

Proof. Let D be such m-derivation and (Zl)
AR

oz o7

easy to verify that D vanishes if and only if D(E)is zero too by using

the following equation

0z"
. . , 0
where E is the Euler vector field. Then, we write D(E)=C o For
different and fixed U,V , we exploit the obtained relation from

0 |, 0 . 0 a]

_u’Z _u""’Z > "

0z 0z 0z 0z
Therefore, we have D =0 where / = u, v; D" = p. Inaccordance
with (3.4) when u=v, we state that ¢* =D"and D" =0 for / =y . In

addition, (3.4) gives us D™ = 0. Thus, we proved that D = Lc’ 5 -

system of R’ . We note that D[Z" withu, vE€{l,...,1}. It’s

0
0z"

D E z" E, (3.4)

E,'E,...,

E,...,lE,D[z”

D|z

u
z

Proposition 3.14. Every m-derivation of M taking its value in
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(S)is a sum of m-derivations of U, towards (S) and m-derivations of
(M —2Ag)UL0} to(s).

Proof. Let D be an m-derivation of 9 towards(s). It is known that
every local m-derivation of 91 stabilizes2(g, (91—2;)U{0}is a Lie
algebra and there is a direct sum of modules 9 = A EB((‘J? —2A)U {0})
Moreover, every non-local m-derivation of ¢ vanishes on 2, C [‘ﬁ,‘ﬁ]
. Then D= D" + D*with p'! (resp.p”) the linear component map
of D from 2 to (S) (resp. of (M—2A;)U{0} towards(s)). By the fact that
Dislinear and D''takes value in(s); D", D* are m-derivations.

Proposition 3.15. All m-derivations from (M—2A;)u{0} towards (s)
are Lie derivative with respect to an element of{(S).

Proof. For ke{l,....q}, we consider the
U, ={xeM/X,(x)=0}- We know that all elements of (91— )uU{0}
are of the form Cf'X whereCeR, f' € F (M) such thatXx, (f’) in

U, equals 0 for all j =1, equals 1 for j =i. First, we show that such

open  set

an m-derivation D is local. We fix i, j belonging to {l,...,q} with
i=j. Only in ESupp( Xl_) we can find an distinguished open set

U such that (/"X,»)WEO or (fin)‘U =0. It is immediate that
[.f’X,,[.f’X,,<u,[f’X,,f’X,]mH:(*1)"’71f’X,. By applying D to this last
expression, we obtain(D( f’ X‘_)) ~=0. Now, we let the map D acts
on the following bracket {f’X,,[f"X/-,.--,[ffX/-,_fiXL]--.]]:0. We
have [ /X[ £/ [ 1%, D(1'X).. =0 and(P(£X)), =0, 1n

addition, when we are unable to choosei = j, the proof is trivial.
Thus, D is local.

Second, suppose that D is local. Agreeing with the result of
Proposition 3.13, we achieve our proof.

Theorem 3.16. All m-derivations of the normalizer O of A have
a form like the one of Theorem 3.12. Moreover, the normalizer of ) is
N itself.

Proof. Given D =D, + D,an m-derivation of 91, where D, is local
and D, non-local. By Proposition 3.10, DO\% is an m-derivation of

.Letbe X, €Mand X,,..., X, €A, we write the equation relative
to m-derivations corresponding to D, FX,,[XZ,...,[X XW}H By the

m-1>
definition of m-derivations, the previous result and Theorem 3.12, we
prove that

(D= (L + D% 4 D)) (), [ X [X, X, | =0 (35)

V X,,..., X, €%. Let’s denote by D’the m-derivation defined
by D, —(LX + D +D,) ,D'(X,)belongs to the intersection of the
centralizer of 2 @[QIIS,QIZ;] with 1. With Proposition 3.3, D'(X,)
becomes an element of<S > In addition, we know that DZ\% =0.By
using X, , € U in the relation of m-derivation similar to (3.5), the
Proposition 3.1 and Proposition 3.3, we haveDz(X])€<S>. Then,
Proposition 3.14 and Proposition 3.15 split D’ to a sum of a derivation
of Agand L, withX' € (S>, D, is zero. Moreover, we can affirm that

the normalizer of )1 coincides with 91 itself.

Proposition 3.17. Every endomorphism D of the commutative
Lie algebra (S)is an m-derivation of (S). If D is local, it is a Lie
derivative with respect to one element of $)t. In the case where D is
non local, then it is determined by the existence of [ = jsuch that

@ = CSupp(X,)C Supp(Xl,) withD(X,)=\'X,, where each MNeR
and )\ €R",
Proof. The first assertion is obvious. Moreover, it is clear that the

normalizer of (S )is )1, and its centralizer is 2. Let D be a local

0 i 0
~ S).onU, D|-Z|=n -2 -
endomorphism of (S). On U, we put {6)}'] o Then D=L,
with Xf— )\,»kyi 78)/" +7Y and Ye {2, , for all U. Thus, X belongs

to 91. In addition, if D’is a non-local endomorphism of (S), let’s

write D'(X,)= A X, . It is easy to see that D’ is non-local iff our last
assertion is true.

With the help of the previous proposition, we can confirm
immediately

Corollary 3.18. If all elements of S are densely supported over M or
if S is reduced to a singleton, then all endomorphisms of (S) are local.

Applications

The following is a list of some Lie algebras for which our theorems
hold.

We denote by €, the Lie algebra of all compactly supported vector
fields on M which is an involutive distribution over M. We know that
the normalizer of €. in x(M)is X(M)and O, =Msee [7].

We suppose that M is a differentiable manifold equipped with a
nonsingular generalized foliation § see [1]. We denote X(&§) (resp.
Xe (3 ) the involutive distribution of tangent vector fields to the foliation
(resp. of compactly supported vector fields in X (:§) ). The normalizer of
X(&) in x(M) is denoted M (F ). The foliation preserving vector fields
Lie algebra is named £ (S) .

Here, V is a smooth manifold and y is surjective smooth map from
M to V see [5]. It is well known that the set of y-projected vector fields
N, is a Lie algebra, and y-zero-projected vector fields set 7)yis an
involutive distribution of M. The normalizer of 7], in X(M) is denoted
N and we assume that O, =M .

Now, let I'be a connection in the Grifone sense over M cf. [9].
We can cite the curvature horizontal nullity distribution space 9
(R is the curvature), the distribution of horizontal projected vector
fields in the curvature nullity space QLf Their respective normalizers
in (TM) are designated by N, N} see [10] and we suppose that
Oy =0y =TM.

We call N¥the k-nullity space distribution of vector fields in the
Finsler space considered by [11] such that the nullity index doesn’t
vanish everywhere. Let’s note that A/* is its normalizer in the vector
fields Lie algebra.

Thus, replacing respectively Q[ by X (M) €L XE) X (8), £ (3).

Mos Ny, AL, NF and B by x(M), x(M), N(3), N(F),
N(3F), N, N, NR’ N, N¥; we state that ” all m-derivations of 2

(resp. of 2B ) are inner with respect to B (resp. are inner)”.

In addition, let’s consider the system S composed by the Liouville
vector field C on TM. We work on TM without zero section, we find all
m-derivations of 2 ; by our theorem, as well as its normalizer which is
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locally isomorphic to 2 @ g/(1,R). By density of the foliation regular
points set defined by S, we obtain analogous results on TM. All R
-linear maps of (C) into itself are local.

The author benefits an Ingrid Daubechies initiative scholarship

in collaboration with” Institute for the Conservation of Tropical
Environments” (ICTE) Madagascar.
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Summary: Let M be a N-dimensional smooth differentiable manifold. Here, we are going to analyze
(m > 1)-derivations of Lie algebras relative to an involutive distribution on subrings of real smooth
functions on M. First, we prove that any (m > 1)-derivations of a distribution Q on the ring of real
functions on M as well as those of the normalizer of 2 are Lie derivatives with respect to one and only
one element of this normalizer, if 2 doesn’t vanish everywhere. Next, suppose that N = n + ¢ such that
n > 0, and let S be a system of ¢ mutually commuting vector fields. The Lie algebra of vector fields 2
on M which commutes with S, is a distribution over the ring Fy(M) of constant real functions on the
leaves generated by S. We find that m-derivations of 2, is local if and only if its derivative ideal coincides
with %A, itself. Then, we characterize all non local m-derivation of ;. We prove that all m-derivations of
A, and the normalizer of 2, are derivations. We will make these derivations and those of the centralizer
of 2 more explicit.
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SUR LES ALGEBRES DE LIE D’UN SYSTEME DE CHAMPS
DE VECTEURS PERMUTABLES

H.S.G. Ravelonirina
P. Randriambololondrantomalala
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Département de Mathématiques et Informatique
Faculté des Sciences
Université d’Antananarivo
Antananarivo 101, BP 906
Madagascar
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Résumé. Soient M une variété C'°°— différentiable et S un systeme de ¢ C"°— champs
de vecteurs qui commutent deux a deux. Ce systeme définit une structure de feuilletage
généralisé F sur M. L’algebre de Lie Ag des champs de vecteurs de M qui commutent
avec S est a la fois un module sur I’anneau des C°°— fonctions qui sont constantes sur
les feuilles de F et une sous-algebre de Lie de I'algebre de Lie des automorphismes in-
finitésimaux au feuilletage. On détermine toutes les dérivations de I’algebre de Lie Ag.
Mots clés: algebre de Lie, champ de vecteurs permutables, feuilletage généralisé, co-
homologie locale de Chevalley-Eilenberg, cohomologie de de Rham.

Abstract. Let be M a C°°— differentiable manifold and S a system of ¢ C°°— vector
fields which commute mutually. This system defines a generalized foliation F on M.
The Lie algebra Ag of vector fields in M which commute with S is both a module over
the ring of C'"°°— functions that are constant on the leaves of F and a sub-Lie algebra of
the foliation preserving vector fields. We determine all derivations of the Lie algebra Ag.

Keywords: Lie Algebra, commuting vector fields, generalized foliation, local cohomol-
ogy of Chevalley-Eilenberg, cohomology of de Rham.

AMS Subject Classification: Primary 17B66; 17B56; Secondary 53C12; 47B47.

1. Introduction

Soient M une variété différentiable paracompacte de classe C* et X(M) 'algebre
de Lie des champs de vecteurs de M. Dans son article [8], Takens a montré que
toute dérivation de l'algebre de Lie X(M) est une dérivée de Lie par rapport a un
champ de vecteurs de M. Dans le cas ou I'algebre de Lie est une sous-algebre de
Lie attachée a un feuilletage régulier sur M, Lichnérowicz cf. [3] a prouvé aussi des
résultats analogues. Nous avons étendu ces résultats dans le cas d’une distribution
involutive non réguliere cf. [5], ot 'anneau de base contient toutes les fonctions
de classe C™ de la variété. Dans [6], nous avons abordé le méme probleme sur les
algebres de Lie des champs de vecteurs polynomiaux 8 sur R™ qui contiennent tous
les champs constants et le champ d’Euler. Nous avons prouvé que toute dérivation



164  H.S.G.RAVELONIRINA, P.RANDRIAMBOLOLONDRANTOMALALA, M.ANONA

de P est une dérivée de Lie par rapport a un champ de vecteurs polynomiaux de
R™. Dans ce papier, nous étudions une sous-algebre de Lie de X (M) dont ’anneau
des fonctions de classe C'*™° du module sous-jacent est tronqué. Plus précisement,
M est une variété différentiable de dimension m + ¢ et .S un systeme de ¢ > 1
champs de vecteurs qui commutent deux a deux, et de rang p avec 0 < p (z) < g,
pour tout x € M. Il existe une structure de feuilletage généralisé § définie par le
systeme S cf. [1]. On note Lz 'algebre de Lie des champs des automorphismes
infinitésimaux de § et, Ag l'algebre de Lie des champs de vecteurs de M qui
commutent avec S. Toutes les feuilles sont supposées régulieres. L’algebre de Lie
Ag se décompose en une somme semi-directe d’algebres de Lie A} et A%, ou A}
(resp. A%) est un module (resp. l'algebre de Lie engendrée par S) sur 'anneau des
fonctions constantes aux feuilles. Ainsi Ag est une sous-algebre de Lie de Lz. De
plus, l'algebre de Lie A% est un idéal caractéristique de Ag. Par ailleurs, on donne
une condition nécéssaire et suffisante pour que toute dérivation de Ag soit locale;
de méme pour que l'idéal dérivé de Ag coincide a Ag. Ainsi, les caractéristiques
d’une dérivation non locale de Ag sont obtenues. En étudiant la dérivation locale
de Ag dans l'idéal caractéristique A%, on peut déterminer toutes les dérivations
locales non intérieures de Ag. Par suite, en utilisant ’algebre quotient de Ag par
A% et un résultat de [5], on peut décomposer toute dérivation locale de Ag en une
somme de dérivation intérieure de Ag et de dérivation locale non intérieure trouvée
auparavant. Dans le cas ou le rang p de S est constant supérieur ou égal a 1, le
premier espace de cohomologie locale de Chevalley-Eilenberg de Ag est isomorphe
a (HL (B) x R)” x R”, ot HL (B) désigne le premier espace de cohomologie de
de Rham sur les formes basiques au feuilletage de M. Si le systeme S est réduit
a un champ de Liouville, on retrouve par une méthode différente un résultat de
Lecomte dans [4].

2. Préliminaires

Soit M une variété réelle C°>°— différentiable paracompacte de dimension m + ¢
ou m,q > 1. Tous les objets étudiés sont supposés de classe C*°. On désigne par
F (M) l'anneau des fonctions C*° sur M, X (M) l'algébre de Lie des champs de
vecteurs sur M, S un systeme {X1,..., X,} de rang p de champs de vecteurs, avec
0 < p(x) < g pour tout x € M. Les éléments de S vérifient [X;, X;] = 0 pour
tous 4,7 € {1,...,q}. On considere 'algebre de Lie Ag des champs de vecteurs X
de M tels que [X, X;] = 0 pour tout ¢ € {1,...,q}.

On peut déduire du systeme S un champ de plans P, qui a tout x € M
correspond le sous-espace vectoriel engendré par Xi(x),..., X, (x) de T, (M). P
est un champ de plans de classe C'*° de systeme générateur S. Tout champ de
vecteurs X = ¢/ X; de P avec ¢/ € F(M), vérifie pour tout ¢

(X, X] = — (Xi(¢") X

c’est-a-dire, P est invariant par tout champ de vecteurs de P. D’apres le théoreme
de Sussmann cf. [7], il existe un feuilletage généralisé § sur M dont la feuille en un
point x de M est la variété intégrale maximale I(z) telle que pour tout y € I(z),
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T, (I(z)) = P, cf. [1]. On note Fy (M) I'anneau des fonctions sur M constantes aux
feuilles. La sous-algebre de Lie A% des champs de vecteurs de M engendrée par S
sur Fy (M) est commutative. De plus A% est une sous-algebre de Lie de I'algebre
de Lie L des champs de vecteurs tangents aux feuilles. Par ailleurs, A} désigne
I'ensemble des champs de vecteurs de M tel que A} et L sont deux sous-modules
supplémentaires dans 1’algebre de Lie Lz des automorphismes infinitésimaux au
feuilletage.

On suppose que toutes les feuilles soient régulieres, sauf mention expresse. Le
théoréme de Dazord cf. [1] p.415 assure I'existence d'une carte adaptée (U, 2%, y")
(resp. (U,z%)),avec 1 <a<m-+q—p, 1 <i<psip>1(resp. 1 <a<m-+gsi
p = 0) au voisinage de chaque point = de M ou la dimension de () est constante
p(z) = p. 1l existe une permutation ¢ de {1,...,q} tels que pour p > 1 (resp.
p=0) (XQ = %>1§i§p et (XQ = 0>p<l§q (resp. (Xl = O) ). On utilisera de

1<i<q
tels ouverts pour les domaines de cartes adaptées au feuilletage. On conviendra

dans la suite sauf mention expresse que les indices a,b,c vont de 1 a m +q —p
et i,7,l de 1 a psi p > 1. De méme, les indices fixes ag, a1, by appartiennent a
{1,...,m+q—p}etigjoa{l,...,p}sip>1.

L’anneau Fy (U) = { fiv tel que f € Fy (M)} est I'ensemble des fonctions sur
U ne dépendant pas des coordonnées 3. L’algebre de Lie Ag sur toute carte
adaptée U, coincide au Fy (U)-module des champs sur U engendré par %, ceey

S 8%1, e % ou p > 1. Le module Ag (U) se décompose en produit semi-
direct

As (U) = Ag (U) & A5 (U)

olt A} (U) est la sous-algebre de Ag (U) engendrée par 52r, ..., 53— sur Fy (U)
et, ot A% (U) est Iidéal commutatif de Ag(U) engendré par BT a%p sur

Fy (D).
Dans le casou p =0, Fy (U) = F(U) et

As(U) = Ag (U) & A5 (U)

avec AL (U) = X(U) et A% (U) = {0}.
On s’interesse a l'étude des R—dérivations de 1'algebre de Lie Ag. Le cas
trivial ou le rang est identiquement nul sur M, est déja étudié par [8]. Donc, on

suppose que S # {0}.

Remarque 2.1 Si la variété M est connexe, le feuilletage défini est régulier
d’apres une assertion de [1] p.416.

3. Etude des dérivations de Ag

Dans toute la suite x € M est un point quelconque, U est une carte adaptée
contenant z telle que la dimension de I(x) est une constante égale a p sur U.
On utilisera la convention d’Einstein sur la sommation d’indices, sauf mention
expresse.
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Définition 3.1 Le centralisateur (resp. Le centre) de Ag est I'ensemble des X
dans X (M) (resp. dans Ag) tels que [X, As] = {0}.

Proposition 3.2 Le centralisateur € de Ag est le R—espace vectoriel engendré
par S.

Démonstration. Il est immédiat que le R—espace vectoriel engendré par S est
inclus dans €.
Réciproquement, soit X appartenant a €. Sur U, si p = 0, alors la preuve est

donnée par un résultat de [8]. Sip > 1, soit X;y = X“aia + X”'a%i € ¢y, on a

L0 w01 [ed owd 0]
[X Oxe X 8y“8xb] =0, [X 3x“+X 8yi78yj] =0

pour tous b, j. Ainsi, chaque X® et X" sont des constantes réelles en supposant
que U est connexe. Par ailleurs,
0 0
} B O

0 .
X/’L : c_~
Ox® * oy’ C e

*

alors on en déduit que chaque X = 0 pour tous X € € et U adaptée a §. Donc
¢ est contenu dans le R—espace vectoriel engendré par S. D’ou le résultat. .

Remarque 3.3 Le systeme S n’est pas en général une base du centre de Ag. Par
exemple, sur le tore T2 avec S = {X}, out X est un champ de vecteurs invariant
ayant une trajectoire dense.

Définition 3.4 Une R-dérivation D d’une sous-algebre de Lie 2 des champs de
vecteurs sur M, est une application R—linéaire de 2 dans 2 telle que

(3.1) VX,Y €9, D[X,Y]=[D(X),Y]+[X,D(Y)].

L’application D est dite dérivation intérieure de 2 si D = [X,.] = Ly, avec Ly la
dérivée de Lie par rapport a X € 2.

Dans cette section, une R-dérivation d'une algebre de Lie 2 est tout simple-
ment appelée dérivation de 2.

Proposition 3.5 Soient D une dérivation de Ag et U un domaine d’une carte
adaptée de M tels qu’il existe X € Ag avec Xy =0, alors (D (X))‘A}g =

Démonstration. On considere une dérivation D de Ag. On suppose que X € Ag
et Xjp = 0. On peut écrire (D (X))|A1S = D% 2. Si D (X) est non identiquement

nul sur A§(U), il existe un point z € U tel que 'une au moins des composantes
correspondantes de D (X) soit non nulle en z. On suppose qu’il existe un en-
tier ag tel que DY (z) # 0, donc on peut trouver un ouvert V., contenant z tel
que DY (y) # 0 pout tout y € V.. On prend f € Fy(M) ou fiy, = 2% avec
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supp (f) C U et, Y € Ag tel que Yy, = E)yiio. De cette facon, [X, fY]; = 0 et
(X, fY]|CUCCsupp( n=0et [X, fY] = 0. Ainsi, la relation suivante

(3.2) D([X, fY]) = [D(X), fY]+ [X, D (fY)]
aboutit & une contradiction. D’ou le résultat. "

Définition 3.6 Soient A et B deux sous-modules d'une méme algebre de Lie.
Le sous-module engendré par tous les crochets de X € A et Y € B est noté par
[2(,B]. Si A =B et que A est une algebre de Lie, alors on 'appelle idéal dérivé
de .

Proposition 3.7 L’déal dérivé de Al est égal a Ak, lidéal dérivé de A% est
nul. Ainsi, l'idéal dérivé de Ag coincide a la somme directe de module Al et de
'algébre de Lie A engendrée par les [X,Y] ou X € A} et Y € A%.

Démonstration. On peut adapter la preuve de la Proposition 2.9 p.141 de [5]
pour avoir [A}, AL] = AL. Ainsi, I'idéal dérivé de AL coincide & AL. Par ailleurs,
il est clair que [A%, AZ] est réduit a {0}. Comme [Ag, As] = [AL ® A%, AL & AZ],
alors cette dérniere devient AL @ [AL, A%] avec @ désigne une somme directe de
modules, d’ou le résultat. .

Dans la suite, on note A = [AL, A%)].

Proposition 3.8 Toute dérivation non locale de Ag est a la fois a valeur dans le
centre de As, nulle sur A et sur A C A%.

Démonstration. Soit D une dérivation non locale de Ag, alors on peut trouver
X € Ag et U un ouvert de M tel que X;y = 0 avec D (X) n’est pas nul sur U.
Donc il existe un ouvert W C U contenant x € M tel que D (X) (y) # 0 pour
tout y € W. D’apres la Proposition 3.5, on écrit D (X) = D% X;. Tl s’en suit qu'il

existe ig tel que D%(y) # 0 pour tout y dans un ouvert W’ C W contenant z.
Supposons que D (X) n’appartient pas a €, alors on peut supposer que (Dé?)lw,
est non constante. On prend f € Fy(M) tel que supp (f) C U avec f(z) # 0.
Aussi, peut-on trouver Y € Ay tel que Yy = wiao de fagon que gfjg (x) # 0. Dans
ce cas, une relation analogue a celle de (3.2) donne une contradiction au point x.
Par conséquent, D (X) € €. On déduit du résultat qui précede et de la propriété
(3.1) d’une dérivation que D [Ag, As] = {0}. Par la Proposition 3.7, on en tire
que D (AL) = {0} et D (A) = {0}. -

Proposition 3.9 L’algébre de Lie A% est stable par toute dérivation locale de Ag.

Démonstration. Soit D une dérivation locale de Ag, Dy est une dérivation
de Ags(U) en faisant le méme raisonnement que celui de [8] p.157. Sur U, si
p = 0 alors la preuve est évidente. Sur cet ouvert, si p > 1 alors l'algebre de
Lie Ag s’écrit Ag (U) = AL (U) @ A% (U) . Or, chaque 821- est un élément du cen-
tre de Ag (U) et que le centre d'une algebre de Lie est un idéal caractéristique,
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alors Dy (a%i) appartient au centre qui est contenu dans A% (U) par la Propo-

sition 3.2. Pour chaque a,b, de la relation [ 8‘9a,xb 8‘;} 52 gg70 On obtient
0Dy () = | Do (%) 2| + |55 Do (a2 ) |- Or A% (U) est wn idéal

de AS (U), alors [a a,DU< ba‘?/)] € A% (U). Ainsi, en posant DU< b(g.) —
De

b azc a 7, chaque Dfy est constant. D’autre part, en appliquant Dy a

I’égalité xbaa = [xcaa baa } il s’en suit que Dy ( bazi) + [DU (xba‘z/.) ,:L‘C%]

appartient a A% (U). Comme chaque Dy, est constant, on obtient D, = 0.

Autrement dit, DU< ) est un élément de A% (U). En dérivant par Dy la

_'_ D]+m+q p

relation [f aia, ] fay pour tout f € Fy(U), on trouve que Dy (f%) est
encore dans A% (U ) Sachant que tout élément de A% (U)

sur les fonctions de Fy (U), toute dérivation Dy de Ag (U) préserve I'idéal A% (U).
D’ot le résultat. .

Proposition 3.10 L’algébre de Lie A% est un idéal caractéristique commutatif
de As.

Démonstration. Soit D une dérivation de Ag, D est la somme d’une dérivation
locale Dy et d’'une dérivation non locale D; de Ag. D’apres la Proposition 3.9,
on a Dy (A%) C A%; et de la Proposition 3.8, Dy (As) C A%. En utilisant la
R-linéarité de D et [A%, A%] = {0}, on a le résultat. .

Théoréme 3.11 On suppose que pour tout x € M, 0 < p(x) < q. Les assertions
suvantes sont équivalentes:

1. Toute dérivation de Ag est locale.
2. Il emiste X € Al et h € Fy (M) tels que X (h) est partout non nul sur M.
3. L’idéal dérivé de Ag est Ag.

Démonstration. (1.) < (2.): Soit D une dérivation de Ag, D est la somme
d’une dérivation locale et d’une dérivation non locale de Ag. On note alors D;
cette dérivation non locale. Etant donné un X € A%—{0}, on calcule D; (X). Par
le fait que D; soit R—linéaire, on peut supposer seulement qu’il existe f € Fy (M)
et ip tels que X = fX;,. On écrit Dy (X) = Dj}Xi; avec les D} € R d’apres la
Proposition 3.8 et la Proposition 3.2. Soient Y € A}, g € Fy (M) tels que Y (g) est
partout non nul, et h € Fy (M). Comme D;[hY, gX;,] = 0 d’apres la Proposition
3.8, alors chaque DhY = 0. Or, on peut trouver h tel que hY (g) = f en posant
h = % € Fy(M). A1n81, Dy (X) = 0 pour tout X € A% et par conséquent,
Dy = 0 car Dy 4 = 0 d’apres la Proposition 3.8. C’est—a-dire que toute dérivation
D de Ag est locale. Réciproquement, soit D 'application R-linéaire définie par

0 siXeAg—¢,
D(X) = S ad 3 X siX=a'X;oua/ €Rpourtout j=1,...,q.

1<j<q  1<k<q
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En supposant que quel que soit x € M, p(z) < ¢; il existe ig dans {1,...,q} et

un ouvert U de M, tels que Xj,; = 0. Ainsi, on a D(X;)) = > X tel que,
1<k<q

D (X;,)y est non nul, car pour tout x € U, p(z) > 0. Si pour tous X € A} et
h € Fy gM), il existe € M tels que X (h) (z) = 0, alors fX (h) = 1 est impossible,
quel que soit f € Fy (M). Alors, [A}, A%] ne contient pas d’éléments de € — {0},
et on a D (A) = {0}. Ainsi, D est une dérivation non locale de Ag.

(2.) & (3.): Sil'idéal dérivé de Ag est Ag, alors toute dérivation non locale de
Ag est nulle, d’apres la Proposition 3.8. Ainsi, toute dérivation de Ag est locale.
D’apreés (1.) = (2.), on a le résultat. Réciproquement, la deuxieéme partie de la
preuve de (1.) < (2.) permet de conclure. .

9

Remarque 3.12 On peut omettre '’hypothese ”pour tout x € M, 0 < p(z) < ¢
en prouvant (2.) = (1.), et (2.) = (3.) du Théoreme 3.11.

Remarque 3.13 Si quels que soient f, h € Fy (M) et X € AL, fX (h) #1, la
réciproque de la Proposition 3.8 est fausse car la dérivation D de Ag définie par

0 siXeAg—¢€
D(X) =14 . O

a"Xp si X =a"Xpoua®e€Rpourtout k=1,...,q.
est une dérivation locale. Pourtant, D vérifie toutes les conditions nécéssaires de
cette proposition.

Dans les trois propositions suivantes, on suppose que p > 1 sur U.

Proposition 3.14 Soit D une dérivation locale de Ag dans A%. Si Dy = 53'@%
ou chaque 3" est une forme linéaire de As (U) dans Fy (U), alors 3' est fermée.
De plus, si chaque 3* s’annule sur A% (U), alors pour tous X,Y € Ag(U), on a

pour tout 1

(33) BXY] 5 = [ﬂi (X) %Y] T [X, 5 (¥) aﬂ -

Démonstration. On prend i € {1,...,p}, 3" est de la forme 3' = [idz® +
B".dy’ o chaque 3, 3" € Fy (U). Soient X,Y € Ag (U), par la propriété d'une
dérivation, on obtient

(3.4) Dy [X,Y] = [Dy (X), Y]+ [X, Dy (V)]
En posant X = X“aia + X’j% et Y = Yaaia + Y’jaiyj, alors on doit avoir
G ) G 09X 0 G ) SCANG) . 0X"7 0
Dy X, Y] =p3X — — 3y ‘ "X _— 3ty* .
v X Y] =75 Ox® Oyt G Ox® Oyt 0 Ox® Oyt b ox® Oyt
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Le second membre de (3.4) devient

B ., 0 ox® 0 ﬁ” ox" 0

ye =X’ — - Y'—p — —-Y*'—= - — Y —

ox® Oyt ox® G oy’ 8:}0“ 8y1 ox® b oyt

a ﬁ” aaY/j /% d

(3.5) X ax 8yi X Ox® ﬁj@yi

Par identification membre a membre, on a

B4 05" ;0 OBy O 5”
6) —y o Loxp @ a0 4 yaOPbyn O xaOliy O
(36) Dz ay G Gy T ot gy TN Gpet 8y’ 0

Par ailleurs, 3" est fermée si et seulement si

. i i 03" .
dg' = <%—%> dz’ A dz® + (aij)dx“/\dy]:()

oxt  Oxe a<b

ap’;
ox®

ou d désigne la différentielle extérieure. C’est-a-dire gi ‘g gff; =0 et

quels que soient j, a, b.
On prend ag, by avec Y% = X% =1 X7 = Y" = ( pour tout j, et les autres
L N

nuls dans la relation (3.6). Ainsi, “oie — gzag = 0, pour toute valeur arbitraire de

=0

ap, bo.
Soient ay, jo avec Y = X" =1, tous les autres sont nuls et, Y7 = X% =0

. ap" . .
pour tous j,a dans (3.6). On a alors ijf = 0, pour chaque valeur arbitraire de
a1, jo. D’ott la forme 3* est fermée.

Si 3 s’annule sur A% (U), alors 3° = 3idz®, pour tout a. On a

5] 5
b 1 b n
@) - (X“ZZ U e
=X G A Gy
De plus,
gy |+ [x g = v S v
(3.8) +X“§ﬁgybaz “@gZai

; , i 0B :
Comme la forme " est fermée, alors g’i e — 852 est nul quels que soient a,b. Par

conséquent, X“gff;Yb g, Y“gff;Xb 81-. Ainsi, en identifiant (3.7) et (3.8); on

obtient le résultat (3. 3) n
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Proposition 3.15 Soit D une dérivation locale de Ag vers A%. 1l existe des
1—formes différentielles fermées o' et w® dans U, aveci = 1,...,p telles que:

1. Dy =(cd +w)® aiy]-, ot chaque ker(a?) contient A%(U) et chaque ker(w?)
contient AL(U).

2. chaque o' [X,Y] = X.o' (V) — Y.o' (X), pour tous champs X,Y € Ag(U).
On notera D la dérivation (o? + w’) ® % de Ag (U) vers A% (U).

Démonstration. Soit D : Ag — A% une dérivation locale de Palgebre de Lie
Ag, donc la restriction Dy : Ag(U) — A%(U) D'est aussi. La dérivation Dy; étant
une application R—linéaire de Ag(U) vers A%(U). Dy doit s’écrire sous la forme

19)
3]

olt les 3 sont des formes linéaires de Ag(U) sur Fy(U).

L’algebre de Lie A% étant un idéal caractéristique commutatif de Ag d’apres
la Proposition 3 9, la restriction de D sur A% est donc une dérivation de A%. Alors
Dyjaz =’ @ 55 a ~, olt w’ sont des formes linéaires de Ag(U) dans Fy(U). En vertu

Dy=@F®

de la Proposition 3. 14 les formes ﬁl et w' sont fermees Les formes w* peuvent
se décomposer en w' |A1( )T ww )" En posant ot = B3 — Wt les formes o
s’annulent sur A%(U ) pour tout 4. On peut choisir o pour que chaque w| AL) soit
nulle. D’ou I'assertion 3.15..

Comme o = ' — ', alors chaque forme o' est fermée. Par le fait que les o

soient fermées, pour tous X,Y € Ag(U), on a I’égalité suivante pour tout j

0 ; 0 : 0
j B P J =
o [X,)Y]— oy {a (X)a = Y} + {X,a (Y) 83/3}
d’apres la Proposition 3.14. D’ou 'assertion 3.15.
Réciproquement, il est immédiat de constater qu’une application Dy de Ag(U)
dans A%(U) vérifiant les assertions 3.15. et 3.15. est une dérivation de Ag(U). =

Proposition 3.16 La dérivation D{* de Ag (U) vers A% (U) de la Proposition
3.15, avec a = (al,...,aP) et w = (W', ..., wWP) est intérieure si et seulement si,
pour tout i, w' = 0 et o' sont des formes exactes. Dans ce cas, on a D =

—Li o, ou chaque o' = df* avec f' sont des fonctions de Fy(U).
oy?

Démonstration. On suppose que Dy = Ly avec Y = Y 3?/1 <(U). Pour
simplifier les notations, on prend o' = adz’ et w’ = widy’, pour chaque 1.
Soit X = (X*',..., X™mre P X" X'P) un élément de Ag(U), or Dy =

(o +w') ® 821. donc

0
oy’

) ) 0
Dy (X) = ((O/—i—wz)@)ayi)(){) (X7 + X"w))
0 -0 -0 9Y" 0
1 ] o ]
[Y oyt Oz +X 3yj] X Oxd Oyt
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On a pour tout 7

(3.9) Xaj+ XVwj = - X/ 0

On pose dans (3.9) X7 = 0 quel que soit j et, X”# = 1 pour un j fixé, avec X" = 0
pour [ # 7; on obtient wj- = 0 quel que soit 7.

Maintenant on pose dans (3.9) X/ = 1 pour j fixé, avec X! = 0 pour
ay/i

[ 7é j, on a a = —%. quel que soit i. Ainsi chaque al = a};:d I = df? et
fi=-Y"¢ FO(U). Donc o' est une 1-forme exacte sur U, pour tout i.

Inversement, d’apres I’assertion 3.15. de la Proposition 3.15, Dy = o' ® %
car w?! = 0 quel que soit j. Or les o' sont des formes exactes, alors o = df* ou f*
sont des fonctions de Fy(U).

Soit X = (X1, ..., Xmtep X1 X'P) e Ag(U), on obtient

i afl fl 2 afZ m+q—
a(X) (8%1 +8 d +"'+de P (X)
afz fz B afz
1 2 . m-+q—p
X Ol + X 972 + X —8xm+q—P
Comme
Dy (X*',...,x"rer X" LX) = ( ‘ aa.) (X)
yl
of of o Of 0 9
— 1 2 . m+q—p__ ~J X7
<X Oox! X O0x? oo 8xm+‘1_p> 8y [ 8x3}
) ;i 0 -0 0 o,
— ) ) R ) _ g_~
{f 3%‘]] {f W’ 1 {f dy’ X o1 T oy }

car f' et X" ne dépendent pas des y'.
Alors D" = Dy = =Ly o avee f15% € AZ(U).

oy )

Il en résulte que D} est une dérivation intérieure si et seulement si les w* = 0
et o' = df’, ou les f* sont des fonctions de Fy(U). Dans ce cas, la dérivation
Dy’ =—Li o .

v Fay”

On rappelle le résultat classique suivant:

Proposition 3.17 Soit 2 une sous-algébre de Lie des champs de vecteurs de M,
[' un wdéal caractéristique de A, D une dérivation surA, 7 la projection canonique
de A sur l'algébre-quotient A/T. En posant D! (X) =7 (D (X)) pour tout X € 2,
D' définit une dérivation sur A/T'. En particulier, si D = Lx alors D" = Ly(x).

Proposition 3.18 Toute dérivation locale D de l’algébre de Lie Ag s’écrit d’une
maniére unique sous la forme Lx + D° avec X € A} et, pour toute carte adaptée
U, D° v = 0 si la dimension de U est nulle; D0|U D** une dérivation définie
par la Proposition 3.15 sinon.
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Démonstration. Soit D une dérivation locale de Ag. Il vient que ’algebre de Lie
quotient Ag (U) /A% (U) est isomorphe & AL(U) , et est donc isomorphe a I'algebre
de Lie des champs de vecteurs sur un ouvert de R™*4?  Or toute dérivation
de X (R™*97P) est intérieure d’apreés un résultat de [5], alors toute dérivation de
l'algebre de Lie Ag (U) /A% (U) est intérieure. En vertu de la Proposition 3.17,
toute dérivation Dy de Ag(U) est de la forme D'y = Ly, avec Y € Ag (U), ou
7: As(U) — Ag (U) /A% (U) est la projection canonique. En posant D® = D—Lx
ot X € A} tel que Xy = Y, la dérivation correspondante D%; de 'algebre-
quotient est nulle, D%; est donc une dérivation de Ag(U) dans A%(U). Sip =0
alors D% = 0. Si p > 0, d’apres la Proposition 3.15, sur une carte adaptée au
feuilletage; D% est de la forme Dy D’ou la décomposition annoncée. u

Théoréme 3.19 Si le rang de S est constant égal a p € [1,q|, le premier espace
de cohomologie locale de Chevalley-FEilenberg Hj, . (As) de Ag est isomorphe d

(HL (B) x R)? x R”, o HY (B) désigne le premier espace de cohomologie de de
Rham sur les formes basiques au feuilletage de M.

Démonstration. Soit D une dérivation locale de Ag, alors la restriction Dy de
D a une carte adaptée U au feuilletage est une dérivation de Ag (U). D’apres
la Proposition 3.18, Dy se décompose en une somme de deux dérivations Dy =
Lx, + Dy¥, ot Xjy € Ag(U) et, ot Dy est une dérivation définie dans la
Proposition 3.15. Si le rang p > 1 de S est constant, une dérivation D s’écrit
d'une fagon unique D = D&” + DY et Pexpression D o D est nulle.
L’algebre des dérivations de la forme D%w est isomorphe a l'algebre gl (RP) des
endomorphismes de A% (U). D’autre part, en notant oy = (o, ..., al;), on a la
somme des dérivations Df’ = D(O}I’O + o DI telles que D0 o DY =0
pour tous 4, j. Les af, i = 1,...,p sont des tenseurs invariants par transition des
cartes adaptées. L'ensemble des o' s’identifie & Z' (B) ; xR cf. [4], Z' (B);; étant
I’ensemble des 1-formes basiques et fermées sur U. L’ouvert U est un domaine
d’une carte adaptée quelconque de M, d’ou le résultat. n

Remarque 3.20 On suppose qu’il existe une feuille singuliere du feuilletage §.
En travaillant sur ’ensemble ouvert des points réguliers R dense dans M, on
trouve sur la variété R le méme résultat que celui de la Proposition 3.18. Si le
prolongement de X correspondant & D dans cette proposition est dans A% et que
chaque prolongement de a et de w sont C'*°, alors la Proposition 3.18 reste valable
sur M.

Exemple 3.21 Soit M = R? de coordonnées canoniques (x,vy,2), S = { 0 9 }

oy’ 0z
Les éléments de Ag sont de la forme f(z) 2 + g (z) % + h(z) £, pour toutes
fonctions C*, f, g et h ne dépendant que de x. D’apres nos théoremes, le premier
espace de cohomologie de Chevalley-Eilenberg H' (Ag) = Hj,, (Ag) est de dimen-
sion six. La Proposition 3.15 donne la construction d’une base des dérivations
non intérieures de Ag dont les éléments sont les suivants:
0

0 0
D, = — Dy = — Ds = —
1 =dy ® N b =dz ® " 3 =dy® -



174 H.S.G.RAVELONIRINA, P.RANDRIAMBOLOLONDRANTOMALALA, M.ANONA

0 0 0
D4=d2®8— D5=¢®8—y D6:¢®&

z
ou ¢ désigne 'application 9 (f (x) 8%) = 8?9(;).
Remarque 3.22

1. Sila structure de la variété M feuilletée par {Xi,..., X, } est transversale-

ment orientable, alors chaque forme o du Théoréme 3.19 s’écrit
o' =~ + ko

ol chaque ¢ est une 1-forme basique fermée, k un nombre réel et ¢ la
divergence de la structure transversale.

2. Si C est le champ de Liouville sur le fibré vectoriel TM de la variété M.
On désigne par Ac = {X € X(TM) tel que [X,C]=0}. Soit {0} la section

o

nulle de TM, on pose S = {C} dans la variété TM = TM — {0}. L’algebre
de Lie Ag est égale a I'algebre de Lie A¢ définie dans [2]. Toute dérivation

de Ac est une dérivation indiquée dans la Proposition 3.18. Ce résultat est
prolongeable sur TM, d’ou le résultat de [4] sur H' (A¢).
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Résumé

On étudie la dérivation de 1’algebre de Lie des champs de vecteurs polynomiaux
sur R” qui contient tous les champs constants et le champ d’Euler. Elle est adjointe de
son normalisateur sur les champs de vecteurs polynomiaux de R”. Si de plus, 1’algebre
de Lie contient tous les champs linéaires diagonaux alors toutes ses dérivations sont
intérieures. On donne une classification de cette algebre de Lie.
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1 Introduction
Etant donnée une R-sous-algebre de Lie ‘¥ de I’algebre de Lie des champs de vec-

teurs polynomiaux sur R”, I’objectif central de notre article est de savoir si toutes les R-
dérivations de ‘P sont intérieures. Dans I’article [7], I’auteur considére le méme probleme
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pour I’algebre de Lie des champs de vecteurs lisses sur une variété différentiable, et montre
que toute dérivation est intérieure en utilisant le résultat de [5] sur les operateurs différen-
tiels linéaires. Par un principe analogue, a savoir, une dérivation est une application linéaire
et locale, [4] a étudié I’algebre de Lie des champs de vecteurs analytiques réels et a montré
que toute sa dérivation est intérieure en passant par I’étude des dérivations des champs ho-
lomorphes sur I’espace de Stein. Or, un champ de vecteurs polynomial nul sur un ouvert est
trivial, donc la condition locale de sa dérivation ne marche pas. [2] a utilisé le ” toral method
” pour étudier les dérivations de certaines algebres de Lie (nilpotentes) en tenant compte du
calcul de leurs dimensions. Dans ce papier, nous étudions les R-sous-algebres de Lie 3 des
champs de vecteurs polynomiaux sur R” qui contiennent tous les champs constants et le
champ d’Euler. On démontre que le normalisateur 91 de I3 est une sous-algebre de Lie des
champs de vecteurs polynomiaux de R”. En utilisant une graduation de ‘B, et le role des
champs constants et du champ d’Euler par le crochet des champs de vecteurs, on trouve
que toute sa dérivation est adjointe par rapport a son normalisateur. On montre de plus
que si tous les champs linéaires diagonaux appartiennent a *J3 alors toute sa dérivation est
intérieure. En particulier, le normalisateur 1 de I3 contient tous les champs linéaires diago-
naux. Le centralisateur de I3 est réduit a zéro. Ainsi, on peut calculer le premier espace de
cohomologie de Chevalley-Eilenberg de 13 et de 91. On donne des exemples d’illustration
de ces résultats, des exemples d’algebres de Lie de champs de vecteurs polynomiaux qui
ne vérifient pas la condition sus-mentionnée, et ou il existe une dérivation ne provenant pas
des champs de vecteurs de y (R"). La classification des algebres de Lie simples complexes
(et réels) est bien connue. C’est en partie dfie aux travaux d’Elie Cartan, de Dynkin et de
Killing. Ici, en utilisant la divergence de champs de vecteurs sur R”, on peut classifier les
algebres de Lie ‘I3 contenant tous les champs constants et le champ d’Euler. Le calcul du
premier espace de cohomologie de Chevalley-Eilenberg des sous-algebres de 1’algebre de
Lie des dérivations d’un anneau associatif, commutatif et unitaire; a été traité dans [6].
Mais en fait, les hypotheses dans [6] p.71 ne permettent pas d’aboutir a tous nos résultats.

2 Etude des algebres de Lie de 13

On désigne par x (R") I’algebre de Lie des champs de vecteurs sur R”. Dans tout ce
paragraphe, on considere une R-sous-algebre de Lie 3 (consistant) de champs de vecteurs
polynomiaux sur R” qui contient tous les champs constants et le champ d’Euler E , ou

E= in% en coordonnées (x'),_._ de R", 91 son normalisateur dans y (R") ; H; I'espace
- <i<

vectoriel des champs homogenes de degré i avec i € NU{—1}. On note Hg I’algebre de Lie
engendrée par tous les champs linéaires diagonaux. Les champs constants sont homogenes
de degré —1 et les champs linéaires de degré 0. On désigne par Ly la dérivée de Lie par
rapport a X € % (R"). On adopte la convention d’Einstein sur la sommation d’indices sauf
mention expresse.

Le crochet de deux champs de vecteurs X = X i% ety =Y/ % de % (R") en coordonnées
(xi ) | <i<p €St donné par :

ox/

) CANY:) CAN?
(X,Y] = (x =7~ V' =0 ) — 2.1)
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En utilisant la formule (2.1), P est graduée de la facon suivante :
BT = & P, , ot chaque PB; est un sous-espace vectoriel de dimension finie de H;, tels que

i>—1

[(PB-1,PB-1] ={0}etVi,j > —1,00i+j>—1, [P, P;] CPir, (2.2)
Proposition 2.1. Un champ X de B est homogeéne de degré p si et seulement si [E,X] = pX.
Démonstration. D’apres (2.1) et (2.2), on a le résultat. ]

Remarque 2.2. On peut identifier un champ linéaire c’est a dire de degré 0 a un et un seul
élément de gl (n,R), cf.[3] p.5.

Lemme 2.3. Si F = Y F; € suivant la graduation de ‘B, alors Vi, F; € B.
—1<i<k

Démonstration. Soit F = Y F;, la décomposition d’un champ de vecteurs F' de 3 en
—1<i<k
ses composantes homogenes.

[F,E|= Y (—i)F; €3, on peut recommencer (k— 1) fois ce processus et on a :
—1<i<k

Vjie0,k], Y (—i)j F; € B, d’ou un systeme linéaire a la Vandermonde dont on déduit
—1<i<k
que tous les F; appartiennent a ‘3. O

Définition 2.4. Le normalisateur 9t de P est défini par Mt = {X € ¢ (R") / [X,B] C B} .

Proposition 2.5. Le normalisateur Nt est une R-algebre de Lie (consistant) des champs de
vecteurs polynomiaux sur R".

Démonstration. )t étant une R-algebre de Lie cf. [1].
Soit X'-2; a ; € 9 dans % (R") , ob (x/)1< <, estun systéme de coordonnées de R”.

Pour tout j, [X S 3 /} = gfj 57 € P alors chaque est un polynome.

. k .
Donc [X ! ai, ,xk J } = (Xk —x' aaﬁ,- ) % est un champ de vecteurs polynomial.

D’ou Yk, X* sont des polyndmes. O

Définition 2.6. Une dérivation D de ‘3 est une application R—linéaire de 3 dans ‘P telle
que VX,¥ € B, DX, Y] = [D(X).Y] + [X,D(Y)].

Proposition 2.7. Une dérivation D de G est nulle sur tous les champs constants et le champ
d’Euler si et seulement si D est nulle.

Démonstration. Supposons que D(E) =D(C)=0,ouC € H_;.

Compte tenu du Lemme 2.3, soit P € Hy , ol k € NU{—1} et raisonnons par récurrence.
Pour P € H_; , on a par hypothése D(P) = 0.

On suppose que D(P) = 0 soit vrai jusqu’au rang k > —1.

Si P € Hyy, d’aprés (2.1) on a D[C,P] = (k+ 1)D(Q) , ou Q € Hy. Donc c’est nul par
hypothese.

Par la définition d’une dérivation, [D(C)

PI+IC, ()]=0
C’est a dire pour tout C € H_y, [C,D(P)] =

0, ainsi D(P) € H
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On pose D(P) = C', d’apres la Proposition 2.1 on a D[E, P| = kD(P).

Par définition et par hypothese sur D, kC' = [E,C'] = —C/, ainsi C' = 0.

D’oll Vk > 0, D(P) =0 et D = 0.

La réciproque est évidente. O

Proposition 2.8. Si D est une dérivation homogene de degré 0 sur B3, nulle sur E alors
D = Ly avec X un champ de vecteurs polynomial homogeéne de degré 0.

Démonstration. Soit D une dérivation homogene de degré 0 de 3, c’est a dire pour tout
ie NU{—]}, D(H,ﬂ‘B) C H;N*B. Alors pour C € H_, D(C) =C',ouC' €eH_,.

Par (2.1) 3!X € Hy tel que D(C) = [X,C] pourtout C€e H_j et D(E) =0 = [X,E].

Done Dy, o(g) = Lx et d’apres la Proposition 2.7, D = Ly. O

Théoreme 2.9. Toute dérivation de 3 est intérieure par rapport au normalisateur ) de *P3.
De plus D = L, x) avec X € Hy et F € B — H.

Démonstration. Soit D une dérivation de ‘3. D’apres le Lemme 2.3, il suffit de considérer
D (Vy,), ot V,, est un champ homogene de degré m > —1 de P.

Onpose D(V,,) = Y WietD(E)= Y E;oulesW, E; € H;NP en vertu du Lemme
—1<i<k —1<i<l
2.3.

Utilisant la définition de la dérivation en terme de composantes homogenes de méme degré,
ona:

D[E,Vm] = [D(E)vvm]+ [EvD(Vm)]

Entraine
mW_ 1 = 0 — Ww_ 1
mW = 0 + 0
mW, = 0 + Wi
sz = 0 + 2W2
me_z = 0 + (I’l’l — Z)Wm_z
mW,_1 = [Efl,Vm} + (m— I)Wm,1
mW,, = [Eo,Vm] + mW,,
mWy = [ELVa] + (m~4+1)Wypy
mWyii1 = 0 + (m+14+1)Wyp
mWpi142 = 0 + (m+142)Whii42

— Pour—1<i<m—2eti>m+Il,ona(i—mW,=0=W;=0
— Pourm—1<i<m+I, onobtient (i — m)W; + [E;_p, V] = 0.
En particulier

[Eo,Vin] =0 (2.3)
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Par suite,
1
DVy) = [EaVal+Wat Y < ) EviV)
m1<isml N1
—1
= [E1,Vul + Wt Y, () [Ei, Vin]
1<i<t \ 1
—1
iz0 \ 1
Onnote F= Y (Z})Ei€P,etonaD(Vy) =W, +[F,V,)

—1<i<L,i#0
Posant D' = D — Ly, ¢’est une dérivation homogene de degré 0 de ‘.
D’apres (2.3) et le fait que tous les champs constants sont dans I3, on a [Ey,C] =0VC € H_;.
Par conséquent, Ey =0 et D'(E) = 0.
D’apres la Proposition 2.8, D' = Ly avec X € Hy.
Alors D = L x) avec F + X est un champ de vecteurs polynomial sur R".
Dans ce cas, F +X € 9tavec F € B — H. O

Remarque 2.10. Le champ F 4+ X du Théoreme 2.9 peut ne pas étre dans ‘3, car Ly avec X
un champ linéaire diagonal est toujours une dérivation de 3. Or, tous les champs linéaires
diagonaux ne sont pas forcément dans ‘3.

Proposition 2.11. Le centralisateur € () de P est nul.

Démonstration. Par définition € () = {X € x (R") /[X,3] = {0} }.
Soit X € €(*P) C N, X est un champ de vecteurs polynomial d’aprés la Proposition 2.5.
Alors X = Y X;avec X; € H;.

—1<i<k
De la Proposition 2.1 et par définition, [E,X]= Y (/)X;=0.AlorsVi#0onaX; =0.
—1<i<k
Or [C,X]|=[C,Xo) =0VC € H_j,alors X =0et X =0.
D’ou € () = {0}. O

Théoreme 2.12. Le premier espace de cohomologie de Chevalley-Eilenberg de B3 noté
H! (B) est isomorphe a une R-sous-algébre de Lie de Hy. Si tous les champs linéaires
diagonaux appartiennent a B alors H' () est nul.

Démonstration. Par définition, H' () = Der () /adg cf. [8] avec Der (B) I'algebre de
Lie des dérivations de ‘B et adys I’ensemble des dérivations intérieures de .

Soit L: X € M +—— adyx € Der () qui est R-linéaire.

SiLxy =0,c’estadire [X,Y] =0VY €, alors X € €(P).

Par la Proposition 2.11, € () = {0} et X = 0. D’ou Iinjectivité de L.

Soit D € Der (3), d’apres le Théoreme 2.9 3X € N tel que D = Ly. D’ol la surjectivité.
Par ailleurs, pour X,Y,Z € x (R") [X,[Y,Z]] +[[X,Z].Y] = [X,[Y,Z]] — [Y,[X,Z]] et en uti-
lisant I’identité de Jacobi, on a [[X,Y],Z] = LxLy (Z) — LyLx (Z).

Donc Lixy)(Z) = [Lx,Ly](Z) VX,Y € Met VZ € x (R"), ainsi L est un homomorphisme
d’algebres de Lie.

Par suite 91 = Der (3).
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D’une maniére analogue que précédemment, L' : X € P8 —— ady € adg est R-linéaire. C’est
donc un isomorphisme d’algebres de Lie. Par suite 3 = adgp.
Alors

H' () = 9/P
, ot N/P est isomorphe a une R-sous-algebre de Lie de Hy d’apres le Théoreme 2.9.
Par ailleurs, soit D = L x) avec F' € B, X € Hy du Théoreme 2.9.
Jy e (Ho —H(‘)i) U{0}etCy e Hg tels que X = Cy+7.
Par (2.1), il existe C}) € H tel que [Y,C)) =Y. Si H{ C B alors Y € % car Ly € Der ().
Ainsi X € P8 et toute dérivation de ‘3 est intérieure. O

Corollaire 2.13. Toute dérivation de 1 est intérieure .

Démonstration. D’apres la Remarque 2.10, le normalisateur 91 contient tous les champs
linéaires diagonaux. Alors par le Théoréeme 2.12 on a le résultat. O

Exemple 2.14. 1 algebre de Lie des champs affines H_| @ Hy sur R” de dimension n” +n
est résoluble d’ordre 3, toute sa dérivation est intérieure par le Corollaire 2.13.
Exemple 2.15. Chacune des R-algebres de Lie suivantes est un exemple de ‘.
%,x% +y% est résoluble d’ordre 2 et sa
dérivation D est Ly avec X appartient a I’algebre de Lie engendrée par %, a‘%,x%, ya%,

1. Dans R?, I’alggbre de Lie engendrée par %,

,ya%,xa%. Ainsi son normalisateur est H_; & Hy et H' ('B) X Hy/ <E >.

2. Sur R?, soit I’alggbre de Lie non simple et non résoluble, engendrée par %, a%, x%,

, ya%, (x)Z%. Sa dérivation D est Ly telle que X appartenant a 1’algebre de Lie engen-
£ d 9 ,d .9 9 ~
drée par 5, 3 Xa Yoy (x)za—x, et H' () = {0}.
3. Sur R?, on consideére I’algebre de Lie résoluble d’ordre 3, engendrée par %, a% ,x% +

—l—y%,x%, (x)za‘iy. Sa dérivation D est Ly avec X appartient a I’algebre de Lie engen-

4 Jd 0 d 9 9 d ~
drée par %’ a*y,xafx,ya*y,xa*y, (X)zafy, et H1 (m) :Hg/ <E>.

2 1 5 . 4 Jd 9 o 9 30 . PR :
4. Sur R7, Ialgebre de Lie engendrée par 5, X an Yoy (x) 5, est de dimension infinie

dénombrable, dont le seul idéal commutatif est {0}, et [3,B] = B. Sa dérivation D
est Ly telle que X appartenant a I’algebre de Lie engendrée par %, %,x% , ya%, (x)? %,
etH! () = {0}.

5. On considere 1’algebre de Lie sur R? de dimension infinie dénombrable, engendrée

par %, a%,xaa—x, ya%,xy%. Elle a un idéal commutatif non nul engendré par y’a% et
r>0
coincide avec son idéal dérivé. Sa dérivation D est Ly avec X appartient a 1’algebre
: 4 d 90 ,0 0 d 1 ~
de Lie engendrée par 3, oy XarYay W et H ('B) = {0}.
6. Sur R2, soit I’algebre de Lie de dimension infinie dénombrable engendrée par %, a%,
,x%, y%,x%, (x)? %. Sa dérivation D est Ly telle que X appartenant a I’algebre de Lie

engendrée par 3, & x 2 ya x 3 x? & H' () = {0} et [, 9] c B
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Remarque 2.16. Si un champ constant ou le champ d’Euler £ n’appartient pas a I3 alors il
peut exister des dérivations qui ne sont pas intérieures dans le normalisateur de 13 :

Soit la R-algebre de Lie des champs de vecteurs polynomiaux engendrée par %,x%,y%

2 PR . e . ) - 9 o 9 | o .
sur R~. Sa dérivation définie par D (&) =D (ya) =0,D (xa—x) = yj, estune dérivation
non intérieure de (Rz).

N : 2 £ d d 0 d 9 .0 £t
La R-algebre de Lie dans R engendrée par 3, Yoy (resp. 5., @,xa—y) admet une dériva-
tion D (resp. D') non intérieure de son normalisateur, définie respectivement par :

0 0 0 0
p(5)=2(3)=0203) =5
N N N A A
v (5)=r(5)=02(5) =5

Définition 2.17. On désigne par Ay le degré d’homogénéité d’un champ homogene X de
PB. s est le degré d’homogénéité maximal de tous les champs homogenes de & C B. Ce
dernier peut étre infini.

Lemme 2.18. Soient X un champ homogeéne de degré k > 1, (V;), une suite de sous-espace

de Y H; définie par Vy = RX et la relation de récurrence : pour tout i € N, Vi | =
—1<i<k

[H_1 @ (E),V;]. Cette suite stationne en Vi. Si div(X) =0, ou div est la divergence de
champ de vecteurs de x,(R") alors VY € Vi, div(Y) = 0.

Démonstration. Soit X un champ homogene de degré k > 1. En vertu du rdle des champs
constants et du champ d’Euler par le crochet de champs de vecteurs, la suite (V;); stationne
lorsque 3j et Y € V; tels que Ay = —1. Dans ce cas (V;); converge vers Vi .

La formule de divergence donne div ([A,B]) = A(div(B)) — B(div(A)) et div([E,A]) =
Ediv(A)VA,B € y (R"). Par conséquent, si div(X) =0 alors div(Y) =0, VY € V;oy. O

Lemme 2.19. [l existe un champ quadratique ® de ‘3 de divergence non nulle tel que
[00,‘13 — (H_1 @Hg)] # {0} si et seulement si (il existe un champ quadratique Y de 3 de
divergence non nulle et 37 € (Ho —Hg) NP) ou (il existe un champ quadratique Y de B
de divergence non nulle et 3Z € Hy N*P) tel que le degré (Ay,); tend vers +oo, oit (V;); la
suite définie par Vo =Y et la relation de récurrence Vi € N, Vi = [Z,V]].

Démonstration. S’il existe un champ quadratique o de P avec div(®) # O tel que

0.5 (HoH)| £ {0}

Comme div (®) # 0, alors 3C € H_; tel que [C, 0] # 0.
1" cas : Il existe C' € H_ avec [C',®] € (Hy—H{) N*P tel que le degré de la suite (V;),
tend vers +oo, o1 (V;); est définie par Vy = et la récurrence V;;.; = [[C', 0], Vi].
2°me cas : 3C" € H_ tel que [C', @] € HINPetVhe H 4, [h,w] ¢ (Hy—HY).
Soit X € P— (H_ D HY), avec deg (X) =k > 1 tel que [©,X] # 0.
1. Pour k =1 : Il existe C" € H_; avec [C",X] € (Hy—H{) NP tel que le degré de
la suite (V;); tend vers +oo, ol (V;), est définie par Vy = o et la récurrence V| =
[[€”, X1, Vil.
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2. Pour k > 2 : Des crochets successifs avec les champs constants permettent de ramener
X au degré 2.
— Si3C" e H_y avec [, X] = a0+« € H NP, ou o € R* alors le degré de la
suite (V;); tend vers oo, ol (V;); est définie par Vy = ® et la récurrence Vi | =
X, Vi].
- SivC" e H_y, [C",X] # ow+ @ € H; NP alors on peut faire des crochets suc-
cessifs de X avec les champs constants jusqu’a ce qu’on obtienne le sous-cas 1..

La réciproque est évidente. 0

Proposition 2.20. 1] existe un champ quadratique ® de B3 de divergence non nulle tel que
[0, B — (H-1 ®HY)] # {0} si et seulement si Ao est infini.

Démonstration. D’apres le Lemme 2.19, on a la nécessité.

Réciproquement, si pour tout ® € H; NP tel que div (0) £ O et [0, P — (H-1 @ HY)] ={0},

montrons que As est fini.

Soit alors ® un champ vérifiant ces hypotheses. On peut décomposer ® en une somme des

champs quadratiques ® = Y ®; tels que Aw; # 0 Vi, ot A désigne le laplacien de champ de
1

vecteurs de ¥, (R"), sinon il existe C € H_; tel que [C,®] € (Hy—H{) NP et [, [C, ®]] # 0.
Alors les champs de vecteurs polynomiaux homogenes X de degré supérieur ou égal a 2 de
B sont de divergence nulle avec [, X] = 0, et les champs homogenes Y de degré inférieur
ouégala 1 de P — (H-1 @ HY) vérifient [0,Y] = 0.

Donc le degré maximal des champs de 3 dépend de I’existence dans 3 d’un champ homo-
gene de degré arbitraire supérieur ou égal a 2.

D’oli A > 2 est fini. O

Théoreme 2.21. Les seules R-algébres de Lie des champs de vecteurs polynomiaux 33 sur
R" contenant tous les champs constants et le champ d’Euler sont :

1. Les R-sous-algébres de Lie de H_1 & Hy contenant tous les champs constants et le
champ d’Euler.

2. Les R-algebres de Lie de champs de vecteurs polynomiaux sur R" contenant tous les
champs constants et le champ d’Euler, dont il existe un champ homogene de diver-
gence non nulle de Hy avec k > 1 vérifiant : Ay est infini si et seulement s’il existe un
champ quadratique ® de 3 de divergence non nulle tel que [0), T — (H_1 @H{f )] #*
{0}.

3. Les R-algebres de Lie des champs de vecteurs polynomiaux sur R" contenant tous
les champs constants et le champ d’Euler, dont les champs homogeénes de degré su-
périeur ou égal 1 sont de divergence nulle (Asg peut étre fini ou infini).

Démonstration. 1. Immédiate.
Sinon Ay > 1, car P n’est plus un sous-espace de H_; & Hy.

2. S’il existe X € Hy NP, ot k > 1 tel que div(X) # 0, d’apres le Lemme 2.18 et
la Proposition 2.20, on peut construire toutes les R-algebres de Lie des champs de
vecteurs polynomiaux satisfaisant :

Mg est infini si et seulement s’il existe un champ ® € H; NP, avec div (w) # 0 tel

que [@, B — (H-1 & HJ)] # {0}
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3. SiVX € HyN*P, ot k > 1 tel que div(X) = 0, en vertu du Lemme 2.18, on peut
construire toutes les R-algebres de Lie des champs de vecteurs polynomiaux véri-
fiant :

VY € P—HY, div(Y) =0et VY, Z € B, div([Y,Z]) = 0.
O

Corollaire 2.22. En coordonnées (xi) \<i <nde R" la valeur de kqg est infini si et seule-
ment si (31'75 j/x"xj%) ou (EIi;ré j/xj%, (xj)Z%) ou (Eli/ (xi)3 %) figurant dans
Iexpression d’un élément non nul de 3.

Proposition 2.23. Toute dérivation des champs de vecteurs polynomiaux 3 sur R est inté-

rieure, toute dérivation des champs de vecteurs polynomiaux B de dimension infinie sur R?
est intérieure.

Démonstration. C’est une conséquence du Théoreme 2.12 et du Théoreme 2.21. O

Nous tenons a remercier M. Jean Moulin Ollagnier, Université Paris XII; M. Didier
Pinchon, Université Toulouse III ; pour leurs suggestions au cours de ce travail.
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Résumé

On étudie le premier espace de cohomologie de Chevalley-Eilenberg des algebres
de Lie attachées a une distribution non réguliere involutive d’une variété différentiable.
On applique les résultats obtenus a I’algebre de Lie des champs de vecteurs a support
compact et aux algebres de Lie relatives a un feuilletage généralisé, conduisant a une
généralisation d’un théoreme de Kanie et de certains résultats de Lichnérowicz.
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1 Introduction

En 1960, Peetre cf. [7] a prouvé que tout opérateur différentiel linéaire sur 1’anneau
des fonctions réelles d’une variété différentiable s’écrit localement en une somme finie de
dérivations sur cet anneau. En utilisant ces résultats, Takens cf. [8] a démontré que toute
dérivation de 1’algébre de Lie des champs de vecteurs sur une variété différentiable est
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intérieure. Cette étude a été étendue par Kanie cf. [4] et Lichnérowicz cf. [6] dans le cas
des algebres de Lie attachées a un feuilletage régulier. Soient M une variété différentiable,
F(M) I’anneau des fonctions réelles de M, y (M) I’algebre de Lie des champs de vecteurs
sur M. Dans ce papier, on se propose d’étudier la dérivation d’une distribution involutive
Q de classe C” sur M. L’algebre de Lie Q vérifie, pour tout x € M il existe X € Q tel
que X(x) # 0. On montre que toute dérivation de Q est locale. Pour tout x € M il existe
un ouvert U, contenant x et un F(U,)-sous-module de rang 1 de Q sur Uy, tels que la
restriction d’une dérivation de Q sur U, est la dérivée de Lie par rapport a un champ de
vecteurs W, sur Uy. Alors, il existe un et un seul y € x(M) tel que sa restriction sur U,
est y, pour tout x € M. Ainsi, on peut montrer que toute dérivation de Q est la dérivée de
Lie par rapport a un et un seul champ de vecteurs appartenant a son normalisateur 1 dans
X (M). Le centralisateur de Q est nul, I'idéal dérivé de Q coincide a Q. Par conséquent, Q
est un idéal caractéristique de 1. De plus, on montre que toute dérivation du normalisateur
N est intérieure. Ainsi, ’application qui a X de 91 fait correspondre la dérivée de Lie par
rapport a X, est un isomorphisme d’algebres de Lie de 91 dans 1’algebre de Lie de toute
dérivation de Q. Alors, le premier espace de cohomologie de Chevalley-Eilenberg de
(resp. de M) est isomorphe a MN/Q (resp. a {0}). On utilise ces résultats pour calculer le
premier espace de cohomologie de Chevalley-Eilenberg de 1’algebre de Lie des champs de
vecteurs a support compact et des algebres de Lie attachées a un feuilletage généralisé, car
elles sont des distributions involutives sur M. Si la variété M est munie d’une structure de
feuilletage régulier, Q est I’algebre de Lie des champs de vecteurs tangents au feuilletage,
alors certains résultats correspondants de [4] et de [6] découlent de nos résultats. Dans un
autre article, on considérera d’autres applications sur les algebres de Lie des champs de
vecteurs attachées a une connexion et définies a la maniere de [5].

2 Etude des dérivations des algebres de Lie d’une distribution
involutive de M

Dans toute la suite, M est une variété différentiable de classe C de dimension n, tous les
objets utilisés sont supposés C* sur M. Dans cette section, F (M) est I’anneau des fonctions
réelles de M, x (M) désigne 1’algebre de Lie des champs de vecteurs sur M avec son crochet
habituel. Q est une distribution involutive de M, autrement dit un F(M)—sous-module de
x (M) stable par le crochet de champs de vecteurs. Dans la suite, sauf mention expresse ;
pour tout x € M, il existe un champ X € Q tel que X (x) # 0. On note par Ly la dérivée de
Lie par rapport a X € y(M), et Supp (X) le support de X sur M. On adopte la convention
d’Einstein sur la sommation d’indices, sauf mention expresse.

Définition 2.1. Une R-dérivation D de Q est une application R—linéaire de Q dans Q telle
que VX,Y € Q, DIX,Y|=[D(X),Y]+ [X,D(Y)].

Dans cette section, une R-dérivation de € est tout simplement appelée dérivation de Q.

Proposition 2.2. Soient U un ouvert de M contenant x, et X € x(M) tel que X (x) # 0, alors
il existe Y € Q avec Supp (Y) C U tel que [X,Y](x) # 0.

Démonstration. Soit X € x (M) vérifiant les hypotheses ci-dessus. Par le théoréme clas-
sique de Frobenius appliqué a {X} dans un ouvert contenu dans U, on réduit I’équation
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aux dérivées partielles correspondante a une forme plus facile a résoudre. Ce qui donne
I’existence du champ Y de Q a support contenu dans U en utilisant les astuces des fonctions
plateaux. 0

Définition 2.3. Une dérivation D de Q est dite locale si pour tout ouvert non vide U de M
etX € Qtels que Xy =0, 0ona D (X),; =0.

Proposition 2.4. Toute dérivation de Q est locale.
Démonstration. Par la Proposition 2.2, on peut adapter la démonstration dans [8]. O

Proposition 2.5. Soient une carte (U, @) de systéme de coordonnées (x');, et y,y' " a' ax,

i#n
appartenant a X (U) :
1. Soit x € U tel qu’il existe iy # n, avec a(x) #0. SiVf € F(U) :
. 0 0 ;0 )
L — =L — Ly | f=— 2.1
v/ aax’+ax” v |/ ox’ Ty (fax”> 1)

i#n i#n
Alors il existe un voisinage V de x dans U, oi Y = \}I, = \VN.

2. Ondésigne par Pr, la n-iéme projection de R". Soient xo € U tel que a'(xo) =0Vi#n
et gy, 1 x €U — gy (x) = X" —Pr,y(@(x0)). SiVf € F(U) :

i 9 9 09
L\V f a i (gx0+l)a — lzv[/ f a’@"‘w +
i7n i#n
0
+ Ly <fgx0 axn> 2.2)

Alors y(xo) = ' (x0) = y" (xo).

Démonstration. Pour avoir le résultat de /., on utilise la relation (2.1) en remplagant f par
des polyndmes convenables sur un voisinage V de x, tel que pour tout y € V, a”(y) # 0.
Le résultat de 2. est obtenu en travaillant sur un voisinage Wy, de xp, ou pour tout y € Wy,
8x(y) # —1; et en remplagant f de la relation (2.2) par des polyndmes et exponentielle
convenables. O

Proposition 2.6. Soient D une dérivation de Q et U un domaine d’une carte tels qu’il
existe un F (U)-sous-module Ty de rang 1 de Qu et y € (U) avec Dy|r, = Ly. Si pour
tout x € U, il existe un ouvert V.C U contenant x tel que pour tout F (V)-sous-module Ay
de rang 1 de Qv, il existe { € (V) avec Dy s, = Ly ; alors Dy = Ly et réciproquement.

Démonstration. Soient D une dérivation de Q et U un domaine d’une carte contenant z.
D’apres la Proposition 2.4, Dy est une dérivation de Q. On peut considérer un systeme
de coordonnées (x',.., Xy de U tel que I'y est le F (U)-module engendré par a%. Soit

Y=d a P +a's a € Qu,alors Z=d' a : € Qu. Procédons en 3 étapes :
i#n i#n
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DSiZ=ad ax, , ol il existe ip # n tel que a®(z) # 0 :

i#n
En utilisant le théoreme classique de Frobenius sur les deux champs Z + aa—y et Z, on trouve
un ouvert V C U contenant z et deux F (V)-sous-modules correspondants de rang 1 de Qy.
La restriction de Dy sur ces deux modules correspond respectivement a la dérivée de Lie
par rapport a { et £’ de % (V). En appliquant /. de la Proposition 2.5, il existe un voisinage
W, deztelqueC:C’:

2)SlZ—aal aveca( )=0Vi#n:

1#n
Soit la fonc‘ﬁon g, dans la Proposition 2.5, d’une facon analogue a 1), on utilise le théoreme
classique de Frobenius sur les deux champs Z + (g, + 1)%7 Z+ a%. Il existe un ouvert
V C U contenant z tel que la restriction de Dy sur les deux modules correspondants est
respectivement égale a la dérivée de Lie par rapport a £ et £’ de % (V). On applique 2. de la
Proposition 2.5, et on trouve {(z) = {'(z) = ¥(z).
3) En utilisant la R-linéarité de Dy et en combinant les deux cas précédents pour tout z € M,
onaDy (Y) =Ly (Y) pour tout Y € Q. Ainsi, on obtient Dy = Ly,.
La réciproque est immédiate. O

Théoreme 2.7. Toute dérivation de ’algebre de Lie Q est une dérivée de Lie par rapport
a un et un seul champ de vecteurs sur M.

Démonstration. Soitx € M, il existe X € Q tel que X (x) # 0. D’apres le théoréme classique
de Frobenius, il existe une carte (U, ®,) contenant x et un systeéme de coordonnées locales
(x',...,x"1y) correspondant, tels que X = a%.

Soit D une dérivation de Q qui est locale par la Proposition 2.4, donc Dy, est une dérivation
de Q. Soit f € F(Uy), comme a € Qp,, alors on peut écrire d’une maniere unique :

0 0 0
Dy (fay) D°<f)ay+D“(f)axa (2.3)

O<a<n

Q étant une distribution involutive de M, alors [aa—y, f a%} € Qg,. Par la Définition 2.1, on

Jd .9 J 0 J 0
o[a )= (5) 73] (52 (05)]
Ona

o (5) 73] = (P05 05505

obtient :

et
) d\] _aD°(f) @  aDf) o
e (5)] =5 5+ 55 e
Donc
Jd .0 B 0/, 0f 20 Of aDO() aDO(f) d
DUx{ay’fay] - (D“>ay+”“ T T >ay+

(20,

4 aDe(1 )> d

dy ox
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9 9| _9f9
dy’” dy| 9y ay
Alors
of of _ oD°(1) o (9f\ _9D°(f)
D()ay—l-D() —f PR =D g — PR 2.4)
oD*(f)  oD(1) _ ., (of
T A ekt ol e (2.5)
,oua=1,...,n—1.
Vj=1,...,n; soit x| un point arbitraire de Pr; (¢, (Uy)) avec x" =y, ona:

DUX[(xj_x{)Ei)’f;y] — {DU,\(("—XI);;) fay] [(xf'_x{);y,Dux<f§y>]

, et d’'une maniere analogue aux (2.4) et (2.5),ona:

DO((xfx{)3§> = D~ )3f +D'(/ >§f 5]0’(f>fal)0()g;_le)+
- 0D(f)
+ (& —x]) % (2.6)
af g nOFN o D) oD —x)
o (W -a3l ) =) O = gy )

poura=1,....n—1.
En outre, par la relation (2.3) et la Proposition 2.4, chaque D“ est R-linéaire et locale. Alors
chaque D“ est un opérateur différentiel d’aprés un théoréme dans [7]. Ainsi on peut écrire :

oAl 9lAl

=y= ) v'ospouwrac{l,...n—1},D"= ) g5
|A|=0 |A|>0
ot A= (A Ap) € N" avec |A| = iA' . o et les y*4,
s 1y+-+54n = >y 9xA (axl)Al,..(aX’Fl)A”’I(ay)A” s a

appartiennent a F (U,).
En remplacant f dans les relations (2.4), (2.5), (2.6) et (2.7) par des polyndmes de degré
quelconque s’annulant en un point arbitraire de Uy, on prouve :

aw(u,O,...,O)

0y~ OV T 0..0) paryy —
D°(1) w09 pe(1) %

poura=1,...n—1
et DY (resp. D?a=1,...,n— 1) estun operateur différentiel d’ordre < 1 (resp. d’ordre 0).
Dans toute la suite, \|I(0 """ 0.1) (resp. \|I(“ 0.---0)y est noté par YOl (resp. y0).

On écrit

0 0
_ S0 01 0
Y=o+ VY,ouyy=D"(1) ety =y —ay + 3 e x(Uy)
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Ainsi pour f € F (Uy)

01af 0 of oy’ oy’ 9
Wlxvfa :| < \Va 7_f ay >ay fWﬁ

Alors
d ] oy 9 a‘VO’l 013f 09\ 9
sy |+ (1) g = (s e i) D
PN
+D%(f) 54
et
) oy 2] d 0
sy |+ (I 00 e = w0+ D)5
Donc

0 0 oy0 0
Dy, <f8y> = [\Ifl,wfay] + <f \g; +Da(f)) F

Mais chaque D* a=1,...,n— 1 est d’ordre 0 et D*(1) = —% Ya # 0,n ; alors

a,0
fa’a‘y +D(f) =0VYa+£0,n

Donc

J 0
Dy, (f8y> = [Wlxyfay] Vf e F(U,)

Pour tous z € Uy et Y € Q tels que Y (z) # 0, on peut répéter le méme raisonnement utilisé
pourXaYetona:
Il existe U, contenant z, un domaine d’une carte dans U, de systeme (x/‘) itelque Y = a

et 3C € x(U;) tel que Dy, (fa ) Lc(f )VfGF( )DapreslaProp051t10n26 on

a Dy, = Ly, pour tout x € M. Donc (Uy, @x)rem forme un atlas de M, et pour tout x € M, il

existe 1, € ¥ (Ux) avec Dy, = Ly, . Pour tous x,y € M tels que U,NU, # @, 1, UﬁU i,

par la Proposition 2.6. Ainsi
3y € X (M) tel que D = Ly avec Vx € M, Yy = V1,

Soity € M, il existe X € Q tel que X (y) # 0. En utilisant le théoréme classique de Frobenius
sur {X} et en faisant le crochet de y avec fX , pour tout f € F (M), on obtient I’unicité de
Y en y quelconque de M. O

Proposition 2.8. Le centralisateur € de Q dans y(M) est réduit a zéro.

Démonstration. Par définition, € = {X € x (M) tel que [X,Q] = {0}}.

Soit X € € # & car 0 € €, raisonnons par 1’absurde.

On suppose que X # 0, donc il existe x € M tel que X (x) # 0. D’apres la Proposition 2.2,
il existe un ouvert U contenant x et ¥ € Q tels que [X,Y](x) # 0. Ce qui contredit X € €,
donc X =0;d’ou € = {0}. O
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Proposition 2.9. L’idéal dérivé de Q coincide a Q.

Démonstration. L’idéal dérivé de Q noté par [Q, Q] est I’algeébre de Lie engendrée par tous
les crochets de deux éléments de €.

[Q,Q] # @ car 0 € [Q,Q]. Comme Q est une algebre de Lie, alors [Q, Q] C Q.

Pour montrer que Q C [Q,Q], raisonnons par 1’absurde.

Supposons qu’il existe X € Q — {0} tel que X ¢ [Q,Q)], alors il existe x € M tel que
X(x) #0et X (x) ¢ [Q,Q](x). Par le théoreme classique de Frobenius dans un ouvert conve-
nable U contenant x, il existe f € F(U) telle que X f = 1. Donc, on a [X, fX] = X et

X, fX](x) = X(x). Alors [X, fX](x) € [Q,Q](x) car Q est une distribution involutive de
M. Ce qui contredit X (x) ¢ [Q,Q](x), ainsi Q C [Q,Q]; d’ou [Q,Q] = Q. O

Remarque 2.10. Cette dernicre proposition est toujours vraie pour toute distribution involu-
tive de M, c’est a dire pour tout F (M)-sous-module de (M) stable par le crochet habituel.

Définition 2.11. Le normalisateur 9t de Q est {X € x (M) tel que [X,Q] C Q}.
Théoreme 2.12. Toute dérivation de N est intérieure.

Démonstration. € est unidéal caractéristique du normalisateur 91 si elle est stable par toute
dérivation de 1.

Par la Proposition 2.9 et un résultat classique cf. [1], on prouve que Q est un idéal caractéris-
tique de 1. En utilisant le Théoreme 2.7, la Proposition 2.9, la Proposition 2.8 et en adaptant
une preuve de [6] pp.68-69 ; on montre que toute dérivation de 1 est intérieure. O

Définition 2.13. Soient (A,[,]4) et (B,[,]p) deux R—algebres de Lie. Un homomorphisme
d’algebres de Lie de A dans B est une application R-linéaire / telle que pour tous X,Y de
A, h([X,Y],) =[h(X),h(Y)]z. Cest un isomorphisme si & est bijective.

Corollaire 2.14. On note par Der (A) I’ensemble de toute dérivation d’une algébre de Lie
A. Les algeébres de Lie Der(Q), M, Der(MN) sont isomorphes et le premier espace de coho-
mologie de Chevalley-Eilenberg de Q (resp. de N) est isomorphe a ’algébre de Lie t/Q

(resp. a {0}).

Démonstration. On note par adg I’ensemble des dérivations intérieures de Q. Par défini-
tion, H! (Q) = Der (Q) /adg cf. [10].

Soit I’application R-linéaire 0 : N Milnet Der(Q) , ou le crochet dans Der(Q) est dé-
——Ux=Lx

fini par VD,D'; [D,D']| = Do D' — D' oD avec o la loi de composition des applications.
L application 6 est bijective en utilisant la Proposition 2.8, le Théoréme 2.7 ; et un ho-
momorphisme par I’identité de Jacobi. D’une maniere analogue, on a les deux résultats :
Q = Der(Q) et, M = Der(N) en utilisant le Théoreme 2.12. Ainsi Der(2) = 9t = Der(N).
Par isomorphisme, on obtient H! (Q) = 9t/Q et H' (M) = {0}. O

Remarque 2.15. Supposons que ’algebre de Lie Q n’est pas identiquement nulle et 1’en-
semble O = {x € M tel que Q(x) # 0} est différent de M. La Proposition 2.4 reste valable
en utilisant un résultat analogue sur la sous-variété ouverte . En s’inspirant d’une preuve
faite dans [6] pp.458-463, si O est partout dense dans M, alors :

D’aprés le Théoréme 2.7, pour tout D € Der (Q) il existe X € y (O) tel que D|o = Lx. Sile
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prolongement X de chaque X correspondant & D € Der (Q), appartient & 91; alors D = L.
Le centralisateur de Q est nul, ainsi le Corollaire 2.14 reste valable.

Exemple 2.16. Sur R3, ’ensemble B8 des champs de vecteurs de la forme f % + g% + ha%

avec f,g.heF (R3), s’annulant en (0,0,0), est une distribution non-réguliére, involutive.
Le normalisateur de B est B lui-méme, le premier espace de cohomologie de Chevalley-
Eilenberg H! (B) = {0}.

3 Application a I’algebre de Lie des champs de vecteurs a sup-
port compact et aux algebres de Lie attachées a un feuilletage
généralisé

Soit €, I’ensemble des champs de vecteurs a support compact sur M, il est facile de

vérifier que &, est une distribution involutive de M.

Théoreme 3.1. L’idéal dérivé de ’algebre de Lie €. coincide a €., son centralisateur
est nul et son premier espace de cohomologie de Chevalley-Eilenberg est isomorphe a

X(M)/ €.
Démonstration. On peut montrer que pour tous X € x(M) etY € €, :

[X,Y] € €, 3.1)

Ainsi, le normalisateur de €. dans x(M) est x(M). Par la Proposition 2.9, [€., €] = €,
c’est un idéal caractéristique de x(M).

Par ailleurs, pour tout x € M, il existe X € €, tel que X (x) # 0, donc son centralisateur est
nul par la Proposition 2.8. D’apres le Corollaire 2.14 :

H' (€)= x(M)/€.
O

Définition 3.2. Un feuilletage généralisé § = {§*},; sur M est une partition en sous-
variétés connexes de M = UISO‘ qui sont exactement les orbites des compositions des flots
oc

engendrés par les champs de vecteurs localement tangents aux feuilles de § cf. [2].

Dans toute la suite, M est une variété différentiable munie d’une structure de feuilletage
généralisé §.
Définition 3.3. L’algébre de Lie des champs de vecteurs tangents au feuilletage § est dé-
signée par % (). Le normalisateur de ¥ (§) dans x (M) est noté par Dt (F). On désigne par

£(F) l'algebre de Lie des champs de vecteurs qui préservent le feuilletage §, £(§) est
contenu dans N (F) cf. [2].

Exemple 3.4. Les feuilletages engendrés par les champs hamiltoniens de I’algebre de Lie
locale de Kirillov cf. [3] ou ceux engendrés par la structure de Jacobi ou de Poisson, sont
des feuilletages généralisés. Ils définissent un  (§) finiment engendré cf. [2].

La structure hamiltonienne dans [9] définit un feuilletage généralisé aux feuilles présym-
plectiques dont I"algebre de Lie ¥ (F) y est détaillée.
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Théoréme 3.5. L’algebre de Lie X (§) = % (F) N €. est un idéal caractéristique de ¥ (F)
tel que (Y (F) % (§)] = A (F)- SiVx e M, IX € . (F) tel que X (x) # 0, alors le centrali-
sateur de Y (F) est nul et H' (% (F)) = N(T) /1 ()

Démonstration. Comme ) (F), €, sont des distributions involutives sur M ; alors X (§) =
X (§) N €. Iest aussi. Par la Proposition 2.9, [X (F),Xc (§)] = % (§) ; c’est un idéal ca-
ractéristique de x (§). Par ailleurs . (§) C % (F), alors [N (F), % (F)] C x(F). D apres la
relation (3.1), les champs de [N (F) , % (§)] sont a support compact, alors [T(F), % (F)] est
contenu dans ¥ (§) N €. = Y (F). On en tire que N (F) est le normalisateur de ¥ (F) dans
X (M).

Le centralisateur de . () est nul d’apres la Proposition 2.8 ; par le Corollaire 2.14, on a :

H' (% (3)) =2 N(F) /% (3)
0

Remarque 3.6. Ce dernier théoréme est en partie une généralisation dans le cas non régulier
d’un théoréme dans [6] p.64.

Théoreme 3.7. L’idéal dérivé de y (F) est égal a ¥, (F). Si le feuilletage est non singulier,
c’est a dire que chaque feuille a une dimension superieure ou égale a un, alors le centrali-
sateur de ¥ (F) est nul et

H' (x(3)) =2 N(E) /x(3), H' (N(F)) = {0}, H' (£(F)) = N(3) /L£(F).

Démonstration. D’apres [2], x (F) est une distribution involutive de M. Par la Proposition
2.9, X (&), x(F)] =% (F), c’est un idéal caractéristique de ().

Si le feuilletage est non singulier, alors Vx € M, 3X € % () tel que X (x) # 0. En utilisant la
Proposition 2.8 et le Corollaire 2.14, on a les trois résultats suivants. Par ailleurs, I’algebre
de Lie £(F) contient x (F) et [£(F), % (F)] C % (F) cf. [2]. Ainsi, on adapte une preuve de
[6] pp-68-69 et on trouve que toute dérivation de £(F) est une dérivée de Lie par rapport
a un champ de 91(§). En faisant un raisonnement analogue a celui du Corollaire 2.14, on
trouve le dernier résultat. O

Remarque 3.8. Si le feuilletage § est singulier, et X () vérifie toutes les hypotheses de la
Remarque 2.15, alors on retrouve les mémes résultats du Théoreme 3.7.

Remarque 3.9. Si le feuilletage § est régulier alors on retrouve un théoreme de Kanie cf.
[4] p.487 et certains résultats de Lichnérowicz cf. [6] p.55, p.64, p.69, a partir du Théoreme
3.7.

Remarque 3.10. Sion a I’égalité N (F) = £(F), alors

H' (1 (3) = £(3) /x(3), H' (£(3)) = {0}.
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A Meeting of Great Minds, Sophus Lie and John Nash throughout their

Works
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Keywords: Lie; Nash; Differential geometry

It is well known that Marius Sophus Lie (1842-1899) and John
Forbes Nash (1928-2015) are great mathematicians. Sophus Lie comes
from Norway and John Nash from United States of America. Their
stories have certain resemblances and remarkable relations. This
editorial would emphasize some of them. When they have started their
university studies, their respective first interests were not mathematics.

That is to say, Lie has been in Astronomy and Nash in Chemical
Engineering. Whereas, when they worked on mathematics, the first had
Lobatchevski award in 1897 and the second, Nobel prize 1994 and Abel
award 2015 (Niels Abel is the uncle of the wife of Sophus Lie: Anna
Birch). In addition, their contributions in geometry are considerable,
particularly in differential equations. Lie worked on transformation
groups relative to partial differential equations, in other words, on Lie
groupsand on special non-associative algebras named Lie algebras. Nash
discovered an important isometrically embedding theorem for a C*-
Riemannian manifold into an Euclidian space (k=1,3,4... ), by studying
an undetermined partial differential equations. Now, the methods they
used offer us an important tool for continuing researches in differential
geometry and in other fields cf. [1-9]. Next, these exceptional persons
have continued to put more efforts into their mathematics works, even
if they had a serious health problem in the middle of their careers. We
hope that several mathematicians continue to make profits from results
of Lie and Nash for the mathematics’s promotion.

This special issue “Recent Advances of Lie Theory in Differential
Geometry, in memory of John Nash” honored both Sophus Lie and
John Nash as well as their works. John Nash died recently with his
wife in a car crash on May 23, 2015. We are grateful regarding their
contributions in differential geometry, generally in mathematics.
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Abstract

In group theory the chief factors allow a group to be studied by its representation theory on particularly natural
irreducible modules. It is to be expected, therefore, that they will play an important role in the study of Lie algebras. In

this article we survey a few of their properties.

Keywords: L-Algebras; L-Equivalence; c-factor; m-factor; cc-type

Introduction

Throughout L will denote a finite-dimensional Lie algebra over a
field F. We call a subalgebra I a subideal of a Lie algebra L if there is a
chain of subalgebras

I=1,<L<..<I =L,
where I] is an ideal ofIﬁ1 foreach 0<j<n-1,

Put L' =L, [ =[I*,L] for k > 1. These are the terms of the lower
central series for L. We say that L has nilpotency class n if L' #0 but
" =0 . Let Ube a subalgebra of L. If F has characteristic p>0 we call U
nilregular if the nilradical of U, N(U), has nilpotency class less than p —
1. If F has characteristic zero we regard every subalgebra of L as being
nilregular. We say that U is characteristic in L if it is invariant under
all derivations of L. Nilregular ideals of L have the property that their
nilradicals are characteristic in L. Details of the results in this section
can be found in studies of Towers [1].

Theorem 1.1.
(i) If I is a nilregular ideal of L then N(I)c N(L).

(ii) If I is a nilregular subideal of L and every subideal of L containing
I is nilregular, then N(I)c N(L).

This result was proved by Schenkman [2] for fields of characteristic
zero; in characteristic p it follows from a more recent result of
Maksimenko [3]. Similarly, we will call the subalgebra U solregular if
the underlying field F has characteristic zero, or if it has characteristic p
and the (solvable) radical of U, R(U), has derived length less than log,p.
Then we have the following corresponding theorem, which uses a result
of Petravchuk [4].

Theorem 1.2.
(i) If L is a solregular ideal of L then R(I)c R(L) .

(ii) If Iis a solregular subideal of L and every subideal of L containing
ILis solregular, then R(I)c R(L) .

These enable us to determine what the minimal ideals of L look like.

Theorem 1.3. Let L be a Lie algebra over a field F, and let I be a
minimal non-abelian ideal of L. Then either

(i) Iis simple or

(ii) F has characteristic p, N(I) has nilpotency class greater than or
equal to p — 1, and R(I) has derived length greater than or equal to log,p.

As a result of the above we will call the subalgebra U regular if it is
either nilregular or solregular; otherwise we say that it is irregular. Then

we have the following corollary.

Corollary 1.4. Let L be a Lie algebra over a field F. Then every
minimal ideal of L is abelian, simple or irregular.

Block’s Theorem on differentiably simple rings [5] describes the
irregular minimal ideals as follows.

Theorem 1.5. Let L be a Lie algebra over a field of characteristic p>0
and let I be an irregular minimal ideal of L. Then 1=S®O,, where S is
simple and O is the truncated polynomial algebra in n indeterminates.
Moreover, N(I) has nilpotency class p — 1 and R(I) has derived length

[log,p].
Primitive Lie algebras

Next we introduce the concept of a primitive Lie algebra. Details
of the results in this section can be found in literature of Towers [6].
A word of warning - this terminology has been used for a different
concept elsewhere. If U is a subalgebra of L we define U,, the core
(with respect to L) of U to be the largest ideal of L contained in U.
We say that U is core-free in L if U, = 0. We shall call L primitive if
it has a core-free maximal subalgebra. The centraliser of U in L is
C,(U)={xeL:[x,U]=0}.

There are three types of primitive Lie algebra: primitive of type 1 if
it has a unique minimal ideal that is abelian; primitive of type 2 if it has
a unique minimal ideal that is non-abelian; and primitive of type 3 if it
has precisely two distinct minimal ideals each of which is non-abelian.

Of course, primitive Lie algebras of types 2 and 3 are semisimple,
and those of types 1 and 2 are monolithic. (A Lie algebra L is called
monolithic if it has a unique minimal ideal W, the monolith of L.)

Example 2.1. Examples of each type are easy to find.

Clearly every primitive solvable Lie algebra is of type 1. Every simple
Lie algebra is primitive of type 2.

If S is a simple Lie algebra then L =S® S is primitive of type 3 with
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core-free maximal subalgebra D= {s+s:se S} the diagonal subalgebra
of L.

Let M be a maximal subalgebra of L. Then M/M, is a core-free
maximal subalgebra of L/M,. We say that M is

1. a maximal subalgebra of type 1 if L/M, is primitive of type 1;

2. a maximal subalgebra of type 2 if L/M, is primitive of type 2;
and

3. amaximal subalgebra of type 3 if L/M, is primitive of type 3.

We say that an ideal A is complemented in L if there is a subalgebra
U of L such that L=A + Uand A N U = 0. For primitive solvable Lie
algebras we have the following analogue of Galois’ Theorem for groups.

Theorem 2.2.

1. IfL is a solvable primitive Lie algebra then all core-free maximal
subalgebras are conjugate.

2. IfAisaself-centralising minimal ideal of a solvable Lie algebra L,
then L is primitive, A is complemented in L, and all complements
are conjugate.

The Frattini ideal of L, ¢(L), is the core of intersection of the
maximal subalgebras of L. We say that L is ¢-free if ¢(L) = 0. Then we
have the following characterisation of primitive Lie algebras of type 1.

Theorem 2.3. Let L be a Lie algebra over a field F.

1. Lis primitive of type 1 if and only if L is monolithic, with abelian
monolith W, and ¢-free.

If F has characteristic zero, then L is primitive of type 1 if and only if
L=Wx(C®S) (semi-direct sum), where W is the abelian monolith of L,
C is an abelian subalgebra of L, every element of which acts semisimply
on W, and S is a Levi subalgebra of L.

If L is solvable, then L is primitive if and only if it has a self-
centralising minimal ideal A.

For type 2 we have
Theorem 2.4.

L is primitive of type 2 if and only if L=2U+(S®0,), where S®O0,
is an ideal of L and S is simple.

If F has characteristic zero, then L is primitive of type 2 if and only
if L is simple.

L is primitive of type 2 if and only if there is a primitive Lie algebra X
of type 3 such that [~ x /| B for a minimal ideal B of L.

For type 3 we have
Theorem 2.5.

L is primitive of type 3 if and only if L has two distinct minimal ideals
B, and B, with a common complement and such that the factor algebras
L/B, are primitive of type 2 for i = 1, 2. Moreover, B, and B, are both
isomorphic to S®O,, where S is simple.

IfF has characteristic zero, then L is primitive of type 3 if and only if
L=S®S , whereS is simple.

Chief Factors

The factor algebra A/B is called a chief factor of L if B is an ideal of
L and A/B is a minimal ideal of L/B. So chief factors are as described in

Corollary 1.4 and Theorem 1.5. We can identify different types of chief
factor; details for this section can be found in studies of Towers [6]. A
chief factor A/B is called Frattini if A/B<¢(L/B). This concept was
first introduced in literature of Towers [7].

If there is a subalgebra, M such that L = A + M and B AnM,
we say that A/B is a supplemented chief factor of L and that M is a
supplement of A/B in L Also, if A/B is a non-Frattini chief factor of L,
then A/B is supplemented by a maximal subalgebra M of L

If A/Bis a chief factor of L supplemented by a subalgebra M of L,
and 4nM =B then we say that A/B is complemented chief factor of L,
and M is a complement of A/B in L. When L is solvable, it is easy to see
that a chief factor is Frattini if and only if it is not complemented. Then
we have the following generalisation of the Jordan-Hélder Theorem.

Theorem 3.1. Let
0<4<..<A4 =L (1)
0<B<..<B =L (2)

be chief series for the Lie algebra L. Then there is a bijection between
the chief factors of these two series such that corresponding factors are
isomorphic as L-modules and such that the Frattini chief factors in the
two series correspond.

The number of Frattini chief factors or of chief factors which are
complemented by a maximal subalgebra of a finite-dimensional Lie
algebra L is the same in every chief series for L. However, this is not the
case for the number of chief factors which are simply complemented in
L; in framework of Towers [8] we determine the possible variation in
that number.

Note that if L is a primitive Lie algebra of type 3, its two minimal
ideals are not L-isomorphic, so we introduce the following concept.
We say that two chief factors of L are L-connected if either they are
L-isomorphic, or there exists an epimorphic image £ of L which is
primitive of type 3 and whose minimal ideals are L-isomorphic,
respectively, to the given factors. (It is clear that, if two chief factors of
L are L-connected and are not L-isomorphic, then they are nonabelian
and there is a single epimorphic image of L which is primitive of type 3
and which connects them.) Then, as we would hope,

Theorem 3.2. The relation ‘is L-connected to’ is an equivalence
relation on the set of chief factors.

Let A/B be a supplemented chief factor of L and put J= {M, : M is
a maximal subalgebra of L supplementing a chief factor L-connected
to A/B}. Let R=n{N:NeJ} and C=A4+C,(4/B). Then we call C/R
the crown of L associated with A/B. This object gives much information
about the supplemented chief factors of L.

Theorem 3.3. Let C/R be the crown associated with the supplemented
chief factor A/B of L. Then C/R = Soc(L/R). Furthermore

(i) every minimal ideal of L/R is a supplemented chief factor of L
which is L-connected to A/B, and

(if) no supplemented chief factor of L above C or below R is
L-connected to A/B.

In other words, there are r ideals Ay A of L such that
C/R=A4/R®..®A/R

where A/R is a supplemented chief factor of L which is L-connected to
A/B for i = 1,..., r and r is the number of supplemented chief factors
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of L which are L-connected to A/B in each chief series for L. Moreover,
#(LIR)=0.

Corollary 3.4. Two supplemented chief factors of L define the same
crown if and only if they are L-connected.

Theorem 3.5. Let L be a solvable Lie algebra, and let C/R=C be
the crown associated with a supplemented chief factor of L. Then C is
complemented in [, and any two complements are conjugate by an
automorphism of the form 1 + ad a for some aeC .

Finally, in [9], Barnes determined for a solvable Lie algebra which
irreducible L-modules A have the property that H'(L,4)=0 .

Theorem 3.6. Let L be a solvable Lie algebra and let A be an
irreducible L-module. Then H'(L,A)=0 if and only if L has no
complemented chief factor isomrphic to A.

Covering and Avoidance

The subalgebra U avoids the factor algebra 4 /4., if
Und4 =UnAd, ; likewise, U covers 4,/ 4 if U+4, =U+4_, . We say
that U has the covering and avoidance property of L if U either covers
or avoids every chief factor of L. We also say that U is a CAP-subalgebra
of L. Then these subalgebras give characterisations of solvable and
supersolvable Lie algebras; details can be found in studies of Towers
[10].

There are a number of ways in which CAP-subalgebras arise. For a
subalgebra B of L we denote by [B : L] the set of all subalgebras S of L
with B€ScL,andby [B:L]  the set of maximal subalgebrasin [B:
L]; that is, the set of maximal subalgebras of L containing B. We define
the set Z by i€Z if and only if 4,/ 4., is not a Frattini chief factor of L.
For each i€Z put

M ={Me[d_,L],, 4 £ M}
Then U is a prefrattini subalgebra of L if
U= ﬂM,, for some M, e M,.
i€l
It was shown in [8] that, when L is solvable, this definition does not
depend on the choice of chief series, and that the prefrattini subalgebras

of L cover the Frattini chief factors and avoid the rest; that is, they are
CAP-subalgebras of L.

Further examples were given by Stitzinger [11], where he proved
the following result [11] for definitions of the terminology used).

Theorem 4.1. ([11], Theorem 2) Let F be a saturated formation of
solvable Lie algebras, and let U be an F -normaliser of L. Then U covers
every F-central chief factor of L and avoids every F-eccentric chief factor

of L.
The chief factor 4,/ 4., is called central if [L.41= 4., and eccentric

otherwise. A particular case of the above result is the following theorem,
due to Hallahan and Overbeck.

Theorem 4.2. ([12], Theorem 1) Let L be a metanilpotent Lie
algebra. Then C is a Cartan subalgebra of L if and only if it covers the
central chief factors and avoids the eccentric ones.

A subalgebra U of L will be called ideally embedded in L if I (U)
contains a Cartan subalgebra of L, where I,(U)={xeL:[x,U]cU} is
the idealiser of U in L . Clearly, any subalgebra containing a Cartan
subalgebra of L and any ideal of L is ideally embedded in L. Then we
have the following extension of Theorem 4.2.

Theorem 4.3. Let L be a metanilpotent Lie algebra and let U be
ideally embedded in L. Then U is a CAP-subalgebra of L.

Corollary 4.4. Let L be any solvable Lie algebra and let U be an
ideally embedded subalgebra of L with K =N,(L)cU . Then Uisa CAP-
subalgebra of L.

Another set of examples of CAP-subalgebras, which don’t require L
to be solvable, is given by the next result.

Theorem 4.5. Let L be any Lie algebra, let U be a supplement to an
ideal B in L, and suppose that B* cU for some k € N. Then U is a CAP-
subalgebra of L.

We can calculate the dimension of CAP-subalgebras in terms of the
chief factors that they cover.

Lemma4.6.LetUbea CAP-subalgebraofL,let 0= 4 < 4, <...<4,=L
be a chief series for L and let T =1{i:1<i<n,U covers 4,/ 4,,}. Then
dimU =3 _(dim4,—dim4,,)-

We have the following characterisations of solvable and

supersolvable Lie algebras.

Theorem 4.7. Every one-dimensional subalgebra of L is a CAP-
subalgebra of L if and only if L is supersolvable.

Theorem 4.8. Let L be a Lie algebra over any field F. Then L is solvable
if and only if all of its maximal subalgebras are CAP-subalgebras.

Theorem 4.9. Let L be a Lie algebra over a field F which has
characteristic zero, or is algebraically closed field and of characteristic
greater than 5. Then L is solvable if and only if there is a maximal
subalgebra M of L such that M is a solvable CAP-subalgebra of L.
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Jet Bundles on Projective Space I
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Abstract

In previous papers the structure of the jet bundle as P-module has been studied using different techniques. In
this paper we use techniques from algebraic groups, sheaf theory, generliazed Verma modules, canonical filtrations
of irreducible SL(V)-modules and annihilator ideals of highest weight vectors to study the canonical filtration U, (g)L°
of the irreducible SL(V)-module H° (X, O,(d))* where X = G(m, m + n). We study U, (g)L? using results from previous
papers on the subject and recover a well known classification of the structure of the jet bundle P (O(d)) on projective
space P(V*) as P-module. As a consequence we prove formulas on the splitting type of the jet bundle on projective
space as abstract locally free sheaf. We also classify the P-module of the first order jet bundle P} (O, (d)) for any d
> 1. We study the incidence complex for the line bundle O(d) on the projective line and show it is a resolution of the
ideal sheaf of /'(O(d)) - the incidence scheme of O(d). The aim of the study is to apply it to the study of syzygies of

discriminants of linear systems on projective space and grassmannians.

Keywords: Algebraic group; Jet bundle; Grassmannian; P-module;
Generalized verma module; Higher direct image; Annihilator ideal;
Canonical filtration; Discriminant; Koszul complex; Regular sequence;
Resolution

Introduction

In a series of papers of Maakestad [1-4], the structure of the jet
bundle as P-module has been studied using different techniques. In
this paper we continue this study using techniques from algebraic
groups, sheaf theory, generalized Verma modules, canonical filtrations
of irreducible SL(V)-modules and annihilator ideals of highest weight
vectors and study the canonical filtration U, ( g)L? of the SL(V)-module
H*(X, O,(d))" where X = G(m, m + n) is the grassmannian of m-planes
in an m + n-dimensional vector space. Using results obtained in studies
of Maakestad [1] we classify U, (g)L* and as a corollary we recover a
well known result on the structure of the jet bundle 7 (O(d)) on P(V*)
as P-module. As a consequence we get well known formulas on the
splitting type of the jet bundle on projective space as abstract locally
free sheaf. We also classify the P-module of the first order jet bundle
Pi(O,(d)) on any grassmannian X = G(m, m + n) (Corollary 3.10).

In the first section of the paper we study the jet bundle 7., (€) of
any locally free G-linearized sheaf ¢ on any quotient G / H. Here G is
an affine algebraic group of finite type over an algebraically closed field
K of characteristic zero and H € G is a closed subgroup. There is an
equivalence of categories between the category of finite dimensional
H-modules and the category of finite rank locally free O, ,-modules
with a G-linearization. The main result of this section is Theorem
2.3 where we give a classification of the H,-modules structure of the
fiber 7, (£)(x)" where H, € H is a Levi subgroup. Here x G / H is the
distinguished K-rational point defined by the identity e € G. We also
study the structure of P;(O,(d))(x)" as H-module where X = G(m, m
+ n) is the grassmannian of m-planes in an m + n-dimensional vector
space (Corollary 2.5 and 2.8).

In the second section we study the canonical filtration U, (g)L¢ for
the irreducible SL(V)-module H® (G, OG(d))". Here G = G(m, m + n).
We prove in Theorem 3.5 there is an isomorphism

U (g)L" = L' ®Sym'(g/p, ®L)

of P-modules when G = G(1,n + 1) = P"is projective n -space. Asaresult
we recover in Corollary 3.6 the structure of the fiber 7.(0,(d))(x)" as
P-module. This result was proved in another paper [5] using different

techniques. We also recover in Corollary 3.8 a known formula on the
structure of the jet bundle on projective space as abstract locally free
sheaf [2,6-10].

In the third section we study the incidence complex

AO, (-1), ®P(O)),

P

of the line bundle O(d) on the projective line. Using Koszul complexes
and general properties of jet bundles we prove it is a locally free
resolution of the ideal sheaf of I'((O(d)) - the incidence scheme of O(d).

In Appendix A and B we study SL(V)-modules, automorphisms of
SL(V)-modules and give an elementary proof of the Cauchy formula.

Hence the paper initiates a general study of the canonical filtration
U, (g)L? for any line bundle O(d) with d > 1 on any grassmannian G(,
m + n) as P-module. In Section 3 we show some of the complications
arising in this study by giving explicit examples.

The study of the jet bundle P} (Oy(d)) of aline bundle O, (d) on the
grassmannian X = G(m, m + n) is motivated partly by its relationship
with the discriminant D'O, (d) of the line bundle O, (d). There is by
studies of Maakestad [11] for all 1 </ < d an exact sequence of locally
free O,-modules

09— H'(X,0,(d)®0O, - Pi(O.(d)) -0

giving rise to a diagram of maps of schemes

P(Q) —L=P(W*) x X

D(Ox (d)) ——=P(W)
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Where W =H’(X, O,(d)), mis the restriction of the projection map
and i, j are closed immersions. By definition D'(Oy(d)):=z(P(Q") is
the schematic image of P(Q’) via . The K-rational points of P(Q’)
are pairs of K-rational points (s, x) with the property that T'(x)(s) = 0
in Py (O, (d))(x) . The scheme P(Q) is the incidence scheme of the I'th
Taylor morphism

T':H'(X,0,(d)) ® Oy > P (O,(d)).

The map 7 is a surjective generically finite morphism between
irreducible schemes. There is by literature of Maakestad [11] a Koszul
complex of locally free sheaves on Y = P(W') x X

0 O0(=r), ® N P (O, (d))y == O(=1), ® PO (d)), » (1.0.1)
0, -0

o 0

which is a resolution of the ideal sheaf of P(Q") when it is locally
generated by a regular sequence. The complex 1 might give information
on a resolution of the ideal sheaf of Dl((’)X (d)). A resolution of the ideal
sheaf of D'(O, (d)) will give information on its syzygies. By literature
of Maakestad [11] the first discriminant D' (OP(d)) on the projective
line P = P" is the classical discriminant of degree d polynomials, hence
it is a determinantal scheme. By the results of Lascoux [12], we get an
approach to the study of the syzygies of D' (OP(d)). Hence we get two
approaches to the study of syzygies of discriminants of line bundles on
projective space and grassmannians: One using Taylor maps, incidence
schemes, jet bundles and generalized Verma modules. Another one
using determinantal schemes.

Jet Bundles on Quotients

In this section we study the jet bundle of any finite rank G-linearized
locally free sheaf £ on the grassmannian G/P=G(m, m + n) as P,
-module, where P, € P is a maximal linearly reductive subgroup.

Let K be an algebraically closed field of characteristic zero and let
V be a K-vector space of dimension n. Let H € G S GL(V) be closed
subgroups. The following holds: There is a quotient morphism

7:G>G/H (2.0.2)

and G / H is a smooth quasi projective scheme of finite type over
K. Moreover

H E G is parabolic if and only if G / H is projective. (2.0.3)

For a proof refer to literature of Jantzen [13]. Let X = G/ H and
let mod® (O,,) be the category of locally free O, -modules with a
G-linearization. Let mod(H) be the category of finite dimensional
H-modules. It follows from Jantzen [13], there is an exact equivalence

of categories

mod(H) = mod® (O,,).

G/H

Let £ € mod® (O,,) be alocally free O -module.

LetY=G/HxG/Handp,q: Y- G/ Hbe the canonical projection
maps. The scheme G / H is smooth and separated over Spec(K) hence
the diagonal morphism

A:G/H>Y

is a closed immersion of schemes. Let T S O, be the ideal of
the diagonal and let O, =0, /T"" be the structure sheaf of the n’th
infinitesimal neigborhood of the diagonal.

Definition 2.1. Let € be a locally free finite rank O, ,-module. Let

Ton(€) = p.(0, ®q'E)
be the 'th jet bundle of £.

Proposition 2.2. There is for all | > 1 an exact sequence of locally
free O, -modules

0— Sym' (U, )®E = P, (E) = P () >0 (2.2.1)

with G-linearization.
Proof. By literature of Maakestad [4] sequence 2.2.1 is an exact
sequence of locally free O, .-modules. The scheme Y is equipped with

the diagonal G-action. It follows p. and q preserve G-linearizations. We
get a diagram of exact sequences of O -modules with a G-linearization

0—=T"QRq¢E— 0y QPE— 0y Qg E—0

| l l

0——=T'QqE——>0y QeE—>Ou1 Q ¢ ——0

Since p. preserves G-linearization we get a morphism
¢ P (€) = Py ()
preserving the G-linearization, and the Proposition is proved.

Let g = Lie(G) and h = Lie(H). Let H, S H be a Levi subgroup of H. It
follows H, is a maximal linearly reductive subgroup of H. The group H,
is not unique but all such groups are conjugate under automorphisms
of H. Let x € G/ H be the K-rational point defined by the identity e € G.

Theorem 2.3. There is for all | 2 1 an isomorphism

PrE)x) = E(x) ®(S_Sym'(g/h)) (23.1)

of L-modules.

Proof. Dualize the sequence 2.2.1 and take the fiber at x to get the
exact sequence

0— P (E)X) = PLUENX) — E(x)" ®Sym'(g/h) =0

of H-modules (and H,-modules). This sequence splits since H, is
linearly reductive and the Theorem follows by induction on /.

Hence the study P/ (£)(x)" as H,-module is reduced to the study of
& (x) and Sym'(g/ h).

Let W € V be K-vector spaces of dimension m and m + nand let G
= SL(V) and P € G the subgroup fixing W. It follows G/ P = G(m, m +
n) is the grassmannian of m-planes in V. Let g = Lie(G) and p = Lie(P).
Fix abasise,.,e for Wande,..e e, ,.,e,  for V.It follows the
K-rational points of P are matrices M on the form

A X
M=
(o )

where det(A)det(B) = 1, A an m x m-matrix and B an n X n-matrix. Let

P, C P be the subgroup defined as follows: The K-rational points of P,
are matrices M on the form

T

where det(A)det(B) = 1 and similarly A an m x m-matrix and B an n
x n-matrix. It follows P, is a Levi subgroup of P, hence it is a maximal
linearly reductive subgroup.

Proposition 2.4. There is a canonical isomorphism

g/p=Hom(W.,V /W)
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of P-modules.
Proof. By definition g = sI(V), hence ¢ € g is a map
Q: V>V
with tr(@) = 0. Let i: W= Vbe the inclusion mapand p: V> V/ W the
projection map. Define the following map:
J':g—>Hom(W,V /W)
by
J(@)=pogi.
It follows j(p) = 0 hence we get a well defined map
j:g/p>Hom(W, V/ W)
defined by
J@)=pogoi.
One checks g/p and Hom(W, V/W) are P-modules and j a

morphism of P-modules. It is an isomorphism and the Proposition
follows.

Corollary 2.5. On X = G(m, m + n) there is an isomorphism
PLEX) = E(x) ® (@, Sym' (Hom(W,V | W)

of P, -modules.

Proof. The proof follows from Theorem 2.3 and Proposition 2.4.
There is an isomorphism of P-modules

Hom(W, V/W)=W Q V/ W

hence the decomposition into irreducible components of the
module Sym'(W" ® V / W) as P, -module may be done using the
Cauchy formula (Appendix B).

Let A — |i| denote X is a partition of the integer i IfA = {\, ., A }is a

partition of an integer /, let 4 (A) denote the following partition:

H),=1-1

d+1-i"

Let for any partition A of an integer /and any vector space W, S, (W)
denote the Schur-Weyl module of \.

Corollary 2.6. There is an isomorphism

Pi(E)x) =E) @ (@ o(@S, () @S, (V| W)

A=l

of SL(W) x SL(V/W)-modules.
Proof. By Corollary 2.5 there is an isomorphism
PrE)x) = E(x) ® (D, Sym' (Hom(W.V /W)

of P, -modules and SL(W) x SL(V/W)-modules, since SL(W) x
SL(V/W) € P, is a closed subgroup. Since

Sym'(Hom(W, V/ W)) = Sym' (W Q V/ W)
the result follows from the Cauchy formula (Appendix B or [14]).
of

Example 2.7. Calculation the

H' (X, A PO (d))).

cohomology  group

In the following we use the notation introduced in litertature of
Jantzen [13]. Let P = SL(m) x SL(n) € P be the semi simplification of
P. We get a vector bundle

n:G/P, >G/P=G(m m+n).

Let X=G/Pand Y= G/ P, Given any finite dimensional
P-module W, let £, (W) denote its corresponding O,-module. Let
W_ . denote the restriction of W to P . By the results of Perkinson
[13] it follows there is an isomorphism

7L (W)= L (W, )

semi

of locally free sheaves. This will help calculating the higher
cohomology group

HY(X, £, (W)

since P is semi simple and 7 is a locally trivial fibration. If W is
the P-module corresponding to the dual of the j'th exterior power of
the jet bundle A'P}(O,(d))" we can use this construction to calculate
the cohomology group

H' (X, A POy ().

Such a calculation will be by the results of Maakestad [11], Example
5.12 give information on resolutions of the ideal sheaf of D'(O, (d))
since the push down of the Koszul complex 1.0.1 is the locally trivial
sheaf

O OH (X, A Py (O ().

To describe the locally trivial sheaf O(—) ® H'(X, A’ Pi (O, (d))") for
all i, j we need to calculate the dimension 4'(X,A’P/(O,(d))") and this
calculation may be done using the approach indicated above.

Letm=2,n=4and X = G(2, 4).
Corollary 2.8. There is an isomorphism

PLUE(x) = E(x) @ (D, @, Sym> ™ (W) ® Sym* " (V | W))

J

of SL(2) x SL(2)-modules. Here (n,m)= (é,O) if i =2n and (%,1) if
i=2n+1.

Proof. This follows from Corollary 2.5 and Proposition 5.1.

On Canonical Filtrations and Jet Bundles on Projective
Space

In this section we study the canonical filtration for the dual of
the SL(V)-module of global sections of an invertible sheaf on the
grassmannian. We classify the canonical filtration on projective space
and as a result recover known formulas on the splitting type of the jet
bundle as abstract locally free sheaf.

Let W S V be vector spaces over K of dimension m and m + n. Let
W have basis e, .ne, and V have basis e,..e, . Let V " have basis X
. %, . Let G=SL(V)and P € G the parabolic subgroup of elements
fixing W. It follows there is a quotient morphism

n:G>G/P

and G / P = G(m, m + n) is the grassmannian of m-planes in V. Let
P = G(1, n+1) = P(V"). Let L= Sym*(A"W). There is an inclusion of
P-modules LS Sym?(A™V). Since K has characteristic zero there is an
inclusion of G-modules

H(G/P,0,,(d)) <Sym’(A"V") =Sym’ (A" V).

Let g = Lie(G) and p = Lie(P). Let U(g) be the universal enveloping
algebra og g and let U, (g) be the I'th term to its canonical filtration.

By the Corollary 3.11 in studies of Maakestad [15] there is for all 1
<1< d an exact sequence of P-modules

0— PO (d))(x) - H(G,0,(d)) - H" (G, m"'O,(d)" — 0.
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Since the grassmannian is projectively normal in the Plucker
embedding we get an inclusion

H'(G,0;(d))" = Sym*(A"V)

of P-modules. The highest weight vector for H(G, 0, (d))"is the line L¢
= Sym*(A"W). Let ann(L') < U(g) be the left annihilator ideal of L% It
is the ideal generated by elements x € U (g) with the property x(L¢) =
0. Let ann, (L) be its canonical filtration. We get an exact sequence of
G-modules

0—>ann(LY® L' - U(g)® L' - H (X,0,(d)) >0
and an exact sequence of P-modules
0—ann,(LYO L' - U (g)®L — U,(g)L' -0

for all I > 1. The G-module U(g) ® L? is the generalized Verma
module corresponding to the P-module defined by L?= Sym#(A"V).
There is an inclusion of P-modules

U,(g)L' cH'(G,0,(d))".

Definition 3.1. Let{U, (g)L}
HY(G,0G(d))".

», be the canonical filtration for

Lemma 3.2. Assume y € g and x,:~-x,€ U, (g) with x, € g. The
following holds:

Yxex) = (xx)y + w
where w € U, (g) 0€U,,(g) .
Proof. The proof is by induction.

The Lie algebra p is the sub Lie algebra of g = sI(V) given by matrices
M of the following type:

A X
M =
o)
where A is an m x m-matrix, B and n x n-matrix and tr(A) + tr(B) =

0. Let p, be the sub Lie algebra of p consisting of matrices M € p of the
following type:

w5 3)

where tr(A) + tr(B) = 0.

Proposition 3.3.

The sub Lie algebra p, < p is a sub P-module of p. (3.3.1)

There is an exact sequence of P-modules

0->p/p, > glp, >g/p>0. (3.3.2)

and plp, is the trivial P-module.

The following holds:

dim, (L'* ® Sym* (g /p, ®L)):[m"+k]. (3.3.3)
mn

There is a filtration of P-modules

0=G/+1QGIQ"'QGO=L”H®Sym[(g/pL®L) (3.34)

with quotients
G /G, =L"""®Sym"((g/p®L)
forl<i<k

Assume dim (W) = 1 and let W = L. There is an exact sequence of

P-modules
0>p, ®L>gQ®L>V->0 (3.3.5)
giving an isomorphism of P-modules g/p, @ L= V.

Proof. We prove 3.3.1: In the following A, a are square matrices of
size m and b, B square matrices of size n. The K -rational points of the
group P are matrices g on the form

s 3

where det(A)det(B) = 1. Assume x € p is the following element:

5 3)

=

0 b

with tr(a) + tr(b) = 0. It follows g(x) = gxg' has tr(gxg™!) = tr(gg 'x) =

tr(x) = 0 hence gxg™ € p and p is a P-module. Assume x €p, ie tr(a) =
tr(b) = 0. It follows

o = ada™ *
%9 0 bBb

and tr(aAa™) + tr(aa™'A) = tr(A) = 0 hence g(x) €p, and 3.3.1 is proved.

We prove 3.3.2: By 3.3.1 it follows p, € p is a sub P-module. One
checks p/p, is a trivial P-module. We clearly get an exact sequence of
P-modules and 3.3.2 is proved.

We prove 3.3.3: Since

dim (g) = (m +n)’~ 1=n’+2mn + m*-1
and

dim (p,) =m* + mn+n> -2

it follows dim,(g/p,) = mn + 1. It follows

. et . mn+1+1-1 mn+1
dim (L ®Sym'(g/p, ®I)= = .
mn+1-1 mn

We prove 3.3.4: Since p/p, is a trivial P-module there are
isomorphisms of P-modules

L @8ym*(g/p, ®L)= L' @ L ®Sym""(g/p, ® L) =

L™ ®Sym'(p/p, ® L)®Sym*(g/p, ® L)

forall 1 <i<k. We get an injection

JiLTF®@Sym'(p/p, ® L)®Sym" " (g/p, ®L) - L'* ®Sym“(g/p, ® L)
defined by

JIETF®Y ®L -y, ®LOX,®L-+x, , QL) =L " ®y, ®L--y,®Lx,®L---x, _,.
The injection j gives rise to an injection

L™ ®@Sym*(g/p, ® L) = L  @Sym'(p/p, ® L)®Sym""(g/p, ®L) >’
L' ®@Sym‘(g/p, ®L)

of P-modules for all 1 < i < k. The exact sequence

0->p/p, >glp, >glp>0

gives rise to a filtration of P-modules
0=F,cFccF=Sym'(g/p ®L)
with quotients

F/F,=L®Sym" (g/p®L).

120 M
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Put G,= L*' @ F. It follows

G =L"""®Sym"(g/p, ®L).
There is an isomorphism

G /G, =" @Sym" (g/p®L)
and claim 3.3.4 is proved.

We prove 3.3.5: Let V=K{e,, ...,e,} and L = W= . It follows PS G
= SL(V) is the group whose K-rational points are the following:

a *
o
1
det(B)
definition the maps in the sequence are maps of P-modules. It follows

p = Lie(P) is the Lie algebra whose elements x are matrices on the
following form:

[—tr(B) *)
y=
0 B
where B is any n x n-matrix with coefficients in K. The sub Lie algebra
p, € p is the Lie algebra of matrixes x € p on the following form:

0 *
x=
o s
where B is any n x n-matrix with tr(B) = 0. Let x, € g be the following
element: Let the first column vector of x, be the vector e, and let the rest
of the entries be such that #r(x,) = 0. It follows x, ® ¢, € g ® L and x (e,

= ¢, hence the vertical map is surjective. One easily checks the sequence
is exact and 3.3.5 is proved.

with ¢= . Also B is an n x n-matrix with coefficients in K. By

We get two P-modules: p, € p and [' = Sym’ (A" W) < Sym' (A" V) -
We get for all 1 < k < da P-module

L' @Sym*(g/p, ®L).

There is an injection of P-modules

i: L™ ®Sym’(g/p, ® L) > Sym‘(A"V)

defined by

(L ®x, ®L-x, ® L) =L x,(L)--x,(L).

There are natural embeddings of P-modules

U (9)L' < Sym* (A"V)

and

L @Sym*(g/p, ® L) < L™ ®Sym" (g/p, ® L) < Sym’ (A" V).

Assume in the following m =1 and L = W. It follows G = P(V") =
‘P is projective n-space.

Proposition 3.4. Let x,---x,(L")eU,(g)L" . The following formula
holds:

X x, (LY = L™ x (L) x, (L) +w
where we LY ®@Sym'(g/p, ®L) -

Proof. we prove the result by induction on k. Assume k=1 and let
x(LYEU (g)L*. 1t follows x(L")=dL"'x(L)e L' ®Sym'(g/p, ® L) and
the claim holds for k =1. Assume the result is true for k. Hence

X x (LY =al™x (L) x, (L) +w

with we L™*Y ®Sym*'(g/p, ® L) . Assume
w= Za,.L””“"”x,’ (L)-+-xi,(L).

We get

XoXp o X (Ld) =X (O‘Ldikxl (L)x,(L)+w)=

a(d = k)L™ Vxy(L)x (L) x, (L) +

D@L (L) x, (x, (L)) x, (L) +

> et (d = (k=D)L x, (L)x{ (L) x}_ (L) +
D LR (L) x, (g (L)) - xi, (L),

Let z,(L)=x,(x,(L)) and z(L)=x (x/(L)). Such elements exist
since g/p, ® L=V as P-module. Let
w=Y Ll x(L)-+-z,(L)+x,(L)+

e, (d — (k=1L xy (L)X (L) x, (L) +
D@ L N (L) -z (L), (D).

it follows we L'* ® Sym*(g/p, ® L) . Moreover

X%, x (L) = aL™*x, (L) x, (L) +w

where @ =(d - k)a . The Proposition is proved.
Theorem 3.5. There is for all 1 <1< d an isomorphism
U (gL' =L' ' ®Sym'(g/p, ®L)

of P-modules.

Proof. There are embeddings of P-modules

U,(g)L’ = Sym“(¥)

and

L' ®Sym'(g/p, ® L) = Sym’ (V).

Recallfrom studiesof Maakestad [1]itfollows dim (U, (9)L") = [1 ; n]

where dim, (V) = n+1. Assume z=x,---x,(L") e U,(g)L" . It follows from
Proposition 3.4

z=alx (L) x,(L)+w
where
e L""Sym' ' (g/p, ® L) L' ®Sym'(g/p, ®L).
Since
al™'x(L)-x,(L)e [ ®Sym'(g/p, ®L)

it follows ze L' ®Sym'(g/p, ®L) Hence we get an inclusion of
P-modules U,(g)L' c L' ®Sym'(g/p, ®L).

Since

dim, (U, (g)L") = dim (L™ ®Sym'(g/p, ® L))

the Theorem follows.

Corollary 3.6. There is for all 1< 1 < d an isomorphism
PO (d)(x)= (L) @Sym' (V)

of P-modules.
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Proof. There is by studies of Maakestad [1], Theorem 3.10 an
isomorphism

R (Op(d))(x) = U (g)L

of P-modules. From this isomorphism and Theorem 3.5 the Corollary
follows since

(L™ ®@Sym'(g/p, ®L)) = (L) @Sym' (V")
as P-modules.

Note: Corollary 3.6 is proved in literature of Maakestad [5]
Theorem 2.4 using more elementary techniques.

Let Y = Spec(K) and 1 : P(V") > Y be the structure morphism. Let
P = P(V'). Since Sym'(V") is a finite dimensional SL(V)-module it
follows it is a free O -module with an SL(V)-linearization. It follows
wSym'(V") is a locally free OP-module with an SL(V)-linearization
since 7" preserves the SL(V)-linearization.

Proposition 3.7. There is for all 1< 1 < d an isomorphism
ROp(d) = Op(d =)@ 7'Sym' (V")
of locally free OP-modules with an SL(V)-linearization.

Proof. Let P € SL(V) be the subgroup fixing the line L € V There is
an exact equivalence of categories

mod(P) = mod%(O,,,). (3.7.1)

The P-module corresponding to O,(d-1)®7z Sym'(V") is
(L) ®Sym!(¥") - By the equivalence 3.7.1 and Corollary 3.6 we get an
isomorphism

PO (d) = O, (d )@ z'Sym' (V)
of locally free sheaves with SL(V)-linearization and the Proposition is

proved.

We get a formula for the splitting type of 7/ (0,(d)) on projective
space:

Corollary 3.8. There is for all 1 <1< d an isomorphism

n+l

R(OWd) = @( ’ )OP(d )
of locally free sheaves.
Proof. The P-modules Sym'(V") corresponds to the free OP-module

n+l
oo,
Let X = G(m, m + n) and consider the P-modules

. The Corollary now follows from Proposition 3.7.

L7 ®Sym'(g/p, ® L) < Sym* (A"V)

and

U, (g)L’ < Sym* (A" V).

Proposition 3.9. There is an isomorphism
U (9)L' = L' ®Sym'(g/p, ®L)

of P-modules.

Proof. Pick an element x(L')=dL'x(L)eU,(g)L’. It follows
dL™'x(L) e L' ® Sym'(g/ p, ® L) hence there is an inclusion

Ul(g)Ld = - ®Syml(g/pL ®L).

Let I"'x(L)e L' ®Sym'(g/p, ® L) . It follows

L) = L) e U@

hence there is an inclusion L' ® Sym'(g/p, ® L) and the Proposition
is proved.

Corollary 3.10. There is an isomorphism
Pe(Op(d)(x) =L ®Sym'(g/p, ® L)
of P-modules.

Proof. There is by studies of Maakestad [1], Theorem 3.10 an
isomorphism

Pe(Oy ())(x) = U ()L
of P-modules. The Corollary follows from this fact and Proposition 5.1.

Note: By studies of Maakestad [11], Example 5.12 there is a double
complex

Oy () OH (X, A POy (d)))

of sheaves on P(W’) where w =H"(X,0,(d)) and X = G(m,m + n).
This double complex might give rise to a resolution of the ideal sheaf
of the I'th discriminant D'(O,(d)) cP(#") of the line bundle O, (d).
By the literature of Maakestad, Theorem 5.2 it follows knowledge
on the P-module structure of P!(O,(d)) gives information on
the SL(V)-module structure of the higher cohomology groups
H' (X, A PO, (d))") for all i > 0. This again gives information on the
dimension #'(X, A’ PL(O,(d))") - We get a description of the locally free
sheaf

O (NO®H (X, A PLUOL(d))).
forall 4, j.
Example 3.11. Canonical filtration for the grassmannian G(2,4).

Consider the example where m = n = 2 and X = G(2,4). We get
two inclusions

L7 ®Sym®(g/p, ® L) = Sym’ (A*V)

and

U, (g)L' < Sym?(A%V).

We may choose a basis for p € g on the following form:

p=p DL,

where L_is the line spanned by the following vector x:

00 0 O

01 0 0
x=

00 -1 0

00 0 O

Let n € g be the sub Lie algebra spanned by the following vectors:

S = O O
S O o O
S O o O
===

X, =

(===
S = O O
oS o o O
===
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X3 =

- o o O
[= -
[=EN =i -
===

and

X, =

(=R - =
- o o O
(== - =
(== =

Let @i be the vector space spanned by the vectors Xp Xy Xpp X, and
x. It follows U, (g)L' = U,(R)L* < Sym‘(A*V) - The vector space V has
a basus e, e, e, and e, The vector space W has basis e, e, It follows
AW has a basis given by e A e, = e[12] and A’V has basis given by
e[12], e[13], e[14], e[23], e[24], e[34]. By definition L = e[12]. We get
the following calculation:

x, (L) =—-€[23],x,(L) = ¢[13], x;(L) = —¢[24]
x,(L) = e[14],x(L) = ¢[12].

A basis for the P-module L' ® Sym*(g/p, ® L) are the following
vectors:

L7x(L)x(L) = L' e[ 127

L7x, (L)x(L) = L' €[ 12]¢[13]
L7x,(L)x(L) = L[ 12]e[ 14]
L7x,(L)x(L) = =L ?¢[12]€[23]
L7 x,(L)x(L) = -L"*¢[12]e[24]
L7x,(L)x,(L) = L ?€[13]
L%, (L)x,(L) = L' €[ 13]e[14]
L%, (L)x,(L) = —L"*¢[13]¢[23]
L%, (L)x,(L) = —L" €[ 13]¢[24]
L7x,(L)x,(L) = -L" €[ 14T
L%, (L)x,(L) = —L" €[ 14]¢[23]
L7 x,(L)x (L) = —L" e[ 14]e[24]
L7 x (L)x, (L) = L"?€[23T e
L7x ihGHiE L% e
L7x,(L)x,(L) = L2 ¢[247

Let a = d(d-1). A basis for the P-module U, (g)L’ = U,(#)L’ are the
following vectors:

X (LY =L"e12]

x,x(L') = al e[ 12]e[13]+dL e[ 13]
x,X(L') = al e[ 12]e[ 14]+ dL" e[ 14]
xx(L) = ale[12]e[23] — dL'¢[23]
xx(L') = al' e[ 12]e[24] - dL"e[24]
X2(L) = aL e[ 13

x,x, (L) = aL' e[ 13]e[14]

x,%, (L") = aL"*e[13]¢[23]

x,x,(17) = —aL' e[ 13]e[24] — dL"e[34]
xJ(L)=L"e147

X, (L) = —aLe[14]e[23] + dL' ' [34]

xyx, (L) = —al e[ 14]e[24]
X7 (L") = aLl"*¢[23]

x5, (L) = al~€[23]e[24]

X2 (L") = aL”e[247 .

In the case where W € V have dimensions m and m + n we get
embeddings of P-modules

U, (@)L < Sym‘ (A" V)

and

L7 ®Sym'(g/p, ® L) = Sym? (A"V).
There is no equality

U, ()L =L ®Sym'(g/p, ®L)

of P-modules as submodules of Sym*(A"V) in general as Example
3.11 shows.

Since U, (g)L* and L' ®Sym'(g/p, ®L) by Theorem 3.5 and
Proposition 3.3 are isomorphic when m = 1 and 1 < I < d, have the
same dimension over K and both have natural filtrations of P-modules
we may conjecture they are isomorphic as P-modules for all m,n > 1.
Note: There is a canonical line L€ U, (g)L? for all L. There is similarly
a canonical line

L' =1 @Sym'(p/p, ® L) e L' ®Sym'(g/p, ®L).

Hence the two P-modules U, (g)L? and [ ®Sym'(g/p, ®L) look
similar.

In general the SL(V)-module Sym*(A™V) decompose
Sym’(A"V) = @, V;f

where 3 are irreducible SL(V)-modules and a, > 1 are integers
(Proposition 5.4 for the situation of G(2,4). One may ask if there is a
non-trivial automorphism

de Autsw,)(Symd (A"V))

with the property that the morphism
¢:Sym” (A"V) — Sym* (A"V)

induce an isomorphism

¢:L7 ®Sym'(g/p, ® L) > U,(g)L'

of P-modules. In general the SL(V)-module Sym(A™V) has lots of
automorphisms. When m = 2 and dim,(V) = 4 it follows by Corollary
5.4 there is for every d 2 1 an equality

L

‘A‘msum(s}'md(/\2 V)= HK*

=0
where [ = k if d = 2k or d = 2k + 1. For m = n = 2 the SL(V)-module
Sym#(A"V) is by Proposition 5.4 multiplicity free. The module
Sym“(A"K™*") is not multiplicity free in general when m, n > 2.

Jet Bundles and Incidence Complexes on the Projective Line

In this section we construct a resolution by locally free sheaves
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of the ideal sheaf of the I'th incidence scheme I'(0,(d)) cP(W )xP.
Here OP(d) is an invertible sheaf on the projective line P = P' and
W =H"(P,0,(d)) - There is on Y = P(W’) x P' a morphism ¢(O(d)) of
locally free sheaves

HOW):0, . (-1), > PO,

Its zero scheme Z(4(O(d))=1'(Od))cY is the I'th incidence
scheme of O(d). The Koszul complex of the morphism ¢(O(d))

0 A'O(=1), ®P'(O()); — - — A O(=1), ® P (O(d)); —
O(-1), ® P'(O(d)); = O, — (9/,(0(‘“) -0

- called the incidence complex of O(d) - is a resolution of the ideal
sheaf of I'(O(d)). This follows from the fact that the ideal sheaf of T
(O(d)) is locally generated by a regular sequence. We also calculate the
higher direct images of the terms

O=J)y @ AP (O@)),
appearing in the incidence complex.

The aim of the construction is to use it to construct a resolution of
the ideal sheaf of the discriminant D '(O(d)) where O(d) is a line bundle
on projective space or a grassmannian.

Example 4.1. The Koszul complex of a map of locally free modules.

Let A be an arbitrary commutative ring with unit and let ¢ : E > F
be a map A-modules.

Define the following map:
d":E®,F" —> 4
by

d'(x® f)= f($(x)).

Let I A be the image of d'. We let I be the ideal of ¢. Define the
following map

d’" :ANE®F > A"E®F

by

A ® finAx, ® )= (1) £ (P )X ® finAx, @ f, A Ax, ® [,
Lemma 4.2. 7hefollowi7nIg holds forallp 2 1: d o d* = 0.

Proof. We get

4P ® fin o, © )
YCIRIACED)

S EDT PN B [ A AR O [ A AX, @ f, A Ax, ® f,=0

1#r

and the claim of the Lemma follows.

Assume E, F are locally free of finite rank and let r = rk(E @ F'). We
get a complex of locally free A-modules

0>NE®F »- 5>AEQF 5 EQF > A4—>A4/1,-0
called the Koszul complex of the map ¢
Example 4.3. The Koszul complex of a regular sequence.

Let x={x,...x,} be aregular sequence of elements in A and let E =
Ae be the free A-module on the element e. Let F = A{el, - en} be a free
rank n module on e,..e.Let y = e, . Define

¢:E>F

by

dle)=xe +-+xe,.

Lete ® y, = z. It follows
d":NE®F 5> AEQF

looks as follows:

d"(z‘] /\---/\zip):

ﬁ](—l)""y,.r @)z, noinz, Avenz, =
.

Z(—l)"lxirzi] /\---/\zTr/\--‘/\z

= ?

Hence the complex A*E @ F ~ equals the Koszul complex K, (x)
of the regular sequence x . It is an exact complex since ¥ is a regular
sequence.

Example 4.4. The Koszul complex of a morphism of locally free
sheaves.

The construction of the differential in the Koszul complex of a
map of modules is intrinsic, hence we may generalize to morphisms of
locally free sheaves. Let Y be an arbitrary scheme and let ¢ : £> Fbea
map of locally free O, -modules. Let

" EQF >0,
be defined locally by
d° (s ®v) = v(¢(s)).

Let 7,=1Im(d")c O, be the ideal sheaf defined by d'. Since Z_is
quasi coherent sheaf of ideals it follows the ideal sheaf 7 corresponds

to a subscheme Z(¢) € Y - the zero scheme of ¢. Let U S Y be an open
subset and define the following map:

d”: A" (ERFHU) - A" (ERFYU)

by

d’(s,®v, A+ A, ®vﬂ)=i(—l)r"v,,(gﬁ(s,_))s, ®v, /\-u/\@f/\---/\s,, ®v,.

This gives a well defined map of locally free sheaves since we have
not chosen a basis for the module A”(E® F)U) to give a definition.
By Lemma 4.2 it follows d ? o d #*!' = 0 for all p > 1 hence we get a

complex of locally free sheaves. The sequence of maps of locally free
sheaves

0>ANERF > >N ERF E®RF -0, >0,, -0

is called the Koszul complex of ¢. Here r = rk(€ @ F).
Example 4.5. Koszul complexes and local complete intersections.

Assume ¢ : £ > F is a map of locally free O -modules where L is
a line bundle. Let Z(¢) € Y be the subscheme defined by ¢ - the zero
scheme of ¢. Let r = rk (F). Choose an open affine cover U, of Y where
Fand L trivialize, i.e

FU)=0WU) fss I}

and

LWU)=0,)e.

Let O(U) = A, L,= L(U) and F, = F(U)). Assume the image
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pU): L, > F
has
dUNe)=x, [+ +x, [,

where {X;,..,%,} € 4 isaregular sequence. Let 1, =x, = {x,,..,x,} . It
follows from Example 4.3 the Koszul complex

0>AN(LO®F)> >N (LOF)>L®F
S>AS>AL>0

is a resolution of the ideal I since I, is generated by a regular
sequence. The complex A"L, ® F is isomorphic to the Koszul complex
K.(x;) on the regular sequence x . It follows the global complex

0L NF > LN F 5 LOF -0, >0,, >0

is a resolution of the ideal sheaf IZ((P) of Z(¢) € Y since it is locally

isomorphic to the Koszul complex X, (x,) for all i.

Since the ideal I, is generated by a regular sequence of length r it
follows dim(A, / I) = dim(A)) — r. If Y is irreducible of dimension d it
follows Z (¢) € Y is a local complete intersection of dimension d — r.

Example 4.6. The incidence complex of O(d) on the projective line.

Let P=P} where K is a field of characteristic zero and let O(d) €
Pic(P) = Z be a line bundle where d € Z. Let

W =H'(P,0(d)) = K{e,,...e,}
where ¢, =x{"x. Let y,=¢ . Let Y = P(W’) x P and consider the

0
following diagram

y —2 op

.
P(W*) —— Spec(K)

There is a sequence of locally free O, -modules

O ., (-1), > H'(P.O)®O, —)T; P(O@)),

POV

and let ¢ (O(d)) be the composed map

#O):0, . (1), > P'(O@),. (12)

POV

It follows by studies of Maakestad [11], the zero scheme Z(¢p
(O(d))) equals the incidence scheme I'(O(d)) of the line bundle O(d).
By definition PO") = Proj(K[¥y»-» ¥, 1) where »,=¢ . It has an open
cover on the following form: D(y,)=Spec(K[u,,..,u,]) Where we let
u, ~ 2. Lety/y=1.Let

F() =uy+ut+-+u,t € Kluy,..,ty,t].

Restrict the map 4.6.1 to the open set U,,=D(y,)xD(x,)cY . We
get the following two maps of modules:

. 0
@:0, . (=D, >0, ®H P.0)

o K[yt~ Kl 1@ K fey. e}
Y

i

defined by
d d d
a(l/y,)= Zu,( ®e, = Zu,( ®xi*xl = ZMk ®rxy.
=0 =0 k=0
We get the map

T :0, ®H'(P,0(d) > P (O@)l,,

defined by
T'A®xx) =T (1®1x!) = (t +dt) ®x!.
The composed map

HOW)),, < Kl 11—~ Kl (e’ @}

i

is the map

¢(O(d))(i) =Du (t+d) ®x =

i

! (k)
Z%dﬂ ®x¢ € K[u,t]1{1®x{,...d' ®x}.
k=0 .

X,

Let U, = D(y) x D(x,) € Y and let ;OZS . Let
1

G(s)=u, +u, s+u, ,s° +-+uys’ € Kluy,..,u,,s].

Restrict the map 4.6.1 to the open set U,

We get the following two maps of modules:
@:0, . (D, >0, OH'(P,OW@)

@ K[y 5T — Kl s1® K feyenne,}
y.

defined by
d d d

a(l/y)= Zu,( ®e, = Zu,( ®xFxf = Zuk ® s x.
k=0 k=0 k=0

We get the map

T, 10, ®H'(P,O(d) > P (Od)]y,
defined by

T'1®xIx)=T'1®s"x')= (s +ds)" ®x!.
The composed map

¢((9(d))0“ : K[ul.,s]i — K[u,,s]{ds’ ® x{'}

i

is the map

HOWN) = Yy (5 +ds)' @ =

i

1 (k)
ZG k'(S) ds* ® x! e K[u,,s]{1®x",...ds' ® x}.
k=0 '

It follows the ideal sheaf Z,,,, of I'(O(d)) is generated by

FUI)!(I) ' 1:1“;”1()[!) o F O3
on U, and by
Dy -
. l)!(é) ’ C(;l ;1(;!) s GO}
onU,.Let z, = FL:)(![) and w, = G((j)(,s) fori=0,.., L

Lemma 4.7. Assume B is a commutative ring of characteristic zero
and let

fO=ay+at+-+a,t’ € B[]

be an arbitrary degree d polynomial with a,# 0. Let f(t) denote the
formal derivative with respect to t. It follows
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() (¢ d (j .
fn”:;[kj“z’ .

Proof. The proof is by induction. It is clearly true for / = 1. Assume
itis true for I > 1. Consider k =1+ 1. We get

f(M)(l‘) 1 6f(’)lt)
(+0) I+18, It

I+10, I
1 [(i+1 1+2 d P
m( / a,, + / 2a,,t+-+ ; (d—-Na,t )=

[+1 [+2 d T
a,, + a4+ a,t =
I+1 I1+1 1+1

il i )
Z a
Aald+1

and the claim of the Lemma follows.

Lemma 4.8. The sequence {z, .., z} is a regular sequence in K[u, t].
The sequence {w,, .., w,} is a regular sequence in K[u,, s].
0

T

FO( G ) .
Proof. Let z, :# and w, = Assume [ < i and consider
A

the sequence 2,2,z  Alt]= Klu,,..,u,1[t] . Since A[¢f] is a domain it
follows z, is a non zero divisor in A[t]. We see from Lemma 4.7
Alt]/ wy = Klug, oty Uy, 5ty 2]

which is a domain, hence w, , is a non zero divisor in A[t] / w,. By
induction it follows z, .., z, is a regular sequence in A[t]. Assume i <L Tt
follows the sequence z,, .., z,,, is a regular sequence in A[t]. We see from
Lemma 4.7 z, is non zero in

Al1]7(2)5240) = Klttg, st U551, ]

and K[ug,..,t;,t;,,-,1,,t] is a domain. It follows z, is a non zero divisor
inA[t]/ (z, ... z,,). It follows z, .., z, is a regular sequence in A[t] and the
claim follows. A similar argument proves w,, .., w, is a regular sequence
in A[s] and the Lemma is proved.

One may prove using similar methods for any permutation 6 € S, |
the sequences

Zay > %00
and
W s o W, )

are regular sequences.

It follows the ideal sheaf Z,

Jowy 18 locally generated by a regular
sequence.
The morphism

#(O(d)): O

e, C Dy = POW)),

gives by Example 4.3 rise to a Koszul complex

A0, (CDOP(O@)),

of locally free sheaves of Y = P(W") x P'.

Definition 4.9. Let the complex

0> A'O(=1), ®P'(O(d)), -+ = A’ O(-1), ®P'(O(d)); —» (49.1)

O(-1), ® P'(Od)), -0, > 0O,

I'(0(d))

be the incidence complex of O(d).

Since the ideal sheaf of I'(O(d)) by the discussion above is locally
generated by a regular sequence it follows from Example 4.3 the
complex 4.9.1 is a resolution.

In framework of Maakestad [5], Theorem 5.10 one calculates the
higer direct images

R'q.(A O(-1), ®P'(O(d)),)
for all 4, j. We get the following calculations:
Let V=Kle, ¢} and P =P(V"). Let W = H(P,O(d)) = Sym*(V ")

and consider the diagram

Y=P(W") xP L — P

| lﬂ

P(W*) —=— Spec(K)
By the results of this paper it follows there is an isomorphism
R(Od) = Op(d -1 ®@ 7' Sym' (V")
a sheaves with an SL(V)-linearization. We get
NRAO(d) = O, (j(d =1)® 7" A Sym' (V).
By the equivariant projection formula for higher direct images we get
R'q.(AO(-1), ®P'(O(d));) = O, CHOH(P, NROd)).
Let
1: P> Spec(K).
It follows
NB(O(d) = 0,(j(~d) @ 7" A Sym! (V7).
We get
H (P,A'P'(Od)) 2R 7.(2" (A Sym' ) ® O, (j(l - d))) =
A Sym' (V) @ H' (B, O, (j(I = d))).
We get the following Theorem:
Theorem 4.10. The following holds:
R p.(O(=)) ® AN P (O(d)))=0if i=00ri=land j(d -1) < 2.
R'p.(O(=)® AP (O(d)) = O(=)) @Sym ™ (1) ® A/ Sym' (V)
ifj(d-1)=2.

Proof. The proof follows from the calculation of the equivariant
cohomology of line bundles on projective space [13].

Hence we have complete control on the sheaf
R'q.(NO(=1), ® P'(O(d)),)

on the projective line and projective space for all i, j. Using the
techniques introduced in this paper one may describe resolutions of
incidence schemes I '(O(d)) on more general grassmannians and flag
varieties. The hope is we may be able to construct resolutions of the
ideal sheaf of D '(O(d)) using indicence resolutions in a more general
situation.

Note: In literature of Lascoux [12] resolutions of ideal sheaves
of determinantal schemes are studied and much is known on such
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resolutions. In studies of Maakestad [11] it is proved D' (O(d) is
a determinantal scheme for any d > 2 on the projective line PP'.
Assume L € Pic%(G/P) is a G-linearized linebundle, G a semi simple
linear algebraic group and P a parabolic subgroup. If one can prove D
(L) is a determinantal scheme we get two approaches to the study of
resolutions of ideal sheaves of discriminants: One using jet bundles and
incidence schemes, another one using determinantal schemes.

Appendix A: Automorphisms of Representations

Let W € V be vectorspaces of dimension two and four over the
field K. Consider the subgroup P € G = SL(V) where P is the parabolic
subgroup of elements fixing W. It follows n: G > G/P = G(2,4) is a
principal P-bundle. Let g = Lie(G) and p = Lie(P) be the Lie algebras of G
and P. In this section we study the decomposition into irreducibles and
automorphisms of some G-modules. We also study some P, _-modules
where P is the semi-simplification of P. It follows P_ . equals SL(2)
x SL(2). Since p S g is a P-sub module it follows the quotlent g/pisa
P-module hence a P module. We may apply the theory of highest
weights since P = SL(2) x SL(2) is a semi simple algebraic group.

mi

Proposition 5.1. The following hold: There is an isomorphism of
SL(2) x SL(2)-modules

Sym'(g/p) =@, Sym™™" (W) ® Sym™ " (V' / V). (5.1.1)

forallk>1. Here (5 yy=(—,0) ifk=2nand (n,m)= (7 1) ifk=2n
+ 1.

Proof. Recall the canonical isomorphism from Lemma 2.4
g/p=Hom(W,V /W)=W QV IW
of P-modules. It follows

Sym* (g/p) = Sym* (W @V /W)

and its decomposition into irreducible SL(2) x SL(2)-modules
can be done using well known formulas [14]. Alternatively one may
compute its highest weight vectors and highest weights explicitly using
the construction from Section 5.

G/ P> P(N*V') = P be the Plucker embedding and let
C/P(l) = i'OP(1) be tautological line bundle on G / P and let O,
Hd) = O0,(1)® It follows from the Borel-Weil-Bott Theorem [16]
H"(G OG(d)) is an irreducible SL(V)-module. Let V have basis e , e, e.,
e,andlet A’V havebasis e, for 1 <i<j<4,withe,=e Ae,. C0n51der the

element f € Sym*(A*V) where

Let i:

f elZ 34 el3eZ4+ 614623
One checks f is a highest weight vector for SL(V) with highest

weight 0, hence it defines the unique trivial character of SL(V). Its dual
f=x,x, € Sym*(A?V")

is the defining equation for G = G / P as closed subscheme of P(A*V").

'xl3 24 14 23

Proposition 5.2. The following hold: there is an isomorphism of
SL(V)-modules

Sym’(A*V) = @, H"(G,0,(d - 2i)),
kifd=2kord=2k+1.

(5.2.1)
where | =

Proof. The result is proved using the theory of highest weights.
There is a split exact sequence of SL(V)-modules

0— f'Sym‘*(A*V") = Sym? (A’V") - H*(G, 0, (d)) — 0.

Dualize this sequence to get the split exact sequence
0 fSym”?(A*V) - Sym‘ (A’V) > 0, — 0.

where Q,=H%(G,0G(d))". Since fis the trivial character it follows there
is an isomorphism

£Sym? (AV) = Sym? (A*V)

of SL(V)-modules. By the Borel-Weil-Bott Theorem it follows Q, is an
irreducible SL(V)-module. If d = 2k we get by induction the equality

Sym‘(A'V)=0,80,,0©0, 90,

and the claim of the Proposition is proved in the case where d = 2k.
The claim when d = 2k + 1 follows by a similar argument and the
Proposition is proved.

Corollary 5.3. Let £=®|_ 0. (2i—-d) wherel =
+ 1. It follows

H(G,€) = Sym*(A*V")
as SL(V)-module.

kifd =2k ord =2k

Proof. We get by Proposition 5.4 isomorphisms of SL(V)-modules
H(G,&)=H(G,®_,0,(d - 2i)) =

@ H(G,0,(d - 2i)) =Sym* (A*V)" = Sym’ (A*V")

and the Corollary is proved.

Corollary 5.4. There is for every d 2 1 an equality
L

AutSLU,)(Sym"(/\Z V)) = I IK*
i=0

wherel=kifd=2k ord=2k + 1.

Proof. This follows from Proposition 5.4 and the Borel-Weil-Bott
theorem (BWB). From the BWB theorem it follows H(G,00G(d))" is
an irreducible SL(V)-module for all 4 > 1. From this and Proposition
5.4 the claim of the Corollary follows.

Hence the SL(V)-module Sym® (A?V) is a multiplicity free SL(V)-
module for all d > 1. This is not true in general for Sym?(A"K™*") when
m,n>2.

In general if S, and S, are two Schur-Weyl modules [14] there is a
decomposition

5,68, =8,

where Vi,- is an irreducible SL(V)-module for all i. It is an open problem
to calculate this decomposition for two arbitrary partitions A and .

Appendix B: The Cauchy Formula

We include in this section an elementary discussion of the Cauchy
formula using multilinear algebra. Let W S V be vector spaces of
dimension m and m + n over Kand let P € SL(V) be the subgroup fixing
W. Let g = Lie(G) and p = Lie(P). There is a canonical isomorphism

g/p = Hom(W, V/ W)

of P-modules, hence the elements of g/p may be interpreted as
linear maps. The symmetric power Sym* (g/p) = Sym* (Hom(W, V /
W)) is a P-module hence a P , = SL(m) x SL(n)-module and we want
to give an explicit construction of its highest weight vectors as P
module.

emi

Proposition 6.1. Let U = K™ There is a canonical map of SL(V)-
modules

Recent Advances of Lie Theory in

J Generalized Lie Theory Appl

differential Geometry, in memory of
John Nash

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S2-001

Citation: Maakestad H (2015) Jet Bundles on Projective Space Il. J Generalized Lie Theory Appl S2: 001. doi:10.4172/1736-4337.S2-001

Page 12 of 13

AU ® AU — Sym” (Hom(U, U))

defined by
x,®e x ®e, X, ®e,
XA AX, ®e nne, > (x,Be x,Qe, x,®e,
x,®e x,Qe, x,®e, |

Heree,, .., e, is a basis for Uand x,, .., x, is a basis for U'.
m 1 m
Proof. The proof is left to the reader as an exercise.

Note: in Proposition 6.1 the element x, ® e is an element of UQU
= Hom(U,U). Hence the determinant

x,®e¢ x, Qe x,®e,
x,®e x,Qe, x,®e,
x, ®e x,®e, x, ®e,,

may be interpreted as a polynomial of degree m in the elements x, ® e,
hence it is an element of Sym™(Hom(U,U)).

Let B € SL(m,K) x SL(n,K) € SL(V) = SL(m + n,K) be the following
subgroup: B consists of matrices with determinant one of the form

U, 0
0 U,

where
a, 0
aZ] a22
U = :
A Ay 0 Ay
and
w0 0
U, b?] b%2 0
bn] 0 buz"' bnn

Let T be a B-module and v € T a vector with the property that for
all x € Bit follows

xv = AMx)v

where A € (Hom(B,K") is a character of B. It follows v is a highest weight
vector for T as SL(m, K) x SL(n, K)-module. The group B € SL(V)
defines filtrations of W and V/W as follows: Let W have basis e, .., e,
and Vhavebasise,, ...e . f,..f.Let W={e }, W,={e ,e } and

}.

It follows we get a filtration

W.=1e,.e, ..,
0=W,cW W, =W

of the vector space W. Let

Uy =Wos Oifurs Syl

and let V.= (V/W)/U, . We get a surjection
VIW=V,

fori=1,.., n-1.It follows dimW,= dimV, = d for all i. Let x : W~ V/
W be a linear map of vector spaces. We get an induced map

x:W>V,

wich is a square d, matrix for all i. Let g€B be the element

G 0
0 G,

where
a 0 0
a, 0
G = :
* a
and
B 0 0
b 0
G, : .|
0 b,
The i’th wedge product

|x, |= A'x, e Hom(A' W, A'V) = A (W) ® ATV,
may be viewed as an element in

| x; le Sym' (Hom(W,,V})) < Sym' (Hom(W, V' / W)
via Proposition 6.1.

Proposition 6.2. The following formula holds:
| e a1

m=i+1 m

glx =

bbb s g character A € Hom(B, K).

a

for all g€B. Here (q)=

m—i+1 '.. m

Proof. The proof is left to the reader as an exercise.

Hence the /'th determinant | x, | € Sym'(Hom(W,V/W)) is a highest
weight vector for the SL(m) x SL(n)-module Sym'(Hom(W,V/W)). By
the results of studies Brion [17-22], it follows the vectors xg"xld ! X,d ‘
with }%d =k are all highest weight vectors for the module

Sym*(Hom(W,V/W)) = Sym*"(W" Q V/W).
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Abstract

We consider a (real or complex) analytic manifold M. Assuming that F is a ring of all analytic functions, full
or truncated with respect to the local coordinates on M; we study the (m > 2)-derivations of all involutive analytic

distributions over F and their respective normalizers.

Keywords: m-derivations; Analytic vector fields Lie algebras;
Distributions; Generalized foliations; Stein manifolds; Compact
holomorphic ~ manifolds; ~ Chevalley-Eilenbergs  cohomology;
Compactly supported vector fields

Introduction and Preliminary

We know several embedding theorems in differential geometry,
some of them are of John F. Nash in Riemannian manifolds [1,2], of
Whitney [3] in differentiable manifolds and of Grauert in analytic
manifolds cf. [4]. They make easy certain study on a differentiable
manifold. Here, we are interested to a real or complex analytic
n-dimensional manifold M and let F(M) be the ring of all analytic
functions on M. We know that these manifolds can be considered as
smooth manifolds. But certain property on a smooth manifold cannot
be true on M, for example the global representation of a smooth
function germ theorem. Grabowski had this problem when he studied
derivations of the real or complex analytic vector fields Lie algebra cf.
[5] and he used Stein manifolds to avoid technical difficulties in them.
Here, we examine not only the derivations but the (i > 2)-derivations
(generalization of derivation’s notion) of a Lie subalgebra of the
real or complex analytic vector fields Lie algebra on M, using Lie
algebra tools. In advance, we state that the considered Lie algebras
have enough sections more than constant ones in the Lie algebra of
all analytic vector fields. Then, we consider only Stein spaces unless
expressly stated in a complex analytic case. In the real analytic one,
we don’t need more hypothesis because of the imbedding theorem of
Grauert and Cartan theorems [6]. More precisely, any real analytic
manifold can be considered as a closed submanifold of a certain R’
(a 7 real Stein manifold”). Now, an m-derivation of a Lie algebra A
is a linear map from A to itself which is distributive on the brackets
[X,,[X,,...[X,,X,]..]], where all X, are in A. On the one hand, we
have studied the m-derivations of polynomial vector fields Lie algebras
on R" in studies of 7. Randriambololondrantomalala [7], an important
Lie subalgebra of analytic vector fields, we found that Lie algebras
of derivations are different to those of (m > 2)-derivations. One can
see the following example, on R? the Lie R-algebra is spanned by

o 8 & o o p2

0
T A A Tty —tz—,
0r Oy Oz v Y

oz oy 22V on o7 and let’s define the R-linear

ox

a derivation, but a 3-derivation. On the other hand, all m-derivations of
a distribution over the full or truncated rings of smooth functions on a
differentiable manifold in literature of Randriambololondrantomalala
[8], are derivations. These facts lead us to ask if a distribution Lie
algebra on an analytic manifold has results as the one or the other
above results. So, we will divide our paper into three parts. First, we
take a real or complex analytic involutive distribution Q over M. That
is to say, Q is a F(M)-submodule of the analytic vector fields Lie algebra

0 0
map Dby D ((y)z aj =—— whichiszero otherwise. It's clear that Dis not

x(M) on M. We can find some examples of these distributions and the
interests for studying their derivations in literature of Grabowski and
Cartan [5,6]. Here, we find the Q’s centralizer and the derivative ideal
of Q). We can say also that the normalizer of () is a Lie subalgebra of
analytic vector fields. In addition, we find out that all m-derivations of
Q (resp. of the normalizer of Q) are inner with respect to a normalizer’s
vector field (resp. are inner). Second, assuming that Q is an involutive
distribution on M over a subring F of F(M), namely an F-submodule
of x(M) stable by the vector fields bracket, where F# F(M). One can
consider a system of commuting vector fields on M as in studies of
Randriambololondrantomalala [8] and all distribution Lie subalgebras
of the Lie algebra of analytic vector fields which commute with this
system. The normalizer of ) is an analytic vector fields Lie algebra and
contains locally all constant vector fields and Euler’s vector field. But in
general, we can’t use the reasoning by Randriambololondrantomalala
[7] to characterize m-derivations of Q2. We make more explicit all
m-derivations of Q) and of some of its normalizer. Whereas, in the end,
we discuss the Lie algebras of holomorphic vector fields, especially
when the holomorphic manifold is not a Stein one, and Lie algebras
of locally polynomial vector fields on an analytic manifold M. Their
m-derivations as well as their normalizers can be characterized by
using some results of Randriambololondrantomalala [7].

Therefore, we have found the m-derivations of all distributions
over a set of full or truncated analytic functions with respect to the
local coordinates on M. When m = 2, we deduce from our results some
[5]’s theorems. Third, we can apply our theorems on Lie algebras of
real or complex analytic vector fields on M, of generalized foliation on
M cf. [9], a Lie subalgebra of analytic vector fields on S? and on T?
Riemann surfaces, etc. Relations between the Lie algebra of compactly
supported vector fields and the compactness of M are discussed.
Moreover, we emphasize the extensions of our theorems when the
studied distributions are singular, by using the complexification of a
real analytic manifold, Hartogs and Riemann extension theorems. Of
course, in these circumstances, we can use theory of coherent sheaves
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made by Cartan [6] in a Stein case or pass into Grabowski’s conjecture
cf. [9]. We interpret our results in Chevalley-Eilenberg cohomology
sense when m = 2.

Following the above notations, let M be a real or complex analytic
n-dimensional manifold. In complex case, we regard a Stein manifold
unless special mention. We denote by y(M) the Lie algebra of
analytic vector fields on M and F(M) the ring of analytic functions on
M. Throughout this paper, we take an atlas in which every chart are
connected. Then, the open subset of a chart U where a non-trivial subset
of X (M ) doesn’t vanish, is dense on U (non-trivial means different
to {0}). We can use certain results of Randriambololondrantomalala
[7,8] because in the proofs of theorem of these papers we consider
only analytic functions (polynomials, exponentials). In the same way,
we don’t need partition of the unity to make global some local results
cf. [10]. In all sections of this article, we set an integer m > 2, recall
that D is an m-derivation of a Lie algebra A if for (X)), © 4, we get
DX [ Koo X, X, ] T = [ DO X [ X, ] Tt [ X X [ X0 D(X,)] ]
This D is said inner on a Lie algebra B containing A, if D is a Lie
derivative with respect to an element of B. Recall us another basic
definition cf. [11].

Definition 1.1. A complex manifold M is a Stein manifold, if we
have simultaneously the three following conditions: For every x # y,
both in M; there is a holomorphic function f over M such that f (x) #
f (). For all x € M, it exists n holomorphic functions (f,) over M such
that df, are linearly independent over C on x. If K is a compact set of M,
the following set is compact (holomorphic convexity of M)

{ e M /[f(@)| <sup | /()
yek

From these assertions, every local ring of holomorphic functions
around x € M is spanned by holomorphic functions on M cf. [12].

,forallholomorphic functions f over M } .

Some results of the Lie algebra of compactly supported vector
fields C_relative to a Stein manifold are the following,

Proposition 1.2. A complex analytic manifold M is compact iff C,
is non trivial, particularly if M is a Stein holomorphic manifold, C_is
trivial.

Proof. It’s obvious that if M is compact, then €, = (M) and C, is
not trivial. Conversely, suppose that M isn’t a compact set and there is
X € C_such that K = Supp(X) # @. We can consider K # M because M
is not compact. Then, we have the nullity of X in the open set (x = & .
By analyticity, X vanishes in whole M. Hence, we have a contradiction
about K # @ and we obtain M is a compact set. It’s clear that a Stein
space is never a compact set by definition, then its Lie algebra of
compactly supported vector fields is trivial.

The m-derivations defined by distributions on F(M)

Let Q be a non-trivial involutive analytic distribution over the
analytic functions ring on M. Let N be the normalizer of Q in x(M)
, that is to say that the set of all X € ¥(3) such that [X,Q] cQ, and
B={zeM/Qz)=#{0}}. We can choose a connected domain U, of a
chart. If we suppose that it exists an open set O, in U, where (2 vanishes,
then Q, ={0} by analyticity. Otherwise, every open set in U, contains
an element of B. So, BN U, is dense over U. Moreover, the collection
of U, forms an atlas of M, then B is dense over M. The set B is an open
analytic submanifold of M. Particularly, B is a Stein cf. [13]. Thus,
every vector field defined over B admits a continuous extension on M,
and if this last one is analytic, then it’s necessarily an element of the
normalizer of Q). We use this last fact when we deal with extension
theorems.

We know by literature of Nagano’s [14] result that Q is integrable,
then it yields a generalized foliation F on M cf. [10]. So, Q is the Lie
algebra of tangent vector fields to the foliation and L, the one of all
foliation preserving vector fields. It is known that the normalizer N in
(M) of Q) contains L, cf. [10]. Hence, the restriction of the foliation
in B is non singular.

Proposition 2.1. The centralizer of Q vanishes and the derivative
ideal of Q coincides with Q itself.

Proof. We say that X € y(M) is in the centralizer of Q if [X, Q]={0};
and the derivative ideal of denoted by [Q), Q1] is the Lie algebra spanned
by all brackets of two elements of Q). Suppose there is an non zero
element X of the centralizer, we have [X,/Q]=(X(f))Q={0}, for
all f € F(M). It’s not possible in a Stein manifold or in a real analytic
manifold if X doesn’t vanish identically over M and if Q # {0}. Along
with this result, we can adapt the proof of Proposition 2.28 of studies of
Randriambololondrantomalala [15] and assert that [Q, Q] = Q.

Let’s recall an Hartogs’s extension theorem and Riemann extension
theorem.

Theorem 2.2. (Hartogs [16]) Let be t > 2 and D be a bounded
domain in C'. In addition, K be a compact subset of D such that D — K
is a connected set. Then all holomorphic functions f over D — K can be
extended holomorphically to D.

Theorem 2.3. (Riemann extension theorem) Let U be an open set
in C and z, € U. If f:U~{2}—C is holomorphic function such that
z, is a removable singularity of f, then f can be extended into an unique
holomorphic function f in Uwhere f(z,)= lim.:, f(2) -

Theorem 2.4. In holomorphic case, all m-derivations of Q, L, and
of N are Lie derivatives with respect to elements belonging to N. In real
analytic one, we have the same results if B = M.

Proof. We can prove this assertion over B by Theorem 2.1 of
studies of Randriambololondrantomalala [8] using Proposition 2.1 and
partially Theorem 3.7 of literature of Randriambololondrantomalala
[10]. For the corresponding extension theorem over M, we adopt
the following arguments. We know that B is dense over M, then the
restriction of B in each domain of a chart U is dense over U (U is a
bounded set). The complement of this BNU in U can be considered as
a compact set of the chart such that BNU is connected. In holomorphic
case, when 7 > 2, we use Hartogs’s theorem in a domain of the chart, so
the extension theorem over M holds. If n = 1, we know by the isolated
zeros principle that the domain of chart contains only a finite number
of zeros in the corresponding restriction of B. By continuity at these
zeros, which are removable singularities, the Riemann extension
theorem can be used. Of course, if B = M in real analytic situation, the
extension theorem is applicable.

Definition 2.5. The complexification of a real analytic manifold
M is a holomorphic manifold H such that there is a real analytic
embedding £ M > H where H has a holomorphic atlas (U,.¢,), and
o,(f(M)nU,)=¢,(U;)nR". We have a Stein complexification if H is
Stein.

The next theorem is due by Grauert cf. [4,12].

Theorem 2.6. Every real analytic manifold has a Stein
complexification and can be analytically properly embedded into an
Euclidean space R" .

The following complexification of a Lie subalgebra G of the real
analytic vector fields Lie algebra of M is in the following sense: if M can
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be embedded in a holomorphic manifold H, the complexification G of
G in His such that G, =G -

Theorem 2.7. If the complexification of Q) in a Stein space T is still
an involutive distribution, then the first result of the Theorem 2.4 holds
in real analytic case.

Proof. We use the complexification of M on a Stein space T.
Consequently, let be o the complexification over T of Q. Recall that
Q is an involutive distribution over T where its normalizer on x(7)
is denoted by N,. So, all m-derivations of Q, of L, and of N have their
complexified m-derivations over T on respectively ¢, the Lie algebra
of all foliation preserving vector fields Z; on T and N,. By the results
of Theorem 2.4, these last m-derivations are Lie derivatives with
respect to elements belonging to N,. We can affirm that M, =9 and
L;,, =L; by Qu =Q. Thus, we have the same result as in the first part
of Theorem 2.4.

By definition, the first space of Chevalley-Eilenberg’s cohomology
of a Lie algebra A denoted by H'(A) is Der(.A)/ad, with Der(A) the
Lie algebra of all derivations of A and ad , the set of inner derivations

of A.

Throughout this paper, we suppose that all hypothesis of Theorem
2.7 are satisfied or B = M, in real analytic case.

Following ideas of Theorem 3.7, Corollary 2.14 and Remark 2.15 of
literature of Randriambololondrantomalala [10], we state

Corollary 2.8. The first space of Chevalley-Eilenberg’s cohomology of
Q, L, and of N is respectively isomorphic to the following respective Lie
algebras, N/Q, N/L, {0}.

Remark 2.9. By Theorem 2.4, we deduce Theorem 3.2 and 4.1 of
studies of Grabowski [5].

The m-derivations associated to a distribution over a subring
of F(M)

Let be an atlas of M such that Q) is locally spanned by (i‘) over
T Jisisn

the ring F, of real or complex functions depending only on (x");c ;<

with respect to the atlas (where 1 < k < n). We can consider Q to be
a Lie algebra which commutes with a system S of commuting vector
fields by the usual bracket. That is to say, S={X,,...,X,} such that
[X,,X,] =0 and Sislocally of rank n — k (0 < g < n). It is easy to check
that [Q,Q]=Q because of Randriambololondrantomalala’s [8] result.
So with the same reason, every m-derivation of Q is local. Moreover,
the normalizer N of Q) is locally isomorphic to Q@ g/(n—k,R or C) asa
vector space. We consider the closed 1-differential forms o’ and w' over
a (n — k)-dimensional distinguished connected chart of the generalized
foliation generated by S, where i=k+1,...,n and an m-derivation of
Q, Dl = (aj +w ) ® % such that ker(w’)> F,(U) <i> and

k+1<j<n 07" [ \<ici

. 0 . . . 0
ker(a/)DFo(U)<ax, >k+l£i£n (S in this chart is {@}mgsw F(4)

denotes a module spanned by A over a ring F) cf. [8]. We have omitted
all singular charts of the foliation because the open set R of all regular
points is dense over M cf. [10], we have no problem for the extension
of our results from R towards M as in the previous section. By adapting
Theorem 3.12 of literature of Randriambololondrantomalala [8], we
obtain easily

Theorem 3.1. All m-derivations of Q (resp. of ) are a sum of a Lie
derivative with respect to one element of M and a derivation D" as
denoted before (resp. are similar to m-derivations of Q).

Hence, adopting the arguments of Theorem 3.19 of studies of
Ravelonirina [17], we hold the following

Corollary 3.2. When the rank of S is a positive constant n — k, the
first spaces of Chevalley-Eilenberg’s cohomology of Q) and of N are both
isomorphic to (H,(B))"" X(R“’“z*””‘ or (C‘"’“z*”’k) with H, (B) is the de
Rham cohomology of foliation basic forms of M.

As we know, we can split the above Q into a semi-direct sum of
Lie algebras Q and Q} as in studies of Randriambololondrantomalala
(8], where they are modules on the ring F (M) of constant functions
over the leaves relative to the above generalized foliation. We notice
that QF is spanned by S on F (M). We can reason on a distinguished

chart Uwith the coordinates (x),,., . The F,(U) is the set of all analytic

functions depending only on (x),.; » QIS‘U is spanned by (60’ j
o X 1<isk

2 —
and Qg by |5y ey O0 F0U)

Now, we discuss the m-derivations of Q). The normalizer
N' of this Lie algebra can be written as a direct sum of Lie algebras

n' = [QLQ‘SJ ®[Q,Q], where Q is the centralizer of Qf in (M) and

ox'

ring of all analytic functions depending only on (x'),, ., ). By a

1 . 0
the center of € is zero (Q is locally spanned by [7] on the
k+1<i<n

similar argument of Nakanishi [18], we deduce that all m-derivations

of N' are a direct sum of those of Q) and of Q. By Theorem 2.4, it’s
clear that

Theorem 3.3. Each m-derivation of Qf (resp. of ') is a Lie
derivative with respect to an element of N'.

The normalizer of € is locally the sum of the F(U) -module

o i
spanned by 77 and a vector space generated by * ¢ . Thatis to
1<I<n k+1<i, [<n

say, its normalizer is 91. In addition, its centralizer is QF itself. Because

of [Qi,QS] ={0} or Q; is nilpotent of order 1, we obtain easily
Theorem 3.4. Every endomorphism of @ is an m-derivation of Q.
So, it’s immediate that

Corollary 3.5. The first space of Chevalley-Eilenberg’s cohomology of
Qy, Q; and of N' are respectively isomorphic to the following respective
Lie algebras, M'/ Q! , End(Q5)/Q5 ) {03,

Let’s consider € the Lie subalgebra of Q), spanned by X, over aring
Fc F(M). That is to say, F is locally the set of all analytic functions
depending only on (x'),.., where0<I<k+1 (resp.k+1<I<n+1).

When F = F(M) (resp. F=F,(M)), it is a special case of Lie algebras
defined in Theorem 2.4 (resp. in Theorem 3.1) when the submodule is

generated by X In the distinguished local coordinates, ©Q is spanned

0
by ( ) over F. The normalizer 9° of Q coincides with the
k+1<j<n

o’
sum of Q5 and Q! where the element of this last one is locally the
i 0, i d
following analytic vector fields / (#'./<t<k)—+g' (@ 1<t<k)—
1<i<k 1<j<i-
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resp. fi(z',1<t < k)i,+ W' l<t<n)’ ij . In the first case, we can

<i<k k1< j<i-1

adapt Theorem 2.4 because all analytic functions depending on (x f)
where k+1< j<n, are in the base ring of €5 . In the following case, it is
easy to see that Theorem 3.1 can be adapted to Q5. Thus

Theorem 3.6. In the first case, every m-derivation D of Q} is a Lie
derivative with respect to a W’s element; in the second, it is a sum of a Lie
derivative of an element of 9 and a D analogous to that of Theorem
3.1. In addition, the corresponding extension theorems hold.

Corollary 3.7. The first space of Chevalley-Eilenberg’s cohomology of
Q) is respectively isomorphic to Qf in the first case;

Q; ® ((HR (B'))HH % (R(M)(HH) ou (C(I—k)(l—k—l)))

in the other one if S has a constant rank (€ is a module direct sum and
B’ is the set of the corresponding foliation basic forms of M).

When we regard all the above normalizers on a distinguished
chart, they contain locally all constant fields and Euler vector field. So,
we ask one question: could we adapt Theorem 3.6 and Theorem 3.9
in [7] to these normalizers? The following remark shows us that this
argument is false.

Remark 3.8. On R’ we consider the Lie R-algebra A spanned by
0 9 90 & 0. 8 8 ,,0 ,0 ,8 ,,0
or 0y’ 02 anrya—erza,yg,(y) a,e a,ye a,ye IR
Lemma 2.3 of literature of Randriambololondrantomalala [10] is not
true for A, so the arguments proposed in the proof of Theorem 3.6 of

Princy [7] don’t hold in this situation.

Whereas, let P be a Lie subalgebra consisting locally of polynomial
vector fields in (M), where the Euler vector field and all constant
vector fields are locally in P. Especially, M is not supposed to be a Stein
in the holomorphic case. Let’s recall a well known theorem,

Theorem 3.9. (The maximum principle) [12] Let be M a connected
holomorphic manifold and f a holomorphic function on M such that
‘f(z)‘ < V(Zo) , where z, € M for all z € M; then f is a constant function.

One consequence of the maximum principle is the following, if
the holomorphic manifold M is compact, every holomorphic function
on M is constant in every connected component of M. We know that
M is locally connected, then each function over M is locally constant.
Therefore, it’s clear that if M is a compact and connected holomorphic
manifold, the ring of all holomorphic functions on M is the complex
constant functions ring. It’s confirm that results of the following
theorem complete our study about an involutive analytic distribution
when F(M) is reduced to C.

By adapting Randriambololondrantomalala’s [7] theorems and
taking account that the vector field found in the proof of Theorem 3.6
of Princy [7] is analytic, it follows that

Theorem 3.10. When m is even, all m-derivations of 3 (resp. of the
normalizer N'of Bin y (M) ) are a Lie derivative with respect to one and only
one vector field belonging to N (resp. to the normalizer of N'in y(M) ). If
m is an odd number, they are sum of a Lie derivative with respect to one
element of N (resp. of the normalizer of N) and an m-derivation of local
homogeneous degree -2 of B.

So, taking into account: the vanishing of the centralizer of I3
cf. [19] p.91; both the proofs of Theorem 2.12 of Ravelonirina [19],

Corollary 3.12 of Randriambololondrantomalala [7] and Theorem 3.7
in literature of Randriambololondrantomalala [10], we obtain

Corollary 3.11. The first space of Chevalley-Eilenberg’s cohomology
of B, of N'and of N is respectively isomorphic to the following respective
Lie algebras N'/ 3, N / N, {0}, where N is the normalizer of N.

Illustrations
Some illustrations of our theorems are given in this section.

Example 4.1. It’s clear that Theorem 2.4 works well on the Lie
algebra of all analytic vector fields y(7) , thatis to say, all m-derivations
of y(M) are Lie derivatives by elements of y(M). We can define the
Lie algebra of compactly supported real analytic vector fields C and this
theorem holds for this last one. In particular, H'(¢)= y(M)/¢ for a
non-trivial €. More, H'(¢) = {0} ifand only if M is compact. Obviously,
we can use the above cited theorem on the Lie algebras of vector fields
relative to a generalized foliation over M. We can cite some well known
Stein spaces, C", an open poly-disc in C”, non-compact Riemann
surfaces, ... and build our results in these.

Example 4.2. Let be S? a holomorphic compact connected
manifold. It’s not a Stein manifold nor a submanifold of C* for any u,
it’s a compact Riemann surface. We choose the modified stereographic
coordinates over this manifold. The S* has an atlas composed by two
charts (U, z) and (V, z,) with the overlap map y(2)=2" in UN V. We
remark that the Lie algebra L of vector fields on M spanned over C by
Y, Y, and Y, is the one of all polynomial vector fields in S* where

il in U , 0
.oz —(2) — in U
Y - > y R
2y2 O 2+ >
—(z in vV
) 02* 6% in ¥V
—! i in
Y, oz . By Theorem 3.10, all m-derivations of L are Lie
0
2= in V
02*

derivatives with respect to a vector field in LL itself. That is to say, if D is
an m-derivation of L defined by D(Y,)=a'Y,, D(Y,)=BY,, D(Y,)=7r'Y;;
we have D= L,ylyﬁyzyzwlyz .

When we look at S? as a real analytic manifold, we set the charts
(U,(z',2%) and (7,(y',y*)) with the overlap map

1 2
ooy z 2 _ z
¢(‘T »T ) [y (xl)2+(1,2)2 Y (./I;I)Z+(‘/I;2)Z]‘
LR
T €T
We set the real analytic vector field s : 2 2 on $?
yl—l+ Z—Z inV
oy %y

and the Lie algebra A of real analytic vector fields which commute with
Y,. This 2 consists of real analytic vector fields Y such that

z? z! o .
F‘[?]IIEJJ{TZ]IZW inU
2 1
F{y—,jyli,+ﬂ[%j?iz in
y )" oy Yy oy
whereinthe UN V,

F [4] = % [—ZFz [y*l] +H [ijj](yz)z - [gj(yl)z and
Yy ) +@) y Yy y
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F, [y*;j = % (—2171 {ij +F, [%D(y' Y -F, [y*;] W)
y ) +@) Yy y Yy

with F,_are arbitrary convenient functions of one variable. So, we can
apply all theorems in Section 3 to 2. Particularly H'(IL) = {0} and
H'(A)= H(B)xR*.

Example 4.3. Indeed, Theorem 3.10 can be applied to a polynomial

vector fields Lie algebra on the real analytic manifold R” or the Stein
manifold C” having the corresponding hypothesis.

Example 4.4. We set the Lie algebra A over the Stein manifold C?
aali , O 3 Za(Zz)Zil.The
0z

0
—, =, +2 ==+ =, =
02" 02" 07 07’ 027" a2’

normalizer of A is N, = A + R, where R is the space over C generated

by z‘il,zz ip; i},zziz,fil- It is permit to use Theorem 3.10
0z 0z 0z 0z 0z

and when m is even, every m-derivation of A is inner on ./\/:] If mis odd,

the m-derivation is a sum of an inner derivation on J\/; with a C-linear

map D defined by D((Zz)2 %):

spanned over C by 5,

a P which is zero otherwise («
z

€ C). Moreover, all m-derivations of ./\/0 are inner for all m > 2. So,

H‘(A);R®<zl%”2%”3%> and H'(N) = {0}

Remark 4.5. In the following example, Theorem 3.10 cannot be
applied. We take the 2-torus T? = C/(Z+iZ), which is a holomorphic
connected compact manifold cf. [20], it’s not a Stein. All overlap maps
are translations, that is to say, they are holomorphic. We can define
globally the Lie algebra of all constant vector fields Q on M and find
that £ is the Lie algebra of all holomorphic vector fields over M. All
endomorphisms of each Lie subalgebra of £, which is inevitably
nilpotentof order 1,are m-derivations of this subalgebra. The normalizer
of this subalgebra or its centralizer is the Lie algebra of all vector fields
over T2 But H'(Q)=End(Q)/ad, and H'(y(M))=End(y(M))/ad

since H'(y(M))={0} in smooth cases.

2(M)
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Abstract

In this paper, we present a relative version of the concept of lower marginal series and give some isomorphisms
among VG-marginal factor groups. Also, we conclude a generalized version of the Stalling’s theorem. Finally, we
present a sufficient condition under which the order of the generalized Baer-invariant of a pair of finite groups divides
the order of the generalized Baer-invariant of its factor groups.

Keywords: Schur-Baer variety; Pair of groups; VG-marginal series

Introduction

There exists a long history of interaction between Schur multipliers
and other mathematical concepts. This basic notion started by Schur
(1], when he introduced multipliers in order to study projective
representations of groups. It was known later that the Schur multiplier
had a relation with homology and cohomology of groups. In fact, if G
is a finite group, then M(G)= H*(G,C")= H,(G,Z) , where M(G) is the
Schur multiplier of G, H¥(G, C’) is the second cohomology of G with
coefficient in C" and H,(G, Z) is the second internal homology of G [2].
Hopf [3] proved that M(G)=(RNF*)/[R,F]. He also proved that the
Schur multiplier of G is independent of the free presentation of G. Let
(G, N) be a pair of groups, where N is a normal subgroup in Ellis [4]
defined the Schur multiplier of the pair (G, N) to be the abelian group
M(G, N) appears in the following natural exact sequence

H,(G)—> H,(G,N) > M(G,N) > M(G) > M(G/N)
—G/[N,G]>(G),, = (G/N),, —>1,

where H,(-) denote the third homology of a group with integer
coefficients. He also proved that if the normal subgroup N possess a
complement in G, then for each free presentation 1 >R —>F -G —1
of G, M(G, N) is isomorphic with the factor group (RNI[S,F])/[R,F],
where Sisanormal subgroup of Fsuch that S/R = N .Inparticular, if N=
G then the Schur multiplier of (G, N) willbe M(G)=(RN[F,F])/[R,F].

We assume that the reader is familiar with the notions of the verbal
subgroup V(G), and the marginal subgroup

V (G), associated with a variety of groups V and a group G [5]
for more information on varieties of groups). Let F_ be the free group
freely generated by the countable set X = {x, x,,...} and Vand Wbe two
varieties of groups defined by the sets of laws Vand W, respectively. Let
N be a normal subgroup of a group G, then we define [NV "G] to be the
subgroup of G generated by the elements of the following set:

V(G0 925 Gy G V(911 G300 9,)  1SE <PV EV gpssg, €Gone N

It is easily checked that [NV "G] is the least normal subgroup T of G
such that N/T is contained in V'(G/T) [6].

The first to create the generalization of the Schur multiplier to any
variety of groups was Baer [7]. It is well known fact that the recent
concept is useful in classifying groups into isologism classes. Leedham-
Green and McKay [8] introduced the following generalized version of
the Baer-invariant of a group with respect to two varieties )V and W.

Let G be an arbitrary group in W with a free presentation
1>R—>F—>G—1, in which F is a free group. Clearly,

1=W(G)=W(F)R/R and hence W(F)c R, therefore,
IS RIWF) > FIWF)>G—>1

is a W-free presentation of the group G. We call

RIWF )NV /W) _W(EFNRNV(F))

WVM (G) = . .
[R/W(FW"(FIW(F)) W(F)[RV'F ]

the generalized Baer-invariant of the group G in YV with respect to the
variety V. Now if N is a normal subgroup of the group G for a suitable
normal subgroup S of the free group F, we have N = S/R. Then we can
define the generalized Baer-invariant of the pair of groups with respect
to two varieties V and WV as follows:

RIWE )OS/ W(F W' (FIWE)] _W(E)NRN[SV'F])

WYM(G,N)= [R/W(FY" (F W (F))] W(F)RV'F]

One may check that WVM(G, N) is always abelian and independent
of the free presentation of G. In particular, if W is the variety of all
groups and N=G then the generalized Baer-invariant of the pair (G,
N) will be
RNV (F)

VM (G,G)= .
[RV 'F]

=VM(G),

which is the usual Baer-invariant of G with respect to 1V [8].

It is interesting to know the connection between the Baer-invariant
of a pair of finite groups (G, N) and its factor groups with respect to
the Schur-Baer variety V. In the next section, we show that under
some circumstances there are some isomorphisms among ) -marginal
factor groups (Theorem 2.2). Also, a sufficient condition will be given
such that the order of the generalized Baer-invariant of a pair of finite
groups divides the order of the generalized Baer-invariant of the pair of
its factor groups (Theorem 2.5).

Variety Vis called a Schur-Baer variety if for any group G in which
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the marginal factor group G/ V'(G) is finite, then the verbal subgroup
V(G) is also finite. Schur [9] proved that the variety of abelian groups
is a Schur-Baer variety and Baer [10] showed that a variety defined by
outer commutator words carries this property. In 2002, Moghaddam et
al. [11] proved that for a finite group G, VM(G) is finite with respect to
a Schur-Baer variety V. In the following lemma we prove similar result
for the WVM(G, N) and WVM(G) with using another technique.

Lemma 1.1. Let V be a Schur-Baer variety and G be a finite group in
W with a normal subgroup N. Then there exists a group H with a normal
subgroup K such that

[[NV'G]|| WYM(G,N)|=|[KV"H]| < w.
In particular, |V(G)||WVM(G)|=|V(H)| < oo.

Proof. Let G = F/ R be a free presentation for the group G and Sbe a
normal subgroup of the free group F such that N = S/ R, then

R ( F ]
—cV — |
W(F)[RV'F] W(F)[RV'F]

Let #=F/WEIRV'F] and g=s/w(F)RV'F], then \%R\Gl@c and
[[KV'H]| < |V(H)| <. But
KV H] W(F)[SV'F] = W(F)[SV'F] I W(F)RAN[SV'F]) |
W(F)RV'Fl W(F)RN[SV'F))" W(FE)IRV'F]
Also, [NV'G]= [SV'FIR _W(F)ISV'FIR _  W(F)[SV'F] " Thus
R R T W(F)RN[SVF))
the result holds.
Stallings’ Theorem

In the following lemma we present some exact sequences for the
generalized Baer-invariant of a pair of groups and its factor groups.

Lemma 2.1. Let G be a group with a free presentation
1>R—>F—>G—o1 and S, T be normal subgroups of the free group F

suchthat TS, S/R=N and T/R=K . Then the following sequences
are exact:

W(F)YRN[TV'F])

H1-> :
W(F)[RV'F]

—WVM (G, N)
KAINV'G] |

>WVM(G/K,N/K)—> e ;
[KV'G]

K N N

A)WVM (G,N) > WYUM(G/K,N/K) > ——— ey
[KV'G] [NV'G] [NV'GIK

5

(iii) Moreover, if K is contained in V'(G), then the following
sequence is exact:

MHWVM(G/K,N/K)
W(F)TV F1A[SV'F]

N N
K>——>——->1
[NV'G] [NV GIK

Proof. Considering the definition mentioned above we can
conclude:

WVM(G/ KN | K)— W(F)T N[SV'F]) KN[NV'G] _ (T n[SV'FDR
’ W(F)[TV'F] [KV'G] [TV'FIR
WVM (G, N) = W(F)R ﬁ[S*V'F]).
W(F)[RV'F]

Now one can easily check that the sequences (i) and (ii) are exact.

(iii) Using the assumption, we have W(F)[TV'F]c R . Therefore,
one can easily check that the following sequence is exact:

Page 2 of 3
RN[SV'F] W(F)T N[SV'F])
W(F)[TV F1N[SV'F] W(F)[TV'F]
—>T/R—> L - S —1.
[SV'FIR ~[SV'FIT

Let N be a normal subgroup of a group G. Then we define a series
of normal subgroups of N as follows:

N=V,(N,G)2V|(N,G) 2V,(N,G) 2 2V,(N,G) 2"+,

where V,(N,G)=[V,,(N,G)V"'G] for all n > 1. We call such a series the
lower V_-marginal series of N in G. One may also define the upper V-
marginal series as in studies of Moghaddam et al. [11].

We say that the normal subgroup N of G is V_-nilpotent if it has
a finite lower V_-marginal series. The shortest length of such series is
called the class of V_-nilpotency of N in G. If N = G, then this is called
lower V-marginal series of G. The group G is said to be V-nilpotent ift
V (G) = 1, for some positive integer n [12].

Now, we want to show that under some circumstances there are
some isomorphisms among )V -marginal factor groups. By using
Lemma 2.1, we have the following Theorem, which generalizes 7.9.1 of
literature of Hilton and Stammbach [13].

Theorem 2.2. Let f : G > H be a group homomorphism and N be
a normal subgroup of G and K be a normal subgroup of H such that
f(NYc K . Suppose f induces isomorphisms f,:G/N—>H/K and
7.:N/[NV'G] > K/[KV'H], and that f.:WVM(G,N)>WVM(H,K) is an
epimorphism. Then finduces isomorphisms £,:G/V,(N.G)~H /V,(K.H) and
7. NIV.(N.G)K IV (K, H) foralln>0.

Proof. At first, we want to mention a point that for making it
easier to draw the following diagrams, we would like to introduce
P, =V,(N,G) and O, =V,(K,H) . We proceed by induction. For n =0
the assertion is trivial. For # = 1, consider the following diagram:

1—=N/[NV*G]—= G/[NV*G] —= GN — 1

£y

f1 Jf()
| —K/[KV*H]— H/[KV'H]— HK — L.

By the hypothesis f and f, are isomorphism, hence f, is an
isomorphism. Assume that n > 2. By consedering Lemma 2.1(ii), we
can conclude the following communicative diagram:

WVM(G,N)—=WVM(G/Py-1, N/Py-1) — Py-1/Py—= N/ [NV *G]—=N/ [NV *GJPy-1 —1

(25} a2 J(Z3 J(7.4 Las

WV M (H K)—~WVMHQ w-1,K/Q n-1) — Qu-1/Q n— K/ [KV "H}~ K/ [KV "H Q- 1—1

Note that the naturality of the map f induces homomorphisms
«, i=12,..5 such that (*) is commutative. By hypothesis «, is an
epimorphism and «,, «, are isomorphisms. Also, by considering the
induction hypothesis and definition of the Baer-invariant of the pair of
groups, «, is an isomorphism. Hence by five lemma of Rotman’s studies
[14] e, is an isomorphism. Now consider the following diagram and in
the same way, f, is an isomorphism.

Now we obtain the following corollary.
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| —— Pnfl/Pn N/Pn N/Plrl — 1 WVM(G N) c WVM(G)
a3 /711 fn*l
l—— Qn—l/Qng’ K/Qng’K/Qn—l — 1 c
WV M (G, NKK) WV M(GK)

By the above discussion «, is an isomorphism and by induction of

hypothesis f,_,is an isomorphism, therefore, f, is an isomorphism.
Finally, by the following diagram:

l—— NP, —— G/P, GIN 1
f n f n f 1
1 K0 , HQ , H/K 1

And the same way, fn ia an isomorphism.

Now we obtain the following collary.

Corollary 2.3. Let (f.f)):(G.N)—(H.K) are group homomorphisms
satisfy the hypotheses of Theorem 2.2. Suppose further that N and

K are V -nilpotent and V,-nilpotent, respectively. Then f and f | are
isomorphisms.

Proof. The assertion follows from Theorem 2.2 and the remark that
there exists n > 0 such that V (N,G) = {1} and V (K,H) = {1}.

Now, we have the following theorem, which is a generalization of
Stalling’s theorem [15].

Theorem 2.4. Let V be a variety of groups and f: G > H be an
epimorphism. Let N be a V_-nilpotent normal subgroup of G and K

be a normal subgroup of H such that f (N) = K. If ker f c[NV'G] and
WVM(H, K) is trivial, then f and f| are isomorphisms.

Proof. Put M = ker f, then L;L, G A nd
INV'G] [KV'H]” N K
Wﬂ/n (K,H) for all n 2 0. Now the result follows from
Corollary 2.3.

Finally, a sufficient condition will be given such that the order of the
generalized Baer-invariant of a pair of finite groups divides the order
of the generalized Baer-invariant of the pair of its factor groups with
respect to two varieties of groups. Let y:E — G be an epimorphism
such thatker y c V" (E) . We denote by (wr*)"(G) the intersection of all
subgroups of the form y (V" (E)) . Clearly, (WV")'(G) is a characteristic
subgroup of G which is contained in V *(G). In particular, if W is the
variety of all groups and V is a variety of abelian groups then this
subgroup is denoted by Z (G) as in literature of Karpilovsky [2].

Now using the above concept we have the following Theorem.

Theorem 2.5. Let K be a normal subgroup of G contained in
NA@VY(G)- Then

I WVM(G,N)| divides |WVM(G/K,N/K)|.

Proof. By theorem 3.2 of Neumann [5], natural homomorphism

WVM(G) - WVM (G / K) will be a monomorphism. Now the following
commutative diagram

implies that the natural homomorphism WyM(G,N) > WM (G/K,N/K) is
also a monomorphism. Thus Lemma 1.2 (i) implies that WVM(G, K) is
trivial. Now we have |WVM(G/K,N/K))| = | K n[NV'G]|| WVM (G, N)|, which
completes the result.
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Abstract
In this paper, we prove that equation £ =1,

—u, tu f(u)-avu,

—buu 5 =0 js self-adjoint and quasi self-adjoint,

then we construct conservation laws for this equation using its symmetries. We investigate a symmetry classification
of this nonlinear third order partial differential equation, where fis smooth function on v and a, b are arbitrary constans.
We find Three special cases of this equation, using the Lie group method.

Keywords: Lie symmetry analysis; Self-adjoint; Quasi self-adjoint;
Conservation laws; Camassa-Holm equation; Degas peris-Procesi
equation; Fornberg whitham equation; BBM equation

Introduction

A new procedure for constructing conservation laws was developed
by Ibragimov [1]. For Camassa-Holm equation are calculated in studies
of Ibragimov, Khamitova and Valenti [2]. In this paper, we study the
following third-order nonlinear equation

1)

and we show that this equation is self-adjoint and quasi self-adjont.
Therefore we find Lie symmetries and conservation laws. There are three
cases to consider: 1) b # 0, a = arbitrary constant, 2) b =0, a # 0, and
3) b =0, a=0. Clarkson, Mansfield and Priestly [3] are concerned with
symmetry reductions of the non-linear third order partial differential
equation given by u,—eu, + (k-u)u, ~puyu, =0, where €, k, and
are arbitrary constants. Symmetry classification and conservation laws
for higher order Camassa-Holm equation are calculated in framework
of Nadjafikhah and Shirvani-Sh [4].

E=u—u, + u f— auu , —buuA3 =0,

—uu
el

The special cases of (1) are:

Camassa-Holm (CH) equation wu, —u, +(k+3u)u, =uu;+2uu, ,
k-arbitrary (real), describing the un1d1rect10nal propagation of shallow
water waves over a flat bottom (let f=k + 3u,a=2,b=11in(1).

Degas peris-Procesi (DP) equation v —u, +(k+4wu, =uu, +3uu,,
k-arbitrary (real), is another equation of this class (let f=k + 4u, a = 3,
b=1 in(1).

Fornberg Whitham (FW) equation v, —u, +(1+wu, =uu; +3uu, , is
another equation of this class (let f=1+u,a=3,b=11in (1)).

BBM equation u, —u, +u, +(uu,)=0, is another equation of this
class(letf=1+wu,a=0,b=0in (1)).

Preliminaries

In this section, we recall the procedure in literature of Ibragimov

[1]. Let us introduce the formal Lagrangian

[u—

L=E, (2)

where v = v(t, x) is a new dependent variable.

We define the adjoint equation by E" = =9 _ 0 Here

s_0o 8 2 o %
—=—-D,—+D.D, i,j,k=1,2,
Su ou oy 6u,j au

is the variational derivative and D, is the operator of total diferentiation.

An equation E = 0 is said to be self-adjoint [5] if the equation
obtained from the adjoint equation by substitution v = u is identical
with the original equation.

An equation E = 0 is said to be quasi- self—adjoint [5] if there
exists a function v=g(u), ¢ (u)#0 such that E|_ oy~ AE  with
an undetermined coefficient A. Eq.(1) is said to have a nonlocal
conservation law if there exits a vector C = (C', C?) satisfying the
equation

(©)

on any solution of the system of differential equations comprising (E)
and the adjoint equation (E’). We say that orginal equation has a local
conservation law if (3) is satisfied on any solution of Eq.(1). In studies
of Ibragimov [1], the conserved vector associated with the Lie point
symmetry v=_¢'(z,t,u)0, +&(,t,u)d, + §(x,t,u)d, is obtained by the
following formula :

D,(CHY+D.(CH=0,

§L+W[——D( )+DD(

i/k

oL oL oL
+D (W)[— - D,(—)]+D.D,(W)——, (4)
05— DG N+ DD 0N 7o

where i, j, k=1,2and W =¢-¢&'u, . (Here 0 _means aﬁ ).
X

We recall the general procedure for determining symmetries for an
arbitrary system of partial differential equations [6]. Let us consider the
general system of a nonlinear system of partial differential equations of
order n, containing p independent and g dependent variables is given
as follows

A, (z,u™) =0, &)

vl
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involving z=(z',---,2"), u=(u',--,u’) and the derivatives of u
with respect to x up to n, where u ™ represents all the derivatives
of u of all orders from 0 to n. We consider a one-parameter Lie

group of transformations acting on the variables of system (5):
T =a+el(z,u)+0E), u=u+ed (z,u)+0(E’), where i=1,,
p»j =1, q. &' ¢/ are the infinitesimal of the transformations for

the independent and dependent variables, respectively, and € is the
transformation parameter. We consider the general vector field
v as the infinitesimal generator associated with the above group
U:Zﬁ,cf’(l’,u)ﬁxf +27,1¢J (#,u)0 ;. A symmetry of a differential
equation is a transformation, which maps solutions of the equation to
other solutions. The invariance of the system (5) under the infinitesimal
transformation leads to the invariance conditions. (Theorem 2.36 of
studies of Olver [6], Theorem 6.5 of literature of Olver [7]).

v=1,-,r, (6)

where v" is called the n™ order prolongation of the infinitesimal
generator given by v :v+2izlzk¢kj(z,u("))6ui , where k = (i, ), 1
<i <p,1<a<n, and the sum is over all k’s of order 0 < #k < n. If #k
= a, the coeficent ¢/ of ‘%{ , will depend only on «’th and lower order
derivatives of u and ¢/ (x,u")=D,(¢,— " (Eu/)+Y." Eu],, where

u‘/ = ou’ | ox' and u[, = 614[ /ox' .

v'[A, (z,u")]=0, A (z,u")=0,

Adjoint Equation and Classical Symmetry Method
Formal Lagrangian for Eq. (1) is
L=vE =0y —u, +u.f-auu,—buu,]. (7)
Therefore, the adjoint equation E" to Eq. (1) is
S+, +au 0, +auw,, =3bu v, +3buv, +buv,, +v,,. (8)
Upon setting v = u it becomes
U = U, — u, f —2auxuYZ + 6buxux2 + buux3.
Hence, Eq. (1) is self-adjoint if and only if it has the form
a=2b. )
Consider again Eq. (1), and substitute
v=pu), v =gu,
v, =,

v, = 40'qu +o'u,
v, = (p'u'YB + Sqfuruxz +o'ul,
Vig = (p'u'YZZ + (p”u,u“2 +o ulu + 20 v u,,
in the adjoint equation (8), then
- fou, —pu - 2ago'uxuxz —ap'u} +6bp'u, u,
+3bp u + bgo'uux3 + 3b¢>”uu‘ux2 +bp" uu
+¢7'ux2’ + ¢"u\2ul +o wlu, +20 v,
=Au, — U, +u, f- auu , = bqu3 ).
Hence, Eq. (1) is quasi self-adjoint if and only if it has the form
a=2b,v=-Au+e (10

In this section, we will perfom Lie group method for Eq. (1) on
(' =2 2 =t u = uw), @&Lo)=(otu+e(E@tu),r(z,tu),d,tu)+0E),

where ¢ < 1 the group parameter and &'=¢, =7 and ¢'=¢ are
the infinitesimals of the transformations for the independent and
dependent variables respectively. The associated vector fields is of the
form v=_(x,t,u)0, +7(z,t,u)0, +#(z,t,u)0, and the third porolongation
of v is the vector field

vV =v+g o, +¢' 0, + ¢*2 0, , +¢" Ouy, +-+¢" ou

[

with coefficent

¢ = D=2 )+ 2 S w, 1m

where D, is the total derivative with respect to independent variables.
The invariance condition (6) for Eq. (1) is given by,

vVl —u, +uf-auu, —auu =0, (12)
whenever E = 0. The condition (12) is equvalent to

¢ —bu g+ (f—au )¢’ —aug” —bug” —¢ =0, (13)

whenever E = 0. Substituting (11) into (13), yields the determining
equations. There are three cases to consider:

a and b # 0 are arbitrary constants

In this case, complete set of determining equation is:

£, =0, (14)
7,=0, (15)
7, =0, (16)
4.0, (17)
ap , +ad, +ar,—3as, =0, (18)
£, 24, -0, (19)
3bug, +ag, —3bS yu+25, +4,=0, (20)
2%, -4, =0, (1)
&~bp.— ¢, ~bur, +3bug, =0, (22)
aé ;u—2ag, =0, (23)
So tbus s +of,+4 [+ S +rf=ap,+& +28,, +3bug ,, (24)
~bug, ++4f 4, =O. (25)

With substituting (14) - (17) into (18) - (23) we have

d=c, +%a’(t), r=—ct+e, E=a(l). (26)
With substituting (26) into (24) - (25) we have

f=-1+K(u+1), (27)

where ¢, ¢, and K are arbitrary constants. With substituting (27) into
determining system, we have

_=abu+l)

¢ PR

where c,i=123are arbitrary constants.

T=ct+c,, &=-ct+c,,

Theorem 3.1.1. Infinitesimal generators of every one parameter Lie
group of point symmetries in this case are:

_Ma“’
b

v, =—t0, +10, v,=0,, v;,=0.

We want to construct the conservation law associated with the
symmetry

o =—to,+t0, - LD
: b

Recent Advances of Lie Theory in

J Generalized Lie Theory Appl

differential Geometry, in memory of
John Nash

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S2-004

Citation: Nadjafikhah M, Pourrostami N (2015) Self-adjointness, Group Classification and Conservation Laws of an Extended Camassa-Holm
Equation. J Generalized Lie Theory Appl S2: 004. doi:10.4172/1736-4337.52-004

Page 3 of 5
We have £=0 (35)
W=—u— % —tu, +tu,. (28) 7, =0, (36)
The right-hand side of (4) is written r =0 (37)
C'=Ww-D? DW)(Dv)—D:(W)w,
(v=D; () + (D)D) =D (W)v 3¢, = ap , +az, —a (38)
C* =Wluf - avu , + D, (avu,) - D’ (buv)—2D,D, (v)] (29) 4 +ag, =0, (39)
+D, (W)[-avu, + D, (buv) + D, (v)]+ D,(W)[D, (v)] 24 +E,=0 (40)
-2D,D,(W)[v]- D} (W)[buv]. 2 —¢ =0 (41)
x JIXZ ’
We eliminate the term & 'L since the Lagrangian L is equal to zero
on solution of Eq.(1). Substituting in (29), the expression (7) for L and as, —2a4, =0, (42)
(28) for W, we obtain tf L+ b ,f =28, + [E +ad,, (43)
C'=—w- 1 v —tu,v +tu,v+uv,, + 1 v, +tu, —tu,v,,
b = : b+0=9,. (44)

—u,v, —tu,v, + tz/l,qu TULU+ tulev - tuABU, (30)
and

C* =—u(vf - bou , —buv,, —2v,,)

(0 (vof - bvux2 —buwv, —2v,))

—tu, (vf — bou , —buv,, —2v,)

+tu, (vf - bvuYz —buv,, —2v,)—u (buv, —bvu, +v,)

—(tu, )(buv, —bvu, +v,)+ (tu , )(buv, —bvu, +v,) = 2u,v,

*t“/z”x +uv, +tu,v, + bm}u{z + tb'uxuule - tbmm,x}
+4u\,v+2tuyzv—2ux2v—2uxztv. (31)

We can eliminate u, by using Eq.(1) and then substitute in (30) and
(31) the expression v = u, therefore arrive at the conserved vector with
the following components:

C'= 771(1}(21)71%11,"2 +buu 5 —u f+u, Jub
—t(2buxu‘2 + buu# —u f+ U, )uxzb —tu ub (32)
+tu,u b+ t7LX3ub - t“v\ZIUb +ub— 2uux2b +u’b+u— U, )
C* = —u(uf - 2buu,, —2u,,) — (" (uf - 2buu,, —2u,,))
—tQbu,u, +buu 5 —u,f+u, )uf - 2bun,, —2u,)
+tu, (uf —2buu,, —2u,)—u, (v,)—tu, (v,)
+H(tu , )u,) —2(2bu, U, + buul3 —u,f+ U, Yu,
U Uy Uy 1, + buqu2 + tbuzule - tbuzux_3 +4u u
+2tuxlzu - Zuux2 - 2uleu‘
Where f=-1+K(bu+1).
a is an arbitrary nonzero constant and b = 0.

In this case Eq.(1) is not self adjoint because a # 2b. Complete set
of determining equation is:

$u =0,
=0

(33)
(34)

Now, by considering Eq. (33) - (42) it is not to hard to find that the
components &, 7 and ¢ of infinitesimal generators become

dR®)  z d’F ()

(45)
dt o dt?

d=u +F(t), t=-F{)+c,, &=c.

To find complete solution of the above system, we consider Eq. (43)
and [ = dim Spam_{f , f,1}. Three general cases are possible:

3.2.i) [ =1, then f = constant;
3.2.ii) =2, thenfM =af+f;
3.3.ili) I =3, then af + Bf+y# 0, 2 0.

Case 3.2.i). With substituting f = constant in determining system
(33)-(44), we have ¢ = cpT=c,é=¢c, where ¢, i=1.23are arbitrary
constants.

Theorem 3.2.1. Infinitesimal generators of every one parameter Lie
group of point symmetries in this case are:

vy, =0, v,=0,, v,=0

x u

Case 3.2.ii). With integrating from f, = af + f8 with respect to u,
we obtain

f= =B e, (46)
a
where C is an integrating constant. With substituting (46) into Eq.
(43)-(44) and Eq. (45), we have
_ _a(Ca-e™p)
E=c, = ‘T.
Theorem 3.2.2. Infinitesimal generator of every one parameter Lie

group of point symmetries in this case is:
+M 5. (48)

t 2 u

a

Case 3.2.iii). The Eq. (43) leadsto 9 =0, 7=¢, & =c,.

T=—qt, ) (47)

v=0_—10

Theorem 3.2.3. Infinitesimal generators of every one parameter Lie
group of point symmetries in this case are:

v, =0, v,=0,.
b=0,a=0.
Complete set of determining equation is

& =0, (49)
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£ =0, (50) c*= =, v, + fu,v, +2cv, —tu,v, —tv,u, —tufu , + tof*u,
7,=0, (51) +20u,, +2tu v —cvf +2tv,u,, —2tfu,v,. (69)
7,=0, (52) Now, we substitute in (68) and (??) the expression v = u, therefore
4 =0 (53) arrive at the conserved vector with the following components:
4 =0, (54) C'=-cu+ cu, + tufu, + tu s, — tfuxz u, —tu,u,, (70)
$,=2&, (55) C*=—cuf —u 2+ Sul +2cu, —tu u, —tu, + 2tuu,,
20, =S ,s (56) =2 ftuu,, —tufu ot tuf*u_+2uu, +2tu s (71)
h+f6 =9, (57) where f=L¢"".
fr,+fE +¢f =0. (58) Case 3.3.ii). By considering Eq. (49) — (54), we find that the

To find a complete solution of the above system we consider Eq.
(58) and with assumption f/ f, # 0 we rewrite:

! (59)
Two general cases are possible:
330 L=, 3.3.if) fi = h(u),

where ¢ is constant.

Case 3.3.i).

With integrating from f/ f, # ¢ with respect to u, we have

=L, (60)
where L is an integrating constant. Then the Eq. (58) reduce to
p=—c(z, +&). (61)
With substituting Eq. (61) into determining equation, we have
E=¢, ¢=—cc,, (62)

where c,i=123are arbitrary constants.

T=ct+c,

Theorem 3.3.1. Infinitesimal generators of every one parameter Lie
group of point symmetries in this case are:

v, =t0,—c0,, v,=0,, v,=0.

x

We want to construct the conservation law associated with the
symmetry

v, =10, —cd,.
We have

W =—c—tu,. (63)
The right-hand side of (4) is written

C' =W (w=v,)+(D,W)[v,]-D;(W)[v], (64)
C* =W[vf =2v,1+ D,0)[v,]1+ D,(W)[v,]1-2D.D,(W)[v]. (65)

Substituting in (64) and (65), the expression (7) for L and (63) for
W, we obtain

C'=—cv+cv, —tvu, +tv,u, —tv,u, +tou,,, (66)
C* = —cvf —u, +2cv,, —tu,v,

—tv,u, —tofu, +2vu, +2tu_,v+2tu,. (67)
We can eliminate u, by using Eq. (1) and obtain

C' = e ven, +tfu, + o, ~tfo,, 1o, (@)

components &, 7and ¢ are & = &(x), 7= 7 (t) and ¢ = A(z)u+ B(z,t). By
considering Eq. (55) and (56) we have

E=cexp2z+c,exp—2z+c;,

A(z) = exp2z —c, exp—2z +c,.

By considering Eq. (57) we have

7= ft*(2¢, exp 2z + 2¢, exp—2z) + cit + ¢,
where c, i = 1..6 are arbitrary constants.
From the following identity:

A(z)u+ B(z,t)= _Tf(rl +&0),

we find that ¢ = ¢, = 0 and ¢=—(f/f,)c;. Hence we have two
particular cases:

L=Ku, i#Ku=g(u),

I, Iy

where K is an arbitrary nonzero constant. For the first case, we have
¢=gq,
and for the second case, we have
$=0.

Theorem 3.2. Infinitesimal generators of every one parameter Lie
group of point symmetries in this case, when [/, = Ku are

T=cit+c, ¢=-Kuc,

E=c;, T=c,

v,=0, v,=0,, v,=t0,—ud,,

X

and when f/f, # Ku=g(u) are

vy, =0,

x

v, =0,
where K is an arbitrary nonzero constant.

To construct the conservation law associated with the symmetry
v=10,-ud,, we find that W=-u-tu, . Therefore, we have the
conserved vector with the following components:

C'=—v’ +uu,, —tuu,

wat

+tfuu, +tu

zz Uaat

—tfulum —U,— tu,u, +uu,, +tuu,,,

C* = —u>f —tufu,, +tufu, +2uu, +2tu_u,, —2 ftu u,

wat

—u,u, —tu,u, +4u v+ 2tu, u—2u, 0, + 2fuf -2uu,,

xxt
where f/f, # Ku=g(u).
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Abstract

In this paper, we introduce the notion of representation of Bol algebra. We prove an analogue of the classical
Engel’'s theorem and the extension of Ado-lwasawa theorem for Bol Algebras. We study the category of representations
of Bol algebras and show that it is a tensor category. In the case of regular representations of Bol algebras, we give
a complete classification of them for all two-dimensional Bol algebras.

Keywords: Bol algebra; Lie triple System; Non-associative algebras;
Jordan superalgebras; Nilpotent representation

Introduction

It is well known that the algebraic systems which characterize
locally a totally geodesic subspace is a Lie triple system [1-3]. A Bol
algebra is realized by equipping Lie triple System with an additional
binary skew operation which satisfies a pseudo-differentiation property
[4,5]. A morphism of Bol algebras is a linear map which preserves
the ternary and the binary operations. More generally, the algebraic
structures which characterize locally Bol loops are Bol algebras [6].
Until now, the representations of these algebras have not been studied.
Since the representations of Lie algebras and Lie groups have natural
connection with particulars physics, we claim that the representations
of Bol algebras should lead with the physical applications. More
precisely, in physics the representations of Bol algebras will be useful
for the description of invariant properties of physical systems. and the
concomitant conservation laws as a result. In literature of Mostovoy
and Pérez-Izquierdo [7], it is shown that, Malcev algebras and Lie triple
systems are particular subclasses of Bol algebras. The representations of
Malcev algebras can be found studies of Kuz’'min [8], and those of Lie
triple systems were constructed by Hodge and Parshall [9], Bertrand,
et al. [10]. Now, there already exists some representations of other
classes of non-associative algebras; the case of alternative algebras was
constructed by Schafer [11], the one of Leibniz algebras by Kolesnikov
[12] and for Jordan superalgebras, the representations was given by
Consuelo and Zelmanov [13].

Let B be a Bol algebra over a field K of characteristic zero, a
representation of Bol algebra B on a K-vector space V is a triplet of
maps (p,8,A) which respect some conditions which will be given later
in the paper.

Our first main result is the following.

Theorem 1.1. Let B be a finite dimensional Bol algebra over a field
K and R consist of nilpotent representations of Bol algebra B in a finite
dimensional space V. Then there exists a vector v € V, v# 0 such that
(p,6,0)(v)=0 forall (p,5,A)eR.

We agree that the image of any vector v of V by the operator (p,5,4)
is given by (p,8,A)(v) = (p(v,),5(v,),A(v,)) , where v=(v,,,,0;) € B’ ,

We define also the regular representations and the adjoint
representations of Bol algebras. As an easy consequence, we show
that if any representation of Bol algebra is nilpotent, then its adjoint
representation is also nilpotent.

We are also interested by the question of the extension theorem
of Ado-Iwasawa for Bol algebras. Pérez-Izquierdo established the
existence of a Poincaré-Birkhoff-Witt type basis for a universal
envelope of Bol algebra [5]. The above result allows us to interest
ourselves to an extension of Ado-Iwasawa theorem for Bol algebra. let
A be an alternative algebra, the the generalized right alternative nucleus
is the algebra RN , (A) defined by RN, (4)={ae 4/(x,a,y)=~(x,y,a)}.
We then give our second theorem.

Theorem 1.2. Let B be a finite-dimensional right Bol algebra over
a field of characteristic different to 2 and 3. Then there exists a unital
finite-dimensional algebra A and a monomorphism of Bol algebras ‘8->
RN (A).

alt

The analogue of our second result above was established for Malcev
algebras framed by Pérez-1zqquierdo and Shestakov [14]. The collection
of all representations of Bol algebra and the morphisms between them
form a category, named the category of representations of Bol algebras
Rep(*B). One can view a representation of Bol algebra as a B-module
analogously as in literature of Consuelo and Zelmanov [13] in the case
of Jordan superalgebras. One can understand also the representations of
Bol algebras in term of matrices with sweet properties. The investigation
between the category Rep(*8) and the category of left U(*B) -modules,
where U(B) is the universal enveloping algebra of B, endowed with its
bialgebra structure, leads us to our third main theorem.

Theorem 1.3. The category of representations of Bol algebra Rep(B)
is equivalent to the category of representations of its universal enveloping
algebra Rep(U(°B)).

The paper is organized as follows: We introduce in section 2 the
notion of representations of Bol algebra. In section 3 we establish the
Engel’s theorem for Bol algebras. In section 4 an extension of Ado-
Iwasawa theorem to Bol algebras is proved. Finally in section 5, we
present the category of representations of Bol algebras and show that
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it is equivalent to the category of left modules under its universal
enveloping algebra. As immediate consequence, we show the category
Rep(®B) is a tensor category. We end the section by given a complete
classification of regular representations of two-dimensional Bol
algebras.

Bol Algebras and their Representations

Bol algebras were introduced in differential geometry to study
smooth Bol loops [6,15,16]. A right loop is a set Q, together with a
binary operation (a,b)>a-b, such that for any b in O, the right
multiplication operator R,:x+>x-b is bijective, and there exists an
element €@, such that ¢-b=0> for any b in Q. The dual definition
gives rise to a left Bol loop. In case that (Q,- &) is both left and right
loop then it is called a loop with identity element &.

A right smooth loop M is a right loop equipped with a structure
of smooth manifold, that is the map (a,b)> a-b and R;' are smooth,
[15,16]. Since groups are particular loops, so the Lie groups are
particular cases of smooth loops. In scientific literature, many classes
of loops are known: homogeneous loops, Moufang loops, Bol loops,
Kikkawa loops among others.

A right Bol loop (Q,-¢) is a right loop that satisfies the right Bol
identity

x-((a-y)-a)=((x-a) y)-a
for all a, x, y in Q. Similarly, a left Bol loop satisfies the identity
a-(x-(a-y)=(a-(x-a)-y-

As in the case of Lie groups where the tangent space at each point is

equipped with Lie algebra structure, the tangent space at each point of
Bol loop is equipped with the structure of Bol algebra.

Definition 2.1. A vector space B over a field K is called Bol algebra
ifit is equipped with a trilinear operation [——,—] and a skew-symmetric
operation x - y satisfying the following identities:

@ [xxy]=0

(i) [xy,21+[zx y]+[y;2,x]=0.

(iii) [[x;p.z):e. Bl =[x, By, 2]+ [x[ys e Bl 2]+ [x: [ 232, B

(iv) [x-yia. B1=[x;a, Bl y+x-[yie, Bl +[a - Bix, y]+[x- y]-[a- B]
forall x, y, z, a and 3 in B.

In other words, a Bol algebra is a Lie triple system (%,[—— -])
with an additional bilinear skew-symmetric operation x - y such that,
the derivation D, ,:x—[x;a, ] on a ternary operation is a pseudo-
differentiation with components &,  on a binary operation, that is; for
all x, y and z in B, we have

D, p(x- )= (D, s (X)) y+x-(Dy s(y) +[a- Bix, y]+(x-p)- (2 B).

Da,ﬂ is a differentiation on ternary operation [—;—,—] that is;
D, slx;y,wI=[D, ;(x); y,wl+[x; D, s (), Wl +[x; ¥, D, s(W)].

In fact, the Bol algebra defined above is called right Bol algebra. In
particular, any Lie triple system may be regarded as Bol algebra with
the trivial multiplication x - y=0, for all x, y € B.

Bol algebras can be realized as the tangent algebras of Bol loops
with the right Bol identity, and they allow embedding in Lie algebras
[6,15].

Definition 2.2. A linear map ¢:%B, > B, between two Bol algebras

is called morphism of Bol algebras if it is preserve the ternary and the
binary operations.

The subspace S of Bol algebra B is a sub-Bol algebra if the inclusion
j: S <> B is a morphism of Bol algebras.

Definition 2.3. Let (B,[-—-],) be a Bol algebra over
a field K, a pseudo-differentiation is a linear map P:B—>B
for which, there exists z € B (a companion of D) such that
P(x-y)=P(x)-y+x-P(y)+[z;x,y]+(x-y)-z; the companion is not
necessarily unique.

The set of all companions of D is denoted Com(D). The map
D, :x—[x;a,f] is a pseudo-differentiation with companion « . 3,
called inner pseudo-differentiation of 8. The pseudo-differentiations
of B form a Lie algebra, denoted by pder B under the natural product
[P,P']=PP' - P'P. The algebra ipder B generate by {D,,/a,beB} is
a Lie subalgebra of pder B, called the Lie algebra of inner pseudo-
differentiations of B. The enlarged algebra of pseudo-differentiations
of B is defined as PderB={(D,z),D e pderB,ze Com(D)} and
the enlarged algebra of inner pseudo-differentiation is defined as
IpderB ={(D,z),D e ipder B,z € Com(D)}.

It is showed in [4,5] that, those algebras defined below are the Lie
algebras with the brackets [P, P']= PP'—P'P

The direct sum L=B® IpderB is a Lie algebra with the operation
[x.y1=D,,, [x,D,,]1=D,,(x), forall x, y, a, b in B. The Lie algebra (L,[,])
is called the standard enveloping Lie algebra of Bol algebra 8.

The map &, :x+> x-a is a linear map of B. We denote by B the
Lie algebra generate by {J,,a € B} with brackets [5,,5,1= 75,6, - 6,6,
We get an other Lie algebra =% Ipder3 which is a subalgebra of
the Lie algebra generated by linear maps of 9B8.

If the subspace 7 of B satisfies the stronger condition
7-B+(Z1;%8,8)c I ,thenZisanideal of B. Anideal Z of B automatically

satisfies (B;Z,B)cZ and (B;8B,7)c I

For more understanding of Bol algebras and Bol loops, it is
important to investigate about their representations. We defined a
representation of Bol algebra as follows.

Definition 2.4. If B is a Bol algebra over a field K and V a
vector field over K, the pair (p,6) with the skew-symmetric bilinear
map p:B* — Endv and the linear map &:9B — EndV is said to be a
representation of Bol algebra B in V if there exists a bilinear operation
A:B* — EndV such that the following statements are satisfied:

(R1) p(u,v) = AGu,v) - A(v,u)

(R2) [p(a,b), p(u,v)]= p([a,u,v],b) + p(a,[b,u,v])

(R3) [p(u,v),5(a)]=6(a,u,v])+ A(u-v,a)+ S -v)S(a)
forall x, y, a, b in *B.

The operation A is called a companion of the representation (p,6)
of the Bol algebra 8.

In this case we can denoted by (p,5,A,V) or simply (p,5,A), the
representation (p,d,V) with companion A. Following the approach
of Consuelo and Zelmanov for the representations of Jordan
Superalgebras [2], it is equivalent to say that the vector space V is a
Bol module (B-module) i.e., E, =B @V possesses the structure of Bol
algebra such that:

(a) B is a sub-Bol algebra of E,
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(b) V'is an ideal of Bol algebra E, and
(©)x-y=0ifboth x,y €Vand [x,y,z]=0 ifany two of x, , zliein V.

A particular instance where V =B and we set D(u,v)=D, ,6(u)=25,
the pair (D,0) is a representation of Bol algebra with companion

A(u,v) =[u,—,v] called regularrepresentation of B.

Example 2.1. Let (B,[—;—,-],-) be the Bol algebra with basis (e,,e,)
over a field of complex numbers, were [e,e,,e]=¢,, [e,,e,e,]=¢, and
e -e,=e,. We recall that det(u,v) is the determinant of the pair of
vectors (u,v) with u=uwe +ue, gnd u=ue +u,e,. Note that this Bol
algebra arise from the classification of two-dimensional Bol algebras
obtained by Kuz’min and Zaidi [4]. We set

Dlu.y) = (—det(u,v) 0 j

0 det(u,v)
0 0
o(u)=
u 4
Au,v) = [_ulvz v j
UV, UV

It is clear that (D,d,A) is a regular representation of 8.

Nowlet (p,5,A) and (p',8",A") betwo representations of Bol algebra
8 on V. a morphism of the representation (0,9,4) to a representation
(0',8",A") is a linear map f:¥ —V such that p'=fp, §'=f5 and
A’= fA. Clearly the composition of morphisms of representations is a
morphism of representations. The collection of all representations and
their morphisms forms a K-linear category denoted by Rep(*B) and
called the category of representations of Bol algebra B.

We consider Z,(B)=(|ker(—- ) and Z,(B)= ﬂ ker[—; y,z] ,the center

yeB ,2eB
of Bolalgebrais Z(B) = Z,(B) N Z,(B). Itissimple to see that, thekernel of
the operation < p,5> given by Ker <p,6>={xeB/p(x,B)+05(x) =0}

is the center of 8.

Engel’s Theorem for Bol Algebras

Before giving the Engel’s theorem, we first need to define and
characterize the nilpotent representations.

A representation (p,5,A) of Bol algebra ®B in Vis nilpotent if for all
x,y,z€B 5 p(x,¥),5(x) and A(x, y) are nilpotent endomorphisms; that
isif there is a positive integer n such that (p,5,A)" =0. Let (p,5,A) bea
representation of 9B in V. we define the triplet (ad,,ad;,ad,) as follows:
ad (x,y) =[p(x,y),~]> ad;(x,y) =[6(x),-] and ad(x,y) =[A(x,y),~]-

Proposition 3.1. With the above notations, the pair (ad ,,ad,) is a

representation of Bol algebra B in a vector space V with companion ad,.

Proof. The objective is to show that (R)), (R,) and (R,) are satisfied.
Let a,b,u,ve® and f € EndV. We have

lad (a,b),ad,(u,V)I(f) =[ad (a,b).[ad ,(u,v), f]]
=[p(a,b),[ p(u,v), fI1=[p(u,v),[p(a,b), 1]
=[lp(a.b). p(u,v)], 1
=[p(a,b), pu,v)1f = f1p(a,b), p(u,v)]
= plasu,v],b) f + p(a,[b,u,v]) f = [ pla;u,v],b) = f p(a,[b,u,v])
=(ad ,([a;u,v],b) +ad ,(a,[b,u,v]))(f)
Then (R,) holds. In other hand we have

[ad (a,b),ad ,(u,v)]= ad ,([a;u,v],b) +ad ,(a,[b,u,v])

lclad ,(a,b)(f) =[p(a,b), f1= p(a,b) f - [ p(a,b)
=A(a,b) f —Aa,b) f —A(b,a) f + fA(b,a)
=[A(a,b), f1-[A(,a), f]
=((ad,(a,b) - ad,(b,a))(f)
Therefore we have the desire equality ad,(a,b) = ad,(a,b) - ad,(b,a).
This shows that (R,) is satisfied. Finally, we have for all f € EndV’,

Thus [ad,(a,b),ad;(u)]= ad([u;a,b]) +ads(a-b)ads(u)+ad,(a-b,u)
and the desire conclusion follows, that is (R,) is verified.

Definition 3.1. The representation (ad,,ady,ad,) is called the
adjoint representation of (p,d,A).

Now we give the link between nilpotent representation and adjoint
representation. The above result arises to the representations of Lie
algebras.

lemma 3.1. Let (p,5,A) be a representation of Bol algebra on the
vector space V. If (p,5,A) is nilpotent, then its adjoint representation is
also nilpotent.

Proof. Let (p,5,A) be a nilpotent representation of Bol algebra, and
(ad,,ad;,ad,) its adjoint representation. Then there exists a positive
integer p such that (p)” =0,(5)” =0 and (A)” =0. If 0 is one of the
map p, 6, or A it is clear that ad, =/, +h, wherel and h_ are nilpotent.

we have (ad,)*" = (I, +h,)**" = 0. Hence the result.
Now we are in position to prove our first main theorem.

Theorem 3.1. Let B be a finite dimensional Bol algebra over a field
K and R consists of nilpotent representations of Bol algebra B in a finite
dimensional space V. Then there exists a vector v €V?, v # 0 such that
(p,8,A)(v)=0 forall (p,5,A)eR.

Proof. We agree that (p,5,A)(v)=(p(»),6(v,),A;)), Wwhere
v=(%,v,¥), that is we identify (p,5,A) by (p(a,b),5(a),A(a,b)) for all
a, b in B. It is clear that R is a subspace of (Env)® and we can define

on it the following bracket [(f,g.h).(/".g".h)]=(Lf.["].[g.&L.[h. kD).
(R,[-,-]) is a Lie algebra.

The proof of the theorem goes by induction on dimR. When dimR
=1, since R is generated by a single nilpotent representation then the
claim is immediate.

Suppose now that the claim is true for all subalgebras of nilpotent
representations spaces of dimension less than dimR > 1.

Since, dimR = 1, we have a proper Lie subalgebra L < R. We can
choose L to be a maximal subalgebra. We show before continuing that,
L has a codimension one in R and L is an ideal.

L acts via the adjoint operator on R and L. In the latter case,
since dimL< dimR, we know by Engel's theorem apply for L,
that there exists a nonzero element 7R /L such that [1,F]=0
(p,6,A)eR /L and [(,1,,1,),(p,5,M)]=0 for (I,1,,1)e L. We know
that (p,5,A)=(p,5,A)+L; then (p,6,A)eR—L Tt follows that
[K(p,6,A)+L,L]c L. [K(p,6,0)+L,K(p,5,0)+LIc L. These
imply that K(p,6,A)+L is a Lie subalgebra of R, and contains L as an
ideal. By maximality of L, it follows that Kr+L=TR, so we are done.

Moreover

Now we define the vector space W={weV*/Lw=0}. Let
w=(w,w,w)) €W and (p,5,A)e L, then (1,L,,5)(p,5,A)w)=0 for all
(7,,1,,1,) € L. Other we have

(ll ’ lz ) 13)(p, 5’ A)(W) = (pa 5’ A)(ll > 12 > 13 )(W) + [(ll ’ lz ’ 13)’ (ps 57 A)](W)
=[5, 1).(p, 6, 8))(w)
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and [(/,L,.5),(p,5,A)]e L. Since L is an ideal, we have also
[(4,1,,4),(p,6,8))(w) = 0.

Now we have R =K(p,5,A)+L for some (p,5,A)e L. We know
that (p,8,A) is a nilpotent operator on W, so ker(p,5,A) "W #0. Let
v=(v,v,,v,) € ker(p,6,A)"'W such that v#0; then any element of L
and r annihilates v.

An Extension of Ado-Iwasawa Theorem to Bol Algebras

Let L be a finite-dimensional Lie algebra over a field K. The classical
Ado-Iwasawa theorem asserts the existence of a finite-dimensional
L-module which gives a faithful representation of L. However, Filippov
proved [17] showed that this theorem does not hold for Malcev
algebras, that is homogeneous Bol algebras. Thus it is not hold for
general Bol algebras.

For the Lie algeras, the Poincaré-Birkhoff-Witt theorem says that
any Lie algebra L is a subalgebra of 4~ for some unital associative
algebra A. In the case that L is finite dimensional, the Ado-Iwasawa
theorem says that A can be taken finite dimensional too. This
extension of Ado-Iwasawa theorem was established for the Malcev
algebras by Pérez-Izqquierdo and Shestakov [14]. There is a version
of the Poincaré-Birkhoff-Witt theorem for Bol algebra proved by
Kuz’min and Zaidi [4]. Now let ‘B be a Bol algebra [14] that there is
an alternative algebra A and an injective map B — RN, (A) > where
RN, (A)={aec A/ (x,a,y)=—(x,y,a)} is the generalized right alternative
nucleus. In this section we prove that if B is a finite-dimensional Bol
algebra then A can be taken finite dimension too. Our second main
result is the following.

Theorem 4.1. Let B be a finite-dimensional right Bol algebra over a
field of characteristic # 2,3. Then there exists a unital finite-dimensional
algebra A and a monomorphism of Bol algebra j:B — RN, (4).

Proof. Let B be a Bol algebra, according to Pérez-Izquierdo
[5], there exists a linear map /j:B—> RN, (U(B)), ar>a such that
jla-by=ab-ba and j(a,b,c)= (ab)c—(ac)b—[b,cla , where U(*B) is the
universal enveloping algebra of 8. Since RN, (U(®B)) is closed under
the binary product [-,—] given by the commutators and the ternary
operation [a,b,c]=(ab)c—(ac)b—[b,cla for all a,b,c in RN, (U(B)).
By the methods of Pérez-Izquierdo [5], RN, (U(B)) with the binary
and ternary operations defined above has the structure of Bol
algebra. Thus j is a monomorphism of Bol algebras. Let E,, be the Lie
enveloping algebra of B. Then E, =E, ® E_ is the Z,-gradation and
E_~%B as vector space. According to Pérez-Izquierdo and Shestakov
[14], there exists a two side ideal Z cU(®B) of finite codimension.
Then A=U(B)/Z is a unital finite-dimensional algebra and there
exists an injective map ,:®B — U(®B). The injective map j induces a
monomorphism of Bol algebras j:B — RN, (4).

The Category of Representations of Bol Algebra

We give a relation between the category of representation of
Bol algebra B and the category of representations of its universal
enveloping algebra. As immediate consequence, we show that the
representation category of a Bol algebra is monoidal, or tensor
category. We recall that the category of representations of Bol algebras
is Rep(*B), and the one of finite dimensional representations of Bol
algebra is rep(B). Let 4=(4,-A,¢) be a bialgebra, Mod(A) means the
category of left A-modules (ie., representations of A). If U, V are left
A-modules, then the tensor product becomes a left A-module with
multiplication rule a-@®v)=A(a)-@®v) for all ae4, ueU and
veV Thefield Kisalso aleft A-module by a-¢ = &(a)s . The category of

left A-modules is equivalent to the category of (A, A)-bimodules. Any
(A, A)-bimodule can be considered as left module over 4® A”, where
A” is define on the same space as A, by new multiplication x-y=y-x.
We know in virtue of Pérez-Izqquierdo [5] that for a given Bol algebra
(B,[-—L[-—-] there exists a universal enveloping U(B) endowed
with the structure of bialgebra, that is (U(B),A,¢) is a bialgebra.
Analogously we denote Rep(U(*B)) the category of representation of the
bialgebra (U(),-,A,¢). Now we state an equivalent characterization of
the representation category Rep(%8). We prove our third main result.

Theorem 5.1. The category of representations of Bol algebra Rep(*8)
is equivalent to the category of representations of its universal enveloping
algebra Rep(U(°B)).

Proof. We recall that Rep(*B) is the category of modules over the
Bol algebra *B. Following the consideration of Consuelo and Zelmanov
[13], apply for the modules over Bol algebras, every B-module has
the form g, =% @ v, where V is a vector space over a field K and E,,
possesses the structure of Bol algebra such that:

(a) B is a sub-Bol algebra of E,,
(b) Visan ideal of Bol algebra E, and

(c) x.y=0ifbothx, y € Vand [x, y, z] = 0 if any two of x, y, z lie
inV.

We define the multiplication U(B)xV —V by a-x=e&(a)-x. We
consider the following mapping defined from Rep(5) to Mod(U(®8))
define on the objets by F(£,)=V. The map F is naturally extended
on the morphisms. If U and V are the images of E, and E, under F, in
virtue of Pérez-Izqquierdo [5] there exits a map #:B=>U(B)OU(B)
with #(a)=a®1+1®a. This implies that U ® ¥ is a (U(B)-module.

Conversely, let V be a (U(B)-module, in virtue of Pérez-
Izquierdo [5] there exist an injective map 7:%8B — U(B) . We define the
multiplication xy -y by a-x=n(a)-x. Then V has the structure
of module. We set now the mapping G from Mod(U(*8) to Rep(*B)
by G(7)=E,. It remains to define the image of U®V . Let E, and
E, be two modules over B, We set E=BOU®V. We define the
binary operation by [a,u®v],=[a,u]®v; [a,u®v], =[a,u]®v and
a ternary by [a,b,u®v], =[a,b,u]®v; [a,u®v,b]y=[a,u,b]®v and
[a,b,u ®Vv]y =[a,b,u]®v foralla, bin B, uin Vand vin V. We assume
also that the restrictions of [==Je and [-.——], on 9B correspond

respectively to the binary and ternary operations of B; and x - y = 0 if
both x,yeU®V and [x,y,z]=0 if any two of x,y,zliein U®V.

It remains to show that (E,[-,~],,[-,——]) is a Bol algebra, that
is the conditions (i) - (iv) hold. By the definition, the condition (i) is
satisfied. Now let x,y,z,a,f inB; uin Uand vin V. We have

[ y,u®@v]+[u®v;x,y]+[y;u®v,x] =

= (oyul+lusx, y]+[y;z,u)) ®v
= 0,

[x;y,u]l®@v+[u;x, y]®v+[y;z,u] ®v

this shows that (ii) is true.

Now let us show that (iii) holds. We have

[[xyu®vlia,p]l = [[xyu]l®va,pB]

= [[xyula, f1®V

= ([xa, Bl yul+[x[y;a, Blul+[x; y,[u;a, B @ v
[[x;a, BL; y,u @]+ [x;[y; e, Blu @ v]+[x; p,[u®via, B]]

One can show that the above equality holds for any x,y,a, 8 stands
for u ®v. That is (iii) holds.
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Finally, we have

[[u®v;ylia, Bl = [[w;y]1®via,p]
= [[usyla, f1®V
= (wa, Bl y+uly;a pll+[[e, Blu, y1+[[u, y1,[a, 1) ®v.

Thus [« ®v; v, f1=[u ® iz, B1- y +[u ® v, [y;, BT+ [, Bl ®v, ¥+ [[u ® v, L [t, B
One can show this equality for any y, a,  stands for u®v. This
completes the proof.

Definition 5.1. A monoidal (tensor) category (C,®,1,a, ) is a category
C equipped with tensor functor @ - xC — C » With a fix objet 1 (called the unit
of a tensor category), o :®o(®x Id) > ®o(ldx®), 1:10——1Id, —®1— Id are
natural isomorphisms such that the associativity and unitary constraints
hold, or equivalently the pentagon and the triangle diagrams are
commutative [18-20].

We can now give a special characterization of the category
of representations of Bol algebra as a consequence of the above
proposition.

Corollary 5.1. Every category of representations of Bol algebras is a
monoidal category.

Proof. It was proved by Kassel [20] that (4,-A,¢) is bialgebra if and
only if the category Mod(A) is monoidal category. In virtue of Theorem
5.0.6, the category of representations of Bol algebra is equivalent to the
category of representations of its enveloping algebra endowed with
bialgebra structure. Hence the category Rep(B) is monoidal.

More recently it was proved by Huang and Torecillas [21], that
the path coalgebra KQ of a given quiver Q always admits a bialgebra
structure. So the monoidal category arising from this quiver bialgebra
is the category of representations of the bialgebra KQ. This leads to the
following conjecture.

Conjecture 5.1. Find necessary and sufficient conditions for the
existence of quiver Q such that the monoidal category arising from
quiver bialgebra KQ is the category of representations of a Bol algebra
over algebraically closed field K.

A monoidal category is said to be finite, if it is equivalent
to the category of finite dimensional comodules over the finite
dimensional coalgebra. Thus the category Rep(B) of finite dimensional
representations is finite monoidal category. This is a particular case
of tensor categories of Etingof et al. [19]. The particular case where Q
is a quiver without loops and 2-cyles should leads to strong relation
between Bol algebras and cluster algebras of Fomin and Zelevinsky
[22,23] for more details. In the same vein, it has been shown in literature
of Schauenburg [24] that if A is a finite dimensional bialgebra, then A is
Hopf algebra if and only if the category of finitely generated A-modules
is rigid, that is finitely generate modules admit dual objets. This allows
us to the following conjecture.

Conjecture 5.2. Find necessary and sufficient conditions for a finite
dimensional Bol algebra to have Hopf algebra as universal enveloping
algebra.

Representations of Free Bol Algebra Bol[X] of Finite
Dimension
Let X={x,x,,.,x,}, we construct the set of binary-ternary
monomials BT[X], and we assume that BT[X] is closed under [-,-]
and [-,—,—]. Let BT[X]= {Zale |a, € } be the space spanned by X.
We define the multiplicati;n by the following rules: if f:ia,xi,
i=1

g=Ypx, and h=7x in BT[X], then [/.g]=)apx.x],
= ) = il
[f.g.h1= Y apBylx.x,x]- The free Bol algebra Bol[X] is the free
i,j.k=1

binary-terijmry algebra BT[X] satisfying the identities (i) - (iv). The Bol
types of degree m are always to construct a product of degree m in
Bol[X]. For general construction and more details of the free Bol algebra
Bol[X] [25,26]. In studies of Peresi [26] it has been shown that any
multilinear identity fof degree m can be written as a linear combination
of multilinear monomials. We denote the Bol types of degree m by B,,
B, ... By, that is /= f,+..+ £, » where f, is a linear combination
of polynomial having Bol type k. Therefore the author regards f as an
element of b(1m) copies of FS , where FS_ is group algebra of the group
of permutation S . Applying the representation @, :FS, — Md,(F), (¢
partition of m) of S_to f we obtain the representation matrix of f in
partition o: (@, (/) [P, (/) |- P, (fym)) .

Now let V be finite dimensional space, dim(V) = s and B is a Bol
algebras of dimension n. Give a representation (0,5,4) of 9B over the
space V is equivalent to give the matrix (D(u,v)|5(u)|A(u,v)), where
D(u,v), A(u,v) ares X nsx nmatrices and &(u) is also a s x n matrix.
Hence the block matrix (D(u,v)|56(u)[A(u,v)) isa (3n)xs matrix.

In the special case where B=Bo/[X], K =F and ¥ s ,withBoltypes
B, B, ....B,,, the representation matrix (®, (/)| ®,(/)]..| P, (f5))
of f corresponds to the matrix § , that is the expression
(N =6UDISU)I..|6(fyy)) . At this specific case mentioned
by Peresi and Jacobson [26,27], the representation of element f is
understood as a the representation of Bol algebra Bol[X] given by the
matrix (D(f,0)|6(/)A(f,0)).

Actually we recall the classification theorem of Kuz’'min and Zaidi
for two-dimensional Bol algebras [4] which states as follows.

Theorem 5.2. (Kuz'min-Zaidi). Every Bol algebra B of dimension
two over R has a canonical basis (e e,) in which its multiplication table
is one of the following:

L. [e,6,]=0, [e,,e,e,]=¢ge, [e,e,,e]=¢ge, > where (£,,6,)=(0,0),
(-1,0)»(1,0), (1,=-1) , (1,1), (=1,-1)

L. [e,e]=e,, le,,e,e,]= g€, [e,e,,¢]1= Be,, where £=0,-1,1;

[e;e.6]1=e, [¢.e,¢]=¢.

Now we are in position to prove our classification result for regular
representations of the two-dimensional Bol algebras.

Theorem 5.3. Every regular representation of two-dimensional Bol
algebra B over K is up to equivalence of matrices given by one of the
following matrices:

0 & det(u, 00 & —UVE,
(i) Ruv)= det(u,v) TR, TR
—&,det(u,v) 0 0 0 —uve uve,
(i) Rz(u,v):( 0 edet(u,v) 0 0  uve —uzvle‘)
—pdet(u,v) 0 u, —v —uy,f uwpf

—det(u,v) 0 0 0 wuv, uy
(iii) Ry(u,v)= ’
’ 0 det(u,v) u, —-v, w,v, —u,V
Proof. In virtue of classification theorem of Kuz’min and Zaidi [4],
every Bol algebra of dimension two is of type (I) or of type (II) by using
the items of their theorem.

We suppose in the first case that our Bol algebra is of type (I), that
is B has a canonical basis (e,e,) in which its multiplication table is given
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bY le,e,]=0, [e,,e,e,]=¢e, [e.e,,e]=¢e, , where

(&,£,)=(0,0), (-1,0),(1,0), (1,-1), (1,1), (=1,=D).

Let u and v be the two vectors of B, with u=ue +ue, and
u=ue +ue,. We have D(u,v)(e)=uw,le,e,e,]+u,vle,e,,e]. Since
le,e,e,]=e,e,¢]>We have

D(u,v)(el) :_ulvz[el7ezael]+uzvl[elﬂewel]

= (-, 16,0,
=—det(u,v)&,e,,

We have also

D(u,v)(e,) = uy,le,,e,e,]+u,v e, e,,¢]
= (v, )¢,
= det(u,v)se,.
Thus D(u.v) 0 g det(u,v)
u,v)=
us —&,det(u,v) 0

Now we compute the matrix of A(u,v) as follows. We have
A(u,v)(e)=uy,le,e,e]+u,v,le,e,e]
T U616 —UV,6,6,,
and
A(u,v)(ey) =uyle,e,e]+u,y e, e,e]
=—wvEe +uyEe,,

UyVr& —UVi€

hence A(u,v) :[ ] Because [e,,¢,]=0, we have 5(u)=0.
ulvlgz

Therefore the bloc matrix (D(u,v)|5(u)|A(u,v)) corresponds to the
matrix R,(u,v).

U, €,

The second case corresponds to Bol algebra of type (), that is B
has a canonical basis (e,e,) in which its multiplication table is given

le,,e,e,]=¢¢, [e,e,,¢]=pPe,, where &=0,-1,1;

by [e,e,]=e, >

[62,81,62]262, [el>62’el]:el'
If la.e]=e, le.e.e]l=¢a, [e.e,.e]=pe, where ¢=0,-1,1; we use the
0 sdel(u,v))

analogous methods as at the first case to get D(w):L ety O,

5(14):[:[) ji] and A(u,v):[ uzvzgﬁ _uzvlﬂg
o UV, uv

(D@u,v) | 5)| A,v)) corresponds to the matrix R,(u,v).

]. Hence the bloc matrix

Finally, for [e,e,]1=¢, and [e,.€,6,]1=¢,, [e,e,,¢]=¢, we have
~det(u,v) 0 0 0 uv, uy

0 det(u,v) u, —v, v, —u

(D(u,V)\c?(u)\A(u,V)):[ ] this end the proof.
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Abstract

This work deals with an extension of the Black-Scholes model for rating options with the Heston volatility model.
A Lie-algebraic analysis of this equation is applied to reduce its order and compute some of its solutions. As a result
of this method, a five-parameter family of solutions is obtained. Though, these solutions do not match the terminal and
boundary conditions, they can be used for the validation of numerical schemes.
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Introduction

Black and Scholes [1] assumed a financial market, where a risk free
bond with constant interest rate r, an asset with price S that is modelled
by a geometric Brownian motion, and call and put options related
to this asset can be traded. With the assumption of an arbitrage free
market and in the framework of It 0 ’s stochastic differential equations,
it is possible to derive the well-known Black-Scholes partial differential
equation for the fair price of an option V. As the assumptions of this
first modelling attempt are in practice too restrictive, several extensions
of this model were proposed. One possible direction is to discard the
assumption of a constant volatility for the geometric Brownian motion
of the asset price and to assume that it is itself a random variable
governed by a stochastic differential equation [2]. The resulting
stochastic differential problem is given by

ds, = uS,dt +Jv,S,aw.", (1a)

dv, = a(m-v,)dt+Lv,dW?, (1b)

where we suppose that ", @ are two stochastically independent
Wiener processes. The model constants , m and L are supposed to be
positive. The drift term of (1b) is built in a way such that the average
of v, tends to have approximately the value m. In particular, if L is zero
then v, is deterministic and converges exponentially to m as t tends to
infinity. In this case, the option price behaves according to the solution
of the usual Black-Scholes equation with a constant volatility o =~/m.

Based on (1), it is possible to derive a partial differential equation
for the price of an option V' [2] as it has been done for the model with
constant volatility in studies of Gunther and Jungel [3]. In contrast to
the standard Black-Scholes equation the PDE that arises with Heston’s
volatility model involves one more argument representing the current
volatility of the market. The resulting two-dimensional Black-Scholes
equation is as follows.

v, +%x2yV” +%L2yVW +rxV +(am—(a+A)y)V,-rV =0. 2)

In application, this equation is augmented with the following
terminal and boundary conditions

V(x,y,T) = [a(x-K)T]",
V(0,0 = L2 g,
3
lim 0,V (x,y,0) = HT” )
o x i a=+1
lim Vop,t) =
;-T}o Y Ke T if a=-1

In this setting, a denotes whether a call (a = 1) or a put (a = -1)
option is considered. T represents the time when one is allowed to buy
or sell a share of an asset for the prescribed price K, whereas A is the
parameter that models the price of volatility risk [2]. In (2), x represents
the asset price S and y denotes the current volatility v. As the asset
price and the current volatility are always positive, we are searching
for a solution of the above differential problem (2)-(3) in the domain
Q=[0,0)x[0,0)x[0,77] -

In the following, analytical and numerical solutions of (2) together
with the boundary and terminal conditions (3) are sought. In particular,
aquick review of Lie symmetries of partial differential equations is given
in Section 2. In Section 3, this method is applied to the 2-dimensional
Black-Scholes equation (2) and we derive a five-parameter family of
analytical solutions. In Section 4, convergence properties of the Chang-
Cooper discretization are tested with the given analytical solutions. A
section of conclusion completes the exposition of our work.

Lie Theoretical Analysis of Differential Equations

In this section, we illustrate how Lie symmetries can be used
to determine analytical solutions of partial differential equations.
Applications of this method can be found in literature of Bordag [4]
and Naicker V, Andriopoulos K, Leach [5]. Our review is based on the
book of Stephani [6].

Many partial differential equations for a function u that is
dependent on n variables x, (i=1,...,n ) can be written as follows

H(y)=0, 4)

with an analytic function H, where y, denotes subsequently the
independent variables x, the dependent variable u, and its derivatives

__ 0O . . . .
i ox, ox, - Equation (4) defines a manifold in some multi-
J
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dimensional Euclidean space and its solutions are sub-manifold.
Diffeomorphisms of R” can be used to permute the set of solution and
find solutions with special properties. Therefore, we observe that a one
parameter group of diffeomorphisms G={/*:R" >R"|se ]R} can be
completely determined by the first order differential operator

n) )

n 6 d
X= L — here & =— £°(x,,...,
26 g Where &= ()]

which is called infinitesimal generator or symbol. In fact, the group
action on a point x, e R" can be computed by solving the initial value

problem
L) =) ) =%, ©)
de

n 0
ZH 77,»8*, with
T(x) with a transformation

Moreover, the coefficients of the symbol X =
respect to a change of variables y =
T:R" — R", can be computed as follows

1,(») = XTI (). (7)
where X(T)) denotes the application of the first order differential
operator X on the function T.. It can be shown that there always exists
a set of canonical variables in which the symbol has the normal form
7
X= ayl s [7].

As the symbol X acts only on the independent variables, it is
prolonged to act in a higher dimensional space including also the
dependent variable and its derivatives up to the order of the partial
differential equation. The prolonged infinitesimal generator is defined
as follows

:ﬂ i i n
X Zlf ax,+”au+§"‘a z”‘l‘za

illl

where the coefficients 7;..i, are given by

D " "
s, ﬁ[n25]+z§ ®)
) . - D 8. 0 n 0
Here, the total differentiation operator ——=——+u,—+>." u,—+
. Dx, 0Ox, ou s Ou,
is used.

A Lie symmetry of a PDE is defined as a group of transformations
of the independent and dependent variables such that set of solutions is
invariant under these transformations. From the fact that the image of
a solution satisfies the PDE, i.e. H(f“(»,))=0 for all ¢, it can be shown
that

X(H(y)) =0, ©)

holds everywhere on the solution manifold H(y,) = 0, where X is
the prolonged symbol of the transformation group. For a given Lie
symmetry, we seek to find its canonical variables w, as the corresponding
symbol is X=— and (9) then reads as H (w,)=0. Hence, the
resulting PDE wiitten in the new variable w, is independent of w,
and therefore involves one independent parameter less. Computmg
solutions of the transformed PDE, which should be easier as less
independent variables are involved, and reversing the transformation,
provides solutions of the original PDE.

Lie Analysis of the Two-dimensional Black-Scholes
Equation

In this section, the Lie method is used to find solutions to the
2-dimensional Black-Scholes equation (2) written as H = 0, where H
is defined as follows

LIC AN INNG

x?

V,):=V,+%xzyVn +%Lzyl/‘,‘,+rxlﬂ +(am—(a+A)y)W, -rV.

We assume that this equation admits a Lie symmetry with the
infinitesimal generator
X =E(xp.t, V)

)= +r(x,y,t,V)§

0
+(0(x,y,t,V)ﬁ

Then, we first apply the prolonged symbol

X=¢ 0 + i 0 i 0 0 0 0 0
o 7ay 61‘ (ﬂaV D= v to,—— "V +o,— o, +on v R 2 S aV
to the function H and then evaluate the resulting function X(H)
on the solution manifold H = 0. The resulting expression yields zero,
whenever X is the generator of a Lie symmetry. The exact expressions
for the prolonged coefficients ¢, ¢., ¢,, ¢, and ¢,, according to (8) are
given by
p=0. oV -E&V, _7xVy -V =&YV, _7VVxVy -5, V.V,

t
o =0, +oV, =&V =V,
=&V.—vV, -1V,

t

—o V=&V V. =nVV, -5 V7V,
?=9,+9V, — WV =nVV. o vV,
P = P 204V + OV
28V,
_§VVxVxx - 26}:!*[/;(Vxx ~ 7y Vnyx - 27VVXV0
=&, VIV, - }/VVV;VXV; -tV VY,

+oVV. - V. -7 xx[/y_TxXI/I
“2 Wy TV 28,V =2y, VY, - 20, VY,

- TVVan - 271/Vxer

P =0, +20,V, +o,V,
25V, -2y, -1V,

_‘:ZVVxVyy - 2§VI/VI/yx - 7VVyV
& V»V»Vx —Vw V»V»V\

+ Oy Vy Vy - ;v,v Vx -7 W Vy - z');er
=28 VY, =2y, VY, =21,V

27VV V - 7VVvay - ZTVVwa

-1,V V.V,

where sub-indices x, y,and Vof§, y, Tand ¢ denote partial derivatives
with respect to the given variables. The equation H = 0 is solved for V,
and inserted into X(H) = 0. Afterwards this single equation splits up
into the determining equations, since the derivative variables (Vx, Vy,
V_, ...) are linearly independent. Among the resulting equations, there
are simple ones as &, =7, =7, =7, =1, = ¢, =0. Hence, we solve the
following remaining system of partial differential equations

0= L2§V +x2yyX M
0=y+3(r,-27,) (1)
0=¢+x(y, <) (I11)

0=¢ +%x2y(§u —Z(PVXH%LZJ/SKW +rx(§, —7) +(am—(a+D)y)¢, —ré (IV)

0=y, + %XZWU + % Ly(y,, —2¢,) +rxy, +(@m—(a+ )y, —1,)+(@+A)y V)

%Lzy(aw +rxp +(am—(a+ )y, —ro+rV (g, —7,) (VI)

0=9p, +%x2y<pn +
for the functions  &(x,y.0,  y(xy0, 70, and
o(x, y,6,V) = ¢(x,y,0)V + B(x,y,t) . Notice that equations (IV,V and VI)
are similar to the original PDE we are trying to solve. Inserting the spe-

cial form of ¢ into (VI), it splits up into the following two equations

0=9¢ + %xzy(;ﬁn +%L2y¢w +rxg, +(am—(a+A)y)g, —rr, (v1)

0=25 +%x2yﬁﬂ +%L2yﬂw +1xf,+(am—(a+A)y)B,-rp, (V1Y)

due to the fact that ¢, 3, and 7, are independent of V. The function
B is independent of the other functions and equations. Furthermore,
it must be a solution of the PDE (VI") whose Lie symmetries we are
looking for. So the transformation V=V +&8 with its infinitesimal
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generator X = ﬂ% is a Lie symmetry, mapping solutions onto

solution. As the Lie symmetry corresponding to the coefficient function
B is as difficult to find as solving the PDE directly, it is not significant
for our purpose and we do not take (VI") into account any more.

Instead, let us focus on (II). Differentiating it two times with
respect to y yields 37, +27,,=0, whose solution is given by
7= A(x.0)+ B(x.0\[y + C(x.0)y . Inserting this expression in (II) gives y = T,
y. Hence, y is independent of x and since (I) holds, the function & is
independent of y,ie. £, =y,=0.

The same idea works with (III), whose second derivative with
respect to x is &, +x£,, =0 . The general solution to this ordinary
differential equation (ODE) is & = A(¢) + B(t)x + C(¢)x(log(x) —1). Notice
that (III) can only be satisfied by &= A(r)+7x(log(x)—1). With this
knowledge, Equations (III) and (IV) simplify to

1
0=4+ PRl +7,(log(x)-1)—xpg,, (111)
0=(a+A)z, +7,-L'¢,. (Iv’)
From (IV') one can directly derive ¢= % y+D(x,1), as

¢, is not dependent on y. Differentiating (III') with respect to x gives

7,/ x=y(D,+xD_)=0.

Notice that the functions 7 and D are independent of y. Hence
7,=0 and D, +xD, =0 hold, i.e. D(x,t)=B(t)+C(t)log(x) . (III') becomes
4, +y[%f, fC(t)) =0, which means that 4,=0 and c@)= %r/ . Using
previous results in (VI'), we obtain

2
B -, r+2am2(a+ﬂ)_ : 1+((X‘:’/1) —0.
L 4r
As the coefficient of y must equal zero, 7,= 0 holds and consequently

B, is equal to zero. Hence, the most general solution of the determining
equations is

eyt V) =cx
y(x,y,t,V)=0
t(x,y,t,V)=c,

Py, V)= eV + B(x, y,1.V)

where ¢, ¢, and c, are real constants and 8 is a solution of the Black-
Scholes equation.

Hence, the only Lie symmetries that (2) admits have the following
infinitesimal generators
X= c]x%+c2 §+C3V%+ﬁ(x,y,t)%.
Apart from the last symmetry this is a three dimensional, solvable
Lie algebra, i.e. the commutator [X,Y]=X(¥)-Y(X) of two arbitrary
symmetries X and Y equals zero.

Next, we determine the canonical variables for the Lie symmetry
with fixed constants cp €, and c, Therefore, we search for three
functionally independent invariants v(x,y,t,V), w(x, V), and
u(x,y,t,V) that satisfy the following equation

Veex P e P oy ¥
X(f) clycax-%—cZ 6t+L?V6V 0.
The evaluation of (7) with the choice of the following new variables

v=x exp[—%t} L W=, u:yexp[_&,], and  1°80) shows that the

2

2

Lie symmetry with respect to the new variables has the desired normal

0

symbol = and that v, w, u, and s are the canonical variables.

In order to rewrite (2) in the new variables, we differentiate

V =exp [6—3[]14 with respect to x, y and t and obtain
)

- -2

)

c c
V,=exp| =t |u,, V, =exp| =t |u,,.
) c, » c,
e Ve ¢
V.=exp| =t || 2u——Lwu, |.
G NG 6

Hence, the 2-dimensional Black-Scholes equation in the new
variables is given by

1 1
—Vwu, +—DPwu,, +| 1= o, +(am—(a+ Dwh, +| Z—r lu=0
2 2 c, ¢
and by setting ¢ =¢;=rc, we cancel out terms with « and u,
Therefore, the reduced Black-Scholes equation is as follows

%vzwuw +%szuw +(am—(a+A)wu, = 0. (10)

In order to find solutions to (10), we assume “(»W)=®M)¥ (W)

and obtain
1 Vwd W+ 1 CwdY |
2 2

which is equivalent to

+(am—(a+A)w)d¥ =0,

CwY,, +2(am—(a+ AWV, _ ) @,
wd [
Since the left-hand side of the equation depends only on w and the
right hand side only on v, both sides must be equal to a constant C.
Hence, we obtain two decoupled ordinary differential equations

V0" = Co, (11)

Pw¥" + 2(am —(a + )w)¥P' = Cw¥. (12)

The general solution of equation (11) is given by

1+/I=4C 1+I=4C 1
av 2 +ay ?* ifC<Z,
D(v) =4 a,\v +a,\vlog(v), ifc=%,

alx/;cos[ 42_110g(v)J+a2\/;sin( 42_110g(v)], ifc>%‘

Regarding the second ordinary differential equation (12), we
transform it into Kummer’s equation

wf"'(w)+ (b —w) f'(w)—af (w) =0,
by defining ¥(w) = we'” £ (k,w), where k=1-

ky :%(aw-—\/(amwmf), k, =%J(a +A)Y +I°C,

am am(a+A) 2am

I2 W ,and h=2- I The general solution of
Kummer’s equation is given by
fw)=a,M(a,b,w)+a,U(-a,b—-1,w),

where M and U are Kummer’s functions of the first and second

20m
r’
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kind, respectively. For further details, [8]. In case of C = 0, (12) is given
by

Iw¥,, +2(am—(a+)w)¥, =0
and we directly see that the first derivative of ¥ is a multiple of

2am 2(a+i)
2 2
L e L

w and hence a general solution in the interval (0, ) is
w

given by

2am Aa+)

Y(w)=a, +a4J-] s e P ds.

Having found solutions u for (10), we obtain solutions V of (2) by
applying the reverse variable transformation as follows

X, p). (13)

To summarize, we obtain the following five parameter family of
solutions to the two-dimensional Black-Scholes equation

—rt

V(x,y,t)=e"u(e

e (a, ()" +ay(e ”x)“z)y"e*z‘ (a:M(@.b.kyy)+aU(-a.b-1ky)),  ifC <%,
(ao/e”x +a,Ve"xlog(e ”x)).v“E“‘ (a;M(a,b,kyy) +a,U(-a,b—1,ky)),  ifC= %
V(x,y,0)= [a,\/e”xcos[ 45_1 10g(e’”x)]+a2 e"x sin( 4(;_1 log(e”’x)]] ifC>%, (14)
1 (M (@b ko) +a,U(-a,b=1,k),
| 2 e,
(a,)chale”)[a1 +a4.[s 2o i ds}, ifC=0.
i
+/1—
where Ly = 1+41-4C .
’ 2

These functions do not satisfy the boundary conditions (3) given in
Section 1. In order to check this we write down the boundary conditions
in the new variables v, w, and u. They are given by

uv,wy=e"lave”” -K)", (1)

(0, w)= I_Ta Ke, (i)
limd, (v, w) = “7" (iii)

v ifa=+1

limu(v,w)=4Ke™" ifa=-1. (iv)

w—rx

So if V would be a solution to the two-dimensional Black-Scholes
equation subject to the given boundary conditions and if it corresponds
to asolution u of the reduced equation, then © must satisfy the boundary
conditions above. Note that, while (i) imply (ii) and (iii), (i) is not
consistent with (iv). As (i) determines u and therefore u is independent
of w, (iv) cannot be satisfied as |im u(v,w)=e""[a(ve”" —K)]", which
equals neither v nor ge7. i

Numerical Solution of the Two-dimensional Black-
Scholes Equation

This section deals with a numerical scheme to calculate an
approximation to the solution of the Black-Scholes equation (2). We
work with the proposal of Chang-Cooper scheme [9] and analyzed
in studies of Mohammadi and Borz [10]. This disretization scheme is
often used for Fokker-Planck equations, as its solutions are probability
density functions and therefore are non-negative and their integral
over its domain equals 1. These two properties are preserved by the
Chang-Cooper (CC) difference scheme. In the case of the Black-
Scholes equation the solution is also non-negative, as it models the
price of an option, which must be non-negative. Hence, the choice of
the CC scheme guarantees that the numerical solution will be non-

negative. In order to apply the Chang-Cooper discretization scheme
the two dimensional Black-Scholes equation (2) must be written in
flux form. This is not possible, as the coefficient of V is —+ and not
—-a—A+r—y. However, introducing the following new variables
i=logx, y=y, i=T-¢t,and V(& 7,7)=e“*""V(x,y,t) and computing
the derivatives of V with respect to the new variables as follows

= - i 5 1 .
7V7 - (a +/17r)e(“+l r)rV+e(u+/. r)IV,, V; el e(a+/{ r)th\,
X
I} 1 l'/'v -1 _ (u+/‘.—r)tV I} _ (u+l—r)rV
i}szr ixizie xe? y—¢€ »
> (atA-r)t
Ve = ¢ Vs

we obtain the following PDE

V,f%yVM%Lzyyw+Gy7rJVX+((a+,1)y7am)VJ,+(a+A)V:o.(15)

We can write (15) in flux form as follows

oV _ o ) 0
—=—| B*(x, », )V (x, ,0)+C* (x, y, 1) —V (x, y,t
5 5x( (6, ,0)V (x, 3,1) (xy)ax (xy)j

+E(B"(x,y,t>V<x,y,z)+cx“<x,y,r>ﬁV<x,y,z>J
oy oy

where

. 1 - 1
B (x,y,t)=r-—y, C (x,y,t)ziy,

2

2

2
B (np=-@+ Dy+am-2  Cuyn="y.

At this point we would like to stress three important properties of
the flux functions. To begin with, they are all independent of the time
variable t. Hence, the left-hand side of the resulting linear system of
equations is the same for each time iteration and the corresponding
matrix must be computed only once. Moreover, both B * and B ” are
linear functions and therefore Lipschitz continuous with the constants

1 . . P
%e=3 and y, =r. Finally, these functions must be positive in our

domain. This is the case when the condition

2am - I*
0 in<2r
<y<mm{ . MM)} (17)

is satisfied.

The transformed Black-Scholes equation (16) must be solved
subject to the following transformed initial and boundary conditions:

V(x,y,0) = [a(e" ~K)] e,

1—
limV (x,y,t) = 761

X—>—0

(a+A)T—t)~rT
Ke' ",

18
imo ¥ (x, y,0)e ™ = 124 glarinirn, (18)

> 2
i ) T (A T P |
imV(x,y,t) =
oo K« i g =,

There are several problems that arise during implementation:

o Thedomainofthe problem (16) subjectto (18)is Rx[0,00)x[0,7]
and therefore unbounded in the space dimensions. Moreover
the boundary conditions are given as a limit. For numerical
purpose the domain was limited to [¥,,>%,,1%[0,1,,]x[0,7] and
it was assumed that the function attain the limit values already
at the finite boundaries.

o When 7+x,y corresponds to a point outside of the domain the
values Vi, with its coefficients are added to the right hand
side of the linear system of equations, as they are known.
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+ The boundary condition for x > cc is given only in terms of the
derivative of V with respect to x. Therefore the value ¥,/ is
approximated by

v = vyt e no v
« The derivative term is known and can be put to the right-hand
side of the equation.

The values of the function on the boundary y = 0 are not given.
Fortunately, as y goes to zero, B’ goes to am—L*/2 and C" tends to
zero. Assuming am>[*/2, 5° tends to zero, as w=h B’ /C* goes to
infinity. Hence, the coefficient of ¥,";' is zero and this function values
need not to be known for the calculations [9].

In the following, the numerical scheme is applied to the function
type C = 0 in (14). After the variable transformation, that is used to
write (2) in flux form, the test function becomes

y “2am 2a+d)
A—r ) T—i (T— 2 2
[ty =P (et +c,e ) c3+c4js ?e (s |.

1

Note that this function has a singularity in y = 0, if and only if
—2am
I
calculations, the set of parameters is chosen such that 2am<rI’
holds. In particular, the test function was calculated in the domain

[-0.5,0.5]x[0,1] with the following parameters

r=0.02, m=02, a=1, A=1, L=1,

< 1. As this infinite value might arise problems while numerical

a=1, K=1, T=1.
Unfortunately, it is not possible to chose a set of parameters such

that the test function has no singularity at y = 0 and additionally there

exists a domain where all flux functions are positive. That is because

5 2am-L
2am <[> imply 5

<0 and therefore the necessary condition for
a+

(17) is not fulfilled. Consequently, there is no proof in this case, that the
numerical solution is positive. Nevertheless, the convergence order can
be observed. Figure 1 shows the difference of the numerical solution to
the exact test function in terms of the norm

m 2
1

I RNLEEDY

Im

The plot data is shown in Table 1 where N, M and Q is the number
of grid points in the x-, y- and ¢-dimension, respectively. A small
time-step size is used in order to have a small error for the time
discretization and to investigate the dependence of the error on the
spatial-grid size.

The numerical experiments show that the discretization that is
used provides only first-order convergence, i.e., doubling the grid point
number in each spatial dimension and therefore halving the grid size
h results in an error that is half as big as before. Notice that second-
order convergence is proven in literature of Mohammadi and Borz [10]
with the assumption of zero boundary conditions. In order to validate
this theoretical result the same procedure is done with a Gaussian bell
function that is almost zero on the boundaries:

D(x, 1) = exp(~t - (6x)° — (6 —3)")

In contrast to the test function f, this function ® does not satisfy
the partial differential equation (16). Hence the deviation to the PDE
H(®)=®, —%y(l)n —%Lzytbw +[%y—r)(l)x +((@+D)y—am)® +(a+A)P

is added to the right hand side of the linear system of equations
according to

3or 20t (F" -F

/’l ”'/’2 [71,./2
=1

) =407 — O + H(D)!.

Numerical experiments are performed with the grid sizes according
to Table 2.

® was approximated in the domain [-0.5,0.5]x[0,1] with the
parameters being

r=1, m=3, a=25, A=1, L=1, a=1, K=1, T=1.
. fes 2am-L .
Here, the flux functions are positive, as 2r :ﬂ: 2 With the
a+

logarithmic plot of the error in Figure 2 we can see that second-order
convergence is obtained.

In the following, we use the Chang-Cooper numerical scheme to
calculate a numerical solution. Here, this numerical solution in the
case of a call option is compared to the solution of the Black-Scholes
equation, where the volatility is assumed to be constant. It is given by

V(S.0)=a(S®(ad,) - Ke' " P (ad,)) (19)

d :1n(S/K)+(riro—z/2)(T—t)
' oNT -t ’

where @ is the cumulative distribution function of a normally
distributed random variable with mean 0 and variance 1. This function
is given by

O(x) = 24,

1 =
ol
The spatial domain of discretization is [-4,0.5]x[0,2]. After
reversing the variable transformation the option price can be evaluated
for x[0.0183,1.6487] and y €[0,2] . The following parameters are used

r=0.06, m=0.5, a=2, A=1, L=1, a=1, K=1, T=1

The model constant m represents the square of the average volatility
and the stochastic process tends to this value. Hence, if one starts the
process with the value y = 0.5, the stochastic process for the volatility
Jv, is likely to be almost constant to /0.5. As you can see in the
lower left plot of Figure 3, the calculated price is nearly the same with
both models. In contrast, regarding the case of a currently volatility
lower than /o5 the price of the option calculated with the extended
Black-Scholes equation is higher than that of the model with constant
volatility, because it takes into account that the volatility will rise. This

Figure 1: Logarithmic plot of the norm of the error || f -fex ||.
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N 26 51 76 101
M 26 51 76 101
Q 500 500 500 500
h=h, 1/25 1/50 1/75 1/100
=1 1l 0.243 0.122 0.083 0.065

Table 1: Numerical error for different grid sizes.

N % 51 76 101
M 26 51 76 101

Q 500 500 500 500
h,=h, 1/25 1/50 175 1/100
e -l 3.25%10° 0.83*1073 0.37%1072 0.21%10-

Table 2: Numerical error for different grid sizes.

Figure 2: Logarithmic plot of the norm of the error || ®-®_|| against the
spatial mesh size h.

Figure 3: Comparison between the solutions of the Black-Scholes
equation with fixed (green) and variable (cyan) volatility.

Figure 4: Arithmetic mean over the y-dimension of the absolute deviation
from the Put-Call-Parity equation.

effect can be seen in upper left and right plots. Finally, in the lower
right plot the simpler model overestimates the price, when the initial
volatility is higher than /0.5 , due to the fact that it is likely to fall.

In addition, the numerical solution satisfies the so-called Put-
Call-Parity. The price of a call option C and the price of a put option P
subject to the same asset with price x, that have the strike price K and
the expiry date T in common, are related by the following formula [3]

x+P-C=Ke" "™,

We compute also the price for the put option and observe the absolute
deviation for the Put-Call-Parity formula that we average along the
y-dimension. Figure 4 shows the result depending on x and t. Apart from
small x values the error is in the range of the numerical error of the Chang-
Cooper-Scheme. The drastic increase of the error for x - 0 is due to the fact,
that the boundary condition for 3= —s for the Black-Scholes equation in
flux form is applied at the finite value ¥=-4 . This corresponds to x=e¢™
as the transformation was X=1log(x). Consequently, the numerical
solution for the put option takes the value ke at x=e™, whereas
the correct value is Ke™"™ —¢™, as C tends to zero as x goes to zero and
therefore the price for the put option is P = Ke """ —x. To conclude, it is
evident why there is such a great error for small x, and moreover it is not
relevant as x gets never so small in applications.

Conclusion

The aim of this work was to solve the partial differential Black-
Scholes equation with Heston volatility model. Therefore, an analytical
technique due to Sophus Lie that can be use to reduce the number of
independent variables of a partial differential equation was presented
and applied to the Black-Scholes equation. A five-parameter family
of solutions was found. These functions do not satisfy the boundary
conditions of the option price problem and henceforth numerical
schemes are necessary to obtain approximate solutions. In the last
part of this work the Chang-Cooper discretization scheme was used
to calculate the option price function numerically. Its convergence
was tested with an exact solution of the PDE, which was found by the
Lie theoretical analysis. Finally, the numerical scheme was applied
to compute the price of an option and good result were obtained in
accordance with economic reasoning.
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Abstract

It is proved that the Hilbert class field of a real quadratic field Q(\/B) modulo a power m of the conductor f is
generated by the Fourier coefficients of the Hecke eigenform for a congruence subgroup of level fD.

Keywords: Class field; Real multiplication

Introduction

The Kronecker’s Jugendtraum is a conjecture that the maximal
unramified abelian extension (The Hilbert class field) of any algebraic
number field is generated by the special values of modular functions
attached to an abelian variety. The conjecture is true for the rational
field and imaginary quadratic fields with the modular functions being
an exponent and the j-invariant, respectively. In the case of an arbitrary
number field, a description of the abelian extensions is given by class
field theory, but an explicit formula for the generators of these abelian
extensions, in the sense sought by Kronecker, is unknown even for the
real quadratic fields.

The problem was first studied by Hecke [1]. A description
of abelian extensions of real quadratic number fields in terms of
coordinates of points of finite order on abelian varieties associated
with certain modular curves was obtained in studies of Shimura [2].
Stark formulated a number of conjectures on abelian extension of
arbitrary number fields, which in the real quadratic case amount to
specifying generators of these extensions using special values of Artin
L-functions [3]. Based on an analogy with complex multiplication,
Manin suggested to use the so-called “pseudo-lattices” Z + Z0 in R
having non-trivial real multiplications to produce abelian extensions of
real quadratic fields [4]. Similar to the case of complex multiplication,
the endomorphism ring % =Z+§0, of pseudo-lattice Z + Z@ is an
order in the real quadratic field £ = Q(6), where O, is the ring of integers
of ¢ and f is the conductor of SRf; Manin calls these pseudo-lattices with
real multiplication.

The aim of our note is a formula for generators of the Hilbert class
field of real quadratic fields based on a modularity and a symmetry of
complex and real multiplication. To give an idea, let

F,(N):{[Z SJESLZ(Z)\aEdEl mod N,c=0 mod N} (1)

be a congruence subgroup of level N = 1 and H be the Lobachevsky
half-plane; let X, (V):=H/T,(N) be the corresponding modular curve
and s,(I",(N)) thespaceofallcuspformson I, (N) ofweight2.Let £5;"
be elliptic curve with complex multiplication by an order 9, =Z+ 0,

in the field ¢ =Q(/-D) [5]. Denote by K (k):=k(j(£57")) the Hilbert
class field of k modulo conductor f> 1 and let N = fD; let Jac (X,(/D))

be the Jacobian of modular curve X,(/D). There exists an abelian sub-
variety 4, c Jac(X,(/D)), such that its points of finite order generate
K< (k), [2,6,7], Section 8. The K*(k) is a CM-field, i.e. a totally imaginary
quadratic extension of the totally real field K generated by the Fourier
coeflicients of the Hecke eigenform ¢(z) € S, (T, (/D)) [2]. In particular,
there exists a holomorphic map X} (/D) — &5, where X(/D) isa

Riemann surface such that Jac (X{(fD)) = 4,; we refer to the above as a
modularity of complex multiplication.

Recall that (twisted homogeneous) coordinate ring of an elliptic
curve ¢ (C) is isomorphic to a Sklyanin algebra, [8]; the norm-closure
of a self-adjoint representation of the Sklyanin algebra by the linear
operators on a Hilbert space H is isomorphic to a noncommutative
torus A, [9] for the definition.

Whenever elliptic curve (€)= has complex multiplication,
the noncommutative torus A, has real multiplication by an order
N, =7Z+f0, in the field ¢=Q/-D); moreover, it is known that f = f™
for the minimal power m satisfying an isomorphism:

ClR )= CIR)), )

where Cl(Rf) and Cl(i)‘if) are the ideal class groups of orders Rf and %f,
respectively. We shall refer to (2) as a symmetry of complex and real
multiplication. The noncommutative torus with real multiplication by
R, will be denoted by A"

Remark 1: The isomorphism (2) can be calculated using the well-
known formula for the class number of a non-maximal order Z + fO,
of a quadratic field K = QWD):

ho, | D)1
h = - == 3
o =2 TI(-(2)2]) ©)

where /%, is the class number of the maximal order O,, e, is the index
of the group of units of Z + fO, in the group of units of O,, p is a prime

number and 2 is the Legendre symbol [10,11].
p

The (twisted homogeneous) coordinate ring of the Riemann surface
X'(fD) is an AF-algebra A P linked to a holomorphic differential
#°(z)dz on X} (fD), see Section 2.2, Definition 1 and Remark 5 for
the details; the Grothendieck semigroup X;(A ,) is a pseudo-lattice
Z+76,+...+76,, in the number field K«»’ where n equals the genus
of X} (/D). Moreover, a holomorphic map x°(m)- 5> induces the
C'-algebra homomorphism A , > A" between the corresponding
coordinate rings, so that the following diagram commutes:
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coordinate
X)(fD) ———— A
map
coordinate
8(CMD/ ) A(D f)
map

But K;(AL") isa pseudo-lattice Z + Z0 in the field &, such that
End (Z + Z0 ) = %R, ; in other words, one can use the above diagram
to control the arithmetic of the field K by such of the real quadratic
field €. Roughly speaking, this observation solves the Kronecker’s
Jugendtraum for the real quadratic fields; namely, the following is true.

Theorem 1. The Hilbert class field of a real quadratic field ¢ =Q(/D)
modulo conductor f™ is an extension of € by the Fourier coefficients of
the Hecke eigenform ¢(z) € S,(T\(/D)), where m is the smallest positive
integer satisfying isomorphism (2).

Remark 2. Theorem 1 can be used to compute concrete extensions.
For instance, theorem 1 says that for the quadratic field Q15 its

Hilbert class field is isomorphic to Qy-1++/15 and for QV14 such a field

modulo conductor { = 8 is isomorphic to Q( 27181 ) see section 4
for more examples.

The article is organized as follows. Section 2 covers basic facts on
real multiplication and AF-algebras of the Hecke eigenforms. Theorem
1 is proved in Section 3. Section 4 contains numerical examples
illustrating theorem 1.

Preliminaries

The reader can find basics of the C*-algebras in studies of Murphy
[12] and their K-theoryin theory of Blackadar [13]. Thenoncommutative
tori are covered in literature of Rieffel [9] and real multiplication in
studies of Manin [4]. For main ideas of non-commutative algebraic
geometry, see the survey by Stafford and van den Bergh [8]. The AF-
algebras are reviewed in studies of Effros [14]. For a general theory of
modular forms we refer to literature of Diamond and Shurman [15].

Real multiplication

The noncommutative torus .4, is a universal C'-algebra generated
by the unitary operators u and v acting on a Hilbert space H and
satisfying the commutation relation yy = ¢y, where 0 is a real
number. The C'-algebra A, is said to be stably isomorphic (Morita
equivalent) to Agv, whenever A4, ® =4, ® K, where K is the C*-
algebra of all compact operators on H; the A, is stably isomorphic to
A, if and only if

o= af+b
cO+d

for some matrix [a Z] e SL,(Z) (4)
C

The K-theory of A, is two-periodic and K, (A,)= K, (A4,)=Z* so
that the Grothendieck semigroup K;(A,) corresponds to positive
reals of the pseudo-lattice Z+ZgcR. The A, is said to have real
multiplication, if 0 is a quadratic irrationality, i.e. irrational root of
a quadratic polynomial in Z[x]. The real multiplication says that
the endomorphism ring of pseudo-lattice Z + Z8 exceeds the ring
Z corresponding to multiplication by m endomorphisms; similar
to complex multiplication, it means that the endomorphism ring is
isomorphic to an order R, =Z+f0, of conductor f > 1 in the real
quadratic field k = K(6 ), hence the name. If D > 0 is the discriminant
of k, then by A" we denote torus A, with real multiplication by the
order R,

The Sklyanin algebra S, ,,(C) is a free C-algebra on four generators
and six relations:

XX, = X, X, a(x;x, +x,%;),

XX, + XX, = XX, — XX,

XX — XX, B(x,x, +x,x,),

XX XX, = XX, XX, ®)
XXy = XX 7(x0%; + X5x,),

XXy + XX = XX — XX,

where a+B+y+afy=0; such an algebra corresponds to a twisted
homogeneous coordinateringofanelliptic curveinthe complex projective
space CP® given by the intersection of two quadric surfaces of the form

8a/,_(C):{(u,v,w,z)eCP3|u +V w42 2 _1za 2-%—IWL—OZW +z°=0}.
kad 1+4 1-y

Being such a ring means that the algebra S§,, satisfies an

isomorphism

Mod ( ,, (C))/ Tors Coh ( ., (C)),

a.piy

(6)
where Coh is the category of quasi-coherent sheaves on ¢, ,,(C), Mod
the category of graded left modules over the graded ring S, , (C)
and Tors the full sub-category of Mod consisting of the torsion

modules, [8].

Ifonesets x, =u,x, =u’,x, =v,x, = v, then there exists a self-adjoint
representation of the Sklyanin -algebra S,, (C) by linear operators
on a Hilbert space H, such that its norm-closure is isomorphic to Ag;

namely, Ay =S,, ,(C)/1, where A) isa dense sub-algebra of A and I,
is an ideal generated by the “scaled unit” relations x,x, = x,x, =—e , where

# > 0 is a constant. Thus the algebra A, is a coordinate ringyof elliptic
curve E(C), such that isomorphic elliptic curves correspond to the
stably isomorphic (Morita equivalent) noncommutative tori; this fact
explains the modular transformation law in (4). In particular, if € (C)
has complex multiplication by an order %, =Z + {0, in a quadratic field
t=Q(/-D), then A, has real multiplication by an order %, =Z+ 70,
in the quadratic field ¢=qQ/D), where f is the smallest integer satisfying
an isomorphism ¢ (R)=CI(R,) [16]; the isomorphism is a necessary and
sufficient condition for A{" to discern non-isomorphic elliptic curves
&5 having the same endomorphism ring R, . For the constraint f =
f "“, see remark 6.

AF-algebra of the Hecke eigenform

An AF-algebra (Approximately Finite C*-algebra) is defined to
be the norm closure of an ascending sequence of finite dimensional
C'-algebras M, where M, is the C*-algebra of the n x n matrices with
entries in C. Here the index n=(n,,...,n,) represents the semi-simple
matrix algebra M, = M, ®. .0OM, . The ascending sequence mentioned
above can be written as M,——>M,—%—..., where M, are the finite
dimensional C*-algebras and ¢, the homomorphisms between such
algebras. The homomorphisms ¢, can be arranged into a graph as follows.
Let M,=M, ®..®M, and M,=M, ®...®M, be the semi-simple C*-
algebrasand ¢, : M, > M, thehomomorphism. One has two sets of vertices
V..oV, and V. ...V, joined by b, edges whenever the summand M,
contains b, coples of the summand M,, under the embedding ¢, As i
varies, one 'obtains an infinite graph called the Bratteli diagram of the AF-
algebra. The matrix B=(b,) is known as a partial multiplicity matrix; an
infinite sequence of B, defines a unique AF-algebra. An AF-algebra is called
stationary if B, = Const =B, [14], when two non-similar matrices B and B’
have the same characteristic polynomial, the corresponding stationary AF-
algebras will be called companion AF-algebras.
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Let N > 1 be a natural number and consider a (finite index)
subgroup of the modular group given by the formula:

F,(N):{[Z SJGSLZ(Z)Mzdzl mod N,c=0 mod N}. (7)

Let H={z=x+iyeC|y>0} be the upper half-plane and let
I')(N) act on H by the linear fractional transformations; consider an
orbifold H /T (N). To compactify the orbifold at the cusps, one adds
a boundary to H, so that H' = HUQu {»} and the compact Riemann
surface X,(N)=H'/T,(N) is called a modular curve. The meromorphic
functions (z) on H that vanish at the cusps and such that

o[£ @ rarsa V[” b]ero(m, (®)
cz+d c d

are called cusp forms of weight two; the (complex linear) space of such
forms will be denoted by S,(I'(N)) . The formula #(z) = @ =¢(z)dz
defines an isomorphism S,(T,(N))=Q,,(X,(N)), where Q,,(X,(N))
is the space of all holomorphic differentials on the Riemann surface
X,(N). Note that dimc(S,(T,(N) = dimc(€,,,(X,(N)) = g, where g =g(N)
is the genus of the surface X,(N). A Hecke operator, T, acts on
S,(I'(N)) by the formula 7,9=3" _y(m)q", where rm =3, e, %,
and ¢#(==>,,cmq" is the Fourier series of the cusp form ¢ at
q=¢" . Further, T is a self-adjoint linear operator on the vector space
S,(T,(N)) endowed with the Petersson inner product; the algebra
T, =Z[T,,T,,...] isacommutative algebra. Any cusp form ¢ € S,(I",(N))
that is an eigenvector for one (and hence all) of T, is referred to as
a Hecke eigenform. The Fourier coefficients c(m) of ¢ are algebraic
integers, and we denote by K, =Q(c(m)) an extension of the field O by
the Fourier coefficients of 4. Then K is a real algebraic number field
of degree 1<deg (K, |Q) < g, where g is the genus of the surface X,(N)
[5], Proposition 6.6.4. Any embedding o:K, > C conjugates ¢ by
acting on its coefficients; we write the corresponding Hecke eigenform
#°(2)=, o(c(m)q" and call ¢°a conjugate of the Hecke eigenform ¢.

Let o=¢(z)dzeQ,, (X) be a holomorphic differential on a
Riemann surface X. We shall denote by R(w) a closed form on X (the
real part of w) and consider its periods 4, = I R (w) against a basis p,

’

in the (relative) homology group H,(X,Z(R(w));Z), where Z(R (w))
is the set of zeros of the form R(w). Assume 4 >0 and consider the
vector 0=(8,,...,6,,) with 6,=4,,/4 . The Jacobi-Perron continued
fraction of 6 is given by the formula:

el 1 e ()
0) s\ b)\r o)1) e T

where p,=(4",...,b"))" is a vector of non-negative integers, I is the
unit matrix and 1=(0,...,0,1)" [17]. By A¢ we shall understand the AF-
algebra given the Bratteli diagram with partial multiplicity matrices B,
If ¢(z) € S,(',(NV)) is a Hecke eigenform, then the corresponding AF-
algebra A is stationary with the partial multiplicity matrices B, = Const
= B; moreover, each conjugate eigenform ¢ ° defines a companion AF-
algebra AW . It is known that K (A,)=Z+7Z6, +...+Z6,, c K,, where
K, is an algebraic number field generated by the Fourier coefficients
of ¢, [18].

Proof of Theorem 1

Definition 1. Let 4, < Jac (X,(/D)) be an abelian variety associated
to the Hecke eigenform ¢(z)e S,(I'\ (/D)) [15], Definition 6.6.3. By
XP(fD) we shall understand the Riemann surface of genus g, such that

Jac (X} (/D)) = 4,. (10)

By ¢"(2)dz €Q,,, (X (/D)) wedenote the image of the Hecke eigenform
#(2)dz € Q,,, (X, (/D)) under the holomorphic map X,(fD) — X} (/D).

Remark 3. The surface X (/D) is correctly dened. Indeed, since the
abelian variety A_1is the product of g copies of an elliptic curve with
the complex multiplication, there exists a holomorphic map from Aq)
to the elliptic curve. For a Riemann surface X of genus g covering the
elliptic curve ¢, by a holomorphic map (such a surface and a map
always exist), one gets a period map X > AW by closing the arrows of a
commutative diagram A > e, < X. It is easy to see, that the Jacobian
of X coincides with A‘p and we set X'(fD)=X.

Lemma 1. (X7 (/D)) = deg (K* (k)| k)-

Proof. By definition, abelian variety A is the quotient of C" by
a lattice of periods of the Hecke eigenform ¢(z) € S,(I', (/D)) and all
its conjugates ¢°(z) on the Riemann surface X,(fD). These periods
are complex algebraic numbers generating the Hilbert class field K (k)
over imaginary quadratic field & =Q(/-D) modulo conductor f, [2,6,7],
Section 8. The number of linearly independent periods is equal to the total
number of the conjugate eigenforms ¢°(z) , i.e. |0 |=n=dimc(4,). Since
real dimension dimg(4,)=2n, we conclude that deg(K”(k)|Q)=2n
and, therefore, deg (K* (k)| k)=n.But dimc(4,) = g(X;'(/D)) and one gets
g(X7) (/D)) = deg (K” (k)| k) . Lemma 1 follows.

Corollary 1. 9(X (/D)) = |CL(R,))].

Proof. Because K“(k) is the Hilbert class field over k modulo
conductor f, we must have

Gal (K" (k)| k)= CI(R,), (11)
where Gal is the Galois group of the extension K*(k)|k and CI(R,)
is the class group of ring R, [5]. But |Gal (K (k)| k)|= deg (K™ (k)| k)
and by lemma 1 we have deg (K“(k)|k)=g(X}(/D)). In view of this

and isomorphism (11), one gets |CI(R,)|=|Gal (K" |k)|= g(X}(/D)).
Corollary 1 follows.

Lemma 2. (X7 (/D))= deg (K, |Q)-

Proof. It is known that dimc(4,)=deg (K, |Q) [15], Proposition
6.6.4. But abelian variety 4,=Jac(X)(fD)) and, therefore,
dime(4,) = dime(Jac (X (/D)) = (X (/D)) » hence the lemma.

Corollary 2. deg (K, |Q)=|CI (R))|.

Proof. From lemma 2 and corollary 1 one gets deg (K, |Q) =|CI(R,)].
In view of this and equality (2), one gets the conclusion of corollary 2.

Lemma 3. (Basic lemma) Gal (K, |Q)=CI(R,).

Proof. Letus outline the proof. In view of lemma 2 and corollaries 1-2,
we denote by h the single integer ¢(x?(/D)) =|CI(R,)|=|CI(R,)| = deg (K, | Q).
Since deg (K, |Q) =4, there exist {4,,...,4,} conjugate Hecke eigenforms
#,(z) € S,(T, (/D)) [15], Theorem 6.5.4; thus one gets h holomorphic
forms {#’,....4,} on the Riemann surface X°(/D). Let {4 0,...,A¢0} be
the corresponding stationary AF-algebras; the 4, are companior AF-
algebras, see Section 1.2. Recall that the characteristic polynomial for
the partial multiplicity matrices B, of companion AF-algebras 4
is the same; it is a minimal polynornial of degree & and let {4,...,2,}
be the roots of such a polynomial, compare with studies of Effros [14],
Corollary 6.3. Since det (B ,)=1, the numbers A, are algebraic units of

the field K . Moreover, A, are algebraically conjugate and can be taken

for generators of the extension K, |Q; since deg (K, |Q) =/ =|CI (%))
there exists a natural action of group CI/(%;) on these generators. The
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action extends to automorphisms of the entire field K preserving Q;
thus one gets the Galois group of extension £, |Q and an isomorphism
Gal (K, |Q) = Cl(R,)- Let us pass to a step-by-step argument.

(i) Let h:=g(X!(/D)) = CI(R,)[=| CI(R,)| and let ¢(z) € S,(T', (/D))
be the Hecke eigenform. It is known that there exists {g,...,4,}
conjugate Hecke eigenforms, so that ¢ (z) is one of them [15], Theorem
6.5.4. Let {¢,...
surface X7 (/D).

.#,} be the corresponding forms on the Riemann

Remark 4. The forms {¢.....4;} can be taken for a basis in the
space Q,,(X/(f D)); we leave it to the reader to verify, that abelian
variety A _is isomorphic to the quotient of C" by the lattice of periods
of holomorph1c differentials ¢’(z)dz on x?(/D).

(ii) Let A be the AF-algebra corresponding to holomorphlc
differential ¢’ (z)dz on X°(/D), see Section 2.2; the set {A PR ¢/o}

consists of the companion AF-algebras. It is known that each A, isa
stationary AF-algebra, i.e. its partial multiplicity matrix is a constant;
we shall denote such a matrix by B¢(,.

(iii) By definition, the matrices B, of companion AF-algebras
s 4. .
A, have the same characteristic polynomial p(x) € Z[x]; the matrices
B 0 itself are not pairwise similar and, therefore, the AF-algebras A |
are not pairwise isomorphic. The total number 4 of such matrices is
equal to the class number of the endomorphism ring of pseudo-lattice
Ki(h )=Z+Z0+..+ 20, <K, , [14].

Remark5. Notice thatthereare {X1 .. .,Xh} pairwise non-isomorphic
Riemann surfaces x == x!(/p) endowed with a holomorphic map X~>
&, where, {¢ ,..., ,} are pairwise non-isomorphic elliptic curves &,"
correspondlng to elements of the group CI(R). Thus the companion
AF-algebras {A o A }can be viewed as coordlnate rings of {X,

» X,} the latter means that A , discern non-isomorphic Riemann
surfaces and K, (A¢ V2Z+Z6 +...+ 7.6, cK, represents the moduli
space of X/(/D).

(iv) The polynomial p(x) is minimal and splits in the totally real
fild . Indeed, matrices *" generate the Hecke algebra T on
S, (T, (N )); thus each B ) is self-adjoint and, therefore, all elgenvalues

are real of multiplicity one; since B, is integer, all roots of characteristic

polynomial p(x) of B, belong to the field K.

(v) Let p(x)=(x—4)...(x—4,) . It is easy to see that A, are algebraic
units of the field IC because det (B )=1; note that numbers {A,-.

are algebraically con]ugate Since deg (K, |Q)=h , the numbers \, can be
taken for generators of the field IC(P, Le. [, =Q(h,,....0,) -

(vi) Finally, let us establish an explicit formula for the isomorphism
Cl(R,) - Gal (K, | Q) (12)

Since Gal (K,|Q)is an automorphism group of the field ICw
preserving Q, it will suffice to define the action of an element a € CI (},)
on the generators A, of K . Let {4;,....4;} be the set of all elements of the
group CI(R,). For an element a € CI(R;) define an index function «
by the formula ¢,a =4, . Then the action * of an element a € C/ (R;)
on the generators A, of the field K_is given by the formula:

a*h =1 VaeCl(in). (13)

a(i)?
It is easy to verify that formula (13) gives an isomorphism

Cl(R,) - Gal (K,|Q) » which is independ of the choice of {a[} and {)\i}.
This argument completes the proof of lemma 3.

Remark 6. The class field theory says that f = f™, i.e. the extensions
of elds k and ¢ must ramify over the same set of prime ideals. Indeed,
consider the commutative diagram below, where I and I, are groups of
all ideals of k and &, which are relatively prime to the principal ideals
(f) and (f), respectively. Since Gal (K (k)|Q) = Gal (K, |Q) one gets

an isomorphism I = I, i.e. f = f" for some positive integer .
Artin

I;] ———————— Gal (K®(k)|Q)
* homomorphism

Artin
I

- Gal (Ky|Q)
homomorphism

Corollary 3. The Hilbert class field of real quadratic field ¢ =Q(/D)
modulo conductor f 2 1 is isomorphic to the field €(KC ) generated by the
Fourier coefficients of the Hecke eigenform ¢(z) € S,(T,(fD)).

Proof. Asinthe classical case of imaginary quadratic fields, notice that
deg (K, | Q) =deg (£(K,) | ¥) = CI (R)); therefore corollary 3 is an implication
of lemma 3 and isomorphism Gal (K, | Q) = Gal (¢(K,)| ©) = CI (R,)-

Theorem 1 follows from corollary 3.

Examples

Along with the method of Stark’s units [19], theorem 1 can be used
in the computational number theory. For the sake of clarity, we shall
consider the simplest examples; the rest can be found in Table 1.

Example 1. Let D = 15. The class number of quadratic field

k=Q(/-15) is known to be 2; such a number for quadratic field
£=Q(/15) is also equal to 2. Thus

Cl(®,_,) = CI(R, )= Z/2Z, (14)

and isomorphism (2) is trivially satised for each power m, i.e. one
obtains an unramied extension. By theorem 1, the Hilbert class field
of k is generated by the Fourier coefficients of the Hecke eigenform
#(z) € S, (T ,(15)). Using the computer programme SAGE created by
William A. Stein, one finds an irreducible factor p(x) = x> — 4x + 5 of
the characteristic polynomial of the Hecke operator T _, acting on the
space S, (I',(15)). Therefore, the Fourier coefficient ¢(2) coincides with
aroot of equation p(x) = 0; in other words, we arrive at an extension of
k by the polynomial p(x). The generator x of the field £ = Q(c(2)) is a
root of the bi-quadratic equation [(x2)?+ 1]* — 15 = 0; it is easy to see
that x = 2+4/-1++/15. One concludes, that the field k= Q+y-1++/15. is the
Hilbert class field of quadratic field ¢= Q+/15.-

Example 2. Let D = 14. It is known, that for the quadratic field
k=Q(x/ﬂ) we have |CI(R,_))|=4, while for the quadratic field
Cl(R,_,) =1.itholds CI(®,_,) =1.However, for the ramified extensions
one obtains the following isomorphism:

CI(R ;) = CI(R,.,) = LI 4L, (15)

where m = 3 is the smallest integer satisfying formula (2). By theorem
1, the Hilbert class field of € modulo § = 8 is generated by the Fourier
coefficients of the Hecke eigenform ¢(z) € S, (T,(2 x 4)). Using the
SAGE, one finds that the characteristic polynomial of the Hecke
operator TP= ,on S, (T (2 x 4)) has an irreducible factor p(x) = x* + 3x°+
9. Thus the Fourier coecient ¢(3) is a root of the polynomial p(x) and one
gets an extension of € by the polynomial p(x). In other words, generator
x of the field ICw = Q(c(3)) is a root of the polynomial equation (x* +
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D f CI(R,) f Hilbert class field of Q(+/D)
modulo conductor f

2 1 ftrivial 1 QK?2)

3 1 trivial 1 @(\/3)

71 ftrivial 1 QW)

11 trivial 1 QG

1 2 7/4z 8 Q(4J727+8JTZ)

15 1 Z./27 1 Q(4+ﬁﬂ

19 |1 trivial 1 QW19)

21 2 7./ 4Z 8 Q(AJ—3+2J§T)

3B 1 7/2Z 1 @( 17+¢§§)

43 1 trivial 1 Q(+/43)

51 1 7.127 1 Q(n+¢ﬁ)

58 |1 7127 1 @( —1+~/58 )

67 1 trivial 1 Q(W67)

82 1 i 1 x*=2x° +4x* -8x+16

91 1 7122 1 Q( —3+x/ﬁ)

Table 1: Square-free discriminants 2 < D < 101.

3x%+ 9)*— 4 x 14 = 0. The bi-quadratic equation x*+ 3x>+ 9-214 =0
has discriminant —27+814 and one finds a generator of IC(P to be
{-27+814. Thus the field @4~27+3J14 is the Hilbert class over Q(+/14)

modulo conductor f = 8. Clearly, the extension is ramified over the
prime ideal p = (2).

Remark 7. Table 1 above lists quadratic fields for some square-free
discriminants 2 < D < 101. The conductors f and f satisfying equation
(2) were calculated using tables for the class number of non-maximal
orders in quadratic fields posted at www.numbertheory.org; the site is
maintained by Keith Matthews. We focused on small conductors; the
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interested reader can compute the higher conductors using a pocket
calculator. In contrast, computation of generator x of the Hilbert class
field require the online program SAGE created by William A. Stein. We
write an explicit formula for x or its minimal polynomial p(x) over .
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Department of Mathematics and Computer Sciences, Faculty of Sciences, University of Antananarivo, Antananarivo 101, BP 906, Madagascar

Abstract

It emphasizes the mathematical aspects of the formation of sikidy. The sikidy as an art of divination is transmitted
by oral tradition, the knowledge of these mathematical relationships allows for a more consistent language of sikidy. In
particular, one can calculate systematically all "into sikidy” special tables of Sikidy used in the "ody” (kind of talismans).

Keywords: Sikidy; Divination; Into; Abelian groups
Introduction

Divination held a special place for all peoples and all times.
In Madagascar, the sikidy is an enough precise art of divination
and a remedy to avert the fate of the consultant. The present paper
is the English version of an unpublished paper [1] translated by
Randriambololondrantomalala. Only, introduction and bibliography
of the original paper are modified. I'm a differential geometer and
Lie theory specialist in this previous domain as [2-6] show. But, this
Malagasy art of divination which has mathematical practices has
fascinated me and paid my intention in quality of mathematician.
So, I made this paper as a first step of long studies about the powerful
of mathematics in another fields like divinations. The original paper
had plenary lecture in a scientific conference at the University of
Fianarantsoa, Madagascar. Next, I think that publication of my paper
[1] will be useful as well as several authors have cited my results cf. [7-
11]. This article is the first step of my research in this area and mainly,
my motivation is to build an algorithm about Sikidy’s practice in my
next paper.

Formation of Sikidy and Mathematical Relations

Generally, we use seeds of “kily” (Tamarind), the total number of
seeds must be even and large enough to make all desired combinations,
at least a hundred seeds. We awakens the sikidy by an invocation that
expresses a certain oral tradition of Sikidy and, formulates at the end
the questions that we want to have the answers, while turning in circles
and always with the right hand the seeds of kily on a mat. Then we take
a handful of seeds from the pile at random. It would be at this level the
intervention of the Hereafter. We compute the seeds in pairs, if the
handle is even number, we align two seeds; in the odd case, we align
one seed.

This forms a table from right to left, said mother-sikidy:

al4 a13 alz al 1
a24 a23 a22 azl
Ay dy 4y 4y
Ay Qg3 Ay 4y

Each variable a, is composed of one seed or two depending on the
result obtained by the above method. The index i indicates the position
of the line, j that of the column ranging from 1 to 4. The quadruplet
(a,,.a,,a,,a,) designates Tale (Consultant); next (@,ay,d5,d,)
Maly (Wealth), (a,;,4,,a,,4,;) Fahatelo (A third person); next one
(ay3, 0y, 5,a,,) Blady (Earth); (4,a,,,4,5,a,) Fianahana (Child);
(@y,ay,,0,,a,,) Abily (An elderly person); next (ay,,a5,05,a5,) Alisay
(Woman); (a,,,a,,,a,.4a,,) Fahavalo (Enemy).

We build eight other figures below the mother-sikidy left to right

derived from the above quadruplets respecting the following law:
« One seed and one seed yield two seeds,
« Two seeds and one seed give one seed,
« Two seeds and two seeds yield two seeds.

So the law of inner composition of Abelian group (Z/2%,+) ; two

seeds represent the identity element (), one seed is i. The combining
operation is done in (z/2z)' (quadruplets of Z/27 ). Thus, we obtain:

« Fahasivy (9, ninth or talisman) = Alisay (7) + Fahavalo (8);

« Haja (11, honor or food) = Fianahana (5) + Abily (6);

« Asorita (13, spirits of deads, or authorities) = Fahatelo (3) + Blady (4);
« Lalana (15 Road) = Tale (1) + Maly (2).

Then combined the above results to have:

« ombiasa (10, soothsayer) Fahasivy = (9) + Haja (11);

« Sely (14 people) = Asorita (13) + Lalana (15);

o Aky (12, god) = ombiasa (10) + Sely (14).

The last figure is:

« Kiba (16, house) = Aky (12) + Tale (1).

Then, an array of sikidy is written:

@ 3 @ O
VLol

ay a; @, a; <)

@y Gy 4y Gy < (6)

ay ay ay ay < (1)

Ay Gy a, a, <« (8)
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© (10) an a2 (13) a9 as) (1) E, E, E,
1 + 1 1 + 1 + 1 P P P
aytay, Z”n a, +ay (au*ax/) ay+ay, Zau a, +ay, Z (a;|+a\/)+alx .o . .
I<i<d I<i,j<4 I<j<4 I<i,j<d
aytay Y a, apta, Y (a,,+a2,) Ay + Ay, @y ayta, Y (a,2+azj)+a . ° ° oo
1<i<4 1<i, j<4 1<j<4 1<i, j<4
Ay tdy Za.l a4 +ay (a»s'*'az,) Ay t+ay, z 4 a4y tay Z (a.z +ax/)+a31 * b i
s s et sijsh Adabara Alatsimay Alamora
Ay tdy Y Ay 4ty (a,4+a4,) aptay Y4, dgtd, Y (a,4+a4,)+a,, 2. Group of the north:
Isis4 1<i, j<4 I<j<4 I<i, j<4
As a result, the number of sikidy’s tables is determined by the N N, A, N,
mother-sikidy or 2'¢ = 65536. o o J oo
. 1. > . LA L] (K] o0
There are two categories of sikidy’s figures, princes whose number
of seeds is even, and slaves to the odd number of seeds. ¢ ¢ e *
o0 L X ] o0 o0
The tradition imposes this rule: Adalo Karija Alimizaha Alibiavo
” A sikidy can not be interpreted if the Aky (12) is not a prince.”
Y p y (12) b 3. Group of the West:
In fact, if we sum all elements of Aky, we have o 0, 0, o, Os
o0 L X ] L] L X} L]
2 Za,,.
1<i,j<4 (] L LX) LX) (X )
Even if the Aky couldn’t be a prince, we were wrong calculation. oo J oo oo .
L] L] L] L] L]

For clarification on the interpretation, we continue to combine
the figures that appear on the table [12]. Thereupon, we must take into
account the mathematical links of the sikidy, otherwise we may give
different meanings for the same thing [12]:

Alohotsy Alakaosy Alokola Alikisy Alikarabo

4. Group of the South:

“The ninth (9) and the healer (10) give the leaves or plants to be S S, S5 S
used as medicines, ravin’ody”. oo ° i i
(X L] L] L]
In fact, given the binary operation of the group, the combination . . .e .
of Fahasivy (9) and Ombiasa (10) gives Haja (11), that is to say a figure
that already exists on the table (the relationship (9) + (11) = (10) is e * °e .'
equivalent to (9) + (10) = (11)). Asombola Tareky Asoralahy Betsivongo
or or
There are other examples of contradictions. Alasady  Alikasazy

Into Sikidy

The sixteen figures of Sikidy are classified according to the cardinal
directions. The classification below is used mainly in the southern
region of Madagascar. Subscripted letters above each figure will be used
to identify the respective figures.

1. Group of the east:

Naturally, these figures have specific meanings [12].

If we denote by P, k=1, ..., 16, Tale’s locations (1) at Kiba (16)
in an array of sikidy; we call "Into” the case where one and only one
representative of a group appears only once on sixteen seats, P toP,.

Example: Adabara "Into” to the Tale.

+ E1 E2 E3 N1 N2 N3 N4 o1 02 03 04 05 S1 S2 S3 S4
E1 S1 o1 02 03 S4 05 04 E2 E3 N1 N4 N3 E1 S3 S2 N2
E2 o1 S1 N4 S3 N3 N2 E3 E1 04 S2 02 S4 E2 03 N1 05
E3 02 N4 S1 N2 N1 S3 E2 04 E1 S4 o1 S2 E3 05 N3 03
N1 03 S3 N2 S1 E3 N4 N3 S2 S4 E1 05 04 N1 o1 E2 02
N2 S4 N3 N1 E3 S1 E2 S3 05 03 02 S2 o1 N2 o4 N4 E1

N3 05 N2 S3 N4 E2 S1 N1 S4 S2 04 03 E1 N3 02 E3 o1
N4 04 E3 E2 N3 S3 N1 S1 02 o1 05 E1 03 N4 S4 N2 S2
o1 E2 E1 04 S2 05 S4 02 S1 N4 S3 E3 N2 o1 N1 03 N3
02 E3 04 E1 S4 o3 S2 o1 N4 S1 N2 E2 S3 02 N3 05 N1

03 N1 S2 S4 E1 02 04 05 S3 N2 S1 N3 N4 03 E2 o1 E3

04 N4 02 o1 05 S2 03 E1 E3 E2 N3 S1 N1 04 N2 S4 S3
05 N3 S4 S2 04 o1 E1 03 N2 S3 N4 N1 S1 05 E3 02 E2
S1 E1 E2 E3 N1 N2 N3 N4 o1 02 03 04 05 S1 S2 S3 S4
S2 S3 03 05 o1 04 02 S4 N1 N3 E2 N2 E3 S2 S1 E1 N4
S3 S2 N1 N3 E2 N4 E3 N2 03 05 o1 S4 02 S3 E1 S1 04
S4 N2 05 o3 02 E1 o1 S2 N3 N1 E3 S3 E2 S4 N4 04 S1

Table 1: Inner law of composition.
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In this example, Adabara, E, one member of the group of the East
is located at P, the other E, I=1,2,3 don’t take place at P,2< k< 16.

In that table of Sikidy, we say that the Sikidy gives a formal advice
(mitoka vava). The consultant would be successful.

To calculate these “Into”, we use the following Table 1 of inner law
of composition:

Compute these “Into” using this table is elementary. The total
of the Into” for one figure in the place P, takes its value from 0 to a
hundred. For example, Alohotsy “Into” to Ombiasa (who means the
Great Divine), searched by the Mpisikidy, doesn’t exist, but Alohotsy
”Into” to Sely which has total number 8. Adabara "Into” to Tale has
132,...etc.

These “Into” Sikidy have particular significations and truthfully
considered. We use them to get talismans.

Conclusion

In the present paper, Anona investigated mainly the mother-
Sikidy. In a next paper in the same topic, he will make the Sikidy more
precise in order to check daughter-Sikidy and so on. The language of the

Citation: Anona FM (2016) Mathematical Aspects of Sikidy. J Generalized Lie
Theory Appl S2: 008. doi:10.4172/1736-4337.52-008

This article was originally published in a special issue, Recent Advances of
Lie Theory in differential Geometry, in memory of John Nash handled by
Editor. Dr. Princy Randriambololondrantomalala, Unversity of Antananarivo,
Madagascar

Sikidy is very large. Frequently, the data obtained from the Mpisikidy
are contradictory. Certainly, make a coherent language of the Sikidy
throughout different collects of data is very interesting.
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Trying to Explicit Proofs of Some Vey’s Theorems in Linear Connections

Lantonirina LS*

Department of Mathematics and Computer Sciences, University of Antananarivo, Madagascar

Abstract

structure.

Let X a diferentiable paracompact manifold. Under the hypothesis of a linear connection r with free torsion T on
X, we are going to give more explicit the proofs done by Vey for constructing a Riemannian structure. We proposed
three ways to reach our object. First, we give a sufficient and necessary condition on all of holonomy groups of the
connection V to obtain Riemannian structure. Next, in the analytic case of X, the existence of a quadratic positive
definite form g on the tangent bundle TX such that it was invariant in the infinitesimal sense by the linear operators
VFR, where R is the curvature of v, shows that the connection v comes from a Riemannian structure. At last, for a
simply connected manifold X, we give some conditions on the linear envelope of the curvature R to have a Riemannian

Keywords: Linear connections; Riemannian connection; Levi-civita
connection; Holonomy groups; Linear en-velope; K"derivations; Lie
algebras

Preliminary and Introduction

In 1978 Vey was the examinator of Anona's phd at Institut Fourier
Grenoble. In this time, Vey was written some theorems in linear
connections. The title of this unpublished paper was: "Sur les connexions
riemanniennes” means "On the Riemannian connections". They had
discussions, as said Vey, this result was not well explicit. So, one of
the motivations of this paper is to explicit some of them about linear
connections. First, we consider a paracompact manifoldX, we are looking
for a Riemannian metric g which is invariant by parallel transport such
that it produces a linear connectionV with Vg = 0. Next, we assume that
X is a simply connected real analytic manifold accompanied by a real
analytic connectionV, these new assumptions construct us a positive
definite quadratic form g (satisfying Vg = 0) infinitesimally preserved
by the infinitesimal holonomy group. This is obtaining by the fact that
the Lie algebra of holonomy groups coincides with the Lie algebra of
the infinitesimal holonomy group. Finally, we present our problem so
as to consider the linear envelope of the curvature, in the case where X
is a smooth manifold. However, under these conditions that the linear
envelope of the curvature of constant dimension coincides with the Lie
algebra of the holonomy group, make the quadratic form g parallel toV.
Thus builds a Riemannian structure. Recently, several authors treat the
same questions as R. Feres in and A. Vanzurava [1, 2]. This last author
gave an algorithm for constructing Riemannian structure which is similar
as Veydone in the end of his paper. This redaction gives an interest for a
next one where we use some results and idea of the present paper. So, let
us recall some useful definitions in linear connections.

Definition 1

First, let X is a smooth manifold,Tx X, x € X the vector space of
tangent vectors on x and T X the tangent bundle defined by T =T
X. Recall that a Riemannian manifold X is a smooth manifold equipped
with a Riemannian structure g on X which is defined by the morphism
of bundles

g: TX x TX >R

such that VxeX

g . XxT X>R

defined an inner product with V. UV € TX

X >R

x = g(ULV)
is differentiable.
Definition 2

Let X be a smooth manifold, let I'(X) be the module of vector fields
onXand F(X) ={f : X — [ smooth} the ring of real smooth

functions. We recall that a linear connection on X is the application
:T(X) x T'(X) » I[(X)
U, Vv,yv
such that, v U, U, V, Ve I'(X), feF (X) we have:

i V,+, V=V, V4V V
iV, V=fV,V
ii. V(V+V)=V V+V V
iv. V (V) =fV, V+ U()V
Theorem 3

(Fundamental Theorem of Riemannian Geometry) Let X be a
Riemannian manifold. Any Riemannian structure g produces an
unique linear connection V called Levi-Civita's connection on X with
free torsion such that Vg=0.

The Holonomy Groups and Riemannian Structure

Definition 4
Let X be a smooth manifold, a path is a smooth function from [0, 1] to X.
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Definition 5

let X be a smooth manifold, x a point of X [3]. We call holonomy
groups based on a point x of

the Levi-Civita's connection V, or Riemannian holonomy, denoted
by Hol(x) the set

Hol(x)={c":T,X > T X}

where y: [0, 1] X is closed path along x to x such that y(0)=
y(=x
Proposition 6

Let X be a smooth manifold, and x, y € X [3]. If X is connected and
y a path x to y, the

holonomy groups of the point x, y are isomorphic and we have
T'Hol(x)7’ ] =Hol(y).

Definition 7
Let K be a compact group. We call that an Haar measure on K

denoted y is the unique invariant measure by right and left translation
in K, then

[ f(kYdu(k)=T, f(kh)dpu(k)=, f(hk)du(k),
such that feL(K) a ring of all functions f. K> C.

Definition 8

Let X be a Riemannian manifold, g, @ metric on X, K a compact
group. We define an invariant metric g on X which normalizes any
metric g, of X on the compact group K. Let g= f K'g,dk Where k' is the
“pull-back “of k.

This integration follows the Haar measure property.
Proposition 9

Recall that all paracompact manifolds X admit a Riemannian
metric [4].

Proposition 10

Let X be a smooth manifold and the linear connection on X with
free torsion. V proceeds from a Riemannian structure if and only if its
holonomy groups are relatively compact.

Proof.

On the one hand, suppose V comes from a Riemannian structure
(X, 9).Then by the Fundamental Theorem of Riemannian Geometry,
we have the Levi-Civita's connection V on X. Consequently, the
Riemannian holonomy is well defined by the holonomy group of Levi-
Civita's connection on X. But, the holonomy group is a subgroup of the
orthogonal group O (n) which is compact, so this subgroup is relatively
compact.

On the other hand, let us suppose that the holonomy group on each
point of x € X is relatively compact. Let g, be a Riemannian metric on the
paracompact manifold X, and x € X. Then, it leaves invariant a positive
definite quadratic form g on a point x of X on TX. Indeed, we have

Hol(x)={1y:[0,1]>X; p(0)=y(1)=x },

then we define,

x2" x x2" x

2(UV) =L u(7) & (UV)d7s UV, eT X,
Let ,v*e H 0i(x),then we have,

g(U'ZUx,UaVV\.) =jH,,,(X) (z")* g (L)aUx,u"’Vx)dz-r
=Ly & (7 (00, )77 (077,))de”

= Ian(x) &o (TVUX,TVVX)dT'V

= J.Hul(x) (T;/ ) * 8o (Ux’ Vx )df;/
:g(Ux’ VX)

Let yeV_cX (V_neighbourhood of x). Since X a smooth
manifold, then X is locally homeomorphic to an open set of R™
Otherwise, R is locally connected, and locally connected is preserved
by homeomorphism. Consequently, under the Proposition 6, the
holonomy is independent of the selected base point. Then, the parallel
transport relatively to v, of the quadratic form g along the path from
x to y is independent of the path, by definition of holonomy. Thus,
it constructs a Riemannian structure g on X preserved by parallel
transport, with vg = 0. Since v/ is of free torsion, and uniqueness of V,
and then V is a Riemannian connection.

Real analytic manifold and Riemannian structure

For the following, we suppose X a simply connected manifold to
have an explicit result.

Definition 11

Let x a point of X, denoted by C(x) the set of closed curves on x,
and C’(x) the set of the contractible curves on point x. Take a point ue
p'(x), where p is the projection of the linear structure bundle L(X) at X
cf. [5]. We recall that the holonomy group on x denoted by y( x) is the
subgroup of the diffeomorphism p~(x) whose the element are obtained
by parallel transport of the curves in C(x), that is to say, the element of
Y(x) areofthe form 7: p'(x)>y°(x), »>7€ C(x). In the similar ways, we
call holonomy group restricted on point x denoted y°( x) the subgroup
of diffeomorphism of p”! (x) whose the element are of the form 7: p/(x),
V1el(x).

e For uep(x), we define holonomy groups on point u byy’
(u)={aeGl(n,R),R (u)= t(u), for Tey(x)}Gl(nR).The same,
we define the restricted holonomy groups on point u .

Now, let us define the local holonomy group by y'(u)=ny°(u, U,)
where y°(u, U) is a subset of y*(u) such that y*(u, U, )cy’(u, U, ), with
U, indicates a sequence the neighbourhood of x satisfied U, e U,, for
ke Zrand O U, =x.

k=1,2,...
Proposition 12

Let X be a smooth manifold, L(X) a linear structure fiber on X, H a
connection on L(X) [6].

Then, all tangent vectors U of T L(X) is called vertical (resp.
horizontal) when it belong to V. (resp. H ), u € L(X), where V, (resp. H )
indicate the vertical (resp. horizontal) subspace of T L(X).

Definition 13

Let my(u) a subspace of g [ (n,R) generated by Q (U; V )(the
curvature form on L(X) cf. [6] p.152) the horizontal vectors U; V €
T (L(X)) with u € L(X). By recurrence on k, m,(u) defined a subspace
of gl(n.R) generated by the elements of m, , (1) and the element of the
form v, Vk(Q(U; V' )), where U; V; Vpooon V, are the horizontal

Recent Advances of Lie Theory in

J Generalized Lie Theory Appl
John Nash

differential Geometry, in memory of

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S2-009

Citation: Lantonirina LS (2016) Trying to Explicit Proofs of Some Vey’s Theorems in Linear Connections. J Generalized Lie Theory Appl S2: 009.

doi:10.4172/1736-4337.S2-009

Page 3 of 4

vectors. Let ¢ (1) the union of all the m, (u); k= 0,1, 2,... . The set of g (u)
is a sub-algebra of gl(n;R) and the connected Lie subgroup generated
by g (u) is called infinitesimal holonomy groups on point u of L(X). We
denote it by y'(u).

For a real analytic manifold, denoted by H o I (x) resp. H ol (x),
resp. H o I (x) the holonomy groups (resp. the restricted holonomy
group, resp. the infinitesimal holonomy groups) on point x in X.

Proposition 14

Let X be a real analytic manifold, the linear real analytic connection
[2]. Denoted by

h(x), K (x) h (%) the respective Lie algebras of holonomy groups
H ol (x), Hol" (x) H ol(x). The two groups H ol'(x), H ol(x) constitute
a Lie subgroups of H o: (x) namely [ o/ (x) cHol (x) CHOl(x)
and con-sequently 7’ (x) i (x) c h(x),Since X is a real analytic
manifold, we have the reverse inclusion for the holonomy groups and
the equality between /(x) =/ (x).

Theorem 15

Let X be a real analytic manifold,V the linear real analytic
connection associated to X [6].

The Lie algebra }} (x) of the infinitesimal holonomy groups H ol (x)
is spanned by the k™ covariant derivatives

VER (UVIU, ...,
VR(U,V)=R(U, V).

Proposition 16

U, ), where

K

UVv,U,...,.UceTX, 0<k< oo and

Let (X;V) be a real analytic simply connected, with free torsion, x
apointof X, ga

symmetric bilinear quadratic form on T X [7]. Then the invariance
of gby H o I (x) is characterized by:

g(AUY)+g(U.AV)=0,YAech(x),UV eTX.xex. (1)
Proposition 17

Let X be a real analytic manifold, simply connected, V an analytic
connection with free torsion

on X and R its curvature. Let x be point of X. If there exist a positive
definite quadratic form g on T X, preserved in the infinitesimal sens by
all of linear operatorsV* R(\N,UI,UZ,. . ...,Uk) (k 20,WeA’T XUeT XX),
then V proceeds from a Riemannian structure.

Proof.

Let x € X, g a positive definite quadratic form on T X, V the analytic
connection associated X , R the curvature of the connection V. Suppose
that g is preserved in the infinitesimal sense by all linear operators V*
R(W,U,U,,....,U)

of h (x) (according to the Theorem 15), that is to say that we
have according to the

Propositions 16 and 14.
g(V'R(W,U,,U,,...U)UV) + g(UV'R(W,U,,U,,...U,)V)=0 (2)

VW eNTX,U el X and yipyy,vu,.u,) (kinteger >
0) in K(): Since VROV.U.Usol, )i (x) and h(x)=h(x) =",
then V*R(W,U,,U,.,...,U,)belongs to the linear envelope in the

endomorphism of T X. Then the equation (2) comes,

VkR(W.L\,L'z..,,,Uk)g(U’ V)=0 VU,V eT X,xe X,

therefore V*g = 0 for all k > 0, it follows that Vg = 0. Since the
torsion is supposed null, then V comes from a Riemannian structure.

Linear envelope and Riemannian structure
Lemma 18

Let E be a real vector space of finite dimension, and I an interval of
R, and V() a sequence of vectors which depend differentially on t € I.
Let L(t) the vector space spanned by V(t). Suppose that L(t) of constant
dimension, and for all i and for all

d
Ly )<L
then L(#) is independent of t.
Proof.
We proceed like the arguments of proof in [8] pp. 943-944.
Theorem 19

(Ambrose-Singer Theorem) The Lie algebra /0! (x, ) of the holonomy
groups Hol(x,) (Lie sub-algebra of the Lie algebra g) are spanned by
the vectors Q (U,V') for all point x of a principal bundle P cf[1], link
with x, by a piecewise smooth curve of extremity x and x,and U, V the
horizontal vectors on x [9].

Proposition 20

Let X be a smooth manifold, and a linear connection of X. If the
tensor VR takes all values in the linear envelope of the curvature, and if
it has a constant dimension, then it coincides with the Lie algebra of the
holonomy groups in each point.

Proof.

Let x a point of X. Let us indicate by 7 the linear envelope of
the curvature on x € X; and /1 (x ) the Lie dlgebra of the holonomy.
Let y a point of X, and 7 "the parallel transport along (on End (TX)),
where y indicates a path joins x and y. According to the Ambrose-
Singer theorem, h y) is the linear envelope of subspaces 7’ ) Take
then a point x € X, a path (f) is parametrized in [0; 1] and joins x to
y. Recall that R is defined by R:A*TX — End(TX).Let w,(1<i<n(n—-1)/2)
a basis of A’T X and, w(t) the basis of /\ZT X obtained by parallel
transport along of »,7  defined a linear envelope in End (T, X)
of the operators R([)(w (O Row by hypothesis V R takes its values on
the linear envelope of the curvature, then V d/d,Ry(t)(W’(t)) er  Letus
7(1)
consider the subspace of End (TyX)

"yl
0]

since the linear envelope is supposed of constant dimension, then
has an independent dimension that is to say independent of t, and it
defines the linear envelope of the operators

7

R,=DIOUR  (w(1))END(T,)

IE:’ result from precedent that for all t € [0, 1];

atier, 3)

Since g =~ depends differentially of ¢ for £ € [0; 1], 7 has a

constant dimension by hypothesis, and that we have the relafion (3).

Then according to the Lemmal8, 7 t is independent of t. Then,
-t
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7 =p =, _Consequently h(y)=

-t -1 -y Z

[

Theorem 21 (Lie-Palais) [6]

Let X be a compact smooth manifold and we have an action on X by
the Lie algebra of finite dimension, then this is a lift of an action of Lie
group of finite dimension.

Proposition 22

Let X be a simply connected manifold, V a linear connection on X
with free torsion, and R its curvature. Supposed that the free conditions
which follow are verified:

() the linear envelope of the curvature R has a constant dimension,
(b) the tensor R takes its values in 7,

(c) in all points x of X, there exists a positive definite quadratic form
on T X infinitesimally preserved by ’_,then the connectionV
proceeds from a Riemannian structure on X.

Proof.

Let x a point of X, suppose verified the above hypothesis. Since (a)
and (b) are true by hypothesis, then according to the Proposition 20, the
linear envelope coincides with the Lie algebra of the holonomy group.
Consequently, the linear envelope is stable by the Lie bracket and then
admits a Lie algebra structure. Now according to the condition (c), there
exist a quadratic positive definite form on T X preserved infinitesimally
by 7 It follows that the linear envelope is compact. We deduce there
that the Lie algebra of holonomy groups is of finite dimension see
condition (a). Since X is locally compact, then according to Lie-Palais
theorem, the Lie algebra of the group is the lift of the holonomy group
whose the topologic structure compact is preserved. Therefore, the
holonomy group is relatively compact. Now the Proposition 10 says
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that for X be a smooth manifold, V its connection with free torsion, V
comes from a Riemanniann structure if and only if its holonomy group
are relatively compact. Then we have the result.
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Abstract

flux. As results continuous.

Analytic solutions for cylindrical thermal waves in solid medium are given based on the nonlinear hyperbolic
system of heat flux relaxation and energy conservation equations. The Fourier-Cattaneo phenomenological law
is generalized where the relaxation time and heat propagation coefficient have a general power law temperature
dependence. From such laws one cannot form a second order parabolic or telegraph-type equation.We consider the
original non-linear hyperbolic system itself with the self-similar Ansatz for the temperature distribution and for the heat

Keywords: Self-similar solution; Non-linear heat conduction; Shock
wave; Cattaneo heat conduction law

Introduction

Analytic solutions for cylindrical thermal waves in solid medium
are given based on the nonlinear hyperbolic system of heat flux
relaxation and energy conservation equations. The Fourier-Cattaneo
phenomenological law is generalized where the relaxation time and
heat propagation coefficient have a general power law temperature
dependence. From such laws one cannot form a second order parabolic
or telegraph-type equation. We consider the original non-linear
hyperbolic system itself with the self-similar Ansatz for the temperature
distribution and for the heat flux. As results continuous and shock-
wave solutions are presented. For physical establishment numerous
materials with various temperature dependent heat conduction
coefficients are mentioned.

44.90.+c, 02.30.Jr

In contemporary heat transport theory (ever since Maxwell’s paper
[1]) it is widely accepted in the literature that only for stationary and
weakly non-stationary temperature fields the constitutive equation
assumes that a temperature gradient VT instantaneously produces heat
flux q according to the Fourier law.

q(x,t)=-kVT(x,t) (1)

Combining this equation with the energy conservation law the
usual parabolic heat conduction equation is given. Heat conduction
mechanisms can be classified via the temperature dependence of the
coeflicient « : T". There are three different cases of thermal conductivity,
normal heat conduction which obeys the Fourier law (v=0), slow (v>0)
and fast heat conduction -2<v<0.

In plasma physics if the temperature range is between 10°K and
10® K then the coefficient of the heat conductivity ¥ depends on
the temperature and density of the material. It is usually assumed
to have a power dependence x=x /T"v* where v=1/p is the specific
volume the coefficient k; and the exponents v, 4 depend on the heat
conduction mechanism [2]. With radiation heat conduction one
has 4 < v< 6, 2mm1< u < 2; with electron heat conduction and fully
ionized plasma v=5/2, 2mmu=0. For magnetically confined non-
neutral plasma the classical heat conduction coefficient is the following

(3] Kz%ln[czT *2]. Parabolic thermal wave theory is based on this

approach [2,4]. In plasmas heat conduction is strongly coupled to
flow properties which we will not consider in the following. The linear

parabolic theory predicts infinite speed of propagation which is known
as the "paradox of heat conduction” (PHC). The following two theories
resolve this contradiction.

However, if the time scale of local temperature variation is very
small, Eq. (1) is replaced by

q(x,t=1)=-kV T(x,1) (2)

Where 7 is called the thermal relaxation time. This is a
thermodynamic property of the materials which was determined
experimentally for large number of materials. Although 7 turns out
to be very small in many instances e.g. is of order of picoseconds for
most metals, there are several materials where this is not the case, most
notably sand (21 s), H acid (25 s), NaHCO, (29 s), and biological tissue
(1-100's) [5].

Unlike the Fourier’s heat conduction law, this constitutive equation
is non-local in time. The desired local character can be restored with
the Taylor expansion of q by time which is usually truncated at the first
order namely

oq(x,1) _
ot

g0+t VT (x,1). 3)

This is the well-known Cattaneo heat conduction law [6] the
second term on the left hand side is known as the "thermal intertia".
Combining this constitutive equation with the energy conservation
yields the hyperbolic telegraph heat conduction equation where 7 and
are constants. Hyperbolic equations usually ensure finite propagation
velocity. Unfortunately, the usual telegraph equations has no self-
similar solutions which would be a desirable physical property. In
the work of [7] a non-autonomous telegraph-type heat conduction
equation is presented with self-similar non-oscillating compactly
supported solutions. A review with a large number of physical models
of heat waves can be found in [5,8]. A recent work on the speed of heat
waves was published by [9].
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Our starting point is the following

g=-9_%Kr, (4)
T

of,=-q,-L. ®)

.

The first equation of the system is the generalized Fourier-Cattaneo
heat conduction law and the second one is the energy conservation
condition for the radial coordinate. The heat flux g=¢q(r, t) and the
temperature T=T(r, t) have radial coordinate and time dependence.
The subscripts r and t denote the partial derivatives with respect to
the radial coordinate and the time, respectively. (From now on we
investigate the radial coordinate of a cylindrical symmetric problem as
spatial dependence.) The parameter ¢ =pc where p is the mass density
and c is the specific heat. Second order effects such as compressibility
are neglected (p and c are constants during the process).

In the following we shall suppose that the heat conduction
coeflicient and the thermal relaxation depend on temperature on the
following way:

k=K, 1", lemr=7,T" (6)

The x, and 7, are real numbers with the proper physical dimensions.
Now our dimensionless system reads:

q="Tq-T™T, 7)

T=-q,-%. ()

There are various phenomenological heat conduction laws available
for all kind of solids, without completeness we mention some well-
known examples. For pure metals according to [10] (Page 275 Eq. 27.3)
the Wiedemann-Franz law the thermal conductivity is proportional
with the electrical conductivity times the temperature x=0LT The
proportionality constant L is the so called Lorentz number with the
approximate numerical value of 2.44 x 10 WQK™. For exact numerical
data for various metals see [11]. The relaxation time 7 is proportional
to the heat conduction coefficient divided by the temperature. For
metals with impurities the thermal resistivity (inverse of the thermal
conductivity) is x'=AT?+BT"' where A and B can be obtained from
microscopic calculation based on quantum mechanics [10] (Page 297
Eq. 40.11).

A hard-sphere model for dense fluids from [12] derives a relation
where the heat flux q(x,t)=aV T(x,t)+¢*(x,t) which certainly meansanon-
linear heat propagation process. For the heat conduction in nanofluid
suspensions [13] derives the x = ¢ /(T,-T,) law with additional time
dependence. Another exotic and very promising new materials are the
carbon nanotubes which have exotic heat conduction properties. Small
et al. [14] performed heat conductivity measurements and found that
at low temperatures there are two distinct regimes «(T): T>*(T<50K)
and «(t): T*(50<T<150K). Beyond this regime there is a deviance from
this quadratic temperature dependence and the maximum « value lies
at 320 K. Above this value - at large temperatures - there is a «(T):
1/T dependence according to [15]. Additional nanoscale systems (like
silicon films, or multiwall carbon nanotubes) have exotic temperature
dependent heat conduction coefficients as well, for more see [16].
For encased graphene the heat conduction coefficient is x : T° where
1.5<f<2 at low temperature (T<150K) [17]. A recent review of thermal
properties of graphene and nanostructured carbon materials can be
found in [18].

Our model is presented to describe the heat conduction of any kind
of solid state without additional restrictions, therefore room or even

higher temperature can be considered with large negative w exponents.

Even from these examples we can see that it has a need to investigate
the general heat conduction problem, where the coefficients have
general power law dependence.

We look for the solutions of (7,8) in the most general self-similar
form.

T=t*f(n), g=t"g(). ©)
For a better transparency in the following we introduce a new
variable 7 = tLﬂ , where a, f3, § are all real numbers.

The similarity exponents «, § and 8 are of primary physical
importance since «, & represents the rate of decay of the magnitude
T or g, while j3 is the rate of spread (or contraction if <0 ) of the space
distribution as time goes on. Self-similar solutions exclude the existence
of any single time scale in the investigated system.

We substitute (9) into (7) and (8). It can be checked that

1 1

a=——-07, 3mmf=——,
w+1 2(w+1)

mo = 2 , 3mme=o 1. (10)
2(w+1)

Then we can obtain the shape functions f and g the following
ordinary differential equation (ODE) system

og+png' =g+ [, (11)

ng) =B’ fY (12)
where prime means derivation with respect to 7.

The first lucky moment is that (12) relates f and g in a simple way

g=pnf(13)

if the a=2p universality relation is fulfilled.

Note, that we can immediately read how the self-similar solutions
of the temperature distribution T and the heat flux g depend on w

20+3

r @+ r
— |, 8mmg=1"""g| ——|. (14)

1

-1
T = tm+1f

{20 {20

The parameter dependence of the complete heat conduction
coefficient and relaxation time can be expressed via w as well

-0

— r
— +l £ — -1 potl
K=Kt f , T=Ktf —

tZ(m+1)

(15)

1
£ 20

Recall that >-1. These are already very informative and useful
relations to investigate the global properties of the solutions, note
that such kind of analysis are available for large number of complex
mechanical and flow problems [19].

Substituting these relations back to Eq. (11) after some algebra we
arrive at the following non-linear first-order ODE

df 2.2 20+l :ﬂ o+l
gyt BT =)= 5 = @B ) (16)

Put y=r? and x=f. With this notation eq. (16) becomes linear for
y(x) (this is the second lucky moment of investigation):

dx  A(o+D)x"" -0-2] (17)

Plainly, f x is a solution to eq. (16). If y(x) the solution of eq.
(17) is strictly monotonic then so is the inverse function f=x and no
discontinuity. However if y(x) is not monotonic on some interval (x,,
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x,) and has a turning point at x £(x,, x,) then the inverse (f=x) has sense
on [0,y(x)] only. One sets f=0 for y> y(x,) and the discontinuity a y(x,)
is apparent. The analytical investigation of the linear equation (17) is,
in general easier than of eq (16). In some cases (for some w s) one can
have more explicit or almost explicit solutions.

There are two examples:
The first case is for w=0,(a=1,$=1/2,0=3/2,e=1).

This example was studied by [20] in some details. The
corresponding ODE (17) reads y’=(y-4x)/x(x-2) which has a solution
y=8+[(x—2)/x]"[c, - 8In(x/x +~/x—2)] where ¢ isa constant.

It is clear that must be x > 2 and y(x) is monotonic for x>2 until
x, where y=0. This means that x(y) exists and monotonic on some
interval [0,y,], x(y,)=2; for y > y, we have x(y)=0 so the discontinuity.
For a better understanding Figure 1a presents the graph of solution of
Eq. (17) through the point (3,0.5). The inverse of this function for x>2
is shown on Figure 1b (the nonzero part). The solid line is a solution
through the f(0)=10.8 point. Figure 2 presents the theoretical shock-
wave propagation of the temperature distribution T(r, t) for w=0.

The second case is for w=-1/2,(a=2,=1,6=2,e=1/2).

(a)

Now Eq. (17) takes the form of @:Z(y—l)/[x(\/;—m. It can
be checked that y=cx?3(x'>-3)"* is solution for any ¢,>0. Take
¢,., The function y(x) is monotonic on (0,9), y(9)=0. Returning to
original variables we have f=9/[(1*)¥*+1]* (which is plainly less than
9!) According to eq. (14) temperature and heat flux distributions are

9t 9r
TETeey M ey

Figure 3 presents the time and the radial coordinate dependence
of the temperature and the heat flux. These solutions are not
discontinuous. Analytical and numerical calculus suggest that w=-1/2
is a critical exponent: for -1<w < -1/2 the solutions are continuous, for
the shocks always appear w>-1/2.

(18)

Summary

We presented a hyperbolic model for heat conduction in solids
where the relaxation time and heat conduction coefficients are power
law functions of time. There are basically two different regimes available
for different power laws. For 1<w < -1/2 the solutions are continuous
for all positive time and radial coordinate, for w>-1/2 the solutions
are only continuous on a finite and closed [0: 7, interval and have a
finite jump at the the endpoint 7. As physical interpretation numerous

(b)

Figure 1: The direction field of (a) Eq. (17) for =0 and (b) Eq. (16) for!=0 The solid line presents numerical solutions for a) y (3)=0:5 and for b) f (0)=10:8.

Figure 2: The shock-wave propagation of the temperature distribution of T (r; ) for /=0
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(@)

(b)

Figure 3: The continuous solutions: (a) the temperature distribution of Eq. (18) and (b) the heat flux distribution of Eq. (18).

materials and solid state systems were mentioned with temperature
dependent heat conduction coeflicients.
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Abstract

language at the middle school or in the University.

The modern Science has now a lot of its branches and meanders, where are working the numerous specialists
and outstanding scientists everywhere in the whole world. The theme of this article is devoted to mathematics in
general and to such a new subsidiary science as the Cartesian infinitology (+ «: x y and x y z) in a whole.

The young and adult modern people of our time, among them, in first turn, are such ones as the usual citizens,
students or schoolchildren, have a very poor imagination about those achievements and successes that made by our
scientists in the different parts and divisions of many fundamental sciences, especially in mathematics. This article is a
short description of the numerous ideas of a new science that is named by its inventor as the mathematical infinitology.

The infinity as the scientific category is a very complicated conception and the difficult theme for professional
discussing of its properties and features even by the academicians and the Nobelists as well. In spite of all problems,
the author have found his own road to this Science and worked out independently, even not being a mathematician
at all, the universal, from his point of view, and unusual theories and scientific methods, which helped him to find
and name It as the mathematical infinitology, that may be now studied in rectangular system of Cartesian or other
coordinates, in orthogonal ones, for example, as easy and practically as we study the organic chemistry or Chinese

The mathematical infinitology, as a separate or independent science, has been never existed in the mathematics
from the ancient times up to the 90-th years of the XX-th century. All outstanding mathematicians of the past times
were able only approximately to image to themselves and explain to their colleagues and pupils in addition, what is an
infinity indeed: the scientific abstraction or the natural mathematical science that can be not only tested by one’s tooth
or touched by hands, but study and investigate it in schools or the Institutions of higher learning too.

In summer 1993, such a specific mathematical object as the “cloth of Ulam”, was occasionally re-invented by
the article author without no one imagination, what it is indeed. Very long time working hours spent by the inventor
with this mathematical toy or the simplest logical entertainment helped him to penetrate into the mysteries of this
usual intellectual mathematical object and see in it the fantastic perspectives and possibilities as for science as for
himself in further studying and it investigating. In a result of the own purposefulness and interests to the re-invented
mathematical idea of the famous American mathematician S.M.Ulam, the new science was born in the World, and
after long time experiments, it was named as the mathematical or Cartesian infinitology (£~ : x y and x y z).

Keywords: Cartesian infinitology; Mathematical plus-minus infinity
(+eo:xy and xyz); Cartesian coordinates; Natural prime and twins
numbers; Theory of blank spaces; Sieve of Erathosfen; Ulam’s spieral

Introduction

In any, praiseworthy hobby, business or the craft, being appeared
at the human persons for a long time process of evolution, and
thanks to the mental and creative abilities growth, sometimes among
the advanced people were developed such high spheres of human
knowledge or personal skills or intellectual abilities, that a lot of
centuries and even the millenniums came or passed away, before some
difficult scientific idea or the secrets of the craft could be at last found
their final decisions or they were transformed by the human individuals
into such form of the representation or embodiment, available for their
natural perception by people, specialists or scientists, that a team of
higher skilled experts could only recognize this or that decision as
a perfect standard [1-8]. And, it isn't necessary to go far very much
for the examples! The most ancient and the unresolved task is a secret
of natural prime numbers, the cornerstone of the scientific theory of
their knowledge and studying was put by Eratosphen Kirensky, the
Ancient Greece mathematician, being lived in the III century B.C. The
knowledge by the human persons of the Great truths of the World was
always, from the time of immemorial destiny, the elite of possessing
advanced thinkers being had a rich life experience. Such people-the

unique just always were able and solved the various and most important
tasks of their time, advancing thereby not only the era itself and its
potential opportunities, but at the same time they were putting by own
affairs and talents the progress and forward advance of Mankind on the
evolution steps, un-looking on all difficulties and adversities of the daily
occurrence, with their terrible wars, epidemics, personal problems and
the natural cataclysms [9-15].

And here is already 21 century! It is now improbably interesting
to look backward to compare the life of people, which were living at
the very beginning of our era, with today's life of people that are living
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now in 2013 A.D. The huge abyss between these two eras is more
than evident. Everything was changed considerably and up to beyond
recognition! And though the different natural and technogenous
misfortunes still annoy to people and their countries, the states and
even the whole continents, but what, after all abundance, a huge variety
of all forms, and views and types and everything in our civilization! The
flights in space and the working Hadron collider became already our
daily occurrence [15-21]. And there is already a future man’s struggle
against the asteroid danger. And the Cheliabinsk fire-ball has showed
to the whole world how terrible and dangerous can it be to all living
beings on the Earth. It is the most convenient time to think about
the security of the Mankind, and its planet too, from the space stone
travelers already today. And at soon the possible flights of people to
Mars, Venus and other planets of Solar system will be begun. And the
wide development of new opportunities of the Arctic and Antarctica
areas with their infinite store rooms of minerals and sea bio-sources, in
the nearest future! And the problem of shortage of food and drinking
water consumption!!! And the catastrophic climate surprises which
provoke high-speed thawing of the ice armor of the Earth! The life on
the Earth became more unpredictable and dangerous. And in this very
quickly changing world, it is difficult to the human person correctly and
in due time to react to all misfortunes that are collapsing upon his head
from the side of the natural disasters.

Being live rapidly and in the atmosphere of continuous changes,
the modern human person, nevertheless, doesn't low his hands down
and continues to create the material and intellectual treasures elsewhere
on the Earth, and even in the outer space, making better, step by step,
not only the created by him achievements but this very complicated
World too, on the base of his own imperfections. The people constantly
live in continuous creative search, solving the mass of tasks, for what
they are sometimes encouraged morally or financially. For the sake of
such bright perspectives of the personal wellbeing, the best minds start
to look for the solution of the most difficult scientific tasks and other
problems. And the valuable awards sometimes find the heroes! This
work is a formal confirmation of the man’s elementary inquisitiveness
and how it helped him to make an interesting scientific invention in
sphere of elementary mathematics [22-26].

The Ulam’s Cloth or Spiral

Even some a few people among the today's schoolchildren and
students know and can convincingly, even on fingers, explain what it
is the "Eratosphen’s sieve" and/or the "Ulam's spiral", and at least to tell
elementarily about these objects, and what it is spoken about in principle.
And not all mathematician will be also able to explain objectively and
clearly to the ordinary fans of this science, what it is a "bestia" named
as the spiral of Ulam, and what are the concrete advantages from it
to the science itself, to the ordinary fellow citizens and, especially, to
the modern educated people of the world as well [27-30]. If to judge
on the single publications only, the mathematical idea of Mr. S. M.
Ulam, the famous American mathematician and the Polish man in his
original, is not be able to serve as a proof that our authors-educators
and the legal distributors of the scientific-and-popular literature on
mathematics among the population, have the elementary interest to
this, in appearance, the childish mathematical occupation and these
persons are not sure very much that they could be objectively and in
details to tell for their readers, on the pages of the famous books, about
the features of this idea. But what kind of the mathematical interest may
have this childish mathematical entertainment at readers in fact?

As it is well known today, Stanislav M. Ulam has invented this
"cloth", or rather, a spiral, in 1963, being presented once upon a time

at a very boring meeting of his colleges-scientists. To kill time and not
to fall asleep with boredom, our hero began to draw on the page of
his note-book in cell a symbolic chessboard for solution of etudes, but,
occasionally, he has changed his intention and, instead of the chess
figures drawing, he begun to fill in the center of this, a poor similarity
of the chessboard, with the natural prime numbers in view of the points
situated in square cells of the spiral-typed line, turning anticlockwise,
that replaced such prime numbers as two, three, etc. As for me, I have
made the same even not being introduced with this idea at all and its
author in general [30-37]. Both Ulam and me have replaced the prime
numbers with the points for simplification of the whole work. And at
soon, the idea of the American mathematician, which was named as
“"the Ulam's cloth" by the scientists, was born and, by the time, it has
possessed the right to live. Specialists of Los-Alamos laboratory, headed
by Stanislav Martin Ulam, the author of this idea, did a huge work on
detection the regularities of prime numbers distribution within this
helicoid system, but the idea, as it is known, couldn't demonstrate
itself in its entire beauty since it was needed a perfect modification
a little. But just on this trifle, the time was absent at S.Ulam and his
colleges. So it’s a pity! Because Stanislav Martin Ulam and his friends
in this laboratory have been on the threshold of the Great discovery in
mathematics, and, as it is supposed by me, in sphere of the elementary
number theory [38-44].

The spiral of Ulam
82818079787776757473
8350494847 4645444372
84512625242322214271
855227100908 07 20 41 70
86532811 02 01 06 19 40 69
8754291203 0405183968
8855301314151617 38 67
89 56 31 32 33 34 35 36 37 66
90 57 58 59 60 61 62 63 64 65
91929394 959697 98 99 100...> o

Even such a small site of mathematical object under the name
"Ulam's cloth”" allows seeing the fine accurate chains of the natural
numbers-points on the Figures 1-3 below and in the [LI]

Classification of the Natural Numbers in the “Spiral of
Ulam”

I. 1,2,3,4,5,6,7,8,9,10,11,12,...--- the usual natural numbers
consequence;

' 1,3,57911,13,15,17,19,21 --- the odd natural numbers
consequence,...

" 2,4,6,8,10,12,14,16,18,20,...--- the even natural numbers
consequence,

II. 2,3,57,11,13,17,19,23,31,...--- the natural prime numbers
consequence;

III. 3-5,5-7,11-13,29-31,41-43,...--- the natural twin numbers
consequence;

IV. 1,9,25,49,81,121,169,196,...
numbers consequence;

--- the squares of the odd natural
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V. 4,16,36,64,100,144,196,... -
numbers consequence;

VI. 1,11,31,41,61,71,101,131,...

numbers consequence;

VII. 3,13,23,43,53,73,83,103,...

numbers consequence;

V1l. 7,17,37,47,67,97,107,127,
numbers consequence;

IX. 19,29,59,79,109,139,149,...
numbers consequence;

X. 1,3,11,13,23,31,41,43,53,...
numbers consequence;

XI. 1,7,11,17,31,37,41,47,61,...
numbers consequence;

XIIL 1,11,19,29,31,41,59,61,71,.
numbers consequence;

XIII. 3,7,13,17,23,37,43,47,53,.
numbers consequence;

XIV. 3,13,19,23,29,43,53,59,73,
numbers consequence;

-- the squares of the even natural
--- the first kin type of prime
--- the second kin type of prime
... --- the third kin type of prime
--- the forth kin type of prime
--- the fifth kin type of prime
--- the sixth kin type of prime
..--- the seventh kin type of prime
.. --- the eighth kin type of prime

...--- the ninth kin type of prime

XV. 7,17,19,29,37,47,59,67,79,...--- the tenth kin type of the prime

numbers consequence;

XVI.1,3,7,11,13,17,23,31,37,41,...--- the eleventh kin type of prime

numbers consequence;

XVIL 1,3,11,13,19,23,29,31,41,
numbers consequence;

XVIIL1,7,11,17,19,29,31,37 41,...

prime numbers consequence;

...--- the twelfth kin type of prime

--- the thirteenth kin type of

Figure 1: The mathematical rectangu
(fragment). (the black points are the symbol prime numbers on the white field)

lar spiral or “the table-cloth of Ulam”

XIX. 3,7,13,17,19,23,29,37,43,...
prime numbers consequence;

--- the fourteenth kin type of

XX. 11-13,41-43,71-73,101-103,...--- the 1-st kin of the twin prime
numbers consequence;

XXI. 17-19,107-109,137-139,... --- the 2-nd kin of the twin prime
numbers consequence;

XXII. 29-31,59-61,149-151,... --- the 3-d kin of the twin prime
numbers consequence;

Figure 2: The mathematical rectangular spiral or “the table-cloth of Ulam”
(fragment), (the white points are the symbol prime numbers on the black field).

Figure 3: The generalized mathematical rectangular spiral or “the table-cloth
of Ulam” (the dark-blue points are the symbol prime numbers; the green points
are the symbol odd quadratic numbers; the red points are the symbol even
numbers on the white field. The fig. was made by the Author of the article after
careful number coordinates calculation).
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XXIIL. 11-13,17-19,41-43,71-73,...--- the 4-th kin of the twin prime
numbers consequence;

XXIV. 11-13,29-31,41-43,59-61,...--- the 5-th kin of the twin prime
numbers consequence;

XXV. 17-19,29-31,59-61,107-109, --- the 6-th kin of the twin prime
numbers consequence (Figure 1-3).

The "Ulam's cloth" accurate chains of the natural numbers and their
analogs in view of sets of the same dots on the different color fields
(white, light-blue and black)) are demonstrating the verible variants of
regularity of the natural number distribution in the spiral of Ulam. But
if to look at this peculiar roll from numbers indifferently, of course, it
is nothing interesting will be found in this spiral. For those fifty years,
which have passed from that day, when Stanislav Ulam has invented
this "toy", which wasn't attracted only by it to check up one’s intellect
and satisfy oné’s vanity playing with this, in appearance, the usual
ordinary numerical spiral! But nobody was able to see or understand
it's most important and basic features [45-51]. May be this “cat in the
bag” was “sitting” there up to the end of the times on a scientific shelf or
in corner of the old store-room or a hose or rectangular "boa" rounded
tightly and forgotten by everybody forever, if once upon a time, exactly
twenty years ago, the author of these lines also decided but occasionally
to solve one simple arithmetic problem. In the course of its decision,
when all known methods were tried without results, suddenly the
entertainment of my student's years came to my mind---a mathematical
rectangular spiral, which sometimes should be drawn by me at very
boring lectures. In my student years during the boring lectures, I created
the spiral of natural numbers and marked the natural prime numbers
situated in cells of it, on the page of my student’s note-book exactly as
it was made by Stanislav Ulam, (that I know much later, having looked
through the mountains of mathematical literature). I have been already
ready to end my empty occupations with this spiral. When I wanted
to find the possible decision of my arithmetic task, when, at the last
moment, I have noticed one strangeness, which strongly intrigued and
surprised me: I noticed, that all squares of odd natural numbers at this
spiral ideally correctly were situated on the diagonal leaving the center
of this spiral and gone to the left corner, but the squares of even natural
numbers---to the opposite side of the spiral (Figure 2) [52-59].

And then a great willing has come to my mind-to fulfill the graphical
generalization of this elementary spiral. But to do so, one ought to me to

82 818079 78 77 76 75 74 73
83 50 49 48 47 46 45 44 43 72
84512625242322214271
855227 10 09 08 07 20 41 70
865328 11 02 01 06 19 40 69
875429 12 03 04 05 18 39 68
88553013 14 15 16 17 38 67
89 56 31 32 33 343536 3766
90 57 58 59 60 61 62 63 64 65

919293 94 95 96 97 98 99 100...— o

Figure 4: Generalized “the table - cloth of Ulam”.

make a huge volume of calculations and graphical works. And for the
aim to receive a fine and interesting picture-beautiful and demonstrated
one, it has been decided to mark the suitable natural numbers with
the dots of the corresponded color. In a result, the natural prime and
twin numbers have been coded with the dots of blue-dark color, the
squares of the odd natural numbers have become the green and the
squares of the even natural numbers and the null too-the red ones. Such
simple color coding or marking of the natural numbers have made the
powerful and strong basement for a new scientific idea and the future
new mathematical science. And later, after deep studying of it, this idea
has been named as the “Generalized spiral of Ulam”. It is graphical
interpretation is shown on the Figures 2 and 4.

“Generalized Spiral of Ulam”

Analogs and derivations of the generalized spiral of Ulam

At once and immediately, when was determined the main
information about such a strange and even the mysterious scientific
object as the spiral of Ulam, there were begun the longest searching
of more detailed descriptions of such spiral in the suited editions,
publications, and manuals on mathematics. But having reconsidered
the hills of books and handbooks on the elementary and higher
mathematics, I was not able to find the information about this neither
the spiral nor the generalized analog of it. Having supposed that
this idea has not even the elementary interest and attention at the
mathematicians, I begun to study this “toy” independently, being
made my own varieties of this spiral for differentiation of my own
entertainment only. In a result of my interactivity, the most improbable
compositions have begun to appear from the natural numbers, which,
after replacement the natural numbers on the color dots, I have received
their own names like these ones: triangular, trapeziform, zigzag, and
so on. There are some types and kinds of such number compositions
below, that have been created on the base of my big interest and my own
version of the generalized spiral of Ulam too (Figures 5-10).

If to look attentively and carefully at the natural number
compositions, we then will not be able to un-notice a new and very
interesting feature --- the square powers of the odd and even natural
numbers, as usual, have created again their special configurations and

21
22 7 20
23 8 1 6 19
249 2 3 4 5 18
251 11 12 13 14 15 16 17
26 27 28 29 30 31 32 33 34 35 36

Figure 5: Triangular spiral. {An}={n}.

50 49
51 26 25 48
52 27 10 9 24 47

53 28 11 1 8 23 46

54 29 12 3 5 6 7 22 45
55 30 13 14 15 16 17 18 19 20 21 44
56 31 32 33 34 35 36 37 38 39 40 41 42 43

Figure 6: Trapeziform spiral. {An}={n}.
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such a manner, that the noticed at the Generalized spiral of Ulam un-
ordinal peculiarity to form their individual sets and subsets in view of
the consequent chains of red and green dots, is nowhere broken in its
new verities (Figures 3-9). Such a peculiarity is more persuasive than any
words can say that perhaps a new and nobody known property of usual
natural numbers is found in mathematics. The further investigations of
this property, discovered at the natural numbers, allowed recognizing
it as the universal low at them and at their algebraic-and-complex
equivalents as well, and it has been officially registered in the State
notary office, in the Murmansk Regional town center, situated on Kola
Peninsula, in Russia.

131
109 129
89 107 127
71 87 105125
55 69 85 103123
41 53 67 83 101121
29 39 51 65 81 99 119
19 27 37 49 63 79 97 117
11 17 25 35 47 61 77 95 115
05 09 15 23 33 4559 75 93 113
01 03 07 13 21 31 43 57 73 91111

Figure 7: Zigzag spiral. {An}={2n — 1}

99 100
80 81 98 101

63 64 79 82 97 103
48 49 62 65 78 83 96 104

35 36 47 50 61 66 77 84 95 105
24 25 34 37 46 51 60 67 76 85 94 106
15 16 23 26 33 38 45 52 59 68 75 86 93 107
8 9 14 17 22 27 32 39 44 53 58 69 74 87 92 108
34710 13 18 21 28 31 40 43 54 57 70 73 88 91 109
01256111219 20 29 30 41 42 55 56 71 72 89 90 110

Figure 8: Serpentine spiral. {An}={n}.

223221219217 215213 211 209 207 205 203 201 199 197 195
225143 145 147 149 151 153 155 157 159 161 163 165 167 193
227141119 117 115 113 111 109 107 105 103 101 99 169 191
229139121 63 65 67 69 71 73 75 77 79 97 171 189
231137123 61 47 45 43 41 39 37 35 81 95 173 187
233135125 59 49 15 17 19 21 23 33 83 93 175 185
235133127 57 51 13 7 5 3 25 31 85 91 177 183
237131129 55 53 11 9 0 1 27 29 87 89 179 181

Figure 9: Funnel-shaped (vortex) spiral. {An}={2n—1}.

Triangular structure

When, as it was seemed, the all possible variants and varieties
of the Generalized spiral of Ulam were invented and compiled, it
is naturally the idea has appeared to create a new natural number
configuration in view e.g. of pyramid or isosceles rectangular
triangle, standing on one of its sides (Figure 11). In a new variant
one more variety of the Generalized spiral of Ulam, it suddenly has
been discovered that the spiral of Ulam, written in such a manner, is
principally differ from its previous variants on the external view and
other parameters (i.e. red and green dots had other configurations
at the schematic diagram). In this triangular structure were seen
clearly the counters of the famous and well-known to everyone in
mathematics the second order curve - the parabola itself (Figures
11 and 12).

Graph-and-Analytical Method

Standard variant

Let us write in common view the consequence of derivation

90

91
24 32 48 54 62 74 84 92
25 33 49 55 63 75 85 93

8 14 20 26 34 38 44 50 56 64 68 76 80 86 94 98
0 9 15 21 27 35 39 45 51 57 65 69 77 81 87 95 99
1 46 10 12 16 18 22 28 30 36 40 42 46 52 58 60 66 70 72 78 82 88 96 100
2357111317 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97101

Figure 10: “The New-York silhouette”. (An}={n}.

01
02 03
04 05 06
07 08 09 10
11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 75 76 77 78
79 80 81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 99 100101 102 103 104 105
106 107 108 109 110 111 112 113 114 115116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

Figure 11: Triangular stepped structureto. {An}={n}.
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X X X X X
16 x X X X X
X X Xx25x x x
X X X X X X x 36
X X X X X X X X X
X X XxX49x x X X X X
X X X X X X X X 64 x x
X X X X X X X X X X X X
x x 8l x X X X X X X X X X
X X X X x X x x100x x X X X
X X X X X X X X X X X X X X X
12Ix x X X X X X X X X X X X X X

X X X X X X XxI144Xx X X X X X X X X

Figure 12: Triangular stepped structure. {An}={n}.

of the second order line equation or the algebraic curve placed
in Cartesian coordinates and going through the five coordinate
points. When used with this method, one can calculate all types of
polynomials and algebraic equations of all quadratic parabolas, the
thin contours of which are formed by the sets of red, red-green and
green dots on the plot [L1] of the natural numbers [{An}={n%}] -
type consequence in the rectangular system of Cartesian coordinates
[60-65].

The equation of the algebraic curve of the second order, that going
through the five points: M, (x,, y,); M, (x,, ¥,)s M, (x,, ¥, M, (x,, y,) u
M, (X5, yS), one can calculate it with the following method, that well-
known in mathematics as the Method of determinants:

Let us write four determinants and their algebraic equalities:

x y 1
M M. A, y)=|x » 1| =0
x y, 1

A(X, Y)=xy, +X,y+Xy, - X,}, = Xy, - X,¥
x y 1
MM, B y)=|x, ¥, /=0
Xy 1
B(x, y)=xy,+X,y+X,y, = X,y, - XY, - X,y
x y 1
MM, C(x, y)=|X; ), 1{=0
X, 1

C(x, y)=xXy, +X,y+X,y, - XY, - Xy, - X,y

x y 1
MM;: D(x,y)=|x, y, 1/=0
x o o»n 1

D(x, y)=xy, +X y+X,y, = Xy, - Xy, - X,¥
Let us write the equation:
PA(X> Y) : C(X> Y)+QB(X> Y)D(X’ Y):O, (1)

where P and Q - any real numbers that are not equal to zero
simultaneously. Let us find such

a relation of P and Q that M, has become to belong to the line (1).
P: Q=[(-B)(x, y,) - D(x,, y,)] : [A(x, ¥,) - C(x,, ¥,)] (2)

Let us find the meanings of P and Q and then insert these meanings
in (1) and then we will try to decide this equation. After collecting like
terms, we will have the algebraic equation of the second order line that
going through the five known points [66,67].

In view of the practical example, let us calculate the equation of the
second order line, the main points of which are situated in the negative
area of the coordinate axis (-XoX+), having determined the meaning
of coordinates of this curve with the help of the plot [L1], where we
will find easily the first five green points of the furthest parabola, the
symmetrical axis of which is parallel to the (-XoX+) coordinate line
and combines with it.

M, (- 130%; 4%2); M, (- 126%; 3%2); M, (- 123%; 24); M, (- 121%;
1%); M, (- 120%; )

Let us find the mediate equations and suited coefficients for
derivation of the desired algebraic equation or the second order line,
going through the five given points.

x y 1
MM, A y)=|(=261/2) 9/2 1|70
(-253/2) 7/2 1
A(x,Y)=(9/2)x - (253/2)y - 1827/4+2277/4 - (7/2)x+(261/2)y
> 2x+8 y+225=0
X y 1
MM.: B(x,y)=|(=253/2) 7/2 1]=0
(-247/2) 5/2 1
B(x, y)=(7/2) x - (247/2) y - 1265/4+1729/4 - (5/2) x+(253/2) y
> x+3y+116=0
X y 1
MM, C(x, y)=|(—247/2) 5/2 1lj=0
(-243/2) 3/2 1
C(x, y)=(5/2) x - (243/2)y - 741/4+1215/4 - (3/2)x+(247/2)y
> 2x+4y+237=0
b y 1
MM D(x,y)=((-243/2) 3/2 1|=0
(-261/2) 9/2 1
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D(x, y)=(3/2) x-(261/2)y — 2187/4+783/4 - (9/2)x+(243/2)y

- 6x+18y+702=0

6.1.6. Let us write the desired equation:

©)

Let us find such a relation of P:Q that the M (-120%;') point
became to belong to this line:

P (2x+8y+225)(2x+4y+237)+Q (x+3y+116)(6x+18y+702)=0

x+3y+116=0 (-241/2)+3/2+232/2=(-3)

6x+18y+702=0 (-1446/2)+18/2+1404/2=(~12)
2x+8y+225=0 (- 241)+4+225=(-12)
2x+4y+237=0
(PIQ)=[-(-3)(-12)]/[(-12)(-2)]
P=(-3) Q=2

Let us open the brackets in the equality (3) and then collect like
terms with taking into account the meaning of the P and Q coefficients:

(- 241)+2+237=(-2)
(P/Q)=(-3)/2

(-3)(2x+8y+225)(2x+4y+237)+2(x+3y+116) (6x+18y+702)=0
-12x* - 72xy - 2772x - 96y” - 8388 - 159975=0
+{12x*+72xy+2796x+108y"+8388+162864=0

12 y*+24 x+2899=0 (4)

Let us determine the coordinates of M, top of the parabola (4). Let
us y,=0.

12 - 0+24x+2889=0 24x=-2889; x,=- 120 % y =0

By turning the X and Y axes on (+ 90°) and (+180°) around the
null-point of the Cartesian coordinates, we then will have four main
quadratic equations:

12y + 24 x+2889=0 y=+ (%2 x*+120 %)

Offered here calculation presents the famous method of determining
the polynomials of those classical or created by the mathematical Nature
of idea itself of the algebraic equations, the assemblage of coordinate
points of which forms the interminable two-color dotted plot [L1] of the
{A, }={n’}-type natural numbers consequence in the rectangular system
of Cartesian coordinates in the given scale and intervals alongside the X
and Y axes and far from them on the unlimited fields of the rectangular
system of Cartesian coordinates [68].

Universal Classifier of the Natural Numbers and Its
Varieties

For successful continuation of the natural numbers studying and
investigation them in the limits of this idea, the necessity has suddenly
appeared how to find or invent independently the universal and
simplest method of the natural numbers classification. After very long
and difficult seeks, it was invented at last such a numerical clepsydra or
mathematical sieve that was able to characterize any natural number
in view of its simplest parameters like these ones: evenness, oddness,
simplicity, divisibility, etc. The universal mathematical natural numbers
detector has been invented at last in the mathematical science.

In fact, the Universal classifier itself is a usual table in view of the
right isosceles triangle that is widened to its horizontal side, and where
the natural numbers are consequently roomed in cells from the point
of their division on all possible whole devisors. It is the Universal

classifier of the natural numbers that now allows to decide all simplest
tasks on the any natural numbers parameterization. The Universal
classifier itself and its varieties are placed below. When analyzing the
Classifier structure and its principles of working, one can easily to see
and understand the real Classifier’s advantages in comparison with the
analogical mathematical tables and schematic diagrams. It is a natural
mini-mathematical Encyclopedia under ones hand.

In all times, there were people that tried to classify all and everything
in the World. In a result, all people’s achievements have begun to
undergo to the common and the all-world classification. Each branch
or direction of the human activity were analyzing by their pioneers or
outstanding scientists. The Mankind, thanks to such clever persons, has
possessed a dozen of sciences and their numerous meanders. All things,
even the tiniest elements of them, have now their shelf, place or cell in
the Great archives, created by the people [69,70].

As for our ideas and methods of classification the rules and lows
for creating the correct different dotted color illustrations, pictures and
plots (graphs) in Cartesian coordinates, this science or mathematical
infinitology requires the strong and ideal classification of all aspects and
ideas in this huge scientific sphere. Having constructed the powerful
base for such a complicated science like the mathematical infinitology,
we must be sure that our system of rules, axioms, classifications and
scientific imaginations, will be strong and undestroyed forever (Figures
13-16).

After a successful creating of three dotted multi-colored graphs
and plots in the rectangular system of Cartesian coordinates, the
most unusual and interesting idea has born suddenly as “Eureka !”
at Archimedes. It suddenly dawned upon me and the main result of
such a premonition, presented here like the Classification table, was
the idea of creating the dotted scientific illustration, the mathematical
interpretation or close similarity to it would be a formula {An}={n},
where the “n” is any natural number, marked in a view of the dot having
the only possible color for this figure. But because of the absence of
the axioms and the already written rules on the natural numbers
color coding, this idea has taken me unawares, and I was needed, by
all means, to find, invent or work out such method of natural number
color coding at once, immediately and independently.

Later, in a result of the purposefulness and own interest, this difficult
task was decided in the shortest time and much enough successfully. To
be more specific, any natural number in the endless consequence of
them, one can code (mark) now with the only color, and as for any figure
color marking, it will be needed only seven “paints” of the rainbow
spectrum for these purposes. The rules of color natural number coding
is presented here in the Classification table below, taking, of course, in
our mind, that each figure on the picture or a plot is represented there
in a view of the suited color dot. Let us introduce with the elementary
color coding rules of the natural numbers and their complex-and-
algebraic equivalents as well [71-75].

Classification Table

1. Any odd natural number, arisen in “() A2” or any other “() A2n”
power, is coded in view of the green dot(s), e.g.: 1>=1, 3>=9,
52=25, etc. The same but the negative odd numbers (-1, -9, -25,
etc.) must be marked in such a manner, i.e. in view of the green
dot(s) on the plot or graph, created in the Cartesian coordinates.

2. Any even natural number, arisen in “() A2” or any other “()
A2n” power, is coded in view of the red dot(s), e.g.: 2°=4, 4°=16,
62=36, etc. The same but the negative even numbers (-4, -16,
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0
1 1
2 1 2
31 - 3
4 1 2 - 4
s 1 - - -5
6 1 2 3 - - 6
7 1 - - - - - 7
8 1 2 - 4 - - - 8
9 1 - 3 - - - - =9
w1 2 - -5 - - - - 10
m 1 - - - = = = - - — 11
21 2 3 4 - 6 - - - — - 12
3 1 - - - = = = - - - - - 13
4 1 2 - - - =7 - - - - - - 14
51 -3 -5 - - - - - - - - - 15
6 1 2 - 4 - - -8 - - - - - - - 16
7 1 - - = = = = = - - - - - - - - 17
%123 - -6 - -9 - - - - - - - - 18
9 1 - - - = = = = = - - - - - - - - - 19
Figure 13: Elementary classifier of the natural numbers.
0
2 12
4 1 2 - 4
6 123 - -6
8 12 -4 - - - 8
1 12 --5- - - -1
0 0
1 1234 -6--- - - 1
2 2
112 ----7-- - - - -1
4 4
112 -4 - --8 - - - - - - -1
6 6
1 123 --6--9 - - - - - - - — 1
8 8
212 -45----1 - - = - - - - - =2
0 0 0
212 - - - - - - - -1 - - - - - - - - - -2
2 1 2
2 1234-6-8- - -1 - - - — — - — - - - =2
4 2 4
212 ---=-=-==- - - -1 - = - - - - - - - - - =2
6 3 6
212 ---=-7-- - - - -1 - - - - - - - - - - - - -2
8 4 8
3123 -56---1 - - - -1 - - - - - - - - - - - - - -3
0 0 5 0

Figure 14: Elementary classifier of the even natural numbers.
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0

1 1

3 1 3

5 1 - 5

7 1 - -7

9 1 3 - - 9

nm 1 - - - - 11

3 1 - - - - - 13

5 13 5 - - - - 15

7 1 - - - - - - - 17

91 - - - - - - - - 19

211 3 -7 - - - - - = 21

2321 - - - - - - - - - - 123

251 -5 - - - - - - - - =125

2713 - - 9 - - - - - - - =27

29 1 - - - = - - - - - - - - - 129

31 1 - - - - - - - - - - - - - - 13
313 - - -1 - - - - - - - - - - 33
35 1 - 57 - - - - - - - - - - - - - 35

Figure 15: Elementary classifier of the odd natural numbers.

00
01 01
03 01 03
06 01 02 03 06
09 01 03 09
12 01 02 03 04 06 12
15 01 03 05 15
18 01 02 03 06 09 18
21 01 03 07 21
24 01 02 03 04 06 08 12
27 01 03 09
30 01 02 03 05 06 10 15
33 01 03 11
36 01 02 03 04 06 09 12 18
39 01 03 13
42 01 02 03 06 07 14 21
45 01 03 05 09 15
48 01 02 03 04 06 08 12 16

Figure 16: Elementary classifier of the {An}=3n view natural numbers.
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-36, etc.) must be marked in such a manner, i.e. in view of
the red dot(s) on the plot or graph, created in the Cartesian
coordinates.

3. Any natural prime or twin numbers must be coded in view
of the blue dot(s), e.g.: 2=2, 3=3, 5=5, etc. The same but the
negative numbers (-2, -3, -5, etc.) must be marked in such a
manner, ie. in view of the blue dot(s) on the plot or graph,
created in the Cartesian coordinates.

4. Any odd natural number, arisen in “() A3” or any other “()
A(2n-1)” power, is coded in view of the dark blue dot(s), e.g.:
3°=27, 5°=125, 7°=343, etc. The same but the negative numbers
(-27, -125, -343, etc.) must be marked in such a manner, i.e.
in view of the dark blue dot(s) on the plot or graph, created
in the Cartesian coordinates, excluding the natural (negative)
numbers, which fall under the condition of the item No.1 of this
Classification, e.g.: 9°=[(3?)]?, etc.

5. Any even natural number, arisen in “() A3” or any other “()
A(2n-1)” power, is coded in view of the violet dot(s), e.g.: 2°=8,
6°=216, 2/9=512, etc. The same but the negative numbers (-8,
-216, -512, etc.)must be marked in such a manner, i.e. in view of
the violet dot(s) on the plot or graph , created in the Cartesian
coordinates, excluding the natural (negative) numbers, which
fall under the condition of the item No. 2 of this Classification,
e.g.: 4°=[(2%)]?, etc.

6. All other odd natural (negative) numbers are coded in view of
the yellow dot(s), e.g.:15, 21, 33, 35, 39, 45, 51, 55, etc., when
created the plot or graph in Cartesian coordinates.

7. All other even natural (negative) numbers are coded in view of
the orange dot(s), e.g.: 6, 10, 12, 14, 18, 20, 22, 24, etc., when
created the plot or graph in Cartesian coordinates.

Such a simple method of any natural number color classification
in a view of the dot, having the own color among the seven paints of
the rainbow spectrum, will allow to create for us not only the most
unusual scientific and art “pictures” but even the fantastic dotted
illustrations and compositions in the rectangular system of Cartesian
coordinates in the vicinity of its “null”-point and at any distance from
it. The modern programmable media products such ones of them
as MAPLE, MathCAD, MATHEMATICA, MATLAB, WOLFRAM,
etc., will help to strength the opportunities for our scientists-
mathematicians and specialists in sphere of IBM PC programming up
to the endless indeed.

And, probably, some new scientific inventions will be made as in
mathematics as in physics, chemistry, astronomy and other famous
sciences and their branches. And, may be, at last, the mathematical
or Cartesian plus-minus infinity (£ e : x y and x y z) will tell to its
investigators all secrets of the prime numbers, twin numbers, proof
the conjunction of Riemann B and explain a lot of other outstanding
scientific and mathematical problems of the past centuries and modern
ones additionally.

Combinatorics

Variants of color coding of natural numbers and formed by
them consequences

After working out the principles of natural numbers color coding
in the limits of this idea, it has appeared the possibility to make and
create as manually as electronically the most variable, dependent on

their chromaticity and color compositing the dotted illustrations and
pictures or scientific dotted - colored graphs of the natural numbers and
formed by them consequences in the rectangular system of Cartesian
coordinates.

One - color graphs:

1. Green (gr) 2. Red (rd) 3. Blue (bl) 4. (c) Light blue (Ib) 5. Violet
(vt) 6. Yellow (yl) 7. Orange (rn)

C=7!/[11(7-1)1] C=7

Two-color graphs:

1.1-2 2.1-3 3.14 4.1-5 5.1-6 6.1-7 7.2-3
8.2-4 9.2-5 10.2-6 11.2-7 12.3-4 13.3-5 14.3-6
15.3-7 16.45 17.4-6 18.4-7 19.5-6 20.5-7 21.6-7
C=7!/[2! (7 -2)!] C=21
Three-color graphs:
1.1-2-3  2.1-2-4 3.1-2-5 4.1-2-6 5.1-2-7 6.1-3-4 7.1-3-5
8.1-3-6 9.1-3-7 10.1-4-5 11.1-4-6 12.1-4-7 13.1-5-6 14.1-5-7
15.1-6-7 16.2-3-4 17.2-3-5 18.2-3-6 19.2-3-7 20.2-4-5 21.2-4-6
22.2-4-7 23.2-5-6 24.2-5-7 25.2-6-7 26.3-4-5 27.3-4-6 28.3-4-7
29.3-5-6 30.3-5-7 31.3-6-7 32.4-5-6 33.4-5-7 34.4-6-7 35.5-6-7
C=71[3!1(7-3)1] C=35
Four-color graphs:
1.1-2-34 2.1-2-3-5 3.1-2-3-6 4.1-2-3-7
5.1-2-4-5 6.1-2-4-6 7.1-2-4-7 8.1-2-5-6
9.1-2-5-7 10. 1-2-6-7 11.1-3-4-5 12.1-3-4-6
13.1-3-4-7 14.1-3-5-6 15.1-3-5-7 16. 1-3-6-7
17.1-4-5-6 18.1-4-5-7 19. 1-4-6-7 20. 1-5-6-7
21. 2-3-4-5 22.2-3-4-6 23.2-3-4-7 24.2-3-5-6
25. 2-3-5-7 26. 2-3-6-7 27.2-4-5-6 28. 2-4-5-7
29. 2-4-6-7 30. 2-5-6-7 31.3-4-5-6 32.3-4-5-7
33.3-4-6-7 34. 3-5-6-7 35.4-5-6-7 36. 0-0-0-0
C=7!/[4! (7 - 4)!] C=35
Five-color graphs:
1.1-2-3-4-5 2.1-2-3-4-6 3.1-2-3-4-7 4.1-2-3-5-6
5.1-2-3-5-7 6.1-2-3-6-7 7.1-2-4-5-6 8.1-2-4-5-7
9.1-2-4-6-7 10. 1-2-5-6-7 11. 1-3-4-5-6 12.1-3-4-5-7
13.1-3-4-6-7 14.1-3-5-6-7 15. 1-4-5-6-7 16. 2-3-4-5-6
17.2-3-4-5-7 18. 2-3-4-6-7 19. 2-3-5-6-7 20. 2-4-5-6-7
21. 3-4-5-6-7 22.0-0-0-0-0 23. 0-0-0-0-0 24. 0-0-0-0-0
C=7Y/[5! (7 - 5)!] C=21
Six-color graphs:
1.1-2-3-4-5-6  2.1-2-3-4-5-7  3.1-2-3-4-6-7  4.1-2-3-5-6-7
5.1-2-4-5-6-7  6.1-3-4-5-6-7 7.2-3-4-5-6-7 8. 0-0-0-0-0-0
C=7!/[6! (7 - 6)!] C=7

Seven-color graphs:

1. 1-2-3-4-5-6-7
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C=7/[7' (7 -7)!] C=1

In a result of our elementary calculations with using the formulas,
that well-known in combinatorics, we have received at last exactly
127 different compositions of the seven color-coded consequences of
the natural numbers. Such a big quantity of combinations between
the numbers and seven main colors allows to the makers of color
illustrations “to draw” the natural mathematical Hermitage, consisting
of the infinitely huge quantity of the scientific illustrations, borne by
the theory of dot-color coding of the natural numbers on the immense
spaces of the Cartesian or mathematical plus - minus infinity (+ oo: xy
and xyz) (Mathematical rose in Figure 17).

Conclusion

Represented here in this article a new scientific method of
graphical visualization of the natural numbers and consequences,
forming by them, in view of chains of the colored dotes and sets in
2D Cartesian coordinates became possible, when the Author of this
article salved the nonstandard mathematical task, having united the
“Ulam’s spiral” and own invention with the rectangular system of
Cartesian coordinates. The bright and very impressive illustrations
were appearing in a result, as if someone has correctly distributed
the confetti on the surface of the magic field, and even their Inventor
himself was surprised very much observe his “drawings” Looking at
my graphs and plots, the thought was born that no one in the World
can create such “pictures” but Mr. Benoit B. Mandelbrot, the famous
American mathematician that used in his mathematical creativity
the complex numbers, his own fantasy and the simplest IBC PC
programmable media products as well. The results of Mandelbrot’s
work are known to everybody, but new graphs and plots made by me
are known to nobody to my big regret.

Many centuries ago, the French scientist R. Descartes has invented
the method of representation the suited information in view of
mathematical lines, curves and the schematic diagrams in a symbol
net, where two lines were crossing under the angle of 90° forming a
zero-point as the beginning of this system. But the most interesting
illustrations in this system, named letter in honor of R. Descartes,

Figure 17: Mathematical rose.

were appearing when the mathematicians dissolved graphically the
equations and different functional dependences like y=x*, y=x> and
a lot of others. Now, almost four century later from the invention of
Cartesian coordinates system, this great idea of the French academician
has become the first media in many sciences for decision of different
mathematical tasks that can now decide any educated person from the
school pupils and ending the Nobel Prize laureates.

When the first natural numbers plots were created by me in the
Cartesian coordinates, it has been noticed that the investigated idea
has relation not only to a method of studying the natural numbers and
their complex-algebraic equivalents but, how strange it may be, to the
mathematical or Cartesian plus-minus infinity, the perfect theory of its
studying and representing is worked by no one scientists up to this day.
The graphic-and analytic method of visualization of natural numbers
presented in this article opens widely the doors and gates for all and any
persons, who will introduce with the main principles of this idea. And
everything that it is needed for this work --- the elementary interest to
this new idea in mathematics. Thanks to this method, one can make in
the rectangular system of Cartesian coordinates some beautiful color
dotted “photo portrait” of any natural number, for example, 1, 2, 3, 5,
and 17. 35 etc., or the “picture” any, formed from them, consequence,
such ones as the prime numbers, twin-numbers, Fibonacci numbers
and etc.

In this article, special attention is paid to the specific rules
and methods of calculation and creating the prime numbers
graphs and other plots in Cartesian coordinates, having provided
them preliminarily with a mathematical tables, where are listed
all necessary information to create with their help the main
mathematical “photos” of these consequences in the rectangular
system of Cartesian coordinates. The method allows making the
same illustrations in axonometric projection when the three axis
are under the angle of 120° to one another. It is also existing the
method of programming the Cartesian system with the help of the
correspondence basic modules-stencils that can create the initial
variant of the future colored - dotted mathematical illustrations that
will allow to convert this idea into the huge interminable scientific
kaleidoscope or mathematical casket with dozens of drawings and
illustrations for further professional studying the natural numbers,
their complex-algebraic equivalents themselves, and their colored
graphics and the mathematical infinity as well.

List of Illustrations

1. Fragment of the interminable red-green dotted plot of the
Natural numbers consequence in Cartesian coordinates.

2. Fragment of the C++ - made interminable red dotted plot
of the Natural prime numbers consequence in Cartesian
coordinates.

3. Fragment of the interminable red-green dotted plot of the
Natural - odd-even - numbers consequence in Cartesian
coordinates.

4. Big Bang or four Black Holes merging (Fragment of the
mathematical model).

5. Fragment of the interminable dark-blue dotted plot of the
Natural twin numbers consequence in Cartesian coordinates
(Figure 18-22).
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List of Illustrations

3. {An} = {2n - 1)* U (4n?)}

1. {An} = {n?} Figure 20: Fragment of the interminable red-green dotted plot of the Natural —

odd-even — numbers consequence in Cartesian coordinates.
Figure 18: Fragment of the interminable red-green dotted plot of the Natural

numbers consequence in Cartesian coordinates.

4. Big Bang

2 A _ Figure 21: Fragment of the interminable red-green dotted plot of the Natural
. { n} - {Ttn} numbers consequence view or Big Bang.

Figure 19: Fragment of the interminable red dotted plot of the Natural prime
numbers consequence in Cartesian coordinates.
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5. {An}={7tn}

Figure 22: Fragment of the interminable dark-blue dotted plot of the Natural
twin numbers consequence in Cartesian coordinates.
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Properties of Nilpotent Orbit Complexification

Peter Crooks*
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Abstract

We consider aspects of the relationship between nilpotent orbits in a semisimple real Lie algebra g and those in
its complexification g... In particular, we prove that two distinct real nilpotent orbits lying in the same complex orbit are
incomparable in the closure order. Secondly, we characterize those g having non-empty intersections with all nilpotent
orbits in g... Finally, for g quasi-split, we characterize those complex nilpotent orbits containing real ones.

Keywords: Nilpotent orbit; Quasi-split Lie algebra; Kostant-
Sekiguchi correspondence

1. Introduction
1.1 Background and statement of results

Real and complex nilpotent orbits have received considerable
attention in the literature. The former have been studied in a variety
of contexts, including differential geometry, symplectic geometry,
and Hodge theory [1]. Also, there has been some interest in concrete
descriptions of the poset structure on real nilpotent orbits in specific
cases [2,3]. By contrast, complex nilpotent orbits are studied in algebraic
geometry [4,5,6] and representation theory — in particular, Springer
Theory [7].

Attention has also been given to the interplay between real and
complex nilpotent orbits, with the Kostant-Sekiguchi Correspondence
being perhaps the most famous instance [8]. Accordingly, the present
article provides additional points of comparison between real and
complex nilpotent orbits. Specifically, let g be a finite-dimensional
semisimple real Lie algebra with complexification g. Each real
nilpotent orbit O < g lies in a unique complex nilpotent orbit O.c g,
the complexification of O. The following is our main result.

Theorem 1: The process of nilpotent orbit complexification has the
following properties.

(i) Every complex nilpotent orbit is realizable as the complexification
of a real nilpotent orbit if and only if g is quasi-split and has no simple
summand of the form so (2n+1, 2n —1).

(ii) If g is quasi-split, then a complex nilpotent orbit © < g is
realizable as the complexification of a real nilpotent orbit if and only if
© is invariant under conjugation with respect to the real form g  g...

(iii) If O, 0, c g are real nilpotent orbits satisfying (O,).=(O,).
then either O, =0, or these two orbits are incomparable in the closure order.

1.2 Structure of the article

We begin with an overview of nilpotent orbits in semisimple real
and complex Lie algebras. In recognition of Theorem 1 (iii), and of the
role played by the unique maximal complex nilpotent orbit ©,_(g.)
throughout the article, Section 2.2 reviews the closure orders on the sets
of real and complex nilpotent orbits. In Section 2.3, we recall some of
the details underlying the use of decorated partitions to index nilpotent
orbits.

Section 3 is devoted to the proof of Theorem 1. In Section 3.1, we
represent nilpotent orbit complexification as a poset map ¢, between
the collections of real and complex nilpotent orbits. Next, we show this

map to have a convenient description in terms of decorated partitions.
Section 3.2 then directly addresses the proof of Theorem 1 (i), formulated
as a characterization of when @, is surjective. Using Proposition 2, we
reduce this exercise to one of characterizing surjectivity for g simple.
Together with the observation that surjectivity implies g is quasi-split
and is implied by g being split, Proposition 2 allows us to complete the
proof of Theorem 1 (i).

We proceed to Section 3.3, which provides the proof of Theorem
1 (ii). The essential ingredient is Kottwitz’s work [9]. We also include
Proposition 3, which gives an interesting sufficient condition for a
complex nilpotent orbit to be in the image of ¢,_.

In Section 3.4, we give a proof of Theorem 1 (iii). Our proof makes
extensive use of the Kostant-Sekiguchi Correspondence, the relevant
parts of which are mentioned.

2. Nilpotent Orbit Generalities
2.1 Nilpotent orbits

We begin by fixing some of the objects that will persist throughout
this article. Let g be a finite-dimensional semisimple real Lie algebra
with adjoint group G. Also, let g.:=g®, . be the complexification of g,
whose adjoint group is the complexification G.. One has the adjoint
representations

Ad:G>GL(g) and AdG_> GL(g,.)

of G and G, respectively. Differentiation then gives the adjoint
representations of g and g, namely

ad:g>gl(g) and ad ;g ~>gl(g.).

Recall that an element &eg (resp. £eg.) is called nilpotent
if ad(&):g>g (resp. ad.(&):g.>g.) is a nilpotent vector space
endomorphism. The nilpotent cone Mg) (resp. Mg.)) is then the
subvariety of nilpotent elements of g (resp. g.). A real (resp. complex)
nilpotent orbit is an orbit of a nilpotent element in g (resp. g.) under the
adjoint representation of G (resp. G,.). Since the adjoint representation
occurs by means of Lie algebra automorphisms, a real (resp. complex)
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nilpotent orbit is equivalently defined to be a G -orbit (resp. G.-orbit)
in M(g) (resp. ./\/'(gc)). By virtue of being an orbit of a smooth G -action,
each real nilpotent orbit is an immersed submanifold of g. However, as
G, is a complex linear algebraic group, a complex nilpotent orbit is a
smooth locally closed complex subvariety of g_..

2.2 The closure orders

The sets Mg)/G and A{g.)/G, of real and complex nilpotent
orbits are finite and carry the so-called closure order. In both cases, this
is a partial order defined by

0, <0, ifand only if O, ¢ 0, (1)

In the real case, one takes closures in the classical topology on
g. For the complex case, note that a complex nilpotent orbit O is a
constructible subset of g, so that its Zariski and classical closures agree.
Accordingly, @ shall denote this common closure.

Example 1: Suppose that g.=sl (C), whose adjoint group is
G.=PSL (C). The nilpotent elements of sl (C) are precisely the
nilpotent n x n matrices, so that the nilpotent PSL (C) -orbits are
exactly the (GL, (C)-) conjugacy classes of nilpotent matrices. The latter
are indexed by the partitions of # via Jordan canonical forms. Given a
partition )L:()Ll,/lz,. ..,)Lk) of n, let 61 be the PSLn((C)—orbit of the nilpotent
matrix with Jordan blocks of sizes /\1,)(2,. .. ,/\k, read from top-to-bottom.
Itis a classical result of Gerstenhaber [10] that ©,<0, if and only if A<y
in the dominance order [11].

The poset Mg,.)/G,, has a unique maximal element G)reg( 9,.), called
the regular nilpotent orbit. It is the collection of all elements of g which
are simultaneously regular and nilpotent. In the framework of Example

@reg (sl (C)) corresponds to the partition(n).

2.3 Partitions of nilpotent orbits

Generalizing Example 1, it is often natural to associate a partition
to each real and complex nilpotent orbit. One sometimes endows these
partitions with certain decorations and then uses decorated partitions
to enumerate nilpotent orbits. It will be advantageous for us to recall
the construction of the underlying (undecorated) partitions. Our
exposition will be largely based on Chapters 5 and 9 of [12].

Suppose that g comes equipped with a faithful representation g
c gl(V)=End(V), where V is a finite-dimensional vector space over
F=R or C. The choice of V determines an assignment of partitions to
nilpotent orbits in both g and g,.. To this end, fix a real nilpotent orbit
O < Mg) and choose a point €€ O . We may include £ as the nilpositive
element of an s (R) —triple (&h,n), so that

[&n]=h,[h,E]=2& [h,n]=-2n

Regarding V as an sl,(R)-module, one has a decomposition into
irreducibles,

k
V=G-)Vw

where V denotes the irreducible A, -dimensional representation of
sL(R) over F. Let us require that A > /\ .. ZA,sothat (A A,...,A,) is
a partition of dim,(V). Accordlngly, we deﬁne the partition of (9 to be

MO):=(A 4,00,
It can be established that A(O) depends only on O.

The faithful representation V of g canonically gives a faithful
representation V of I Indeed, if Vis over C, then one has an inclusion
9. < gl(V) (so V=v).If Vis over R, then the inclusion g = gl(V)

complexifies to give a faithful representation g, < gl(V,) (ie. V=7,).
In either case, one proceeds in analogy with the real nilpotent case,
using the faithful representation to yield a partition A(©) of a complex
nilpotent orbit © = M{g). The only notable difference with the real case
is that sI,(R) is replaced with s[(C).

Example 2: One can use the framework developed above to index
the nilpotent orbits in 5[ (C) using the partitions of n. This coincides
with the indexing given in Example 1.

Example 3: The nilpotent orbits in s[(R) are indexed by the
partitions of n, after one replaces certain partitions with decorated
counterparts. Indeed, if A is a partition of # having only even parts, we
replace A with the decorated partitions A, and A . Otherwise, we leave
A undecorated.

Example 4: Suppose that # > 3 and consider g=su(p,q) with 1<g<p
and p+q=n. This Lie algebra is a real form of s[ (C). Now; let us regard a
partition of # as a Young diagram with # boxes. Furthermore, recall that
a signed Young diagram is a Young diagram whose boxes are marked
with + or —, such that the signs alternate across each row [12]. We
restrict our attention to the signed Young diagrams of signature (p,q),
namely those for which + and — appear with respective multiplicities p
and q. It turns out that the nilpotent orbits in su(p,q) are indexed by the
signed Young diagrams of signature (p,g).

Example 5: Suppose that g =s0, (C) with n > 4. Taking our faithful
representation to be C*', nilpotent orbits in so, (C) are assigned
partitions of 2n. The partitions realized in this way are those in which
each even part appears with even multiplicity. One extends these
partitions to an indexing set by replacing each A having only even parts
with the decorated partitions A and A .

Example 6: Suppose that n > 3 and consider g.=so(p,q) with
1<q<p and p+q=n. Note that s0(p,q) is a real form of g .=s0 (C). As
with Example 4, we will identify partitions of n with Young diagrams
having n boxes. We begin with the signed Young diagrams of signature
(p,q) such that each even-length row appears with even multiplicity
and has its leftmost box marked with +. To obtain an indexing set for
the nilpotent orbits in so(p,q), we decorate two classes of these signed
Young diagrams Y. Accordingly, if Y has only even-length rows, then
remove Y and add the four decorated diagrams Y, ,Y ,Y and Y .
Secondly, suppose that Y has at least one odd- length row,  and that each
such row has an even number of boxes marked +, or that each such row
has an even number of boxes marked —. In this case, we remove Y and
add the decorated diagrams Y, and Y.

3. Nilpotent Orbit Complexification

3.1 The complexification map

There is a natural way in which a real nilpotent orbit determines a
complex one. Indeed, the inclusion Mg) = M (g.) gives rise to a map.

<pg:N(g)/G9J\/’(gC)/G
o 0.

Concretely, O is just the unique complex nilpotent orbit containing
O, and we shall call it the complexification of O. Let us then call ¢_ the
complexification map for g.

It will be prudent to note that the process of nilpotent orbit
complexification is well-behaved with respect to taking partitions.
More explicitly, we have the following proposition.
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Proposition 1: Suppose that g is endowed with a faithful
representation g  gl(V). If Ois a real nilpotent orbit, then A(O.)=MO).

Proof: Choose a point £ O and include it in an s[(R)-triple (§,h,7)
as in Section 2.3. Note that (§,4,7) is then additionally an s[ (C)-triple
in g.. Hence, we will prove that the faithful representation 7 of 9c
decomposes into irreducible sl (C)-representations according to the
partition A(O).

Let us write A(O)=(A,,...,A)), so that
()

is the decomposition of V into irreducible sl (R)-representations. If V'
is over C, then y =y and (2) is a decomposition of J/ into irreducible
s[,(C)-representations. If V is over R, then ¥ =V, and

Ve = (_,B(V}/ )e

is the decomposition of ¥ into irreducible representations of sL(C). In
each of these two cases, we have A(O,)=A(O).

Proposition 1 allows us to describe ¢_in more combinatorial terms.
To this end, fix a faithful representation g  gl(V). As in Examples 2-6,
we obtain index sets I(g) and I(g..) of decorated partitions for the real
and complex nilpotent orbits, respectively. We may therefore regard ¢
as a map

@, 1(g) > 1(g,).

Now, let P(g.) be the set of all partitions of the form A(©), with ©
g, a complex nilpotent orbit. One has the map

1(g) > P(g.),

sending a decorated partition to its underlying partition. Proposition 1
is then the statement that the composite map

1(9)—2>1(g.) > P(g.)

sends an index in I(g) to its underlying partition. Let us denote this
composite map by y :I(g)->P(g.).

We will later give a characterization of those semisimple real Lie
algebras g for which ¢_is surjective. To help motivate this, we investigate
the matter of surjectivity in some concrete examples.

Example 7: Recall the parametrizations of nilpotent orbits in
g=sL(R) and g_=s[,(C) outlined in Examples 3 and 2, respectively.
We see that I(g)=P(g..) and 0=V, The surjectivity of , then follows
immediately from that of y .

Example 8: Let the nilpotent orbits in g=su(n,n) be parametrized
as in Example 4. We then have g =sl, (C), whose nilpotent orbits are
indexed by the partitions of 2xn. Given such a partition A, let Y denote
the corresponding Young diagram. Since Y has an even number of
boxes, it has an even number, 2k, of odd-length rows. Label the leftmost
box in k of these rows with +, and label the leftmost box in each of
the remaining k rows with —. Now, complete this labelling to obtain
a signed Young diagram ¥, noting that ¥ then has signature (n,n).
Hence, ¥ corresponds to a nilpotent orbit in su(n,n) and y/n(f )=A.
It follows that y, is surjective. Since I(g)=P(g.) and 0=y, we have
shown ¢_ to be surjective. A similar argument establishes surjectivity
when g=su(n+1,n).

Example 9: Let us consider g=so(2n+2,2n), with nilpotent orbits
indexed as in Example 6. Noting Example 5, a partition A of 4n+2

represents a nilpotent orbit in g_=s0, ,(C) if and only if each even part

of A occurs with even multiplicity. Since 4n+2 is even and not divisible
by 4, it follows that any such A has exactly 2k odd parts for some k> 1.
Let Y be the Young diagram corresponding to A, and label the leftmost
box in k-1 of the odd-length rows with +. Next, label the leftmost box
in each of k-1 different odd-length rows with —. Finally, use + to label
the leftmost box in each of the two remaining odd-length rows. Let ¥
be any completion of our labelling to a signed Young diagram, such that
the leftmost box in each even-length row is marked with +. Note that ¥
has signature (2n+2,2n). It follows that ¥ represents a nilpotent orbit
in s0(2n+2,2n) and w,(¥)= 1. Furthermore, I(g)=P(g.) and ¢ =y,
so that ¢_is surjective.

Example 10: Suppose that g=so(2n+2,2n-1), whose nilpotent
orbits are parametrized in Example 6. Let the nilpotent orbits in
g=50, (C) be indexed as in Example 5. There exist partitions of 4n
having only even parts, with each part appearing an even number of
times. Let A be one such partition, which by Example 6 represents a
nilpotent orbit in so0, (C). Note that every signed Young diagram with
underlying partition A must have signature (2n,2n). In particular, A
cannot be realized as the image under y_of a signed Young diagram
indexing a nilpotent orbit in s0(2n+2,2n-1). It follows that y_and ¢,
are not surjective.

3.2 Surjectivity

We now address the matter of classifying those semisimple real Lie
algebras g for which ¢_is surjective. To proceed, we will require some
additional machinery. Let p < g be the (-1)-eigenspace of a Cartan
involution, and let a be a maximal abelian subspace of p. Also, let fj be
a Cartan subalgebra of g containing a, and choose a fundamental Weyl
chamber C ¢ h. Given a complex nilpotent orbit © < g, there exists
an sl,(C)-triple (§,h,1) in g with the property that {€© and heC. The
element h€C is uniquely determined by this property, and is called the
characteristic of ©.

Theorem 1 of [13] then states that ©g = if and only if hea. If g is
split, then a=0, and the following lemma is immediate.

Lemma 1: If g is split, then ¢_is surjective.

Let us now consider necessary conditions for surjectivity. To this
end, recall that g is called quasi-split if there exists a subalgebra b
C g such that b, is a Borel subalgebra of g.. However, the following
characterization of being quasi-split will be more suitable for our
purposes.

Lemma 2: The Lie algebra g is quasi-split if and only if ©_(g.)
is in the image of ¢_. In particular, g being quasi-split is a necessary
condition for ¢_ to be surjective.

Proof: Proposition 5.1 of [14], states that g is quasi-split if and only
if g contains a regular nilpotent element of g.. Since @reg(gc) consists
of all such elements, this is equivalent to having @reg(gc)mg # hold.
This latter condition holds precisely when ©_(g) is in the image of ¢.

Lemmas 1 and 2 establish that ¢ being surjective is a weaker
condition than having g be split, but stronger than having g be quasi-
split. Furthermore, since su(n,n) is not a split real form of sl (C),
Example 8 establishes that surjectivity is strictly weaker than g being
split. Yet, as 50(2n+2,2n~1) is a quasi-split real form of s0, (C), Example
10 demonstrates that surjectivity is strictly stronger than having g be
quasi-split. To obtain a more precise measure of the strength of the
surjectivity condition, we will require the following proposition.

Proposition 2: Suppose that g decomposes as a Lie algebra into
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k
9= ('Bg,/ >
=

Where 0,50, are simple real Lie algebras. Let Gy
respective adjoint groups.

G, denote the

(i) The map ¢ Mg)/G>Mg,)/G,. is surjective if and only each
orbit complexification map P, N9/ G, > N((8,))c)/(G)e s
surjective.

(ii) The Lie algebra g is quasi-split if and only if each summand g,
is quasi-split.

Proof: For each je{1,...,k}, let :9->9; be the projection map. Note
that & eg is nilpotent if and only if ﬂ(f) 1s nilpotent in g, for each j. It
follows that ‘

7 N@-] V)
£ (7, O

defines an isomorphism of real varieties. Note that G = H;Gx with the

former group acting on Mg) and the latter group acting on the product
of nilpotent cones.

One then sees that 7 is G-equivariant, so that it descends to a
bl]eCthn

T N(g)/G—>HN(g )/ G,

Analogous c0n51derat10ns give a second bijection
we:N(ge)/ Ge > HN((GJ)C)/(G )c-

Furthermore, we have the commutative diagram
k
N(g)/G—)H}_:lJ\/’(gj)/Gj

Lo, T, (3)

e ‘
N(gc)/Gc_)H = N((g,‘)c)/(G’)c
Hence, ?, is surjective if and only if H —?y, is so, proving ).

By Lemma 2, proving (ii) will be equivalent to proving that © _ (g.)
is in the image of ?, if and only if ©, ((g )) is in the image of P, for
all j. Using the dlagram (3), this will follow from our proving that the
image of ©,_ (g.) under 7z is the k-tuple of the regular nilpotent orbits
in the ( gj) o namely that

b _ k

7¢(0,(8¢)) = (O, ((8,)c)) -

To see this, note that Hi:pmg((gj)c) is the G. = l_[jfl(G/.)C -orbit
of maximal dimension in H;N ((8,)c) . This orbit is therefore the
image of O, (g.) under the G -equivariant variety isomorphism

N(ge) = Hj:N ((8,)c) » implying that (4) holds.

4

In light of Proposition 2, we address ourselves to classifying
the simple real Lie algebras g with surjective orbit complexification
maps ¢ . Noting Lemma 2, we may assume g to be quasi-split. Since
g being split is a sufficient condition for surjectivity, we are further
reduced to finding those quasi-split simple g which are non-split but
have surjective ¢_. It follows that g belongs to one of the four families
su(n,n), su(n+1,n), so(2n+2,2n), and so(2n+1,2n—1), or that g=EIIl,
the non-split, quasi-split real form of E, [15]. Our examples establish

that ?, is surjective for g=su(n,n), g=su(n+1,n), and g=s0(2n+2,2n),
while Example 10 demonstrates that surjectivity does not hold for
g=50(2n+1,2n-1). Also, a brief examination of the computations in
[3] reveals that ¢_ is surjective for g=EII. We then have the following
characterization of the surjectivity condition.

Theorem 2: If g is a semisimple real Lie algebra, then ¢_ is surjective

if and only if g is quasi-split and has no simple summand of the form
s0(2n+1,2n-1).

Proof: If ¢_is surjective, then Lemma 2 implies that g is quasi-
split. Also, Proposition 2 implies that each simple summand of g has
a surjective orbit complexification map, and the above discussion then
establishes that g has no simple summand of the form so(2n+1,2n-1).
Conversely, assume that g is quasi-split and has no simple summand of
the form so(2n+1,2n—1). By Proposition 2 (ii), each simple summand
of g is quasi-split. Furthermore, the above discussion implies that
the only quasi-split simple real Lie algebras with non-surjective orbit
complexification maps are those of the form so(2n+1,2n-1). Hence,
each simple summand of g has a surjective orbit complexification map,
and Proposition 2 (i) implies that ¢_is surjective.

3.3 The Image of ¢_

Having investigated the surjectivity of ¢ , let us consider the more
subtle matter of characterizing its image. Accordingly, let o_:g g,
denote complex conjugation with respect to the real form g < g... The
following lemma will be useful.

Lemma 3: If © C g, is a complex nilpotent orbit, then so is 0,(0).
Proof: Note that ¢_integrates to a real Lie group automorphism
g
(G >(GL)
where (G_),. is the connected, simply-connected Lie group with Lie
algebra g.. If ge (G.). and eg,, then
0 (Ad(@)(§)=Ad(x(@))(0, (D).

Hence, o, sends the (G),.. -orbit of & to the (G_),. -orbit of ag(f). To
complete the proof, we need only observe that (G_),. -orbits coincide
with G_-orbits in g, and that ag(f) is nilpotent whenever ¢ is nilpotent.

sC

We may now use o, to explicitly describe the image of ¢ when g is
quasi-split.

Theorem 3: If © is a complex nilpotent orbit, the condition
0,(©)=6 is necessary for O to be in the image of ¢ . If g is quasi-split,
then this condition is also sufficient.

Proof: Assume that © belongs to the image of ¢ , so that there exists
£e© Nng. Note that 09(9) is then the complex nilpotent orbit containing
0,(§)=¢, meaning that ¢, (©)=6. Conversely, assume that g is quasi-split
and that ¢, (©)=6. The latter means precisely that © is defined over R
with respect to the real structure on g, induced by the inclusion g < g_..
Theorem 4.2 of [9] then implies that ©Ng=J.

Using Theorem 3, we will give an interesting sufficient condition for
a complex nilpotent orbit to be in the image of ¢_ when g is quasi-split.
In order to proceed, however, we will need a better understanding of
the way in which o, permutes complex nilpotent orbits. To this end, we
have the following lemma.

Lemma 4: Suppose that g comes with the faithful representation
g < gl(V), where V' is over R. If O is a complex nilpotent orbit, then
Mo (©)=A(O).
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Proof: Choose an sl (C)-triple (&h,y) in g with £€€O. Since a,
preserves Lie brackets, it follows that (og(f),og(h),og(n)) is also an
sl (C)-triple. The exercise is then to show that our two sl (C)-triples
give isomorphic representations of sI,(C) on y =y, . For this, it will
suffice to prove that h and o (h) act on V with the same eigenvalues,
and that their respective eigenspaces for a given eigenvalue are equi-
dimensional. To this end, let 0,:V >V, be complex conjugation with
respect to V < V.. Note that

ag(h).(av(x))zav(h.x)

forall xe Ve where . is used to denote the action of g.on V.. Hence, ifx
is an eigenvector of h with eigenvalue A€R, then o, (x) is an eigenvector
of O'g(h) with eigenvalue A. We conclude that h and og(h) have the same
eigenvalues. Furthermore, their respective eigenspaces for a fixed
eigenvalue are related by o, and so are equi-dimensional.

We now have the following

Proposition 3: Let g be a quasi-split semisimple real Lie algebra
endowed with a faithful representation g  gl(V), where V is over R. If
© is the unique complex nilpotent orbit with partition A(©), then © is
in the image of .

Proof: By Lemma 4, 0,(©) is a complex nilpotent orbit with
partition A(©), and our hypothesis on O gives O'g((‘)):(‘). Theorem 3
then implies that © is in the image of ¢ .

A few remarks are in order.

Remark 1: One can use Proposition 3 to investigate whether ?,
is surjective without appealing to the partition-type description of ¢_
discussed in Section 3.1. For instance, suppose that g=s0(2n+2,2n), a
quasi-split real form of g.=s0, (C). We refer the reader to Example 5
for the precise assignment of partitions to nilpotent orbits in so, (C).
In particular, note that a complex nilpotent orbit is the unique one with
its partition if and only if the partition does not have all even parts.
Furthermore, as discussed in Example 9, there do not exist partitions
of 4n+2 having only even parts such that each part appears with even
multiplicity. Hence, each complex nilpotent orbit is specified by its
partition, so Proposition 3 implies that @, is surjective.

Remark 2: The converse of Proposition 3 does not hold. Indeed,
suppose that g .=50(2n,2n), the split real form of g _=s0, (C). Recalling
Example 5, every partition of 4n with only even parts, each appearing
with even multiplicity, is the partition of two distinct complex nilpotent
orbits. Yet, Lemma 1 implies that ®, is surjective, so that these orbits are
in the image of ¢ .

3.4 Fibres

In this section, we investigate the fibres of the orbit complexification
map (pg:./\/'(g)/ Ge./\/'(gc)/ G, In order to proceed, it will be necessary to
recall some aspects of the Kostant-Sekiguchi Correspondence. To this
end, fix a Cartan involution 6:g->g. Letting £ and p denote the 1 and
(—1)-eigenspaces of 0, respectively, we obtain the internal direct sum
decomposition

g=t ®p.
This gives a second decomposition
8=t Ope

where £ and p,, are the complexifications of £ and p, respectively. Let
K< Gand K c G, be the connected closed subgroups with respective
Lie algebras £ and .. The Kostant-Sekiguchi Correspondence is one

between the nilpotent orbits in g and the K .-orbits in the (K -invariant)
subvariety p."W(g,) of g,.

Theorem 4: (The Kostant-Sekiguchi Correspondence) There is a
bijective correspondence

Mg)/G>(pnMg))/K,.
orP o
with the following properties.

(i) It is an isomorphism of posets, where (p . M(g,.))/K . is endowed
with the closure order (??).

(ii) If Ois areal nilpotent orbit, then O and O are K-equivariantly
diffeomorphic.

The first property was established by Barbasch and Sepanski in
[16], while the second was proved by Vergne in [17]. Each paper makes
extensive use of Kronheimer’s desciption of nilpotent orbits from [18].

We now prove two preliminary results, the first of which is a direct
consequence of the Kostant-Sekiguchi Correspondence.

Lemma 5: If O is a real nilpotent orbit, then O is the unique G-orbit
of maximal dimension in O .

Proof: Suppose that O'=O is another G -orbit lying in . By
Property (i) in Theorem 4, it follows that (O')" is an orbit in (0")
different from OV. However, OV is an orbit of the complex algebraic
group K. under an algebraic action, and therefore is the unique orbit
of maximal dimension in its closure. Hence, dim,((0')") <dim_(O").
Property (ii) of Theorem 4 implies that the Kostant-Sekiguchi
Correspondence preserves real dimensions, so that dim,(0") <dim,(O).

We will also require some understanding of the relationship
between the G-centralizer of {eg and the G_-centralizer of &, viewed
as an element of g.. Denoting these centralizers by G, and (G.),
respectively, we have the following lemma.

Lemma 6: If £ g, then Gs is a real form of (GC)E.

Proof: We are claiming that the Lie algebra of (G,), is the complexification
of the Lie algebra of G,. The former is (g.) ={re 9.:[1,€]=0}, while the Lie
algebra of G, is g={neg.[n,]=0}. If n=n,+in,eg, with u,n,cg, then
(n:€=[n,, &l +il#,, £]. So, ne (90); ifand only if 77,1, €g, This is equivalent to
the condition that (g s)tc C g so that (g.) z:(gs)c

We may now prove the main result of this section.

Theorem 5: If O, and O, are real nilpotent orbits with the property
that (0)).=(0,).., then either O =0, or O, and O, are incomparable in
the closure order. In other words, each fibre of ?, consists of pairwise
incomparable nilpotent orbits.

Proof: Assume that O, and O, are comparable. Without the loss
of generality, O cO,. We will prove that O,=0,, which by Lemma
5 will amount to showing that the dimensions of O, and O, agree.
To this end, choose points £ O, and £e0,. Since (0).=(0,).
we have dimc((GC)gl)=dimc((G@)§2). Using Lemma 6, this becomes
dimz(G; ) = dim=(G;, ). Hence, the (real) dimensions of O, and O,
coincide.

Proof: If is surjective, and then Lemma 2 implies that is quasi-split.
Also, Proposition 2 implies that each simple summand of has a surjective
orbit complexification map, and the above discussion then establishes
that has no simple summand of the form. Conversely, assume that is
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quasi-split and has no simple summand of the form. By Proposition
2 (ii), each simple summand of is quasi-split. Furthermore, the above
discussion implies that the only quasi-split simple real Lie algebras
with non-surjective orbit complexification maps are those of the form.
Hence, each simple summand of has a surjective orbit complexification
map, and Proposition 2 (i) implies that is surjective.
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LABORATOIRE D’ALGEBRE ET GEOMETRIE (LAG)

GEOMETRIE

LES ALGEBRES GENETIQUES ET LEURS DERIVATIONS

RANDRIAMBOLOLONDRANTOMALALA Princy
Octobre 2015
Résumé

Les mathématiques d’aujourd’hui touchent plusieurs domaines, un de leurs est la
génétique. La loi de Mendel offre un ensemble muni de loi mathématiques, cet ensemble
forme une algébre appelée algébre génétique qui est non-associative. L’étude
mathématique de cette algebre offre des interprétations considérables en génétiques. On
inspecte les m-dérivations de cette algébre qui ne sont autre qu'une généralisation de la
notion de dérivations et leurs interprétations en génétique.
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[2] P. Randriambololondrantomalala, The m-dérivations of distribution Lie algebras, Journal of Generalized Lie Theory, 9:1, 2015.

[3] P. Randriambololondrantomalala, Les m-dérivations des algébres de Lie de champs de vecteurs polynomiaux, Soumis au Afrika
Matematika, Juin 2014.

[4] M.L. Reed, Algebraic structure of genetic inheritance, Bulletin (New Series) of the American Mathematical Society, 34:2, 107-130,
1997.
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Le Laboratoire d’Algebre et Géométrie ou
LAG a été créé en 2002 dans le
Département de Mathématiques et
Informatique-Université d’Antananarivo. Ce
laboratoire a pour objectif principal, non
seulement de former des jeunes reléves en
matiére d’enseignement supérieur mais
aussi capables a mener des recherches en
mathématiques et leurs applications. A
présent, autre que le volet principal de
recherche en géométrie différentielle, ce
laboratoire s’oriente petit a petit dans des
divers domaines et spécialités.

PARTENAIRES
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Directeur : Prof. ANONA Manelo Fréderic, Ambassadeur de 1’ICM (International Congress of
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Algebres génétiques, Systeme triple
de Lie,...
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Polynomes d'Ehrhart, Famille des
polynémes d'Higashitani, Structures
algébriques et géométriques des
polynémes d'Ehrhart,...

THEORIE DE DEVELOPPEMENT
Modélisation de développement,
Systeme  éducatif, Histoire de
Mathématiques, Caractérologie...
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Membres du Comité scientifique international :

Fanja Rakotondrajao, Maitre de Conférences, Université
d’Antananarivo, Co Chair

Roberto Mantaci, Maitre de Conférences, Université Paris 7,
France, Co Chair

Jean-Baptiste Yunes, Maitre de Conférences, Université Paris7,
France

Mike Zabrocki, Assistant Professeur, Université de York,
Canada

Stephan Wagner, Assistant Professeur, Université de
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Membres du Comité d’organisation :

Fanja Rakotondrajao, Université d’Antananarivo
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Elysé Rajaonarimanana, ENS Antananarivo

Princy Randriambololondrantomalala, Université
d’Antananarivo

Présentation de 'ECAM

Cette Ecole a été initiée dans le cadre du
développement de recherche en Mathématiques plus
particulierement en Combinatoire a Madagascar, en
brisant notre isolement et en favorisant les contacts de
nos étudiants et chercheurs avec les experts
internationaux, ainsi qu’en favorisant les échanges des
chercheurs dans la région. La premiére Edition tenue a
I’'Ecole Supérieure Polytechnique d’Antananarivo en
2011 a été tres fructueuse. Les participants ont
manifesté leur souhait pour la pérennisation de telle
manifestation.

Théme
Combinatoire analytique appliquée a I'analyse réelle et
complexe de I'étude des objets combinatoires.

Contacts:

Pour plus d’informations, veuillez contacter
I’organisateur :

email : emamada@gmail.com ou frakoton@yahoo.fr
tel : + 261320419582

Public cible

Cette Ecole s’adresse aux étudiants titulaires de maitrise
ou master (DEA), doctorants et enseighants-chercheurs
des départements de mathématiques et d’informatique
ainsi que aux ingénieurs en Telecom des Universités
d’Antananarivo, d’Antsiranana et de Fianarantsoa ainsi
que des pays de la zone Afrique (Est, Austral et Océan
Indien).

Frais de participation

Le frais de participation a I'atelier est 20.000 Ar (vingt
mille Ariary). Des bourses, en nombre limité, pourraient
étre offertes sur une base sélective pour couvrir les frais
d’inscription, de transport et de séjour de certains
participants.

Date de dépot
motivation)
Avant le 20 Aout 2012

Les candidats sélectionnés seront avisés le vendredi 31
aout 2012 pour l'inscription définitive avec le paiement
des frais le 3 septembre 2012.
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SIMONS FOUNDATION

The Simons Foundation Africa Mathematics Project (AMP)

Instructions to Finalists

The Simons Foundation congratulates the participants in the project outlined in your
Concept Paper. Your project has been selected as one of the 12 finalists in the
competition for Foundation funding under its Africa Mathematics Project. From
among the 12 finalists, AMP will award approximately five grants, each 80,000 USD
per year for five years, to research groups in mathematics at five universities in
diverse regions across sub-Saharan Africa. A similar second round of five-year
grants, comprised of new awards and/or award renewals, will be considered for
2017.

AMP therefore invites you to submit a final proposal as the second and final step of
the two-step grant application process. Deadline for submission of final proposals is
June 1, 2012. The AMP Scientific Committee will once again, review these proposals.

Announcement of awards is planned on or about September 1, 2012.

Consultations: Professors Herb Clemens and Wandera Ogana of the African
Mathematics Project Planning Committee have been asked to serve as your contacts
during your preparation of your final proposal. You are encouraged to contact them
with any questions you might have. They are not members of the AMP Scientific
Committee and will not be privy to its deliberations. They are; therefore, free to give
you guidance and advice without compromising objectivity of the final selection

process.

e Herb Clemens; clemens@math.ohio-state.edu

e Wandera Ogana; wogana@uonbi.ac.ke
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Final proposal contents and format: 15-page (maximum) concept narrative (single
or double-spaced, 12-point font). The cover page should include the name of the
proposed research project, as well as the Lead Researcher’s name, affiliation, mailing
address, telephone and email address. The Lead Researcher shall serve as Academic
Director of the project. If the project contact is other than the Academic Director,
such as the Project Secretariat, include his or her name, mailing address, telephone

and email address as well.

Page 2 should state the overall research goal of the project, followed by a succinct
and focused statement describing the research group’s two or three main objectives

and a short description of its operation.

Pages 3-15 should be a focused and crisp narrative containing the elements listed
under "Required proposal elements” and “Strongly suggested proposal elements”
listed below. This narrative should be more focused and detailed than the concept
paper. If more than one research or training area is listed, the different areas should
be prioritized and partners responsible for each area and aspect should be
identified. Research areas in particular should be limited to those that directly relate
to the overall research goal of the project. Inclusion of several areas, especially
areas only tenuously related to each other will lessen the chances that a proposal
will be funded.

In addition to the 15-page concept narrative, the following additional items should
be submitted:
1. A five-page budget, one page for each 6 months of the first 2.5 years of the
grant, itemized for each of the 8 eligible categories of funding listed below.
The final total of expenditures for the first two and a half years of operation
should not exceed $200,000. Salary supplements should not exceed 40% of
the annual grant total during any year of the grant and should be justified on

the basis of an explicitly stated percentage of released time from other



professional duties.

An additional one-page explanation of budget categories should also be
submitted. This page should indicate additional sources of financial or in-kind
support for the project.

Curriculum vitae of researchers to be funded under the proposal. Individual
CV's should be no longer than 4 pages and should focus on education,
positions, activities and publications relevant to the proposed research.

List of academic institutions and principal collaborators participating in grant
activities, together with any current or pending research support from other
sources applicable to the research proposed.

Official letter of support from the vice-chancellor of the applicant research

group'’s university.

Required proposal elements:

1.

Identification of a single mathematical area that is to be the principal focus of
proposed research and postgraduate training. Explanation of how any
proposed research and training in other (related) areas serves the main
research and training goals of the project. If more than one research group or
mathematical area is listed, care must be taken to fully justify a close
relationship with the common focus of the proposed research. The inclusion
of researchers, however distinguished, whose work is not directly supportive

of, and closely related to the central research focus, is discouraged.

. Individual, group and institutional capacity for carrying out the proposed

research and training. (Group may include several universities in the region.)
Detailed research and training plan to be carried out over a five-year period
together with its rationale. Identification of the individual(s) primarily
responsible for each aspect of the work.

Program outline and projected timeline for studies of participating graduate
students.

Estimated outcomes:

a. research deliverables (e.g. approximate number of publications in



international journals expected)

b. training deliverables (e.g. approximate number of PhD and of master's
degrees expected)

A networking plan for contact with other centers or projects on the continent
that have compatible mathematical interests and objectives.

A plan for a regional workshop in the project’s research area around the end
of the second year.

Commitment of in-kind matching support from the applicant group's
university (e.g., classroom or office space, reliable internet connectivity,
conference hosting and support).

Detailed plan for an efficient and transparent system for budget

administration, disbursement and reporting.

Strongly suggested proposal elements:

1.

Identification of international research partner(s), including those from South
Africa and Mediterranean African countries.

Project participation in an existing mathematical research network with a
compatible mathematical focus.

Plan for sustainability of the project through an additional five-year period.
Strategy for retaining at universities in the region both faculty members
whose research is supported under this grant and postgraduate students
whose advanced degree training is supported under this grant.

Plan for incorporating women mathematicians in the project and/or

identifying and nurturing female mathematical talent.

Finally, proposers are invited to consider the preparation of a 5-10-minute video or

other visual presentation introducing themselves and their proposal to the Scientific

Committee and, if feasible, the physical locations where the research activities will be

located.

Categories eligible for funding:

1.

Graduate training (tuition, stipends, housing, etc.)



2. Salary supplements for faculty for research and for mentoring of Ph.D. and
master’'s degree students (total in this item is not to exceed 40% of annual
grant amount)

Travel and conferences

Stipends and expenses for visiting faculty and students

Equipment (including maintenance and servicing) and supplies

Books, journals, databases, etc.

Communications

© N o kW

Secretariat office expenses (not to exceed 10% of annual grant amount)

Duties of project personnel:

Academic Director: Each project will designate an Academic Director, based at
one of the participating universities, to provide overall guidance for, and
coordination of, the project’s training and research activities. The Academic
Director must be a leader and motivator, a practicing scientist with stature in the
academic community and strong management skills. He or she will serve as
Principal Investigator for the AMP proposal and will be responsible for preparing

annual reports and assessments of the network’s operations.

Secretariat: Each project will include a Secretariat responsible for all
administrative details, including travel for faculty, students and visitors,
workshop/conference planning, and financial management of the project. The
Secretariat may be located in the same academic unit as the Academic Director,
but this is not a requirement. Projects are encouraged to adopt whatever
structure will best ensure that both academic and administrative leadership are

effective

Review criteria: Selection will be conducted through a peer-reviewed application

process. The primary selection criteria will be scientific merit, training capacity and



the quality of research activities. Evidence of institutional support, networking, and

potential for sustainability will also be very important.

Reporting Requirements: A yearly progress report will be required, as well as the

submission of the second half of the detailed budget after the first two years.

Continued support after the first two and a half years will be contingent on the

ongoing evaluation of the project.

Final proposal submission: Proposals should be submitted electronically, as email

attachments in PDF format, to:

The Simons Foundation Africa Mathematics Project
c/o Ms. Meghan Criswell

E-mail address: mcriswell@simonsfoundation.org

Submission deadline: June 1, 2012


mailto:mcriswell@simonsfoundation.org

Contrat de Collaboration
Entre

Ingrid Daubechies

Et

Institute for the Conservation of Tropical Environments & Madagascar, ci-aprés désignée « ICTE », ayant sa
Représentation Nationale & Manakambahiny, Villa ROTCIV, Lot VU 283 D -ANTANANARIVO 101,
représenté par Dr. Benjamin ANDRIAMIHAJA, agissant en qualité et en vertu des pouvoirs qui lui sont

conférés,

Obijet de la collaboration
Cette collaboration entre dans le cadre de la Formation des étudiants de troisiéme cycle et du support de la

recherche effectuée par des chercheurs de la filiére Mathématiques, Faculté des Sciences de I'Université

d'Antananarivo.

Modalités de mise en ceuvre

Les étudiants et chercheurs qui bénéficieront des bourses seront choisis par les professeurs Anona et
Rakotondrajao du Département de Mathématique de I'Université d’Antananarivo et Pr. Ingrid Daubechies ;
ce choix (ainsi que le montant des bourses) sera ré-évalué tous les six mois. Ce montant ne devrait pas
excéder $150/mois pour chaque bourse. Une bourse attribuée a un(e) étudiant(e) peut etre interrompue a
tout instant si I'effort de recherche est insuffisant. (Voir appendice pour les critéres d’application.)

La liste des étudiants et chercheurs bénéficiaires d'une bourse sera envoyé au bureau de MICET

Les étudiants pourront utiliser la connection internet du bureau de I'lCTE & Manakambahiny, et réserver un

local pour discussions hebdomadaires.
Les bourses commenceront au plus tot le 1% décembre 2012, mais peuvent débuter plus tard.

Obligations des parties contractantes
Ingrid Daubechies : assurera la recherche des fonds

ICTE :

ICTE assurera la distribution des bourses aux étudiants aprés approbation des Pr Anona,
Rakotondrajao et Daubechies

ICTE effectuera un rapport financier qui sera envoyé au bailleur tous les 6 mois.

Les frais de gestion sont calculés sur une base de « overhead » de 15% (c.a.d. que le bailleur attribue
$15 a ICTE pour chaque $100 déboursé aux étudiants et chercheurs), ce quirevient a 15/115 du
montant total des fonds, ou environ 13.04% .

Durée de la collaboration
Le présent Accord de collaboration est effectif & partir de la disponibilité jusqu'a I'épuisement des fonds.

s ==
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Reéglement des conflits
En cas de différends dans l'interprétation et I'exécution de la présente convention, les parties s'engagent a

les régler a I'amiable.
ockobre | ]
Fait & Antananarivo, le 5 mai 2012

Lu et approuvé par : Lu et approuvé par :

|

P ANOMA Maselo tduic
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Inaﬁ‘ol DAU BeCHi s,

ANDRIAMIHAJA Benjamin
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Unité de Mathématiques Pures et Appliquée

Site Monod - 46 Allée d'Ttalie — 69364 Lyon Cedex 07
04727284 24/8485-Fax:04 72728480

B : secretariat@umpa.ens-lyon.fr

Lyon, le 14 mars 2012

ATTESTATION

Je soussigné, Laurent BERGER, Directeur de 'Unité de Mathématiques Pures et Appliquées de
I'ENS-Lyon, certifie que Monsieur Princy Randriambololondrantomalala est invité par notre
laboratoire dans le cadre d’une collaboration scientifique du 15 avril 2012 au 30 juin 2012,
séjour pris en charge intégralement par I’Universit¢ de Lyon. Pendant tout le séjour Mr
Randriambololondrantomalala sera domicili€ a PENS :

ENS-Lyon Site Monod
Résidence Etudiante
46 allée d’Italie

69364 Lyon Cedex 07

Fait a Lyon, le 14 mars 2012,

Pour servir et valeir ce que de droit

/ Le Directeur de 'UMPA,

Laurent BERGER
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Université
de Liége

Faculté des Sciences
Département de Mathématique

Géomeétrie et théorie des algorithmes
Professeur Pierre Lecomte

Liége, le ler octobre 2014

Monsieur P. Randriambololondrantomalala
Département de Mathématique et Informatique
Faculté des Sciences

Université Antananarivo

P.B. 906 Ankasko, Madagascar

Monsieur,

Suite a votre message du 25 septembre dernier, et sous réserve que votre
demande de financement soit honorée par I’ Administration adhoc, j’aurais le plaisir
de vous accueillir dans mon équipe pour un sejour d’un mois dans le cadre staff
mobility du programme Erasmus-Mundus dream.up.pt afin de travailler avec vous
sur les sujets de recherches que vous m’avez mentionnés.

Idéalement, ce séjour pourrait prendre place au premier semestre d’une
annee académique, soit entre le 15 septembre et le 15 décembre, et par exemple en
2015, car ma charge de cours est bien plus légére dans cette période de I’année que
durant le second semestre.

En espérant que vous pourrez venir,

Cordialement,
LD

Pierre Lecomte
Professeur

12 Grande Traverse, Bat. B37, parking 32
Tél. +(32)-4- 366 93 83 Fax. +(32)-4- 366 95 47 E-mail : plecomte@ulg.ac.be
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WMéroire en vue de Pabtention du
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Sur les variétés riemanniennes
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UNIVERSITE D"ANTANANARIVO
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Département : Mathématiques et Informatigue
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SUR LES VARIETES ANALYTIQUES

Présenté par © RANDRIAMIDOSY Harimanana Roger, i 11 @vrier 2016, devant la
commission d'examen fommee de
Président de Jury - Monseur Frédéric Manelo ANOMNA
Profesear Titulzire & I'Universitié d’ Antananarivo
Rapporteur - Monsieur Princy RANDRIAMEOLOLONDRANTOMALA LA
Mazitre de Conférences & 1"Universié d” Antananarivo
Examinateurs - Monsieur Hanitrinizing Sammy Gregoire RAYELONIRINA
Mazitre de Conféences 3 1"Universié d Antanansnivo
- Monseur Armand RAMAMONIISOA
Maitre de Conférences & 1'Universié d° Antananarivo.



Code : SMIM12H0CSS8 Intitulé de I'UE : Homologie et cohomologie
Type et statut de |’ UE: Optionnel

Responsable de I'UE : Randriambololondrantomalala Princy, Maitre de conférences d'ESR, spécialité :
Géométrie différentielle, Contacts : 0331246249 princypcpc@yahoo.fr

Charge totale du travail étudiant 150

Nombre de crédits : 5

Semestre d'études : 8

Compétences visées et évaluation des compétences: Voir les Outils modernes de géométrie, d’analyse et
d’algebres a travers I’homologie et cohomologie.

Contenu et objectif de 'UE : Familiariser avec les groupes d’homologie et de cohomologie, voir les applications
dans les mathématiques modernes.

Nombre minimal d’ étudiants pour autoriser |’ ouverture del’ UE:5

Conditions d'attribution des crédits : La participation réguliére et active a tous les cours de I'UE ainsi que la
réussite aux contrdles de connaissances.

Evaluation de I'UE : Examen final écrit

Une note inférieure ou égale a 05/20 (note éliminatoire) a une ECUE entraine |'absence de note a I'UE

Intitulé des éléments constitutifs/matiéres constituant I'UE :
1 - Rappels généraux et introduction sur I’'homologie et cohomologie

2 —Quelques groupes d’homologies et de cohomologie

1 Intitulé de I'EC : Rappels généraux et introduction sur I’'homologie et cohomologie

a | Responsable de I'EC : Ravelonirina H. S. G., Maitre de Conférences, spécialité : Géométrie différentielle
Contacts : 0331121675 rhsammy@yahoo.fr

b |Taille de groupe :
Cours : 300 étudiants

TD : 25 par groupe




Pré-requis : Algébre associative ou non associative, un apercu de la théorie des catégories.

Forme d'examen: Epreuve écrite sur table.

Compétences visées et évaluation des compétences : Les étudiants doivent savoir le butde |’ étude de
I” homologie et de la cohomologie en vue de ses applications.

Controle des connaissances :

ET : Examen terminal

Fréquence de I'offre : Chaque semestre

Nature des activités pédagogiques en présentiel : C, TD.

Contenu du cours et documentation pour I'étudiant :
1) Définitions et problémes fondamentaux

2) Les espaces d’homologie et de cohomologie en générales

Documentation

1° Cc.weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press,
Cambridge 1994.

2> Thierry MASSON, Introduction a 'homologie et la cohomologie avec exemples (webographie)

3° Bourbaki : “Topologie Générale”

4° Frédéric Paulin : “Topologie algébrique ¢lémentaire”’ FIMFA (Webographie)
5° H. Cartan et S. Eilenberg: Homological Algebra”

6° A. Wallace : “Algebraic Topology : homology and cohomology”

7° André Gramain : “Topologie des surfaces”

Description du travail personnel de I'étudiant :

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de ressources
documentaires/ d'informations (dans une bibliothéque, par internet ---), établissement de fiches de lecture.

Eléments de pédagogie (par EC) :

I. Démarche déductive

II. Méthode : démonstration

lll. Techniques pédagogiques : démonstration, enseignement magistral et dirigé
IV. Cours en ligne

Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet).




Intitulé de I'EC : Quelques groupes d’homologies et de cohomologie

Responsable de I'EC : Randriambololondrantomalala Princy, Maitre de conférences d'ESR , spécialité :
Géométrie différentielle, Contacts : 0331246249 princypcpc@yahoo.fr

Taille de groupe :
Cours : 300 étudiants

TD : 25 par groupe

Pré-requis : Un peu d’Algébres de Lie, Géométrie différentielles, topologie générales

Forme d'examen: Epreuve écrite sur table.

Compétences visées et évaluation des compétences : Voir les applications du groupe d’ homologie ou de
cohomologie de de Rham et Chevalley-Eilenberg et autres.

Controle des connaissances :

ET : Examen terminal

Fréquence de I'offre : Chaque semestre

Nature des activités pédagogiques en présentiel : C, TD.

Contenu du cours et documentation pour I'étudiant :
1) Groupe d’homologie et de cohomologie de de Rham et ses applications
2) Groupe de cohomologie de Chevalley-Eilenberg et ses applications

3) Autres groupes d’homologie et de cohomologie , ses applications.

Documentation

1° c.Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press,
Cambridge 1994.

2> Thierry MASSON, Introduction a 'homologie et la cohomologie avec exemples (webographie)

3° Bourbaki : “Topologie Générale”

4° Frédéric Paulin : “Topologie algébrique élémentaire” FIMFA (Webographie)
5° H. Cartan et S. Eilenberg: Homological Algebra”

6° A. Wallace : “Algebraic Topology : homology and cohomology”

7° André Gramain : “Topologie des surfaces”




Description du travail personnel de I'étudiant :

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de ressources
documentaires/ d'informations (dans une bibliothéque, par internet --), établissement de fiches de lecture.

k | Eléments de pédagogie (parEC):

I. Démarche déductive

II. Méthode : démonstration

lll. Techniques pédagogiques : démonstration, enseignement magistral et dirigé
IV. Cours en ligne

Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet).

Intitulé de la MASTER: Mathématiques et Informatique
Intitulé de I'UE : Analyse mathématique 1

Type et statut de I'U.E. : Mathématiques appliquées

Code et numéro de I'UE Charge de Nombre de Semestre d'études Durée
SMIM11AMAS7 travail crédits
o 7 1
étudiant
6

180




Intitulé des éléments

constitutifs
A). Compléments de topologie

B). Calcul variationnel, forme
différentielle

C). Variétés et algebre de Lie

En présentiel

VH
hebdo.=4,28

VH
semestriel=60

Travail
personnel
de
I’étudiant

Exprimé en
heures
semestriell
es

120

Coefficient

Crédits

Compter pour un crédit
entre 20 a 25 heures de
travail de I'étudiant,
jumelant le travail
présentiel, le travail
personnel et les examens

Formes d'enseignement : Cours, TD

Taille de groupe : 25 étudiants par groupe

Compétences visées et évaluation des compétences :

Contenu et objectif de 'UE donner des themes mathématiques adaptés aux futurs probabilistes et

staticiens.

Documentation

- N. Bourbaki, Topologie générale, chap 1-4, Masson, 1990

- N. Bourbaki, Topologie générale, chap 5-8, Herman, 1974

- N. Bourbaki, Espaces vectoriels topologiques, chap 1-5, Masson, 1981

- F. Paulin, Topologie, analyse et calcul différentiel, MAF 2008-2009

- H. Cartan, Formes différentielles, Applications élémentaires au calcul des variations et a la théorie des courbes
et des surfaces, Herman, Paris 1967

- J. Dugundji, Topology, Allyn and Bacon Inc, Boston, Mars 1966

- Y. Choquet-Bruhat, Géométrie différentielle et systéme extérieurs, Dunod, 1968

- S. Lang, Introduction aux variétés différentiables
- N. Bourbaki, groupes et algébre de Lie, Herman

- P. Malliavin, géomeétrie différentielle intrinseque

Eléments de pédagogie: Démarche déductive et méthode participative.

Pré-requis : Licence de mathématiques




Formes d'examen : Epreuve écrite sur table
Contréle des connaissances : examen final

Notes de I'UE : (Moyenne des notes des différents contréles de connaissances, pondérée selon le nombre de
crédits des cours, note éliminatoire)

10 | Conditions d'attribution des crédits : Participation réguliére et active a tous les cours de I'UE ainsi que
réussite aux contréles de connaissances.

11 | Fréquence de I'offre : chaque semestre / tous les deux semestres

12 | Responsable de I'UE et enseignant responsable des éléments constitutifs :
RANDRIAMBOLOLONDRANTOMALALA Princy

13 | Autres informations : (éventuellement)

Intitulé de la MASTER: Mathématiques et Informatique
Intitulé de I'UE: Variétés riemanniennes

Type et statut de I’'U.E. fondamental

Code et numéro de Charge de Nombre de Semestre d'études Durée
]
IUE travail crédits
T 8 1
5
150
itulé Alé . . Travail - .-
1 Intitulé des éléments En présentiel Coefficient Crédits
constitutifs personne|
VH hebdo.=3,57 de 5 Compter pour un crédit entre 20 a
A) Métriques riemannienne sur une ' I'étudiant 25 heures de travail de I’étudiant,
variété VH semestriel=50 jumelant le travail présentiel, le
travail personnel et les examens
) " Exprimé en
B)  Connexions sur une variété heures

semestrielles

100

2 | Formes d'enseignement : Cours, TD, TPE

3 | Taille de groupe : 25 étudiants par groupe




4 | Compétences visées et évaluation des compétences : Avoir une base profonde sur la théorie et
applications de la géométrie riemannienne
5 objectif de I'UE et contenu de I'EC : Montrer la généralisation de la géométrie euclidienne par celle de
Riemann, ses belles applications en mathématiques, en mécaniques et physique théorique.
6 Documentation
- Chris Peters : Geométrie differentielle | et Geometrie Differentielle 11 (Webographie)
- G. de Rham : Variétés différentiables
- F. Paulin “ Géométrie Differentielle élémentaires” (Webographie)
- Gilles Carron : “ cours de Géométrie différentielles de M1 : notes de cours et exercices”
(webographie)
- Auslander et MacKenzie : “ Introduction to Differentiable Manifolds”
- £ W Warner : “Foundantions of Differentiable manifolds and Lie groups”
- S-S Chern, Z Shen, Riemann-Finsler Geometry
- F. Paulin, Lecons de géometrie riemannienne,
7 | Eléments de pédagogie :
D). Démarche déductive.
E). Méthode : démonstration, magistrale.
F). Techniques pédagogiques : démonstration, enseignement magistral.
G). Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet).
3 Pré-requis : Variétés différentielles, Calculs différentiels sur les variétés.
9 Formes d'examen : Epreuve écrite sur table
Controle des connaissances : examen final
Notes de I'UE : Moyenne des notes des différents contréles de connaissances, pondérée selon le nombre de crédits des cours,
note éliminatoire
10 | Conditions d'attribution des crédits : Participation réguliére et active a tous les cours de I'UE ainsi que
réussite aux contréles de connaissances.
11 | Fréquence de l'offre : chaque semestre
12 | Responsable de I'UE et enseignant responsable des éléments constitutifs
: RANDRIAMBIOLOLONDRANTOMALALA Princy, Géométrie différentielle, +261331246249,
princypcpc@yahoo.fr
13 | Autres informations : (éventuellement)




Code et intitulé UE : Géométrie et Equations différentielles.

Type et statut de I'UE: Obligatoire

Responsable de I'UE : Randriambololondrantomalala Princy, Maitre de Conférences d’ESR en activité,
Géométrie différentielle, princypcpc@yahoo.fr , Tél.:-+261331246249

Charge totale du travail étudiant : 90h

Nombre de crédits : 3

Semestre d'études : 2

Compétences visées et évaluation des compétences : Familiariser les étudiants avec I'approche
géométrique dans la résolution des problemes mathématiques.

Objectif de I’'UE : Donner aux étudiants les outils de base de la géométrie de niveau de
I’enseignement supérieur et la capacité de résoudre les équations différentielles élémentaires avec
les subtilités théoriques correspondantes. Familiariser les bases de démonstrations reposant sur la
conception géométrique.

Nombre minimal d’étudiants pour autoriser I'ouverture de 'UE : 5

Conditions d'attribution des crédits : La participation réguliére et active a tous les cours de I'UE ainsi
que la réussite aux contréles de connaissances.

Evaluation de I'UE : Examen final écrit

Une note inférieure ou égale a 05/20 (note éliminatoire) a une ECUE entraine I'absence de note a I'UE

Intitulé des éléments constitutifs/matiéres constituant I'UE :
1 - Espaces affines et analyse vectorielle

2 — Intégrations et courbes paramétrées

Intitulé de I'EC : Espaces affines et analyse vectorielle

Responsable de I'EC : Randriambololondrantomalala Princy, Maitre de Conférences d’ESR en
activité, 0331246249, princypcpc@yahoo.fr

Taille de groupe :
Cours : selon la capacité d’accueil

ITD : 25 par groupe

Pré-requis : Algébre linéaire et Analyse de base (Niveau S1), Géométrie niveau terminale S

Forme d'examen: Epreuve écrite sur table, test oral.
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Compétences visées et évaluation des compétences : Les apprenants comprennent la conception
géométrique des espaces affines et des transformations affines correspondantes. lls sont en mesure de reconnaitre la
continuité, la différentiabilité des fonctions de plusieurs variables et des fonctions vectorielles. Ils peuvent aussi assimiler
I'utilisation des différents opérateurs utilisés en mécanique ou physique comme la divergence, le rotationnel, le gradient, le
laplacien, ...etc en utilisant les dérivées partielles.

Controle des connaissances :

ET : Examen terminal

Fréquence de I'offre : Chaque semestre

Nature des activités pédagogiques en présentiel : C, TD.

Contenu du cours et documentation pour I'étudiant :

- Espaces affines
- Analyse vectorielle

Documentation

- P. Danko et A. Popov, Exercices et problémes des mathématiques supérieures, partie Il, Editions MIR,
Moscou (1977)

- Marie-Anne Maingueneau, 30 semaines de khélles en mathématiques, premiére partie et deuxiéme
partie, ellipses (1998)

- www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf
- www.math.jussieu.fr/~delabrie/PM2/PM2.pdf
- stephane.gonnord.org/PCSl/Geom/AFFINES.PDF

- www.math.u-psud.fr/~”pansu/websm/courbes parametrees.pdf

- G.H. Rahaingoarivony, Exercices d’Analyse, Tranopirinty FOFIPA (1987)

Description du travail personnel de I'étudiant :

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de
ressources documentaires/ d'informations (dans une bibliothéque, par internet ...), établissement
de fiches de lecture.

Eléments de pédagogie (en classe) :
Cours : Enseignement magistral

ED : Démonstration, exercices, apprentissage par la comparaison, exposé, étude de cas, travail en
groupe

Moyens utilisés : Moyens individuels, audiovisuels, polycopiés d’exercices

Intitulé de I'EC : Intégrations et courbes paramétrées.

Responsable de I'EC : Ravelonirina Sammy, Maitre de Conférences d’ESR en activité, Géométrie
différentielle, 0331121675, rhsammy@vyahoo.fr
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Taille de groupe :
Cours : selon la capacité d’accueil

ITD : 25 par groupe

Pré-requis : Mathématiques enTerminal S, fonctions de plusieurs variables

Forme d'examen: Epreuve écrite sur table, test oral.

Compétences visées et évaluation des compétences : Les étudiants peuvent résoudre les équations
différentielles élémentaires de tout ordre par des méthodes standard respectant les vertus théoriques. Ils peuvent calculer
les intégrales doubles, curvilignes et triples en connaissant les significations géométriques et mécaniques correspondantes.
Les étudiants sont capables de tracer les courbes planes dans R72 sous forme paramétrée ou polaire.

Controle des connaissances :

ET : Examen terminal

Fréquence de I'offre : Chaque semestre

Nature des activités pédagogiques en présentiel : C, TD.

Contenu du cours et documentation pour I'étudiant :

e Intégrations
e Courbes parametrées
Documentation

- P. Danko et A. Popov, Exercices et problemes des mathématiques supérieures, partie ll, Editions MIR,
Moscou (1977)

- Marie-Anne Maingueneau, 30 semaines de khélles en mathématiques, premiére partie et deuxiéme
partie, ellipses (1998)

- www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf

- www.math.jussieu.fr/~delabrie/PM2/PM2.pdf

- stephane.gonnord.org/PCSl/Geom/AFFINES.PDF

- www.math.u-psud.fr/~pansu/websm/courbes parametrees.pdf

- G.H. Rahaingoarivony, Exercices d’Analyse, Tranopirinty FOFIPA (1987)

Description du travail personnel de I'étudiant :

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de
ressources documentaires/ d'informations (dans une bibliothéque, par internet ...), établissement
de fiches de lecture.

Eléments de pédagogie (en classe) :

Cours : Enseignement magistral
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ED : Démonstration, exercices, apprentissage par la comparaison, exposé, étude de cas, travail en
groupe

Moyens utilisés : Moyens individuels, audiovisuels, matériels de travaux pratiques, protocoles
expérimentaux, polycopiés d’exercices
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Chapitre 1

Fonctions et équations différentielles

1.1 Généralités

Une fonction numérique d’une variable réelle f est une application qui a x € R corres-
pond & un réel f(x) € R. Si x varie dans R, alors f(z) varie avec z dans R. f(z) pour x
sans valeur déterminée est 1’expression de la fonction f. Pourtant, il existe une partie de
R ou f est bien définie, c’est le domaine de définition de f noté D;. C’est-a-dire que seuls
les € Dy, ont des f(z) € R. Remarquer que dans R =] — 0o, +00[, seuls les —oo, +00
ne sont pas des réels. Donc, quand on cherche le Dy, on s’assure que f y est bien définie.
Des petits regles de calculs sont les suivants :

h(z)

e Si dans 'epression de f figure un dénominateur @ alors ce dénominateur doit étre

différent de 0. Donc on cherche I'ensemble des réels z tels que g(x) soit non nul.

Ezemple 1. Soit f(z) = ﬁ + #7:;27 alors il faut que o +4 # 0, 22 — 3z + 2 # 0.

Clest-a-dire que x # —4, x # 1 et x # 2. Donc Dy =] — oo, —4[U] — 4, 1[U]1, 2[U]2, +o0].

e Si dans l'epression de f figure une racine carrée \/g(z), alors I'expression dans la
racine carrée doit étre positive ou nulle. Donc on cherche I’ensemble des réels = tels que
g(x) = 0.

Exemple 2. Soit f(x) = a2 — 5x + 6 + 2?2, alors il faut que 2* — 52 + 6 > 0. C’est-a-dire
que z < 2 et x > 3. Donc Dy =] — 00,2] U [3,400].

e Si dans l'epression de f figure un logarithme Neperien In (g(x)), alors 'expression
dans le logarithme doit étre strictement positif. Donc on cherche I'ensemble des réels x
tels que cette expression g(z) > 0.

Exemple 3. Soit f(xr) = In(—2?+ 5x — 6) — e~ %, alors il faut que —2? + 52 — 6 > 0.
C’est-a-dire que = > 2 et x < 3. Donc Dy =2, 3].

Il se peut que ces cas se présentent simultanément dans ’expression d’une fonction,
alors on fait 'intersection des intervalles ainsi obtenus pour avoir le domaine de définition.
Si Iexpression d’une fonction ne comporte pas 'un de ces trois types d’expressions, donc
son domaine de définition est R. Des opérations définies sur les fonctions f et g est définie
par ¥, (f +g) (v) = f (z)+9(2), (f x 9)(x) = f(z) x g(x) et L(z) = LH.* On dit qu'une
fonction est continue en un point xg, si

lim  f(z) = lim f(z) = f(zo)

xz—(z0)~ xz—(z0)t

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Maths pour SVT, Univ Antananarivo 2014
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CHAPITRE 1. FONCTIONS ET EQUATIONS DIFFERENTIELLES 2

Toute fonction usuelle est continue sur son domaine de définition.
On dit qu’'une fonction est dérivable en un point xg, si
f(x) = f(zo) f(x) — f(x0)

lim ————= = lim
z—(zo)t T — X z—(z0)~ T — X

= ['(z0)

existe et fini (réel unique). Toute fonction usuelle est dérivable sur le plus grand ouvert
contenu dans son domaine de définition. En générale, les domaines de définitions sont des
reunions disjointes d’intervalles, alors pour avoir ce plus grand ouvert, il suffit de rendre
chaque intervalle fermé ou semi-fermé a un intervalle ouvert correspondant.

Exemple 4. Soit f(z) = v—a2 +5x — 6 —e*. Donc Dy = [2, 3], f est dérivable sur |2, 3].

Apres avoir faire la dérivée f' d’une fonction numérique f, on cherche les points x ou
f'(x) = 0. Ce sont les points ot f présente ses maximaux ou minimaux. On peut dresser
son tableau de variation. Maintenant, observons les branches infinies de la graphe C de f.
Si

lim f(z) =00

z—xoER

alors x = z( est un asymptote vertical de C au voisinage de y a oc.
Si

lim f(z) =y € R

T—00

alors y = yp est un asymptote horizontal de C au voisinage de oo.
Si
lim f(z) = o0

T—00

alors on fera lim,_, @ =a:
Si a = oo, alors 'axe des ordonnées x = 0 est une direction asymptotique de la branche
parabolique de C au voisinage de oco.

Si a = 0, alors 'axe des abscisses y = 0 est une direction asymptotique de la branche
parabolique de C au voisinage de oo.

Si a € R*, alors on fait lim, . f(z) —ax = b, donc :

e pour b = 00, alors y = ax est une direction asymptotique de la branche parabolique de
C au voisinage de co.

e pour b # oo, alors y = ax + b est un asymptote oblique de C au voisinage de co.

-,

Maintenant, on peut dresser le graphe de f dans un repere orthonormé (0, i 7)

1.2 Développement limité

Soit f une fonction numérique d’une variable réelle, f est de classe C™ sur un voisinage
)
de g, c’est-a-dire que la n-ieme dérivée de f sur ce voisinage est continue. Une telle
0
fonction admet un développement limité d’ordre n au voisinage de z(, c’est-a-dire que f
peut s’écrire approximativement en un polynéme de degré n (Formule de Taylor) :

1 f”(%)% et ) (2g)

(x — xp)
1!

(x — )"
n!

f(@) = f(xo) + f(wo) +o((z —x0)")

(1.1)
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ou lim, ., o((z — x¢)") = 0.
Voici quelques développements limités usuels au voisinage de 0 et d’ordre n :

n n k n (_1)k$k+1

a k_ .k n T __ T n _
(L) = DSl +ofa), & = 3 Gy bola) nll42) =30 S5

+ O(:L‘n+1)

oul Cs _ a(afl)..’iakarl)‘

. - —1 § 2k+1 2n+1
51n(:L’) = kz_o ﬁx + 0($ ), COS(x) =

. . 1 n - 1 n
sinh(z) = Z mx”““ + o(x* 1), cosh(z) = 2% 4 o(2®™)
k=0

arctan(z) = Z 2(k—+)1x2k+1 + o(x®™th)
k=0

Le développement limité d’ordre n au v(zg) d'une somme de fonction est la somme de
leurs developpements limités respectifs. Le développement limité d’ordre n au v(zg) d'un
produit de 2 fonctions est le produit de leurs développements limités respectifs en ne
considérant que les puissances en (x — o) inférieures ou égales a n. Le développement
limité d’une division de deux fonctions est obtenue en faisant la division d’ordre croissant
selon la puissance en (x — zp), en ne considérant que les termes dont la puissance en
(x — xg) est inférieure ou égale a n. Si une fonction f est définie sur un voisinage de z,
alors f; f(h)dh admet un développement limité d’ordre n + 1 au v(zo) qui est l'intégrale
correspondant du développement de degré n de f au v(zg). Si f admet un D.L d’ordre n
au v(xg) et g en admet d’ordre n au v(f(xp)), alors go f admet un D.L d’ordre n au v(xg)
qui est la composition respective des développements limités correspondants.

1.3 Equations différentielles linéaires d’ordre n < 2

1.3.1 Equations différentielles linéaires d’ordre 1

C’est une équation de la forme

y + Pl)y = Q(x) (1.2)

avec P et ) des fonctions réelles. Alors, on cherche y et son ensemble de définition. On
résoud d’abord ¢/ + P(x)y = 0 et a pour solution yo = Ce~J P#)4 ayec C' € R. Ensuite,
on fait varier C' en C(z) et y = C(x)e”/ P4 En transportant cette derniere relation
dans (1.2), on obtient

C(z) = /Q(x)ef P@dz gy 4 O,

et enfin

y = e—fP(;r)dx [/Q(x)efP(x)da:dx + CO
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1.3.2 Equations différentielles linéaires d’ordre 2 a coefficients
constants

C’est une équation de la forme
y' +ay' +by = f(x) (1.3)
On résoud d’abord ’équation homogene
y' +ay +by =0
Alors, on cherche les solutions de ’équation caractéristique suivante
r?+ar+b=0

x Si A > 0, alors 1, 79 sont deux solutions distinctes.

Donc la solution de I’équation homogene est, yo = C1e™* + Che™”.
x Si A = 0, alors r; est une solution doubles.

Alors la solution de ’équation homogene est, yo = (Ciz + Cs) e
x* Si A < 0, alors 1 = a+ 118,79 = a — i sont deux solutions complexes distinctes et
conjuguées.

Alors la solution de I’équation homogene est, yo = e** (Cy cos(Sz) + Cy sin(fx)).

Pour la solution particuliere y; de I’équation (1.3), on choisit la forme de

rx

f(x) = e (Py(z) cos(vz) + Qu(x) sin(yz))

ou Py(z) respectivement Q,,(x) sont des polynémes de degré respectif k et m. On compte
le nombre de fois ou d + iy figure parmi les racines de ’équation caractéristique, on le note
par j. Alors,

y1 = 27’ (G () cos(yx) + Hy(z) sin(yx))

avec | = max(k,m), Gi(x) et Hy(x) sont des polynomes de degré I. Les coefficients de ces
derniers polynémes sont obtenus a partir du remplacement de y dans (1.3) par ce y;.
D’ou la solution finale y = yo + ;.

1.3.3 Remarques

Les dernieres constantes indéterminées de la solution finale d’une équation différentielle
peuvent étre déterminées en attribuant cette solution des valeurs précises en des points. Par
exemple, pour I"équation différentielle de degré 1, y(0) = 1; pour I'équation différentielle
de degré 2, y(1) = 0,9'(0) = 3; selon les données sur 'équation différentielle.

Si le deuxieme membre de (1.3) s’écrit sous-forme de somme de deux fonctions f(z) =
fi(z) + fo(z), alors on peut chercher séparément la solution particuliere de :

y' +ay + by = fi(x) (1.4)

qui est y, et,

y' +ay +by = foz) (1.5)
qui est y3. Donc, la solution particuliere de (1.3) est yo + y3. Ainsi, la solution finale est
Y ="Yo+ Y2+ ys.
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1.4 Quelques notions sur les fonctions a plusieures
variables

On se limitera a une fonction numérique a 2 variables. Une telle fonction f est définie
dans un domaine de R?, la maniére de chercher le domaine de définition de f est la méme
que celle d'une fonction numérique d’une variable réelle, sauf que le domaine de définition
est inclus dans R2.

Exemple 5. f(x,y) =In(z +y), alors Dy = {(z,y)/x +y > 0}.

Une fonction usuelle est toujours continue sur son domaine de définition, est toujours

différentiable (dérivable) sur le plus grand ouvert contenu dans son domaine de définition.

Alors, on peut faire une dérivée partielle par rapport a x notée % (on dérive f par rapport

a z ou on considere y comme une constante) ou par rapport a y g—i (on dérive f par rapport
a y ou on considére x comme une constante).
Ezemple 6. f(z,y) = In(zy® +y) ot Dy = {(z,y)/zy* +y > 0}, alors &L = 2 et

zy?+y
of _ 2yz+1
dy Yty

Théoreme 7. Toute fonction dont toutes dérivées partielles premiéres sont continues dans
un domaine de R? est différentiable (dérivable) dans ce domaine.



Chapitre 2

Systeme d’équations linéaires et
matrices

Une matrice réelle A du type (m, n) est contituée par un ensemble ordonné de n vecteurs
a m composantes réelles, c’est-a-dire

ay;  ayg ... oo A1

o1 Q22 ... ... Qop
A = (ai;)

Am1 Am2 ... oo Amn

, elle représente une application R-linéaire de R™ vers R™. Deux matrices sont égales
si chaque composantes des ces deux matrices sont égales. Si n = m, alors A est une
matrice carrée d’ordre n. La somme de deux matrices ne se fait que si ces deux matrices
sont de méme type, cette somme se fait composante par composante. La multiplication
C = (¢;;) = AB de deux matrices A = (a;j) et B = (b;;) ne se fait que si le nombre de
colonnes de A est égal au nombre de ligne de B (par exemple p), ol ¢;; = > 1_; Girby;-.
Il existe une matrice carrée neutre d’ordre n, I, telle que pour toute matrice carrée A
d’ordre n, I,A = Al,, = A. Une matrice carrée A d’ordre n est inversible s’il existe une
matrice A~! inverse de A telle que A™'A = AA™ = I,,.

2.1 Calcul du déterminant d’une matrice carrée

Soit A une matrice carrée d’ordre n, on calcul le det(A) :
Si A est d’ordre 1, alors det(A) = A.!
Si A est d’ordre 2,
a b
A= ( . d ), det(A) = ad — cd.
Si

A:

Q Q.2

b
e
h

~ < O

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Maths pour SVT, Univ Antananarivo 2014
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det(A) se calcul par la méthode de Sarrus :

at bt ¢t a b
d e f d e
g- h_ I g h

det(A) = +(ael + bfg + cdh) — (gec + hfa + ldb). On peut aussi utiliser la méthode des
cofacteurs, on écrit

at b~ "

A= | d et [ ],

gt b I*
les regles de signes sur chaque élément de cette matrice est (—1)™ ou I'élément en question
est a la ¢-ieme ligne et j-ieme colonne. On choisit alors une ligne ou une colonne pour le
développement du déterminant, par exemple par la premiere colonne. Ainsi, det(A) =

+a det(AH) — ddet(A21) + gdet(Agl) ou

(3 1) (2 ) ()

Le cofacteur de la i-iéme ligne j-itme colonne est (—1)""7 det(A;;). En général, si A est
une matrice carrée d’ordre quelconque, la méthode des cofacteurs est toujours appliquable,
contrairement a la méthode de Sarrus qui est seulement appliquable pour une matrice
d’ordre 3.

Une matrice carrée est inversible si et seulement si elle admet un déterminant non nul.
Ainsi, pour une matrice d’ordre n inversible,

LA
det(A)

olt A= ((—1)"7 det(A;;)) et Vopération * (transposé) désigne le remplacement de chaque
i-ieme colonne d’une matrice a la i-ieme ligne. On a det(AB) = det(A) det(B) si A et B
sont des matrices carrées.

2.2 Systeme d’équations linéaires

un systeme d’équations

1121 + 1222 + - - + a1y, = by
a91T1 + 99T + -+ Aonly — b2 (2 1)

A1 T1 + Am2aTe + -+ ATy = by,

ou chaque b; sont des réels. On forme ’expression matricielle du systeme ci-dessus :

ai a2 ... ... QA1p X1 b1
o1 Q22 ... A i) b2
Ax X =B= . .. : =
Tp—2 bme
Tp-1 bmfl

A1 Ama - .- .. Qmn Tn b,
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ou
aiq a2 ... AT X1 bl
g1 Q22 ... .. Qop ) b2
A= , X = , B=
Tn—2 bme
Tp—1 bm—l
i Gma - .- R T, b,
Le probleme c’est de chercher x4, ..., x, vérifiants a la fois chaque équation du systeme.

La méthode de pivot de Gauss consiste a rendre cette matrice A en une matrice réduite
échélonnée. On choisit une ligne appelée pivot 1, on choisit une variable a éliminer dans
les autres lignes par la variable correspondante dans le pivot. Cette élimination est une
suite de calcul : on peut additionner & une ligne (fois une constante) (dont la variable est
a éliminer) autre que le pivot par le pivot fois une constante, de fagon que la variable en
question disparait dans le calcul. Lorsque cet étape est fait, on choisit un autre pivot 2 et on
choisit une autre variable a éliminer dans les autres lignes différentes de pivot 1, et on refait
le méme processus de calcul. A la fin du processus (il n’y a plus de variable a éliminer), on
obtient cette nouvelle matrice réduite, et puis la valeur des variables restantes, on remonte
les valeurs de ces variables au pivot précédent et ainsi de suite. Alors on résoud le systeme
linéaire de départ.

Sin =m et que det(A) # 0, alors la méthode de Cramer est appliquable, chaque

ou A = det(A) et A,, = det(A4;) avec A; est la matrice A ou on a seulement remplacé la
1-ieme colonne par

Dans ce dernier cas, si n = m et det(A) # 0, on connait A~!; alors
X=A"'B

et les x; sont identifiés par cette égalité matricielle.
Ainsi, on résoud le systéme d’équations linéaires. 2

2. Princy RANDRIAMBOLOLONDRANTOMALALA, Maths pour SVT, Univ Antananarivo 2014
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Introduction

Le probleme de l'optimisation consiste a chercher la valeur maximale ou minimale
d’une fonction en présence de certaines contraintes. Dans ce cours, on s’intéresse sur le
cas d’une fonction linéaire sous des contraintes linéaires. Il a une petite distinction sur la
méthode & suivre dans cette étude. En ce qui concerne le cas de R ou R2, il suffit de faire
une résolution par le dérivé d’une fonction réelle ou par la méthode graphique. Quant au
cas de R™ avec n > 3, la méthode appropriée c’est une méthode analytique, la méthode
du simplexe. Bien siire, cette derniere méthode est aussi valable pour la résolution de ces
premiers cas. !

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Optimisation
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Chapitre 1

Programmation linéaire en deux
dimension

Le but c’est de chercher la valeur optimale de la fonction linéaire L = ax 4 by avec
a,b € R, (z,y) le systeme de coordonnées dans R? sous les contraintes

a1x + by > C)
QAo + bgy Z CQ

anx + by > C,

Une méthode usité est la méthode par graphique, il s’agit de dessiner sur R? rapporté a un
repere orthonormé (O,;,]) toutes les droites correspondantes a ces contraintes, hachurer
chaque partie qui ne contient pas la solution. Une droite de R? a toujours deux cotés gauche
et droite. Alors si un point appartenant a sa gauche et n’appartenant pas a la droite ne
vérifie pas I'inéquation correspondante alors c¢’est la partie droite qui est la solution, et on
doit hachurer la partie gauche; et vice versa. En effectuant ce processus sur toute n les
droites définies par les contraintes, on obtient une partie non hachurée de R? qui est le
domaine de solution de notre probleme. On trace maintenant le vecteur partant de ’origine

O de composante u = . Alors on fait glisser une perpendiculaire a la droite dans le

a
b
domaine de solution. Si on cherche le maximum de L, alors I’ensemble de points frontieres
commune a cette normale glissée dans le sens du vecteur 4 avec le domaine de solution
constitue les points ou L est maximale. Avec le méme principe mais dans le sens contraire

de 1, on obtiendra le minimum de L.

Remarque 1. On peut toujours ramener une inéquation comportant < a > dans les
contraintes ci-desssus en multipliant chaque membre par un —.
1

Remarque 2. Pour un domaine D de solution bornée, il suffit de trouver les valeurs de L
pour chaque sommet en nombre fini, et les comparer ensuite. Pour ce faire, chaque sommet
est la solution du systeme de deux équations a deux inconnues correspondants aux deux
droites définies par les contraintes deux a deux.

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Optimisation
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Exercice 3. Maximisation et minimisation de la forme linéaire L. = x+y avec les contraintes

3r —2y > —6
—3r—y < =3
r <4

Solution : L4, = 13 au point (4,9), L, = —5.00 au point (4, —8.999).

FEzxercice 4. Maximisation et minimisation de la forme linéaire L = z + 2y avec les
contraintes

20 — 3y <0

r+y=>1

Solution : L,ar = 400, Lyin = 1.400 au point (0.599,0.400).

FEzxercice 5. Maximisation de la forme linéaire L = 4x — y avec les contraintes

(3a:+4y218
3r—y >3
y <6
20+ 1y < 18
(4 —y <24

Solution : L,,.. = 24, aux points situés dans le domaine de solutions de la droite y =
4o — 24.

Cependant, il est fort possible que la forme linéaire, les contraintes ne sont pas ex-
plicitées mais on les formule partant des données de ’exercice. Dans ce cas il faut bien
interpréter mathématiquement les données du probleme. Il faut en premier placer les va-
riables en question, souvent indiquées par les données sur la fonction linéaire a optimiser.
Deuxiemement, écrire la fonction linéaire a optimiser et troisiemement les contraintes du
probleme.

Ezxercice 6. Une entreprise fabrique des postes de télé et des ordinateurs. 140 ouvriers
travaillent a la fabrication. Le prix de revient, pieces et main d’oeuvre d’un ordinateur est
de 400 000 Ariary. Il n’est que de 300 000 Ariary pour un poste de TV.

On ne peut pas dépasser par semaine la somme de 240 000 000 Ariary, pieces et main
d’oeuvre et chaque ouvrier travaille 40 heures par semaine.

Les gérants de 'entreprise estiment qu’il faut 10 heures de main d’oeuvre pour fabriquer
un poste de TV et 5 heures seulement pour fabriquer un ordinateur. L’entreprise ne peut
vendre plus de 480 ordinateurs et 480 poste de TV par semaine. Les prix de ventes sont
tels que 'entreprise, tous frais payés, fait un bénéfice de 240 000 Ariary par ordinateur et
de 160 000 Ariary par postes de TV.

1) Ecrire le bénéfice.

2) Chercher les contraintes correspondantes a ce probleme.

3) Déterminer la fabrication qui assure un bénéfice maximum.

Pour résoudre le probleme, on sait que le bénéfice B est la fonction a maximiser. Or
le bénéfice dépend du nombre d’ordinateur et de TV vendus. Alors, les variables sont
x et y qui représentent respectivement le nombre d’ordinateurs et de TV vendus. Ainsi,
B = 240000 Ariary x + 160000 Ariary y. Evidemment, ces nombres sont positifs ou nuls.
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Maintenant, on interprete les autres données pour former les autres contraintes. Il est
immédiat que z < 480 et y < 480 d’apres les dernieres données. Concernant les prix de
revient, on a 400000 Ariary x + 300000 Ariary y < 240000000 Ariary. Pour les heures de
travail des ouvriers 10 h y + 5 h x < 140 x 40 h. Maintenant, il faut choisir une echelle
appropriée pour la résolution graphique du probleme. Par exemple, on prend une unité de
1 000 pour les axes des x et des y. Ainsi, B,,., = 140800000 Ariary.



Chapitre 2

Programmation linéaire en
dimension n > 2

On essaie de chercher par la méthode de simplexe la valeur optimale d’une fonction
linéaire L = cixq1+- - -+ ¢z, +co parmi les solutions positives ou nulles avec les contraintes
exprimées par un systeme d’équations

a1171 + @192 + -+ - + a1, = by
a91T1 + 99T + -+ Aonly — bg (2 1)

Am1T1 + Q2T + -+ + ATy = bm

ou chaque b; sont positifs ou nuls. On forme 'expression matricielle des contraintes ci-

dessus :
aiy;  ayg ... Lo A1 I bl
21 Q22 ... ... QAop T2 b2
Ax X =B= . . : =
Tp—2 bme
Tp—1 bm—l
Am1  Qma - - R T, b

On cherche le rang de la matrice A, supposons que c’est r > 1. Alors, pour simplifier
I’écriture, on assume que x1,..., 2, sont les variables de base et x,,1,...,x, les variables
libres. On change I’expression de L en fonction des variables libres z; r+1 <7 < n et on
transforme les coefficients des z; 1 < i < r dans (2.1) en 1 chacun. Alors, on a

T1+ -+ Clrg1Trg1 + - F C1pTp = €1
Ty + o+ Corp1Tpq1 + 000+ ConTp = €2 (2.2)

Tp 4o+ Crpp1 T + 0+ CrpTp = €
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ou chaque b; sont positifs ou nuls. L + d, 12,41 + - - - + dpx, = dy et on peut dresser le
tableau suivant :

VBITC |z | ... |.oo | @ | oo | Tp | Tpg1 | o0 | X5 | ... | Tp
T €1 1 0 ce 0 Ce 0 Clp4+1 | - - - Cij | -+ | Cin
ZT; €; 0 0 ce 1 R 0 Ciry1 | --- Cij | --- | Cin
T, er 0 O ... 0O ... 1 |cog1| v |Crjl ]| Cm
L d |00 [0 10 duw]|--|d]|. [dn

ou V.B désigne la colonne des variables de bases, T'.C' celle des termes constants. Les d;
sont appelés estimations des z; correspondants.
Le choix de la colonne résolvante p est de facon que d, < 0 et il existe ¢;, > 0. La

ligne résolvante est obtenue par ¢ ou :—q minimum parmi les == avec ¢y > 0. Apres, on
ap p
calcul a nouveau la g-ieme ligne résolvante par c;k = Zq—k Les autres lignes deviennent
qp

/ / N ;
iy = Cik — Cp.Cip O k # p et i # q.

2.1 Pour un probleme non dégénéré

Théoreme 7. Lors d’une itération, s’il existe une estimation négative stricte et un élément
de la colonne correspondante est positif strict, alors on peut améliorer la solution par
litération suivante. S’il existe une estimation négative dont la colonne correspondante n’a
pas d’élément positif, alors Ly,., = 0o. Si toutes les estimations sont non négatives, alors
L0z €St obtenue.

Ezemple 8. Trouver le maximum de L avec L = 5x1+ 7xo ot les x; > 0 et 3z + 229+ 123 =
19, 1 + 229 + x4 = 13, 3x1 + x5 = 15 et 3wy + x5 = 18. Alors L, = 50.

2.2 Pour un probleme dégénéré

C’est le cas ou dans une itération, on trouve e; = 0. Dans ce cas, il faut choisir la
Y Y
ligne résolvante dans laquelle le rapport minimal des éléments de la colonne suivante de la
colonne résolvante aux éléments correspondants a la colonne résolvante. Et ainsi de suite
jusqu’a avoir la détermination univoque de la ligne résolvante.

Ezemple 9. Trouver le maximum de L = 2xg + 4x5 ou les x; > 0 avec x1 + xg + x5 = 12,
To — ¢ + dx5 = 30, x3 + x5 — 226 = 6, 224 + 375 — 226 = 18 ; alors L., = 38.



Chapitre 3

Méthode duale

Il s’agit de représenter le probleme de départ appelé probleme primal sous-forme d’un
autre probleme équivalent appelé probleme dual et vice versa. On suppose que toutes les
variables sont non négatives. Si on minimise L = ¢yx1 + - - - + ¢,x, ol

ai a2 ... ... QA1p Z b1
921 aszy ... ... Qop 2 b2
A1 Ama - . s Qmpn > b,

alors le probleme dual équivalent est le suivant, on maximise L' = by, + - - - + by Yym SOUS
les contraintes

ai;p a1 ... P e | S C1
a2 A2 ... oo Qo S Co
A1y G2 - s QA <y

Dans ce cas Ly, = L] ... On remarque que la matrice correspondante au probleme dual
est la transposée de la matrice correspondante au probléeme primal et vice versa.



Chapitre 4

Problemes de transport

Le probleme de transport que nous allons traité ici ¢’est 'organisation la plus rationnelle
des transports des charges avec un minimum de cofits. Supposons qu’en p points dépots,
il y ait respectivement ay,...,a, unités de charge homogene qui’il faut transporter a ¢
utilisateurs devant recevoir respectivement by, ..., b, unités. Les frais ¢;; qu’il faut engager
pour le transport d’une charge unitaire du z-ieme point d’expédition au k-ieme utilisateur.
La variable x;; désigne la quantité positive de nombre d’unités de charges du i-dépot vers
k-utilisateur. Alors pour satisfaire les demandes, on doit avoir

q P
E Tik = a;, E Ti = by, Ty > 0.
k=1 i=1

Les frais de transport est L = c11211 + 12212 + - - - 4 CpgTpq- Donc, on minimise L avec les
contraintes ci-dessus.

Pour ce faire, on passe par deux étapes, c’est 1) la détermination de la solution de base
initiale (méthode de coin ”Nord-west” ) et 2) la construction des itérations successives pour
avoir le minimum de L (méthode des potentiels). On forme le tableau suivant :

Gz/bk b1 bk bq
aq 1’11611 Ce Jﬁlkclk Ce l’lqclq
a; l’z‘lc“ R ZEikCik e ZL‘iqciq

c Cpk c
Qy Tp1™Ph | oo | Tpk PR | ol | Xpg e

4.1 Solution de base initiale

On remplit le tableau ci-dessus en commencant par remplir le coin extréme gauche du
haut (Nord-West). C’est a dire satisfaire les besoins b; par a;, alors on met dans cette case
min(ay,by). Si by n'est pas satisfait (a3 < by), alors on se déplace suivant cette colonne
dans la case de ay pour satisfaire le reste qu’on a manqué dans a;, on place dans cette case
min(ag, by — ay) et ainsi de suite. Si by est satisfaite, alors on cherche a satisfaire by par le
reste de a; utilisé par by, c’est-a-dire qu’on place dans cette case (1,2) le min(a; — by, bs),
et ainsi de suite. A la fin, lorsque toutes les by sont satisfaites, alors on a une solution de
base et on peut en déduire L dans a partir de cette solution. On la note vy = Zl ; CijTij-

7
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4.2 Méthode des potentiels

On reconnait les variables de base xy; qui correspondent a la case remplie de nombre
non nul, les autres variables x,,, sont des variables libres. Alors, on met L sous la forme
L=73% . YmnZmn + Y. On cherche 7,,, en assignant a chaque point dép6t a; une valeur
u; (potentiel) et I'utilisateur b; une valeur v; (potentiel) de fagon que

U + U = Cp
en donnant a l'une de ces valeurs (potentiels) une valeur précise. On désigne par
dmn = u,, + v,.

Alors,

/
Ymn = Cmn — CTNN.

Si toutes les 7,,, sont non négatives, la solution 7y est le minimum. Mais s’il existe une
qui est négative, on passe a la base suivante en augmentant la variable a coefficient négatif
choisie et en laissant les autres variables libres a zéro.

Exemple 10. En deux dépots A et B sont stockés respectivement 1500 et 900 t de carbu-
rants. Les demandeurs 1, 2, 3 ont besoin respectivement de 600, 700 et 1100 t. Les cotts
de transports d’une tonne de carburants de A vers 1, 2 et 3 sont respectivement de 60, 100
et 40 euros, mais de B vers 1, 2 et 3 sont respectivement de 120, 20 et 80 euros. Chercher
I'organisation du transport de maniére a minimiser les frais. (Frais minimum=102 000
euros).
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-RAJAONARISON Anjara Fatiana Miora anjarafatiana.ri@gmail.com
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