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Résumé Soit m un entier naturel supérieur ou égal à 2. On s’intéresse aux m-dérivations
des algèbres de Lie P de champs de vecteurs polynomiaux sur Rn qui contiennent tous les
champs constants et le champ d’Euler. Si m est pair, elles sont des représentations adjointes
par rapport au normalisateur de P. Pour m impair, toute m-dérivation est une somme de
dérivée de Lie par rapport à un champ du normalisateur de P et, de m-dérivation de P qui à
un champ quadratique fait corrrespondre un champ constant et qui s’annule sur les champs
homogènes non quadratiques. On donne une condition nécessaire et suffisante pour qu’une
application linéaire deP vers elle-même soit de ce dernier type de m-dérivation. En général,
sous une certaine condition sur P, toute m-dérivation du normalisateur de P est intérieure.
Ainsi, les m-dérivations de l’algèbre de Lie de tous les champs polynomiaux (resp. des
champs affines) de Rn sont des m-dérivations intérieures.
Abstract Let be m ≥ 2 a natural integer. We study the m-derivations of the Lie algebras
P of polynomial vector fields on R

n which contain all constant vector fields and the Euler’s
vector field. They are Lie derivative with respect to a R

n polynomial vector fields on the
normalizer of P, when m is even. If m is odd, all m-derivation of P is a sum of a Lie
derivative with respect to a normalizer’s vector fields and, a m-derivation ofP which acts on
a quadratic vector fields to give a constant vector fields and which vanishes otherwise. We
give a necessary and sufficient condition for a linear map of P into it self to be a previous
last type of m-derivation. Generally, under some conditions on P, all m-derivation of the
normalizer of P is inner. Hence, the m-derivation of Lie algebra of all polynomial vector
fields respectively of affine vector fields on R

n , is an inner m-derivation.

L’auteur bénéficie d’une bourse de recherches, initiative du Prof. Ingrid Daubechies en collaboration avec
”Institute for the Conservation of Tropical Environments” (ICTE) Madagascar.

B Princy Randriambololondrantomalala
princypcpc@yahoo.fr; princy.randriambololondrantomalala@univ-antananarivo.mg

1 Département de Mathématiques et Informatique Faculté des Sciences, Université d’Antananarivo,
101 BP 906, Antananarivo, Madagascar
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1 Introduction

Définition 1.1 Une (m ≥ 2)-dérivation D d’une algèbre de Lie A est une application
R−linéaire de A dans A telle que ∀X1, X2, . . . , Xm ∈ A,

D
[
X1,

[
X2, . . . ,

[
Xm−1, Xm

]
. . .

]] = [
D (X1) ,

[
X2, . . .

[
Xm−1, Xm

]
. . .

]]

+ [
X1,

[
D (X2) , . . . ,

[
Xm−1, Xm

]
. . .

]] + . . .

+ [
X1,

[
X2, . . . ,

[
D (Xm−1) , Xm

]
. . .

]]

+ [
X1,

[
X2, . . . ,

[
Xm−1, D (Xm)

]
. . .

]]
. (1.1)

On note Derm (A) l’algèbre de Lie des m-dérivations deA. Si m = 2, alors Der2 (A) coïncide
avec l’algèbre de Lie Der (A) des dérivations de A . Dans le cas où m = 3, Der3 (A) est
l’ensemble des triple dérivations de A.

Définition 1.2 On dit qu’une m-dérivation de A est intérieure par rapport à une algèbre de
Lie B contenant A, si elle est de la forme LX , une dérivée de Lie par rapport à X élément
de B. En particulier, L X est une m-dérivation intérieure si X ∈ A. L’ensemble de ces m-
dérivations est noté par adA. Une m-dérivation D est dite sous-forme standard si elle est la
somme d’une 2-dérivation de A et d’une application R-linéaire L de A dans le centre de A

telle que L [A, [A, [. . . , [A,A] . . .]] = {0}.
Les m-dérivations où m ≥ 2 d’une algèbre de Lie sont naturellement une généralisation

de la notion de dérivation et de triple dérivation. Récemment, [1] a traité les m-dérivations de
l’algèbre des matrices triangulaires supérieures. Dans notre papier, on se propose d’étudier
les m-dérivations d’une R-algèbre de Lie P formée de champs de vecteurs polynomiaux
sur Rn contenant tous les champs constants et le champ d’Euler. D’après un résultat de [5],
l’algèbre de Lie P est graduée en une somme directe d’espaces vectoriels consistant à des
champs polynomiaux homogènes de même degré supérieur ou égal à -1. On remarque que
cette graduation est différente de celle de [3]. On sait que, toute 2-dérivation de P est une
dérivée de Lie par rapport à un élément du normalisateur N de P. De plus, N est une sous-
algèbre de Lie de l’algèbre de Lie des champs de vecteurs polynomiaux de R

n . Comme le
centre de P est réduit à zéro, alors toutes les m-dérivations sous-forme standard sont des
dérivées de Lie par rapport à un champ de vecteurs deN. On généralise la manière d’étudier
les 2-dérivations deP dans [5], où m est inférieur ou égal au degré de nilpotence deP (siP
n’est pas nilpotent alors ce degré est égal à +∞). Car si m est dans un cas contraire, toute
application R-linéaire de P est une m-dérivation de P. Ainsi, on constate que si P contient
des champs quadratiques, il existe des m-dérivations homogènes de degré −2 s’annulant sur
les champs homogènes non quadratiques. Dans le cas où m est pair, ces derniers types de
m-dérivations sont identiquement nulles. C’est-à-dire que l’algèbre de Lie des m-dérivations
est identique à celle des 2-dérivations de P. Pour le cas où m est impair, on donne une
condition nécessaire et suffisante pour qu’une application R-linéaire de P, envoyant un
champ quadratique à un champ constant et s’annulant autrement, soit une m-dérivation.
Ce dernier type de m-dérivations est non-standard. Par ailleurs, un champ homogène de
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degré k ≥ −1, X = α
j
i1<i2<···<i p

xi1xi2 . . . xi p ∂
∂x j (ici on suit la convention d’Einstein

sur la sommation d’indices) de P est séparé dans P, si pour chaque i0 et j1, j2, . . . , jp ,

α
i0
j1< j2<···< jp

x j1x j2 . . . x jp ∂

∂xi0
∈ P. Un sous-ensemble non vide de l’algèbre de Lie des

champs polynomiaux est séparé si tous ses éléments homogènes non nuls sont séparés dans
ce sous-ensemble. Par la présence du champ d’Euler dans P, tout champ quadratique de P
appartient à son idéal dérivé. En utilisant la propriété de la m-dérivation de degré −2 sur cet
idéal, on détermine entièrement l’image d’un champ quadratique quelconque de P par ce
dernier type de m-dérivation, si P est séparé.

Comme P est inclus dans son normalisateur, en général, on peut alors déterminer toutes
les m-dérivations de ce normalisateur. Cependant, on cherche des conditions pour n’avoir
que des m-dérivations intérieures de N. En rectifiant une preuve de [5], on peut montrer
que le normalisateur de N coïncide avec N lui-même si et seulement si P est un idéal
caractéristique de N. Dans ce cas, avec m pair, toute m-dérivation de N est intérieure. En
outre, on peut affirmer que si tous les champs diagonaux sont inclus dans P (en particulier
si l’idéal dérivé de P coïncide avec P), alors toute m-dérivation (avec m ≥ 2 un entier
arbitraire) est intérieure par rapport à un champ de P. Si P est séparé, tous les champs
linéaires diagonaux appartiennent au normalisateur de P. Ainsi, toute m-dérivation de N

est une representation adjointe par rapport à N. Alors, on propose quelques illustrations des
résultats par des exemples dem-dérivations non standards d’algèbres de LieP, pour le cas où
P est séparé ou non séparé. Toutes les m-dérivations de l’algèbre de Lie de tous les champs
polynomiaux (des champs affines) de Rn sont intérieures. De plus, on peut montrer que toute
les m-dérivations d’une sous-algèbre de Lie de l’algèbre de Lie des champs affines contenant
E et les champs constants sont des dérivations intérieures par rapport à un champ affine. Si
les champs constants ou le champ d’Euler ne sont pas contenus dans une algèbre de Lie de
champs de vecteurs polynomiaux, les résultats sur ses m-dérivations peuvent être différents.
Un exemple d’une telle algèbre de Lie est celle des champs linéaires triangulaires supérieurs,
qui est isomorphe à l’algèbre des matrices carrées triangulaires supérieures d’ordre n à
coefficients réels cf. [4]. D’après un résultat de [1], la m-dérivation correspondante est sous-
forme standard cf. Définition 1.2. Dans le même contexte, on peut aussi consulter d’autres
exemples de dérivations dans la remarque 2.16 de [5] où le champ d’Euler n’appartient pas
à P. Dans un autre article, on traitera les m-dérivations des algèbres de Lie attachées à une
distribution involutive dans une variété différentiable.

2 Préliminaire

Soit P une R-sous-algèbre de Lie de l’algèbre de Lie des champs de vecteurs polynomiaux
sur Rn , contenant tous les champs constants et le champ d’Euler E . Dans la suite, on adopte
la convention d’Einstein sur la sommation d’indices. En coordonnées locales

(
xi

)
1≤i≤n de

R
n , le champ E s’écrit xi ∂

∂xi . On note Hi l’ensemble des champs polynomiaux homogènes
de degré i ≥ −1. L’algèbre de Lie P est graduée de la manière suivante:
P = ⊕i≥−1Pi , où toutPi = P∩ Hi est un sous-espace vectoriel de dimension finie de Hi ,
tels que

[
P−1,P−1

] = {0} et ∀i, j ≥ −1 , où i + j ≥ −1,
[
Pi ,P j

] ⊂ Pi+ j . (2.1)

De plus, un champ X de Pi est déterminé par [E, X ] = i X et tout Y ∈ P s’écrit en∑
−1≤ j≤k Y j tel que ∀ j, Y j ∈ P j cf. [5]. Donc, on peut définir une m-dérivation D de P à

partir des images par D des champs homogènes de P.
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Dans toute la suite, m est un entier naturel plus grand ou égal à 2. Il est clair que toute 2-
dérivation d’une algèbre de LieA est unem-dérivation avecm ≥ 2, en utilisant les définitions
d’une m-dérivation. Alors, on a Der2 (A) ⊂ Derm (A).

Nous désignons par χ (Rn) l’algèbre de Lie des champs de vecteurs de R
n munie du

crochet de champs de vecteurs. On rappelle que le normalisateur N de P est défini par N =
{X ∈ χ (Rn) / [X,P] ⊂ P}, c’est une sous-algèbre des champs de vecteurs polynomiaux de
R

n . Comme E ∈ P, alors on a une somme directe d’espaces vectoriels N = P ⊕ N0, avec
N0 la partie d’éléments homogènes de degré 0 de N non contenue dans P − {0}. En effet,
P ⊂ N est un idéal de N, alors le quotient N/P ∼= N0 est une algèbre de Lie et donc un
espace vectoriel. Le centralisateur deP qui est égal à {X ∈ χ (Rn) / [X,P] = {0}}, est réduit
à zéro cf. [5].

Remarque 2.1 Dans le cas de l’algèbre de Lie P, une m-dérivation sous-forme standard est
une 2-dérivation car le centralisateur de P est nul. Alors, elle est sous une forme de dérivée
de Lie par rapport à un champ du normalisateur de P cf. [5].

Définition 2.2 Soit A une algèbre de Lie, sa série centrale descendante est définie par
C0 (A) = A et pour tout p > 0, Cp (A) = [

A,Cp−1 (A)
]
cf. [2]. L’algèbre de Lie A est

nilpotente d’ordre k > 0 si k est le plus petit entier tel que Ck (A) = {0}. Cette série est
décroissante au sens de l’inclusion: Ck+1 (A) ⊂ Ck (A) pour tout k ≥ 0.

Remarque 2.3 La série centrale descendante de P vérifie Cp (P) �= {0} pour 0 ≤ p ≤ 1.
Cette assertion découle directement du fait que P contient tous les champs constants et le
champ d’Euler. En effet, C1 (P) contient l’ensemble de tous les champs constants.

Proposition 2.4 Si l’algèbre de Lie P est nilpotente d’ordre k ≥ 2 avec m > k, alors toute
application R-linéaire de P dans P est une m-dérivation de P.

Démonstration Compte tenu de laRemarque 2.3, k ≥ 2, considérons la série centrale descen-
dante de l’algèbre de Lie P. Alors si m > k, la relation (1.1) est triviale; d’où le résultat.

Alors, dans toute la suite, si P est nilpotente d’ordre k, on ne s’intéresse qu’à ses m-
dérivations avec m ≤ k.

3 Etude des m-dérivations des algèbres de Lie P

Dans cette section, on examine les m-dérivations des algèbres de Lie attachées à P et les
applications des résultats obtenus.

Proposition 3.1 Une m-dérivation D de P, nulle sur tous les champs constants et le champ
d’Euler, est nulle sur tous les champs homogènes de degré 0 de P. Avec ces conditions, cette
m-dérivation s’annule sur tous les champs quadratiques de P si et seulement si D est nulle.

Démonstration Supposons que D(E) = D(C) = 0, où C ∈ H−1. On peut considérer
P ∈ Pk comme dans [5], où k ∈ N ∪ {−1} et on raisonne par récurrence.

Pour P ∈ H−1, on a par hypothèse D(P) = 0. De même, soit P ∈ P0, on obtient

D [E, [E, [. . . , [E, [C, P]] . . .]]] = 0. (3.1)

Par définition d’une m-dérivation (1.1) et par hypothèse pour tout C , on a D(P) ∈ H−1. Or

D [E, [E, [. . . , [E, [E, P]] . . .]]] = 0,

par définition d’une m-dérivation et le résultat précédent, D(P) = 0.
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Soient k ≥ 2 et P ∈ Pk , supposons que pour tout Q ∈ Pr où−1 ≤ r ≤ k−1, D(Q) = 0.
Une relation analogue à (3.1) s’écrit

D [E, [E, [. . . , [E, [C, P]] . . .]]] = (k − 1)m−2D(Q),

où le champ Q appartient à Pk−1. Par hypothèse, D(Q) est nul. Donc

[E, [. . . , [E, [D(C), P]] . . .]] + [E, [. . . , [E, [C, D(P)]] . . .]] = 0,

par la relation (1.1). On pose D(P) = ∑
i≥−1 P ′

i où chaque P ′
i ∈ Pi . Alors pour tout

C ∈ H−1 et i > −1, on obtient la nullité de (i − 1)m−2
[
C, P ′

i

]
. Ainsi,

∑
i≥−1 P ′

i est dans
P−1 ⊕P1. Or, on a l’égalité entre D [E, [E, . . . , [E, P] . . .]] et km−1D(P). Par conséquent
et par définition, on a km−1

(
P ′−1 + P ′

1

) = (−1)m−1P ′−1 + P ′
1, ainsi P ′−1 = P ′

1 = 0. D’où
∀k ≥ −1, D(P) = 0 et D ≡ 0.

La réciproque est évidente. ��
Proposition 3.2 Soit D une m-dérivation de P nulle sur E, vérifiant pour tout i �= 1,−1 de
N∪{−1}, D (Pi ) ⊂ Pi , D|P−1 et D|P1 sont à valeurs dans P−1⊕P1. Alors la m-dérivation
s’écrit D = LX + D0 avec X un champ de vecteurs polynomiaux homogène de degré 0, D0

une m-dérivation nulle sur Pi avec i �= −1, 1 et que D0(P−1) ⊂ P1, D0(P1) ⊂ P−1.

Démonstration Soit D une telle m-dérivation, alors pour C ∈ P−1, D(C) = W−1 + W1,
où W−1 ∈ P−1 et W1 ∈ P1. Comme D est une application R−linéaire, alors il existe un
seul X ∈ H0 tel que D(C) = [X, C] + W1 pour tout C ∈ H−1. En effet, il suffit d’écrire
l’équation [X, C] = W−1 en coordonnées usuelles de R

n pour tout C et la résoudre. Par
ailleurs, on obtient D(E) = 0 = [X, E]. Soient V1 ∈ P1, V0 ∈ P0 − {E} et C ∈ H−1, on a

D [V0, [E, . . . , [E, C] . . .]]= [D (V0) , [E, . . . , [E, C] . . .]]+[V0, [E, . . . , [E, D (C)] . . .]]
(3.2)

et

D [C, [E, . . . , [E, V1] . . .]]

= [[X, C] + W1, [E, . . . , [E, V1] . . .]] + [C, [E, . . . , [E, D (V1)] . . .]] . (3.3)

Par la relation (3.2) et ce qui précède, on a

[X, [V0, C]] = [D (V0) , C] + [V0, [X, C]] . (3.4)

En utilisant l’identité de Jacobi, on obtient [X, V0] − D (V0) ∈ H−1 ∩ H0. Ce qui entraîne
la nullité de cette dernière expression pour tout V0 ∈ P0. Par conséquent, D (V0) = [X, V0]
pour tout V0 ∈ P0.

D’après ce qui précède, D [C, [E, . . . , [E, V1] . . .]] = [X, [C, V1]]. En identifiant
l’égalité précédente avec la relation (3.3), [W1, V1] et [C, [X, V1] − [E, . . . , [E, D (V1)] . . .]]
deviennent nuls, pour tout C deP−1. Donc, on a [X, V1]− [E, . . . , [E, D (V1)] . . .] ∈ H−1.
En notant D(V1) = W ′−1+W ′

1, D(V1) = W ′−1+[X, V1] pour tout V1 ∈ P1. Maintenant, soit
k ≥ 2 et on suppose que pour−1 ≤ r ≤ k −1, les D(Vr ) = [X, Vr ]+W où W ∈ P−1∪P1.
C’est-à-dire, on raisonne par récurrence, prenons Vk ∈ Pk et écrivons

D [Vk, [E, . . . , [E, C] . . .]]

= [D (Vk) , [E, . . . , [E, C] . . .]] + [Vk, [E, . . . , [E, D (C)] . . .]] ,

qui donne en terme d’égalité entre les champs homogènes de même degré

D [Vk, C] = [D (Vk) , C] + [
Vk, W−1

]
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Par hypothèse de récurrence et par identification, on déduit de cette égalité

[X, [Vk, C]] = [D(Vk), C] + [Vk, [X, C]] .

On utilise l’identité de Jacobi pour tout C et on a D(Vk)− [X, Vk] ∈ Pk ∩P−1 = {0}. Ainsi,
D est la somme de LX et d’une m-dérivation D0 susmentionnée. ��
Définition 3.3 On dit qu’une m-dérivation D de P est homogène de degré k si D (Pi ) ⊂
Pi+k pour tout i ≥ −1.

Proposition 3.4 Une m-dérivation homogène de degré 0 sur P qui s’annule en E est une
dérivée de Lie par rapport à un champ polynomial homogène de degré 0.

Démonstration La Proposition 3.2 est une extension de la présente proposition. En effet, il
suffit de remarquer que dans ce cas, la m-dérivation D0 est nulle. On peut aussi prouver notre
proposition autrement en admettant la démonstration de la Proposition 3.2 où on se contente
de chercher D(Vk) avec k = −1, 1; alors la Proposition 3.1 permet de conclure. ��
Remarque 3.5 On peut déduire de cette proposition qu’une dérivation homogène de degré 0
surP qui s’annule en E est une dérivée de Lie par rapport à un champ de vecteurs polynomial
homogène de degré 0 cf. [5].

Théorème 3.6 Toute m-dérivation D de P où m > 1 un entier naturel pair, est intérieure
par rapport au normalisateur N de P. De plus, cette m-dérivation est égale à LF+X avec
X ∈ H0 et F ∈ P� H0. Ainsi, on a des isomorphismes entre Derm (P), Der (P), adN et N.

Démonstration Soit D une m-dérivation de P. On considère D (Vt ), où Vt est un champ de
P homogène de degré t ≥ −1.

On écrit comme dans [5], D(Vt ) = ∑
−1≤i≤k Wi et D(E) = ∑

−1≤i≤l Ei , avec Wi , Ei ∈
Pi .

Par définition d’une m-dérivation:

D [E, [E, . . . , [E, Vt ] . . .]]

= [D(E), [E, . . . , [E, Vt ] . . .]] + · · · + [E, [E, . . . , [E, D(Vt )] . . .]] .

Alors, on obtient

– Pour −1 ≤ i ≤ t − 2 et i > t + l,
(
im−1 − tm−1

)
Wi = 0 ⇒ Wi = 0 car m est pair.

– Pour t − 1 ≤ i ≤ t + l,
(
im−1 − tm−1) Wi + (

tm−2 + tm−3i + tm−4i2 + . . . + im−2) [
Ei−t , Vt

] = 0 (3.5)

et
[E0, Vt ] = 0. (3.6)

Par factorisation et simplification, on a:

D(Vt ) = Wt +
∑

t−1≤i≤t+l

(
1

t − i

) [
Ei−t , Vt

]

= Wt +
⎡

⎣
∑

i �=0

(−1

i

)
Ei , Vt

⎤

⎦ . (3.7)

En notant F = ∑
−1≤i≤l,i �=0

(−1
i

)
Ei , qui est un élément de P, on obtient D(Vt ) = Wt +

[F, Vt ].
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On pose D′ = D − LF , c’est bien une m-dérivation homogène de degré 0 de P. D’après
(3.6) et le fait que P contient tous les champs constants, on a [E0, C] = 0 ∀C ∈ H−1. Par
conséquent, E0 = 0 et D′(E) = 0. D’après la Proposition 3.4, D′ = LX où X ∈ H0. Alors,
la m-dérivation D est une dérivée de Lie par rapport à un champ de vecteurs polynomiaux
de Rn , qui est F + X . Par conséquent, F + X appartient au normalisateur N de P, avec F
élément deP− H0. Ainsi, pour tout m pair, Derm(P) = adN. Ces dernières algèbres de Lie
sont isomorphes à N et Der(P) en adaptant une preuve de [5]. ��
Remarque 3.7 Dans le cas restrictif m = 2, ce théorème est exactement celui de [5] pour les
dérivations de P.

Dans toute la suite, on suppose que m ≥ 3 impair.

Proposition 3.8 Soit D une m-dérivation nulle surPi avec i �= −1, 1 et que D (P−1) ⊂ P1,
D (P1) ⊂ P−1. Etant donnés (V−1, V1) ∈ P−1 × P1:

1. On a D (V−1) = 0.
2. Pour tout Vt ∈ Pt �=0, [D (V1) , Vt ] = 0.
3. Pour tout V0 ∈ P0, on a [V0, D (V1)] = −D [V0, V1].

Démonstration Soient t, l ∈ N ∪ {−1} et (
Vl , V ′

t

) ∈ Pl × Pt , et D une telle m-dérivation.
On écrit

D
[
V ′

t , [E, [. . . , [E, Vl ] . . .]
] = [

D
(
V ′

t

)
, [E, [. . . , [E, Vl ] . . .]

]

+ [
V ′

t , [E, [. . . , [E, D (Vl)] . . .]
]
. (3.8)

On identifie (3.8) en terme de champs homogènes de même degré et on suppose que:

1. l = 1 et t ≥ 2, alors on a
[
D (V1) , V ′

t

] = 0.
2. l = 1 et t = 0, on a

[
V ′
0, D (V1)

] = −D
[
V ′
0, V1

]
.

3. l = 1 et t = 1, on doit avoir
[
D (V1) , V ′

1

] = [
V1, D

(
V ′
1

)]
.

4. l = −1 et t = −1, alors
[
D (V−1) , V ′−1

] = [
V−1, D

(
V ′−1

)]
.

Or, pour V ′′−1 ∈ P−1,

D
[
V ′′−1,

[
V ′−1,

[
E, . . . , [E, V−1

]
. . .

]] = [
V ′′−1,

[
D

(
V ′−1

)
, V−1

] + [
V ′−1, D (V−1)

]]
.

(3.9)
D’après la relation 4. et pour tout V ′′−1 deP−1, (3.9) donne

[
V ′−1, D (V−1)

] = 0 et D (V−1) =
0.

Par ailleurs,

D
[
V−1,

[
V ′
1, [E, [. . . , [E, V1] . . .]]

]] = [
D (V−1) ,

[
V ′
1, [E, [. . . , [E, V1] . . .]]

]]

+ [
V−1,

[
D

(
V ′
1

)
, [E, [. . . , [E, V1] . . .]]

]]

+ [
V−1,

[
V ′
1, [E, [. . . , [E, D (V1)] . . .]]

]]

∀ (
V−1, V ′

1, V1
) ∈ P−1 × P1 × P1. On peut dire que D

[
V−1,

[
E,

[
E,

[
. . . ,

[
E, [V ′

1, V1
]]

. . .
]]] = 0 où E se repète m − 2 fois. Alors, on obtient

[
V−1,

[
V ′
1, D (V1)

]] = 0 d’après 3.
de la présente preuve. Ainsi, on établit l’égalité

[
V ′
1, D (V1)

] = 0. D’où les résultats. ��
Théorème 3.9 Pour m ≥ 3 impair, toute m-dérivation D de P est la somme d’une dérivée
de Lie par rapport à un champ du normalisateur de P et d’une m-dérivation homogène de
degré −2 nulle sur Pi �=1.
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Démonstration On peut faire le même raisonnement que dans la preuve du Théorème 3.6
avec les modifications suivantes:

– Pour −1 ≤ i ≤ t − 2 et i > t + l, on a
(
im−1 − tm−1

)
Wi = 0:

dans le cas où t = 1 et i = −1, on a une indétermination sur Wi , sinon Wi = 0.
– Pour t − 1 ≤ i ≤ t + l, on obtient (3.5), et on a une indétermination sur Wi si t = −1 et

i = 1, sinon Wi est bien déterminé. On a
[
E2, V−1

] = 0 pour tout V−1; ce qui entraine
la nullité de E2.

On obtient (3.7), pour tout t �= −1, 1.
Notant à nouveau F = ∑

−1≤i≤l,i �=0

(−1
i

)
Ei ∈ P, on a D(Vt ) = Wt + [F, Vt ] pour tout

t �= −1, 1.
On pose D′ = D − LF , c’est une m-dérivation vérifiant les hypothèses de la Proposition

3.2. En effet, d’après (3.6) et le fait que tous les champs constants sont dansP, on a [E0, C] =
0 ∀C ∈ H−1. En conséquence, E0 = 0 et D′(E) = 0. D’après la Proposition 3.2, D′ =
LX + D0 où X ∈ H0 et D0 une m-dérivation définie par la Proposition 3.2. Cette application
D0 est nulle surP−1 d’après la Proposition 3.8. Alors, D = LF+X + D0 avec F + X est un
champ de vecteurs polynomial de Rn . Par le même raisonnement que celui de la preuve du
Théorème 3.6, on montre que F + X ∈ N où F appartient à P � P0. ��
Théorème 3.10 On suppose que m ≥ 3 est impair. Pour qu’une application R-linéaire D
de P, nulle sur P � P1 et dont l’image est incluse dans P−1, soit une m-dérivation, il faut
et il suffit que:

[D (P1) ,P − P0] = {0}; (3.10)

D [X, Y ] = [D (Y ) , X ] ∀ (X, Y ) ∈ P0 × P1; (3.11)

[D (P1) , [P,P] ∩ P0] = {0}; (3.12)

si
[
X1,

[
X2, . . . ,

[
Xi , . . . ,

[
Xm−1, Xm

]
. . .

]]] ∈ P1 où i le premier indice tel que Xi ∈ P1

avec l’existence de 1 ≤ j < i tels que X j ∈ P−1 ∪ Pt≥2, alors

D
[
X1,

[
X2, . . . ,

[
Xi , . . . ,

[
Xm−1, Xm

]
. . .

]]] = 0 (3.13)

Démonstration On suppose que D est une m-dérivation de P nulle sur P � P1 et telle
que D(P1) ⊂ P−1. Les deux premières conditions nécessaires sont obtenues en utilisant
la Proposition 3.8. En outre pour (X, X1, X2) dans P1 × P × P avec [X1, X2] ∈ P0, on
applique D à [E, . . . , [E, [X, [X1, X2]] . . .]]. On a alors [D (X) , [X1, X2] . . .] = 0 par la
relation3. de laProposition3.8. Pourmontrer (3.13), soient X1, X2, . . . , X j , . . . , Xi , . . . , Xm

vérifiant les conditions susmentionnées. Si
[
Xi+1, . . . ,

[
Xm−1, Xm

]
. . .

] ∈ P0, [D (Xi ) ,

. . . ,
[
Xm−1, Xm

]
. . .

]
est égal à D (Y ∈ P1) par (3.11), sinon est égal à 0 par (3.10).

Par les relations (3.11) et (3.10),
[
X j+1,

[
X j+2, . . . ,

[
D (Xi ) , . . . ,

[
Xm−1, Xm

]
. . .

]]] =
D (Z ∈ P1) ou 0 (cette technique (T) sera utilisée dans la suite de notre démonstration). Or
X j ∈ P−1 ∪ Pt≥2, alors

[
X j ,

[
X j+1, . . . ,

[
D (Xi ) , . . . ,

[
Xm−1, Xm

]
. . .

]]] = 0

par (3.10). A l’aide de (T), on peut affirmer aussi que
[
X1,

[
X j , . . . ,

[
D (Xk) , . . . ,

[
Xm−1, Xm

]
. . .

]]] = 0, ∀k ≥ i oùXk ∈ P1.

Ainsi, la relation (3.13) est obtenue en utilisant (1.1).
Par construction, un endomorphisme D de P qui s’annule sur P � P1 et tel que D(P1) ⊂
P−1; est une m-dérivation si et seulement si les trois assertions suivantes sont satisfaites:
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(a) Pour X1, . . . , Xm ∈ P − P1 tels que
[
X1,

[
X2, . . . ,

[
Xm−1, Xm

]
. . .

]] = V1 ∈ P1,
alors D (V1) est nul.

(b) Pour Xi1 , . . . , Xi p ∈ P1 avec i1 < i2 < · · · < i p et les autres Xi p+1 , . . . , Xim ∈ P−P1,
où les indices deux à deux différents ik sont dans {1, . . . , m} tels que

[
X1,

[
X2, . . . ,

[
Xm−1, . . . , Xm

]
. . .

]]
/∈ P1,

alors
[
X1,

[
X2, . . . ,

[
D

(
Xi1

)
, . . . ,

[
Xik . . . ,

[
Xm−1, . . . , Xm

]
. . .

]]]] + . . .

+ [
X1,

[
X2, . . . ,

[
Xi1 , . . . ,

[
Xik . . . ,

[
D

(
Xi p

)
, . . . , Xm

]
. . .

]]]] = 0. (3.14)

(c) Pour Xi1 , . . . , Xi p ∈ P1 avec i1 < i2 < . . . < i p et les autres Xi p+1 , . . . , Xim ∈ P−P1,
où les indices deux à deux différents ik sont dans {1, . . . , m} tels que

[
X1,

[
X2, . . . ,

[
Xm−1, . . . , Xm

]
. . .

]] = V1 ∈ P1,

alors

D (V1) = [
X1,

[
X2, . . . ,

[
D

(
Xi1

)
, . . . ,

[
Xik . . . ,

[
Xm−1, . . . , Xm

]
. . .

]]]] + . . .

+ [
X1,

[
X2, . . . ,

[
Xi1 , . . . ,

[
Xik . . . ,

[
D

(
Xi p

)
, . . . , Xm

]
. . .

]]]]
. (3.15)

En effet, il suffit de vérifier la relation (1.1) pour D à partir de a) b) c) et le cas trivial qu’on
appelle d) où X1, . . . , Xm ∈ P − P1 tels que

[
X1,

[
X2, . . . ,

[
Xm−1, Xm

]
. . .

]]
/∈ P1.

Maintenant, démontrons la réciproque de notre théorème à partir de ces dernières consid-
érations. On suppose que (3.10), (3.11), (3.12) et (3.13) soient satisfaites et montrons que a),
b), c) et d) sont vraies pour l’endomorphisme D.

Les preuves de a) et d) pour D sont immédiates. Les preuves de b) et de c) qui vont
suivre sont divisées en 3 astérisques résumant tous les cas possibles correspondants à b) et 3
astérisques résumant tous ceux de c).

– Pour la démonstration de b), considérons
[
X1,

[
X2, . . . ,

[
Xm−1, . . . , Xm

]
. . .

]]
/∈ P1 où

il existe un premier indice i1 tel que Xi1 appartient à P1:

∗ Si i1 = 1, alors
[
X2, . . . ,

[
Xm−1, . . . , Xm

]
. . .

]
/∈ P0. En vertus de (3.10),

[
D (X1) ,

[
X2, . . . ,

[
Xm−1, Xm

]
. . .

]] = 0.

Par (T) obtenu à partir de (3.11) et (3.10), on aura
[
X1,

[
X2, . . . , . . . ,

[
D

(
Xik

)
. . . ,

[
Xi p , . . . , Xm

]
. . .

]]] = 0 ∀1 < k ≤ p.

On obtient alors (3.14) en sommant ces expressions.
∗ Si les X1, . . . , Xi1−1 (i1 > 1) appartiennent àP0, alors

[
Xi1+1, . . . ,

[
Xm−1, . . . ,

Xm] . . .] /∈ P0. Par conséquent,
[
X1, . . . ,

[
D

(
Xi1

)
, . . . ,

[
Xm−1, Xm

]
. . .

]] = 0 par
(3.10). De même, pour tout 1 < k ≤ p,

[
X1, . . . ,

[
D

(
Xik

)
, . . . ,

[
Xm−1, Xm

]
. . .

]]

= 0 d’après (T). On en tire l’égalité (3.14).
∗ Si j est le dernier indice tel que X j<i1 ∈ P−1 ∪ Pt≥2, on a en utilisant (T),

pour 1 ≤ k ≤ p,
[
X1, . . . ,

[
X j , . . . ,

[
D

(
Xik

)
, . . . ,

[
Xm−1, Xm

]
. . .

]]] = 0.

Ainsi, on peut affirmer que (3.14) est vrai.

– Pour la preuve de c), soient
[
X1,

[
X2, . . . ,

[
Xm−1, . . . , Xm

]
. . .

]] ∈ P1 où Xi1 est le
premier champ qui appartient à P1:
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∗ Si tous les X1, . . . , Xi1−1 ∈ P0 avec i1 �= m alors
[
Xi1+1, . . . ,

[
Xm−1, Xm

]
. . .

] ∈
P0. D’après (3.11),

D
[
X1, . . . ,

[
Xi1 , . . . ,

[
Xm−1, Xm

]
. . .

]]

= (−1)i1
[
X1, . . . ,

[
D

(
Xi1

)
, . . . ,

[
Xm−1, Xm

]
. . .

]]
.

On aura à l’aide de (T)

pour 1 < k ≤ p,
[
X1, . . . ,

[
D

(
Xik

)
, . . . ,

[
Xm−1, Xm

]
. . .

]] = 0.

En rassemblant ces deux resultats, on obtient (3.15) pour i1 pair. Pour i1 impair,
d’après (3.12)

[
X1, . . . ,

[
D

(
Xi1

)
, . . . ,

[
Xm−1, Xm

]
. . .

]] = 0,

et on a encore (3.15).
∗ Si les X1, . . . , Xi1−1 ∈ P0 avec i1 = m. En vertus de (T), on obtient

D
[
X1, . . . ,

[
Xm−1, Xm

]
. . .

] = (−1)m−1 [
X1, . . . ,

[
Xm−1, D (Xm)

]
. . .

]
.

Ainsi, l’égalité (3.15) est vraie.
∗ Supposons que j soit le dernier indice tel que X j<i1 ∈ P−1 ∪ Pt≥2. Alors, le
premier membre de l’égalité (3.15) est nul par (3.13). De même, chaque élément de
la somme dans son deuxième membre est identiquement nul d’après (T). Ainsi, la
relation (3.15) est satisfaite.

D’où, D est une m-dérivation de P et on achève la preuve. ��
Dans toute la suite, on notera par 〈Z〉 l’R-espace vectoriel engendré par un élément Z ∈ P.

Théorème 3.11 Soit D une m-dérivation de P, de degré -2 et nulle sur Pi où i �= 1. Pour
V1 ∈ P1 − {0}:

– On suppose que les éléments de P1 sont séparés. S’il existe X ∈ P0 � 〈E〉 tel que
[X, V1] = V1, alors D (V1) = 0.

– Les éléments de P1 sont supposés séparés. S’il existe
(
X, V ′

1

) ∈ (P0 � 〈E〉) × P1 tel
que

[
X, V ′

1

]
est égal à V1 �= V ′

1, où div
(
V ′
1

) �= 0 ou la composante de V ′
1 est différente

de celle de V1 à multiplication par une constante près, alors D (V1) est nul. Dans le cas
contraire, on peut choisir un D (V1) non nul sauf s’il y a des hypothèses supplémentaires.

– Si pour chaque X ∈ P0 � 〈E〉, [X, V1] = 0, alors [D (V1) , Y ] = 0 pour tout Y ∈
P � 〈E〉.

– S’il existe X, Y ∈ P − P0 tels que [X, Y ] = V1, alors D (V1) = 0.

Démonstration Soient (xi )i un système de coordonnées de R
n et V1 ∈ P1 − {0}. Pour

simplifier, on montre les résultats de chaque tiret pour un champ fixé.
Pour la démonstration du premier tiret, on suppose que l’ensemble P1 est séparé. S’il

existe X ∈ P0 � 〈E〉 tel que [X, V1] = V1, alors V1 est de l’un des types de champs
quadratiques suivants à une multiplication par une constante près:

• Pour V1 = (
x1

)2 ∂
∂x1

, l’existence de tous les champs constants dans P entraîne qu’on

peut trouver un X = x1 ∂
∂x1

∈ P tel que [X, V1] = V1. D’après la relation (3.11),

D (V1) = − [X, D (V1)] = α ∂
∂x1

. En vertus de l’égalité (3.10), on obtient α = 0.
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• Pour V1 = x1x2 ∂
∂x1

, s’il existe X ∈ P0 � 〈E〉 tel que [X, V1] = V1, alors X = x2 ∂
∂x2

.

D’après l’égalité (3.11), D (V1) = −
[
x2 ∂

∂x2
, D (V1)

]
= α ∂

∂x1
. Par la relation (3.10), on

aura α = 0.
• Pour V1 = x1x2 ∂

∂xt avec t �= 1, 2, s’il existe X ∈ P0 � 〈E〉 tel que [X, V1] = V1, alors

X = x1 ∂
∂x1

ou X = x2 ∂
∂x2

ou X = −xt ∂
∂xt . Dans ces cas, les relations (3.11) et (3.10)

nous donnent D (V1) = 0.
• Pour V1 = (

x1
)2 ∂

∂x2
, s’il existe X ∈ P0 �〈E〉 tel que [X, V1] = V1, alors X = 1

2 x1 ∂
∂x1

ou X = −x2 ∂
∂x2

. Par les mêmes raisons que précédemment, on peut obtenir D (V1) = 0.

Pour la preuve du deuxième tiret, s’il existe X ∈ P0 � 〈E〉 tel que [
X, V ′

1

] = V1 �= V ′
1,

on procède comme suit:

• Pour V ′
1 = (

x1
)2 ∂

∂x1
, les V1 non nuls possibles sont de la forme αx1xt ∂

∂x1
ou β

(
x1

)2 ∂
∂xt

avec t �= 1 et α, β des réels. Ainsi, D (V1) = 0 en utilisant le résultat précédent et la
relation (3.11).

• Pour V ′
1 = x1x2 ∂

∂x1
, les champs V1 non nuls possibles sont de la forme α

(
x2

)2 ∂
∂x1

ou β
((

x1
)2 ∂

∂x1
− x1x2 ∂

∂x2

)
, α0xt x2 ∂

∂x1
, β0x1xt ∂

∂x1
avec t �= 1, 2 et α, α0, β, β0 des

réels. Ainsi, D (V1) = 0 en vertus des résultats précédents et de l’égalité (3.11) avec des
champs X de P convenables.

• Pour V ′
1 = x1x2 ∂

∂xt avec t �= 1, 2, les champs V1 non nuls possibles sont de

la forme α
(
x1

)2 ∂
∂xt , α

(
x2

)2 ∂
∂xt , β

(
xt x2 ∂

∂xt − x1x2 ∂
∂x1

)
, β0

(
xt x1 ∂

∂xt − x1x2 ∂
∂x2

)
,

α0xi x2 ∂
∂xt , β1xi x1 ∂

∂xt , α1x1x2 ∂
∂xi , où α, α0, α1, β, β0, β1 des réels et i �= 1, 2, t .

En utilisant les résultats précédents, la relation (3.11) et en choisissant des champs X
de P convenables, D (V1) = 0 sauf pour le dernier champ où on a D (V1) = α1α2

∂
∂xi

(α2 ∈ R). Si on peut trouver un champ non nul deP0 ayant une composante comportant
xi , alors ce dernier D (V1) = 0 d’après la relation (3.11).

• PourV ′
1= (

x1
)2 ∂

∂xt , lesV1 possibles nonnuls sont de la formeα
(
2x1xt ∂

∂xt − (
x1

)2 ∂
∂x1

)

ou βx1xi ∂
∂xt , α0

(
x1

)2 ∂
∂xi avec t �= 1, i �= t, 1 avec α, β, α0 des réels. Ainsi,

D (V1) = 0 d’après le résultat précédent et la relation (3.11), sauf pour le dernier champ
où D (V1) = α1α0

∂
∂xi (α1 ∈ R). Mais s’il existe un champ non nul de P0 ayant une

composante xi , alors par l’égalité venant de (3.11), D (V1) devient nul.
Pour démontrer le troisième tiret, on exploite les relations (3.10), (3.11). Le dernier tiret
se montre en utilisant l’égalité (3.13) du Théorème 3.10. ��
On identifie d’une manière unique un champ de H0 à un élément de gl (n,R) cf. [4] p.5.

On l’appelera champ linéaire. On suppose dans la suite, que m est un entier naturel supérieur
ou égal à 2.

Corollaire 3.12 On a les résultats suivants:

– Le normalisateur de N coïncide avec N lui-même si et seulement si P est un idéal
caractéristique de N, dans ce cas, toute m-dérivation de N est intérieure pour m pair.

– Si l’ensemble des champs linéaires diagonaux Hd
0 est inclus dans P0, alors toute m-

dérivation de P est intérieure. En particulier, on aura les mêmes résultats si l’idéal
dérivé [P,P] coïncide avec P.

– Si P est séparé, alors toute m-dérivation du normalisateur de P est intérieure dans son
normalisateur.
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Démonstration Soient D une dérivation de N et N le normalisateur de N. D’après nos
théorèmes, D = LX avec X ∈ N . Ainsi,P est un idéal caractéristique deN équivaut àP est
un idéal de N . Par définition d’un normalisateur, cette assertion est équivalente à N = N.
Le reste de la preuve de ce premier tiret découle de ce dernier résultat et de nos théorèmes.

Soit D une m-dérivation deP. Par le fait que Hd
0 ⊂ P0,P est séparé. Pour tout V1 ∈ P1,

il existe X ∈ P0 � 〈E〉 tel que [X, V1] = V1. D’après le Théorème 3.11, le Théorème 3.9
et le Théorème 3.6, D est une dérivée de Lie par rapport à un champ du normalisateur de
P. On peut même dire que cette m-dérivation est intérieure par rapport à P d’après la fin
de la preuve du Théorème 2.12 de [5]. Dans ce cas, le normalisateur de P est P lui-même.
Par ailleurs, si [P,P] = P, alors tous les champs diagonaux sont dans P et on a le résultat
d’après ce qu’on a démontré précédemment.

Si P est séparé, alors Hd
0 est inclus dans le normalisateur de P. Or, le normalisateur de

P est une algèbre de Lie de champs polynomiaux de Rn , alors, on a le résultat d’après une
partie de la démonstration de l’assertion du tiret précédent de cette preuve. ��
Remarque 3.13 La démonstration du Corollaire 2.13 de [5] est rectifiée par celle du premier
tiret du corollaire précédent. En effet, les champs diagonaux ne sont pas forcémment dans
le normalisateur de P; comme le montre l’exemple suivant. Sur R4, soit P l’algèbre de Lie
engendrée par ∂

∂x , ∂
∂y , ∂

∂z ,
∂
∂t , E, x ∂

∂z , y ∂
∂t , (x)2 ∂

∂z + (y)2 ∂
∂t . La m-dérivation D = LX

telle que X = x ∂
∂x vérifie D

(
(x)2 ∂

∂z + (y)2 ∂
∂t

)
/∈ P.

Remarque 3.14 Toute m-dérivation du normalisateur N de P est une somme de dérivée de
Lie par rapport à un champ de vecteurs de son normalisateur, et d’une m-dérivation de degré
−2. On sait que N contient P, alors ce résultat découle du Théorème 3.6 et du Théorème
3.9.

Corollaire 3.15 Toute m-dérivation de l’algèbre de Lie de tous les champs polynomiaux
(resp. de l’algèbre de Lie affine H−1 ⊕ H0) de R

n est une m-dérivation intérieure. Toutes
les m-dérivations des sous-algèbres de Lie des champs affines de la forme H−1 ⊕P0 sur Rn

sont des dérivées de Lie par rapport à un champ affine.

Démonstration La première assertion vient duCorollaire 3.12 en utilisant le fait que l’algèbre
de Lie de tous les champs polynomiaux de Rn contient tous les champs linéaires diagonaux.
Comme le normalisateur d’une sous-algèbre de Lie des champs affines est inclus dans H−1⊕
H0, alors la suite de la démonstration découle du fait que la sous-algèbre ne contient pas de
champs quadratiques et des Théorème 3.6, 3.9. ��
On peut se demander s’il existe des m-dérivations non nulles de degré −2 compte tenu des
nombreuses contraintes qu’elles doivent vérifier. L’exemple suivant où l’algèbre de Lie P

est séparée ou non séparée, nous éclaire sur ce point,

Exemple 3.16 La série centrale descendante de chacune des deux algèbres de Lie suivantes
est constante égale à l’algèbre de Lie elle-même � l’algèbre de Lie engendrée par E .

Dans R
3, soit la R−algèbre de Lie engendrée par ∂

∂x , ∂
∂y , ∂

∂z , E, x ∂
∂z , (x)2 ∂

∂z .

L’application R−linéaire D0 définie par D0
(
(x)2 ∂

∂z

) = ∂
∂z et nulle autrement, est une 3-

dérivation non intérieure de champs de vecteurs.
La R−algèbre de Lie engendrée par les champs de vecteurs polynomiaux ∂

∂x , ∂
∂y , ∂

∂z ,

E, x ∂
∂z − y ∂

∂z , xy ∂
∂z − 1

2 (x)2 ∂
∂z − 1

2 (y)2 ∂
∂z admet une 3-dérivation non intérieure de champs

de vecteurs définie par, l’application R−linéaire D1 telle que la seule image non nulle est

D1

(
xy

∂

∂z
− 1

2
(x)2

∂

∂z
− 1

2
(y)2

∂

∂z

)
= ∂

∂x
+ ∂

∂y
.
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Abstract
We consider a (real or complex) analytic manifold M. Assuming that F is a ring of all analytic functions, full 

or truncated with respect to the local coordinates on M; we study the (m ≥ 2)-derivations of all involutive analytic 
distributions over F and their respective normalizers. 

Keywords: m-derivations; Analytic vector fields Lie algebras; 
Distributions; Generalized foliations; Stein manifolds; Compact 
holomorphic manifolds; Chevalley-Eilenberg’s cohomology; 
Compactly supported vector fields    

Introduction and Preliminary
We know several embedding theorems in differential geometry, 

some of them are of John F. Nash in Riemannian manifolds [1,2], of 
Whitney [3] in differentiable manifolds and of Grauert in analytic 
manifolds cf. [4]. They make easy certain study on a differentiable 
manifold. Here, we are interested to a real or complex analytic 
n-dimensional manifold M and let F(M) be the ring of all analytic 
functions on M. We know that these manifolds can be considered as 
smooth manifolds. But certain property on a smooth manifold cannot 
be true on M, for example the global representation of a smooth 
function germ theorem. Grabowski had this problem when he studied 
derivations of the real or complex analytic vector fields Lie algebra cf. 
[5] and he used Stein manifolds to avoid technical difficulties in them. 
Here, we examine not only the derivations but the (m ≥ 2)-derivations 
(generalization of derivation’s notion) of a Lie subalgebra of the 
real or complex analytic vector fields Lie algebra on M, using Lie 
algebra tools. In advance, we state that the considered Lie algebras 
have enough sections more than constant ones in the Lie algebra of 
all analytic vector fields. Then, we consider only Stein spaces unless 
expressly stated in a complex analytic case. In the real analytic one, 
we don’t need more hypothesis because of the imbedding theorem of 
Grauert and Cartan theorems [6]. More precisely, any real analytic 
manifold can be considered as a closed submanifold of a certain l 
(a ” real Stein manifold”). Now, an m-derivation of a Lie algebra A 
is a linear map from A to itself which is distributive on the brackets 

1 2 1[ ,[ , [ , ] ]]m mX X X X−  , where all Xi are in A. On the one hand, we 
have studied the m-derivations of polynomial vector fields Lie algebras 
on n in studies of 7. Randriambololondrantomalala [7], an important 
Lie subalgebra of analytic vector fields, we found that Lie algebras 
of derivations are different to those of (m > 2)-derivations. One can 
see the following example, on 3, the Lie -algebra is spanned by 

2, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
x y z y y

x y z x y z x x  and let’s define the −linear 

map D by 2( ) =D ∂ ∂ 
 ∂ ∂ 

y
x x  which is zero otherwise. It’s clear that D is not 

a derivation, but a 3-derivation. On the other hand, all m-derivations of 
a distribution over the full or truncated rings of smooth functions on a 
differentiable manifold in literature of Randriambololondrantomalala 
[8], are derivations. These facts lead us to ask if a distribution Lie 
algebra on an analytic manifold has results as the one or the other 
above results. So, we will divide our paper into three parts. First, we 
take a real or complex analytic involutive distribution Ω over M. That 
is to say, Ω is a F(M)-submodule of the analytic vector fields Lie algebra 

( )Mχ  on M. We can find some examples of these distributions and the 
interests for studying their derivations in literature of Grabowski and 
Cartan [5,6]. Here, we find the Ω’s centralizer and the derivative ideal 
of Ω. We can say also that the normalizer of Ω is a Lie subalgebra of 
analytic vector fields. In addition, we find out that all m-derivations of 
Ω (resp. of the normalizer of Ω) are inner with respect to a normalizer’s 
vector field (resp. are inner). Second, assuming that Ω is an involutive 
distribution on M over a subring F of F(M), namely an F-submodule 
of ( )Mχ  stable by the vector fields bracket, where F≠ F(M). One can 
consider a system of commuting vector fields on M as in studies of 
Randriambololondrantomalala [8] and all distribution Lie subalgebras 
of the Lie algebra of analytic vector fields which commute with this 
system. The normalizer of Ω is an analytic vector fields Lie algebra and 
contains locally all constant vector fields and Euler’s vector field. But in 
general, we can’t use the reasoning by Randriambololondrantomalala 
[7] to characterize m-derivations of Ω. We make more explicit all 
m-derivations of Ω and of some of its normalizer. Whereas, in the end, 
we discuss the Lie algebras of holomorphic vector fields, especially 
when the holomorphic manifold is not a Stein one, and Lie algebras 
of locally polynomial vector fields on an analytic manifold M. Their 
m-derivations as well as their normalizers can be characterized by 
using some results of Randriambololondrantomalala [7].

Therefore, we have found the m-derivations of all distributions 
over a set of full or truncated analytic functions with respect to the 
local coordinates on M. When m = 2, we deduce from our results some 
[5]’s theorems. Third, we can apply our theorems on Lie algebras of 
real or complex analytic vector fields on M, of generalized foliation on 
M cf. [9], a Lie subalgebra of analytic vector fields on 2 and on 2, 
Riemann surfaces, etc. Relations between the Lie algebra of compactly 
supported vector fields and the compactness of M are discussed. 
Moreover, we emphasize the extensions of our theorems when the 
studied distributions are singular, by using the complexification of a 
real analytic manifold, Hartogs and Riemann extension theorems. Of 
course, in these circumstances, we can use theory of coherent sheaves 
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made by Cartan [6] in a Stein case or pass into Grabowski’s conjecture 
cf. [9]. We interpret our results in Chevalley-Eilenberg cohomology 
sense when m = 2.

Following the above notations, let M be a real or complex analytic 
n-dimensional manifold. In complex case, we regard a Stein manifold 
unless special mention. We denote by ( )Mχ  the Lie algebra of 
analytic vector fields on M and F(M) the ring of analytic functions on 
M. Throughout this paper, we take an atlas in which every chart are 
connected. Then, the open subset of a chart U where a non-trivial subset 
of ( )Mχ  doesn’t vanish, is dense on U (non-trivial means different 
to {0}). We can use certain results of Randriambololondrantomalala 
[7,8] because in the proofs of theorem of these papers we consider 
only analytic functions (polynomials, exponentials). In the same way, 
we don’t need partition of the unity to make global some local results 
cf. [10]. In all sections of this article, we set an integer m ≥ 2, recall 
that D is an m-derivation of a Lie algebra A if for 1( )i iX A≤ ≤ ⊂m , we get 

[ ] ( ) [ ] ( )1 2 1 1 2 1 1 2 1, , , , = , , , , , , , , .D X X X X D X X X X X X X D X− − −
          + +                   m m m m m m  

This D is said inner on a Lie algebra  containing A, if D is a Lie 
derivative with respect to an element of . Recall us another basic 
definition cf. [11]. 

Definition 1.1. A complex manifold M is a Stein manifold, if we 
have simultaneously the three following conditions: For every x ≠ y, 
both in M; there is a holomorphic function f over M such that f (x) ≠ 
f (y). For all x ∈ M, it exists n holomorphic functions (fi) over M such 
that dfi are linearly independent over  on x. If K is a compact set of M, 
the following set is compact (holomorphic convexity of M) 

/ ( ) sup ( ) , for all holomorphic functions over .
K

M M
∈

 ∈ ≤ 
 y
x f x f y f

From these assertions, every local ring of holomorphic functions 
around x ∈ M is spanned by holomorphic functions on M cf. [12].

 Some results of the Lie algebra of compactly supported vector 
fields Cc relative to a Stein manifold are the following, 

Proposition 1.2. A complex analytic manifold M is compact iff Cc 
is non trivial, particularly if M is a Stein holomorphic manifold, Cc is 
trivial. 

Proof. It’s obvious that if M is compact, then = ( )c MχC  and Cc is 
not trivial. Conversely, suppose that M isn’t a compact set and there is 
X ∈ Cc such that K = Supp(X) ≠ ∅. We can consider K ≠ M because M 
is not compact. Then, we have the nullity of X in the open set K ≠ ∅ . 
By analyticity, X vanishes in whole M. Hence, we have a contradiction 
about K ≠ ∅ and we obtain M is a compact set. It’s clear that a Stein 
space is never a compact set by definition, then its Lie algebra of 
compactly supported vector fields is trivial. 

The m-derivations defined by distributions on F(M) 

 Let Ω be a non-trivial involutive analytic distribution over the 
analytic functions ring on M. Let N be the normalizer of Ω in ( )Mχ
, that is to say that the set of all ( )X Mχ∈  such that [ ],X Ω ⊂Ω , and 

= { / ( ) {0}}M∈ Ω ≠x xB . We can choose a connected domain Ui of a 
chart. If we suppose that it exists an open set Oi in Ui where Ω vanishes, 
then | = {0}Ui

Ω  by analyticity. Otherwise, every open set in Ui contains 
an element of B. So, B∩Ui is dense over Ui. Moreover, the collection 
of Ui forms an atlas of M, then B is dense over M. The set B is an open 
analytic submanifold of M. Particularly, B is a Stein cf. [13]. Thus, 
every vector field defined over B admits a continuous extension on M, 
and if this last one is analytic, then it’s necessarily an element of the 
normalizer of Ω. We use this last fact when we deal with extension 
theorems.

We know by literature of Nagano’s [14] result that Ω is integrable, 
then it yields a generalized foliation F on M cf. [10]. So, Ω is the Lie 
algebra of tangent vector fields to the foliation and LF the one of all 
foliation preserving vector fields. It is known that the normalizer N in 

( )Mχ  of Ω contains LF cf. [10]. Hence, the restriction of the foliation 
in B is non singular. 

Proposition 2.1. The centralizer of Ω vanishes and the derivative 
ideal of Ω coincides with Ω itself. 

Proof. We say that ( )X Mχ∈  is in the centralizer of Ω if [X, Ω]={0}; 
and the derivative ideal of  denoted by [Ω, Ω] is the Lie algebra spanned 
by all brackets of two elements of Ω. Suppose there is an non zero 
element X of the centralizer, we have [ ] ( ), = ( ) = {0}X f X fΩ Ω , for 
all f ∈ F(M). It’s not possible in a Stein manifold or in a real analytic 
manifold if X doesn’t vanish identically over M and if Ω ≠ {0}. Along 
with this result, we can adapt the proof of Proposition 2.28 of studies of 
Randriambololondrantomalala [15] and assert that [Ω, Ω] = Ω. 

 Let’s recall an Hartogs’s extension theorem and Riemann extension 
theorem. 

Theorem 2.2. (Hartogs [16]) Let be t ≥ 2 and D be a bounded 
domain in t. In addition, K be a compact subset of D such that D − K 
is a connected set. Then all holomorphic functions f over D − K can be 
extended holomorphically to D. 

Theorem 2.3. (Riemann extension theorem) Let U be an open set 
in  and z0 ∈ U. If { }0:f U − →z   is holomorphic function such that 
z0 is a removable singularity of f, then f can be extended into an unique 
holomorphic function f  in U where ( )0 0

= ( )lim z zf f→z z . 

Theorem 2.4. In holomorphic case, all m-derivations of Ω, LF, and 
of N are Lie derivatives with respect to elements belonging to N. In real 
analytic one, we have the same results if B = M. 

Proof. We can prove this assertion over B by Theorem 2.1 of 
studies of Randriambololondrantomalala [8] using Proposition 2.1 and 
partially Theorem 3.7 of literature of Randriambololondrantomalala 
[10]. For the corresponding extension theorem over M, we adopt 
the following arguments. We know that B is dense over M, then the 
restriction of B in each domain of a chart U is dense over U (U is a 
bounded set). The complement of this B∩U in U can be considered as 
a compact set of the chart such that B∩U is connected. In holomorphic 
case, when n ≥ 2, we use Hartogs’s theorem in a domain of the chart, so 
the extension theorem over M holds. If n = 1, we know by the isolated 
zeros principle that the domain of chart contains only a finite number 
of zeros in the corresponding restriction of B. By continuity at these 
zeros, which are removable singularities, the Riemann extension 
theorem can be used. Of course, if B = M in real analytic situation, the 
extension theorem is applicable. 

Definition 2.5. The complexification of a real analytic manifold 
M is a holomorphic manifold  such that there is a real analytic 
embedding f: M →  where  has a holomorphic atlas ( ),i i i

U ϕ  and 
( )( ) ( )= n

i i i if M U Uϕ ϕ∩ ∩ . We have a Stein complexification if  is 
Stein. 

 The next theorem is due by Grauert cf. [4,12]. 

Theorem 2.6. Every real analytic manifold has a Stein 
complexification and can be analytically properly embedded into an 
Euclidean space N . 

 The following complexification of a Lie subalgebra  of the real 
analytic vector fields Lie algebra of M is in the following sense: if M can 
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be embedded in a holomorphic manifold , the complexification   of 
 in  is such that | =M  . 

Theorem 2.7. If the complexification of Ω in a Stein space T is still 
an involutive distribution, then the first result of the Theorem 2.4 holds 
in real analytic case. 

Proof. We use the complexification of M on a Stein space T. 
Consequently, let be Ω  the complexification over T of Ω. Recall that 
Ω  is an involutive distribution over T where its normalizer on ( )Tχ  
is denoted by N0. So, all m-derivations of Ω, of LF, and of N have their 
complexified m-derivations over T on respectively Ω , the Lie algebra 
of all foliation preserving vector fields LF  on T and N0. By the results 
of Theorem 2.4, these last m-derivations are Lie derivatives with 
respect to elements belonging to N0. We can affirm that 0| =MN N  and 

|
=

M
L LF F  by | =MΩ Ω . Thus, we have the same result as in the first part 

of Theorem 2.4. 

 By definition, the first space of Chevalley-Eilenberg’s cohomology 
of a Lie algebra  denoted by ( )1H   is ( )Der / ad  with Der() the 
Lie algebra of all derivations of  and ad the set of inner derivations 
of .

Throughout this paper, we suppose that all hypothesis of Theorem 
2.7 are satisfied or B = M, in real analytic case.

Following ideas of Theorem 3.7, Corollary 2.14 and Remark 2.15 of 
literature of Randriambololondrantomalala [10], we state 

Corollary 2.8. The first space of Chevalley-Eilenberg’s cohomology of 
Ω, L

F
, and of N is respectively isomorphic to the following respective Lie 

algebras, N/Ω, N/L
F
, {0}. 

Remark 2.9. By Theorem 2.4, we deduce Theorem 3.2 and 4.1 of 
studies of Grabowski [5]. 

The m-derivations associated to a distribution over a subring 
of F(M) 

Let be an atlas of M such that Ω is locally spanned by 
1

i
i n≤ ≤

∂ 
 ∂ x

  over 

the ring F0 of real or complex functions depending only on 1( )j
j kx ≤ ≤  

with respect to the atlas (where 1 ≤ k < n). We can consider Ω to be 
a Lie algebra which commutes with a system S of commuting vector 
fields by the usual bracket. That is to say, 1= { , , }qS X X  such that 

, = 0i jX X    and S is locally of rank n − k (0 < q ≤ n). It is easy to check 
that [ ], =Ω Ω Ω  because of Randriambololondrantomalala’s [8] result. 
So with the same reason, every m-derivation of Ω is local. Moreover, 
the normalizer N of Ω is locally isomorphic to ( , or )l n kΩ⊕ −g    as a 
vector space. We consider the closed 1−differential forms αi and wi over 
a (n − k)-dimensional distinguished connected chart of the generalized 
foliation generated by S, where = 1, ,i k n+   and an m-derivation of 

Ω, 
( ) ( ), =

1

j j
jD

k j n

α α ∂
+ ⊗

∂
+ ≤ ≤

x
w w  such that 0

1

( ) ( )j
i

i k
ker F U

≤ ≤

∂
⊃

∂x
w and 

0
1

( ) ( )j
i

k i n
ker F Uα

+ ≤ ≤

∂
⊃

∂x
 (S in this chart is 1{ }j k j n+ ≤ ≤

∂
∂x

, F A  

denotes a module spanned by A over a ring F) cf. [8]. We have omitted 
all singular charts of the foliation because the open set R of all regular 
points is dense over M cf. [10], we have no problem for the extension 
of our results from R towards M as in the previous section. By adapting 
Theorem 3.12 of literature of Randriambololondrantomalala [8], we 
obtain easily 

Theorem 3.1. All m-derivations of Ω (resp. of N) are a sum of a Lie 
derivative with respect to one element of N and a derivation D(α,w) as 
denoted before (resp. are similar to m-derivations of Ω). 

 Hence, adopting the arguments of Theorem 3.19 of studies of 
Ravelonirina [17], we hold the following 

Corollary 3.2. When the rank of S is a positive constant n − k, the 
first spaces of Chevalley-Eilenberg’s cohomology of Ω and of N are both 
isomorphic to ( )( ) ( )2 2( ) ( )H B

− − + − − + −×
n k n k n k n k n k

R or   with HR (B) is the de 
Rham cohomology of foliation basic forms of M. 

 As we know, we can split the above Ω into a semi-direct sum of 
Lie algebras 1

SΩ  and 2
SΩ  as in studies of Randriambololondrantomalala 

[8], where they are modules on the ring F0(M) of constant functions 
over the leaves relative to the above generalized foliation. We notice 
that 2

SΩ  is spanned by S on F0(M). We can reason on a distinguished 

chart U with the coordinates 1( )i
i nx ≤ ≤ . The 0 ( )F U  is the set of all analytic 

functions depending only on 1( )i
i kx ≤ ≤ , 1

|S UΩ  is spanned by 
1

i
i kx ≤ ≤

∂ 
 ∂ 

 

and 2
|S UΩ  by 

1
i

k i nx + ≤ ≤

∂ 
 ∂   on 0 ( )F U .

Now, we discuss the m-derivations of 1
SΩ . The normalizer 

N1 of this Lie algebra can be written as a direct sum of Lie algebras 

[ ]1 1 1= , ,S S Ω Ω ⊕   N , where  is the centralizer of 1
SΩ  in ( )Mχ  and 

the center of 1
SΩ  is zero ( is locally spanned by 

1
i

k i nx + ≤ ≤

∂ 
 ∂ 

 on the 

ring of all analytic functions depending only on 1( )i
k i nx + ≤ ≤ ). By a 

similar argument of Nakanishi [18], we deduce that all m-derivations 

of N1 are a direct sum of those of 1
SΩ  and of . By Theorem 2.4, it’s 

clear that 

Theorem 3.3. Each m-derivation of 1
SΩ  (resp. of N1) is a Lie 

derivative with respect to an element of N1. 

 The normalizer of 2
SΩ  is locally the sum of the F0(U) -module 

spanned by 
1

ix
i n

∂
∂
≤ ≤

 and a vector space generated by 
1 ,

l
ix

x
k i l n

∂
∂

+ ≤ ≤
. That is to 

say, its normalizer is N. In addition, its centralizer is 2
SΩ  itself. Because 

of 2 2, = {0}S S Ω Ω   or 2
SΩ  is nilpotent of order 1, we obtain easily 

Theorem 3.4. Every endomorphism of 2
SΩ  is an m-derivation of 2

SΩ . 

So, it’s immediate that 

Corollary 3.5. The first space of Chevalley-Eilenberg’s cohomology of 
1
SΩ , 2

SΩ  and of N1 are respectively isomorphic to the following respective 
Lie algebras, 1 1/ SΩN , ( )2 2End /S SΩ Ω , {0} . 

Let’s consider 3
SΩ  the Lie subalgebra of Ω, spanned by Xi over a ring 

( )F F M⊆ . That is to say, F is locally the set of all analytic functions 
depending only on ( )i

l i nx ≤ ≤  where 0 < l < k + 1 (resp. k + 1 < l < n + 1). 
When F = F(M) (resp. 0= ( )F F M ), it is a special case of Lie algebras 
defined in Theorem 2.4 (resp. in Theorem 3.1) when the submodule is 
generated by Xi. In the distinguished local coordinates, 3

SΩ  is spanned 

by 
1

j
k j n+ ≤ ≤

∂ 
 ∂ x  over F. The normalizer N3 of 3

SΩ  coincides with the 

sum of 3
SΩ  and 4

SΩ  where the element of this last one is locally the 

following analytic vector fields ( , ) ( ,1 )
1 1

i t j t
i j

l

f l t k t k
i k j l

∂ ∂
≤ ≤ + ≤ ≤

∂ ∂
≤ ≤ ≤ ≤ −

x g x
x x  
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1

resp. ( ,1 ) ( , )
1 1

i t j t j
i jf t k h l t n

i k k j l

 
∂ ∂ ≤ ≤ + ≤ ≤ ∂ ∂ ≤ ≤ + ≤ ≤ − 

x x x
x x

. In the first case, we can 

adapt Theorem 2.4 because all analytic functions depending on ( )jx  
where 1k j n+ ≤ ≤ , are in the base ring of 3

SΩ . In the following case, it is 
easy to see that Theorem 3.1 can be adapted to 3

SΩ . Thus 

Theorem 3.6. In the first case, every m-derivation D of 3
SΩ  is a Lie 

derivative with respect to a N3’s element; in the second, it is a sum of a Lie 
derivative of an element of N3 and a D(α,w) analogous to that of Theorem 
3.1. In addition, the corresponding extension theorems hold. 

Corollary 3.7. The first space of Chevalley-Eilenberg’s cohomology of 
3
SΩ  is respectively isomorphic to 4

SΩ  in the first case;

( )( ) ( )( )14 ( )( 1) ( )( 1)H B
l k l k l k l k l k

S R ou
− − − − − − − −′Ω ⊕ ×  

in the other one if S has a constant rank (⊕ is a module direct sum and 
B′ is the set of the corresponding foliation basic forms of M). 

 When we regard all the above normalizers on a distinguished 
chart, they contain locally all constant fields and Euler vector field. So, 
we ask one question: could we adapt Theorem 3.6 and Theorem 3.9 
in [7] to these normalizers? The following remark shows us that this 
argument is false. 

Remark 3.8. On 3, we consider the Lie -algebra A spanned by 

, , ,∂ ∂ ∂
∂ ∂ ∂x y z  2 2, , ( ) , , , ,ye e e∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂



y yx y z y y y y
x y z x x x x x

. 

Lemma 2.3 of literature of Randriambololondrantomalala [10] is not 
true for A, so the arguments proposed in the proof of Theorem 3.6 of 
Princy [7] don’t hold in this situation. 

Whereas, let P be a Lie subalgebra consisting locally of polynomial 
vector fields in ( )Mχ , where the Euler vector field and all constant 
vector fields are locally in P. Especially, M is not supposed to be a Stein 
in the holomorphic case. Let’s recall a well known theorem, 

Theorem 3.9. (The maximum principle) [12] Let be M a connected 
holomorphic manifold and f a holomorphic function on M such that 

( ) ( )0f f≤z z , where z0 ∈ M for all z ∈ M; then f is a constant function. 

One consequence of the maximum principle is the following, if 
the holomorphic manifold M is compact, every holomorphic function 
on M is constant in every connected component of M. We know that 
M is locally connected, then each function over M is locally constant. 
Therefore, it’s clear that if M is a compact and connected holomorphic 
manifold, the ring of all holomorphic functions on M is the complex 
constant functions ring. It’s confirm that results of the following 
theorem complete our study about an involutive analytic distribution 
when F(M) is reduced to .

By adapting Randriambololondrantomalala’s [7] theorems and 
taking account that the vector field found in the proof of Theorem 3.6 
of Princy [7] is analytic, it follows that 

Theorem 3.10. When m is even, all m-derivations of P (resp. of the 
normalizer  of P in ( )Mχ ) are a Lie derivative with respect to one and only 
one vector field belonging to  (resp. to the normalizer of  in ( )Mχ ). If 
m is an odd number, they are sum of a Lie derivative with respect to one 
element of  (resp. of the normalizer of ) and an m-derivation of local 
homogeneous degree -2 of P. 

 So, taking into account: the vanishing of the centralizer of P 
cf. [19] p.91; both the proofs of Theorem 2.12 of Ravelonirina [19], 

Corollary 3.12 of Randriambololondrantomalala [7] and Theorem 3.7 
in literature of Randriambololondrantomalala [10], we obtain 

Corollary 3.11. The first space of Chevalley-Eilenberg’s cohomology 
of P, of  and of N is respectively isomorphic to the following respective 
Lie algebras  / P, N / , {0}, where N is the normalizer of . 

Illustrations
Some illustrations of our theorems are given in this section. 

Example 4.1. It’s clear that Theorem 2.4 works well on the Lie 
algebra of all analytic vector fields ( )Mχ , that is to say, all m-derivations 
of ( )Mχ  are Lie derivatives by elements of ( )Mχ . We can define the 
Lie algebra of compactly supported real analytic vector fields C and this 
theorem holds for this last one. In particular, 1H ( ) = ( ) /MχC C  for a 
non-trivial C. More, 1H ( ) = {0}C  if and only if M is compact. Obviously, 
we can use the above cited theorem on the Lie algebras of vector fields 
relative to a generalized foliation over M. We can cite some well known 
Stein spaces, n, an open poly-disc in n, non-compact Riemann 
surfaces, ... and build our results in these. 

Example 4.2. Let be 2 a holomorphic compact connected 
manifold. It’s not a Stein manifold nor a submanifold of u for any u, 
it’s a compact Riemann surface. We choose the modified stereographic 
coordinates over this manifold. The 2 has an atlas composed by two 
charts (U, z1) and (V, z2) with the overlap map 1( ) =ψ −z z  in U ∩ V. We 
remark that the Lie algebra  of vector fields on M spanned over  by 
Y1, Y2 and Y3 is the one of all polynomial vector fields in 2, where

1

1
2 2

2

in
: ,

( ) in

U
Y

V

∂
∂
 ∂−
 ∂

z

z
z

2
1 1

2

2

( ) in
: ,

in

U
Y

V

∂− ∂
 ∂
∂

z
z

z
1

1

3
2

2

in
:

in

U
Y

V

∂− ∂
 ∂
 ∂

z
z

z
z

. By Theorem 3.10, all m-derivations of  are Lie 

derivatives with respect to a vector field in  itself. That is to say, if D is 
an m-derivation of  defined by 1( ) = i

iD Y Yα , 2( ) = i
iD Y Yβ , 2( ) = i

iD Y Yγ ; 
we have 1 2 1

1 2 3
= L

Y Y Y
D

γ γ α− + + .

When we look at 2 as a real analytic manifold, we set the charts 
1 2( , ( , ))U x x  and 1 2( , ( , ))V y y  with the overlap map 

1 2
1 2 1 2

1 2 2 2 1 2 2 2( , ) = = , = .
( ) ( ) ( ) ( )

φ
 
 + + 

x x
x x y y

x x x x

We set the real analytic vector field 

1 2
1 2

3
1 2

1 2

in
:

in

U
Y

V

∂ ∂− − ∂ ∂
 ∂ ∂ +
 ∂ ∂

x x
x x

y y
y y

 on 2 

and the Lie algebra A of real analytic vector fields which commute with 
Y3. This A consists of real analytic vector fields Y such that 

2 1
1 2

1 21 1 2 2

2 1
1 2

3 41 1 2 2

in
:

in

    ∂ ∂
+    ∂ ∂    


   ∂ ∂ +    ∂ ∂   

F F U
Y

F F V

x x
x x

x x x x

y y
y y

y y y y

where in the U ∩ V,
2 1 2 2

2 2 1 2
3 2 1 11 1 2 2 2 2 1 1

1= 2 ( ) ( )
( ) ( )

F F F F
         
− + −           +         

y y y y
y y

y y y y y y
 and 
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1 2 1 1
1 2 2 2

4 1 2 22 1 2 2 2 1 2 2
1= 2 ( ) ( )

( ) ( )
F F F F

         
− + −           +         

y y y y
y y

y y y y y y
 

with Fk are arbitrary convenient functions of one variable. So, we can 
apply all theorems in Section 3 to A. Particularly H1() = {0} and 

1 1 2H ( ) = ( )RH B ×A . 

Example 4.3. Indeed, Theorem 3.10 can be applied to a polynomial 
vector fields Lie algebra on the real analytic manifold n or the Stein 
manifold n having the corresponding hypothesis. 

Example 4.4. We set the Lie algebra  over the Stein manifold 3 

spanned over  by 1 2 3 2 2 2
1 2 3 1 2 3 1 1, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

z z z z z
z z z z z z z z

.  The 

normalizer of  is 0 =  + R, where R is the space over  generated 

by 1 2 3 2 3
1 2 3 3 1, , , ,∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
z z z z z

z z z z z
. It is permit to use Theorem 3.10 

and when m is even, every m-derivation of  is inner on 0. If m is odd, 
the m-derivation is a sum of an inner derivation on 0 with a -linear 

map D defined by 2 2
1 1( ) =D α∂ ∂ 

 ∂ ∂ 
z

z z
 which is zero otherwise (α 

∈ ). Moreover, all m-derivations of 0 are inner for all m ≥ 2. So, 

1 1 2 3
1 2 3H ( ) R ∂ ∂ ∂

≅ + +
∂ ∂ ∂

z z z
z z z

   and ( )1
0H {0}≅ . 

Remark 4.5. In the following example, Theorem 3.10 cannot be 
applied. We take the 2-torus 2 = /(+i), which is a holomorphic 
connected compact manifold cf. [20], it’s not a Stein. All overlap maps 
are translations, that is to say, they are holomorphic. We can define 
globally the Lie algebra of all constant vector fields Q on M and find 
that Q is the Lie algebra of all holomorphic vector fields over M. All 
endomorphisms of each Lie subalgebra of Q, which is inevitably 
nilpotent of order 1, are m-derivations of this subalgebra. The normalizer 
of this subalgebra or its centralizer is the Lie algebra of all vector fields 
over 2. But 1H ( ) End( ) / ad≅ QQ Q  and 1

( )H ( ( )) End( ( )) / ad MM M χχ χ≅  
since 1H ( ( )) = {0}Mχ  in smooth cases. 
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It is well known that Marius Sophus Lie (1842-1899) and John 
Forbes Nash (1928-2015) are great mathematicians. Sophus Lie comes 
from Norway and John Nash from United States of America. Their 
stories have certain resemblances and remarkable relations. This 
editorial would emphasize some of them. When they have started their 
university studies, their respective first interests were not mathematics.

That is to say, Lie has been in Astronomy and Nash in Chemical 
Engineering. Whereas, when they worked on mathematics, the first had 
Lobatchevski award in 1897 and the second, Nobel prize 1994 and Abel 
award 2015 (Niels Abel is the uncle of the wife of Sophus Lie: Anna 
Birch). In addition, their contributions in geometry are considerable, 
particularly in differential equations. Lie worked on transformation 
groups relative to partial differential equations, in other words, on Lie 
groups and on special non-associative algebras named Lie algebras. Nash 
discovered an important isometrically embedding theorem for a Ck-
Riemannian manifold into an Euclidian space (k=1,3,4… ), by studying 
an undetermined partial differential equations. Now, the methods they 
used offer us an important tool for continuing researches in differential 
geometry and in other fields cf. [1-9]. Next, these exceptional persons 
have continued to put more efforts into their mathematics works, even 
if they had a serious health problem in the middle of their careers. We 
hope that several mathematicians continue to make profits from results 
of Lie and Nash for the mathematics’s promotion. 

This special issue “Recent Advances of Lie Theory in Differential 
Geometry, in memory of John Nash” honored both Sophus Lie and 
John Nash as well as their works. John Nash died recently with his 
wife in a car crash on May 23, 2015. We are grateful regarding their 
contributions in differential geometry, generally in mathematics.
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Sur les algèbres de Lie associées à une
connexion

Princy Randriambololondrantomalala, H. S. G. Ravelonirina
et F. M. Anona

Abstract. Let Γ be a connection on a smoothmanifoldM. In this paper we give some properties of Γ
by studying the corresponding Lie algebras. In particular, we compute the ûrst Chevalley–Eilenberg
cohomology space of the horizontal vector ûelds Lie algebra on the tangent bundle ofM, whose the
corresponding Lie derivative of Γ is null, and of the horizontal nullity curvature space.

Résumé. Etant donné une connexion Γ sur une variété diòérentiable M, dans ce papier on se pro-
pose de donner quelques propriétés de Γ en étudiant les algèbres de Lie associées à cette connexion.
En particulier, on calcule le premier espace de cohomologie de Chevalley–Eilenberg de la partie ho-
rizontale de l’algèbre de Lie des champs de vecteurs sur le ûbré tangent de M dont la dérivée de Lie
correspondante de Γ est nulle, et de l’espace de nullité horizontal de la courbure.

1 Introduction

Nous avons étudié dans [1–3] certains types de sous-algèbres de Lie de champs de vec-
teurs sur une variété diòérentiable M de classe C∞. Dans ce papier, nous proposons
quelques propriétés d’une connexion sur M en étudiant certaines algèbres de Lie qui
lui sont attachées.

Soit Γ une structure presque-produit sur le ûbré tangentTM, où Γ2 est égal à l’iden-
tité. Cette structure est une connexion au sens de Grifone déûnie sur M, cf. [5]. La
donnée d’une telle connexion réalise une décomposition de TTM du ûbré tangent
de TM en une somme directe d’espace horizontal h(TM) et d’espace vertical v(TM),
où h et v sont respectivement le projecteur horizontal et le projecteur vertical de la
connexion correspondant à la valeur propre respective 1 et −1. Soient TM le ûbré tan-
gent TM privé de la section nulle, et R la courbure de Γ. On s’interesse à l’algèbre de
LieAΓ des champs de vecteurs sur TM dont la dérivée de Lie correspondante de Γ est
nulle, cf. [6], et à l’algèbre de Lie de l’espace de nullité horizontal de la courbureNh

R . On
étudie le premier espace de cohomologie de Chevalley–Eilenberg de l’espace de nullité
horizontal de la courbure. On donne quelques propriétés de la connexion à partir du
normalisateur de Nh

R et à partir de l’espace de cohomologie de Chevalley–Eilenberg
de AΓ . En eòet, on peut appliquer un résultat dans [2] pour le calcul cohomologique

Reçu par la rédaction le 8 août 2013.
Publié electronique au 7 septembre 2015.
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laboration avec “Institute for the Conservation of Tropical Environments” (ICTE) Madagascar.
Classiûcation (AMS) par sujet: 17B66, 53B15, 17B56.
Mots clés: algèbre de Lie, connexion, cohomologie de Chevalley–Eilenberg, champs dont la dérivée

de Lie correspondante à une connexion est nulle, espace de nullité de la courbure.
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de l’espace de nullité horizontal. En utilisant certaines propriétés d’une distribution
de classe C∞, on trouve que la partie horizontale du normalisateur de Nh

R est égale
àNh

R si et seulement si la connexion est plate. L’isomorphisme (en tant que module)
entre le premier espace de cohomologie de Chevalley–Eilenberg de Nh

R et la partie
verticale du normalisateur deNh

R dans χ(TM) est équivalente à la nullité de la cour-
bure. L’intersection de AΓ avec l’espace de nullité de la courbure NR est un produit
direct de l’algèbre de Lie Ah

Γ des champs de AΓ dans l’espace horizontal et de l’algèbre
de Lie Av

Γ des champs de AΓ dans l’espace vertical. En particulier, l’algèbre de Lie Ah
Γ

coïncide à l’intersection de la distribution NR avec l’ensemble des champs horizon-
taux projetables. Compte tenu du fait que Ah

Γ est une distribution involutive de M,
les résultats de [2] s’appliquent à Ah

Γ . Ainsi, l’idéal dérivé de Ah
Γ est A

h
Γ lui-même. Si

pour tout x ∈ TM, il existe X ∈ Ah
Γ tel que X(x) ≠ 0, alors le centre de Ah

Γ est ré-
duit à zéro. Alors le premier espace de cohomologie de Chevalley–Eilenberg de Ah

Γ
(resp. du normalisateur quotienté avec le centralisateur de Ah

Γ dans χ(TM)) est égal
au quotient de ce normalisateur avec Ah

Γ (resp. à {0}). Par ailleurs, on trouve qu’un
champ de vecteurs est un élément de AΓ si et seulement s’il laisse invariant les sous-
espaces propres correspondants aux valeurs propres de Γ. La partie verticale Av

Γ est
le centralisateur de l’algèbre de Lie engendré par tous les champs horizontaux et pro-
jetables. On en tire que le premier espace de cohomologie de Chevalley–Eilenberg
de l’algèbre de Lie AΓ ∩NR est le produit direct des premiers espaces de cohomolo-
gie de Chevalley–Eilenberg de Ah

Γ et de A
v
Γ . Cet espace de cohomologie est nul si et

seulement si la connexion est plate. De même, on a l’équivalence entre la nullité de la
courbure et la nullité de la partie verticale du centralisateur de Av

Γ dans χ(TM).

2 Préliminaires

Dans toute la suite, M est une variété diòérentiable de dimension n, TM est le ûbré
tangent de M. On note TM le ûbré TM privé de la section nulle. Tous les objets uti-
lisés sont supposés C∞ sur M ou sur TM, sauf mention expresse. L’ensemble χ(M)

(resp. χ(TM)) désigne l’algèbre de Lie des champs de vecteurs sur M (resp. sur TM)
avec le crochet habituel de champs de vecteurs. On notera dans la suite par ≅ un iso-
morphisme d’algèbres de Lie.

Un sous-ensemble S de χ(M) (resp. χ(TM)) vériûant (H) signiûe que pour tout
x ∈ M (resp. x ∈ TM), il existe X ∈ S tel que X(x) ≠ 0. Une distribution sur M
(resp. sur TM) est un F(M)-sous-module de χ(M) (resp. F(TM)-sous-module de
χ(TM)). On adopte la convention d’Einstein sur la sommation d’indices, sauf men-
tion expresse.

Déûnition 2.1 On a une suite exacte de ûbrés vectoriels sur TM, cf. [5] :

0→ π∗(TM)
i
Ð→ TTM

j
Ð→ π∗(TM) → 0,

où π∶TM → M la projection du ûbré tangent à M ; P∶TTM → TM la projection du
ûbré tangent à TM, i : l’injection naturelle ; j = (P, π∗) où π∗ est l’application linéaire
tangente de π. L’application J = i ○ j est la structure tangente sur TM.
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Déûnition 2.2 On appelle connexion au sens de Grifone sur M, cf. [5], une 1-forme
vectorielle Γ de TM, C∞ sur TM − {0} telle que JΓ = J, ΓJ = −J.

On a l’égalité Γ2 = I où I est l’application identité de χ(TM) et Γ a deux valeurs
propres 1 et −1. La connexion ainsi déûnie est une structure presque-produit sur TM.
Le projecteur horizontal (resp. le projecteur vertical) de Γ est déûni par h = 1

2 (I + Γ)
(resp. par v = 1

2 (I − Γ)).
Une connexion Γ permet d’obtenir une décomposition de TTM, le ûbré tangent

de TM, en somme d’espaces horizontal et vertical :

TTM = H(TM) ⊕ V(TM)

avec

H(TM) = Im(h) = Ker(v) et V(TM) = Im(v) = Ker(h).

Dans tout ce qui suit, Γ est une connexion au sens de Grifone.

Déûnition 2.3 La courbure de la connexion Γ est déûnie par la 2-forme vectorielle
R = − 1

2 [h, h] où
1
2
[h, h](X ,Y) = [hX , hY] + h[X ,Y] − h[hX ,Y] − h[X , hY], ∀X ,Y ∈ χ(TM).

En coordonnées locales (x i , y j) de TM, Γ s’écrit dx i ⊗ ∂
∂x i −2Γ j

i dx
i ⊗ ∂

∂y j −dy i ⊗ ∂
∂y i ,

cf. [5] :

R =
1
2
R i

jkdx
j
∧ dxk

⊗
∂

∂y i où R i
jk =

∂Γ i
k

∂x j −
∂Γ i

j

∂xk + Γ l
k

∂Γ i
j

∂y l − Γ l
j
∂Γ i

k

∂y l .

L’espace de nullité de la courbure de Γ est

NR = {X ∈ χ(TM) tel que R(X ,Y) = 0,∀Y ∈ χ(TM)}.

L’espaceNR est une distribution de TM. Comme la courbure R est semi-basique,
l’espace vertical est inclus dansNR . En général, l’espace de nullitéNR n’est pas involutif,
comme le montre l’exemple suivant.

Exemple 2.4 Soient M = R3, (x i , y i)1≤i≤3 le système de coordonnées dans TR3

et Γ une connexion linéaire au sens de Grifone telle que Γ1
1 = x2 y3, Γ1

3 = x 1 y2, et les
autres nuls. Les coeõcients de la courbure R sont R1

2,1 = y3, R1
3,1 = −y

2, et les autres
nuls.

L’espace de nullité de la courbureNR est

NR(y3
≠ 0) = {

y2

y3 X
3 ∂
∂x2 + X3 ∂

∂x3 + Y i ∂
∂y i }

et

NR(y3
= 0) = {( y2 ∂X3

∂y3
∂

∂x2 + X3 ∂
∂x3 + Y i ∂

∂y i )(y
3
= 0)} ,

où les X i et Y i sont des fonctions C∞ de R3. Le crochet de champs de l’espace de
nullité ∂

∂y2 et y
2 ∂
∂x2 + y3 ∂

∂x3 est ∂
∂x2 , n’appartenant pas àNR .
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Remarque 2.5 Si n = 1, compte tenu de l’antisymétrie de la courbure, la connexion
est trivialement plate. De même, si n = 2 et si on suppose que Nh

R ≠ {0} alors la
connexion est plate.

En tenant compte de la remarque précédente, on suppose dans toute la suite que
n > 2.

3 Etude de quelques algèbres de Lie rattachées à l’espace horizontal

Déûnition 3.1 L’espace de nullité horizontal est déûni par Nh
R =NR ∩ h( χ(TM)) .

Dans [8], on a montré que cet espace de nullité horizontal est involutif. Ici, on
s’intéresse sur quelques algèbres de Lie qui sont liées àNh

R .

Proposition 3.2 S’il existe un sous-ensemble de l’algèbre de Lie des champs de vecteurs
projetables engendrant la distribution Nh

R , alors NR est involutive.

Démonstration Comme les Nh
R et v( χ(TM)) sont des distributions involutives et

que le moduleNR =Nh
R ⊕ v( χ(TM)) , il suõt de vériûer que [Nh

R , v( χ(TM))] est
une partie deNR . C’est le cas, car cet ensemble est inclus dans v( χ(TM)) ⊂ NR par
le fait queNh

R soit engendré par des champs projetables.

Déûnition 3.3 Une dérivation D d’une R-algèbre de Lie A est une application R-
linéaire de A dans A telle que ∀X ,Y ∈ A, D[X ,Y] = [D(X),Y] + [X ,D(Y)].

Déûnition 3.4 On appelle premier espace de cohomologie de Chevalley–Eilenberg
d’une algèbre de Lie A, cf. [9], l’espace quotient H1(A) = Der(A)/ ad(A) où Der(A)
(resp. ad(A)) est l’ensemble des dérivations (resp. des dérivations intérieures) de A.

_éorème 3.5 L’idéal dérivé deNh
R coïncide àN

h
R . Si l’algèbre de LieN

h
R vériûe (H),

le centralisateur deNh
R est nul et, si on note NR le normalisateur deNh

R dans χ(TM),
alors

H1
(Nh

R) ≅ NR/N
h
R et H1

(NR) ≅ {0}.
La partie horizontale du normalisateur de Nh

R coïncide avec N
h
R si et seulement si la

connexion est plate.

Démonstration L’algèbre de Lie Nh
R est une distribution involutive de classe C∞

de TM, alors la première partie des résultats découlent directement de ceux de [2,
pp. 140–141].

Si la connexion est plate, alors il existe une structure de feuilletage régulier F de
dimension n sur TM, cf. [6, p. 6], telle queNh

R est égal à l’algèbre de Lie LF des champs
de vecteurs tangents au feuilletage. Le normalisateur de LF coïncide à l’algèbre de Lie
des champs inûnitésimaux deF. Ainsi, en utilisant la propriété du feuilletage, la partie
horizontale de ce normalisateur est Nh

R .
Rappelons qu’un point x d’une variété diòérentiable est un point régulier d’une

distribution ∆ s’il existe un voisinage de x tel que la restriction de ∆ sur ce voisinage
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est régulière (ou de rang constant). Réciproquement, on suppose que la connexion est
non plate. L’ensemble des points réguliers d’une distribution est un ouvert dense dans
la variété où elle est déûnie. Comme TM est localement connexe et la courbure est
non nulle, alors il existe un ensemble ouvert de TM où le rang de la distribution est
une constante 0 < k ≤ n − 2. Par suite, on peut trouver une carte adaptée de système
de coordonées (x i , y i) oùNh

R est {X
i ∂
∂x i }1≤i≤k . Ainsi, le normalisateur sur cette carte

contient l’ensemble des X j(x i , i ≠ 1, . . . , k; y l) ∂
∂x j k+1≤ j≤n+Y

j(x i , i ≠ 1, . . . , k; y l) ∂
∂y j .

Donc, X j0(x i , i ≠ 1, . . . , k; y l) ∂
∂x j0 − Γ j

j0X
j0 ∂

∂y j avec j0 ≥ k + 1 sont des éléments de
la partie horizontale du normalisateur de Nh

R dans cet ouvert. Par suite, h(NR) est
diòérente deNh

R .

En utilisant la décomposition de NR en une somme directe de modules h(NR)

et v(NR), on a le suivant.

Corollaire 3.6 La connexion est plate si et seulement si le premier espace de coho-
mologie de Chevalley–Eilenberg de Nh

R est isomorphe (en tant que module) à la partie
verticale du normalisateur deNh

R dans χ(TM).

Remarque 3.7 Il est à noter que la partie horizontale h(NR) du normalisateur
de Nh

R est diòérente de l’ensemble NR ∩ h( χ(TM)) . S’il existe une carte où Nh
R est

de rang k > 0 et Nh
R(Γ

j
j0) = {0} pour un k < j0 ≤ n et pour tout j, alors Γ est plate

si et seulement si NR ∩ h( χ(TM)) coïncide à Nh
R . La démonstration de cette der-

nière assertion est la même que celle de la deuxième partie du théorème 3.5 mais avec
quelques petites modiûcations.

Déûnition 3.8 On déûnit l’algèbre de LieAΓ = {X ∈ χ(TM) tel que [X , Γ] = 0} où
[X , Γ] = 0 veut dire que Γ[X ,Y] = [X , Γ(Y)] pour tout Y ∈ χ(TM). Localement, si
(x i)i=1,. . . ,2n sont les coordonnées naturelles sur TM, la connexion Γ = Γ j

i dx
i ⊗ ∂

∂x j ,
et X = X i ∂

∂x i appartient à AΓ si et seulement s’il satisfait le système de 4n2 équations
linéaires aux dérivées partielles, cf. [6] :

X i ∂Γ
j
k

∂x i − Γ j
i
∂X i

∂xk + Γ i
k
∂X j

∂x i = 0.

On essaie de déterminer les dérivations deAΓ dont on examinera particulièrement
par la suite sa partie horizontale.
Désignons par Ah

Γ l’ensemble {X ∈ AΓ tel que h(X) = X} et par Av
Γ celui des X

appartenant à AΓ tel que v(X) = X. En utilisant directement la déûnition 3.8, on a
AΓ = Ah . La proposition s’en suit.

Proposition 3.9 Tous les éléments de l’algèbre de Lie AΓ sont projetables.

Démonstration Soit X ∈ AΓ , d’après ce qui précède ∀Y ∈ χ(TM), on a l’égalité
[X , hY] = h[X ,Y]. Comme h est semi-basique, alors il s’annule sur l’espace vertical,
cf. [5] ; on obtient h[X , JY] = [X , hJY] = 0. Et par l’expression de J, J[X , JY] = 0
pour tout Y ∈ χ(TM). Alors X est projetable, cf. [6].
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Proposition 3.10 Les ensembles Ah
Γ et A

v
Γ sont des idéaux de AΓ ∩NR et de AΓ . Ces

idéaux forment un produit direct.

Démonstration Soient X ∈ Ah
Γ et Y ∈ AΓ , Γ[Y , X] = [Y , ΓX] = [Y , X]. Donc

[Y , X] ∈ Ah
Γ et A

h
Γ est un idéal de AΓ . Par ailleurs, Ah

Γ est contenu dans AΓ ∩NR . En
eòet, l’expression de R est

(3.1) R(X ,Y) = [ΓX , ΓY] − Γ[ΓX ,Y] + Γ2
[X ,Y] − Γ[X , ΓY], ∀Y ∈ χ(TM).

En utilisant Γ[X ,Y] = [X , ΓY], on a R(X ,Y) = 0. Ainsi, il est immédiat que l’algèbre
de Lie Ah

Γ est un idéal de AΓ ∩NR .
On raisonne de la même manière que précédemment pour Av

Γ .
Soient X ∈ Ah

Γ et Y ∈ Av
Γ , alors Γ[X ,Y] = [X , Γ(Y)] = [Γ(X),Y]. On en tire que

[X ,Y] = −[X ,Y], et [X ,Y] = 0. D’où le résultat.

Remarque 3.11 On peut même montrer que Ah
Γ est un idéal de tout sous-module

de AΓ qui le contient.

Proposition 3.12 On note par H0 l’ensemble des champs horizontaux projetables,
alors Ah

Γ = H0 ∩NR .

Démonstration D’après la proposition 3.9 et la proposition 3.10, on peut montrer
que Ah

Γ ⊂ H0 ∩NR .
Soit X ∈ H0∩NR , un champ X ∈NR signiûe d’après l’expression de R que [hX , h]−

h[X , h] = 0.Or le champ X est projetable alors [hX , h] = 0.Donc le champhorizontal
hX ∈ Ah = AΓ . Comme X est horizontal alors hX = X. Ainsi X ∈ Ah

Γ et H
0 ∩NR ⊂

Ah
Γ .

Remarque 3.13 On constate d’après la proposition 3.12 que l’idéal horizontalAh
Γ est

inclus dans l’espace de nullité horizontal, car il est l’intersection de l’espace de nullité
horizontal et de l’ensemble des champs de vecteurs projetables. En général, Ah

Γ n’est
pas un idéal de Nh

R . L’algèbre de Lie peut être réduit à zéro, c’est le cas de celui de
l’exemple 2.4.

Proposition 3.14 On suppose que l’algèbre de Lie Ah
Γ vériûe (H). On note par CΓ le

centralisateur de Ah
Γ dans χ(TM). Alors la partie horizontale de ce centralisateur est

nul et CΓ ∩AΓ = Av
Γ .

Démonstration Si X est dans ce centralisateur horizontal, alors [X ,Ah
Γ] = {0}.

D’après la proposition 3.12, l’algèbre de Lie Ah
Γ est un F(M)-module ; pour tout f ∈

F(M), [X , fAh
Γ] = X( f )Ah

Γ = {0}. Par suite, X( f ) = 0 car Ah
Γ vériûe (H). Le

champ X étant horizontal, alors X = 0. Par ailleurs, d’après ce qui précède, le centrali-
sateur deAh

Γ dansAΓ est inclus dans sa partie verticale Cv
Γ . Donc Cv

Γ ∩AΓ est contenu
dans Av

Γ car C
v
Γ est vertical. D’après la proposition 3.10, Av

Γ commute avec Ah
Γ , alors

Av
Γ ⊂ CΓ ∩AΓ = Cv

Γ ∩AΓ .
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Déûnition 3.15 Le relèvement complet de X ∈ χ(M) sur le ûbré TM est noté X̄. En
coordonnées locales sur TM, (x i , y j)1≤i , j≤n où X = X i ∂

∂x i , on a

X̄ = X i ∂
∂x i + y j ∂X i

∂x j
∂

∂y i avec i , j = 1, . . . , n.

Le relèvement complet d’une partie A de χ(M) est Ā = {X̄ tel que X ∈ A}.

Proposition 3.16 Soient l’application Π∶TM → M, le ûbré des vecteurs non nul tan-
gent à M et Π∗ son application tangente, l’algèbre de Lie Ah

Γ est isomorphe à Π∗(Ah
Γ).

Démonstration D’après la proposition 3.12, Π∗[Ah
Γ ,A

h
Γ] = [Π∗(Ah

Γ), Π∗(Ah
Γ)]. De

la relation [Ah
Γ ,A

h
Γ] ⊂ Ah

Γ , on a [Π∗(Ah
Γ), Π∗(Ah

Γ)] ⊂ Π∗(Ah
Γ).

En considérant l’application f ∶Π∗(Ah
Γ) → Π∗(Ah

Γ) avec f (X) = X̄, on peut véri-
ûer que f est bijective.

On a [X ,Y] = [X̄ , Ȳ]∀X ,Y ∈ Π∗(Ah
Γ), alors

[Π∗(Ah
Γ), Π∗(Ah

Γ)] = [Π∗(Ah
Γ), Π∗(Ah

Γ)].

Ce qui donne [Π∗(Ah
Γ), Π∗(Ah

Γ)] ⊂ Π∗(Ah
Γ). Et Π∗(Ah

Γ) est une algèbre de Lie, et
Π∗(Ah

Γ) est isomorphe à Π∗(Ah
Γ).

Par suite, soit la restriction de h suivante h∶Π∗(H0 ∩NR) → Ah
Γ . Il est facile

de montrer qu’elle est bien déûnie et surjective. On a de même Ker(h) = 0 sur
Π∗(H0 ∩NR). Donc cette restriction de h est bijective.

Le champ de vecteurs X̄ étant projetable ; d’après la preuve de la proposition 3.12
on a [hX̄ , h] = 0 et h[X̄ , Ȳ] = h[X̄ , hȲ] pour tout Ȳ ∈ χ(M). Ainsi R s’écrit

R(X̄ , Ȳ) = [hX̄ , hȲ] − h[X̄ , hȲ] = [hX̄ , hȲ] − h[X̄ , Ȳ].

Si X̄ , Ȳ ∈ Π∗(Ah
Γ), d’après ce qui précède hX̄ , hȲ ∈ Ah

Γ . Par conséquent, R(X̄ , Ȳ) est
horizontal. Comme R est semi-basique alors R(X̄ , Ȳ) = 0 et h[X̄ , Ȳ] = [hX̄ , hȲ].

On démontre alors que Π∗(Ah
Γ) est isomorphe à Ah

Γ en considérant l’application
h ○ f .

Proposition 3.17 On note parNΓ le normalisateur deAh
Γ dans χ(TM). On a désigné

par Cv
Γ l’ensemble CΓ ∩ v( χ(TM)) , on obtient NΓ = h(NΓ) ⊕ Cv

Γ en tant que module.

Démonstration Soient X1 ∈ Ah
Γ et Y ∈ NΓ . En décomposant Y sur les sous-espaces

propres de Γ, on a Y = Y 1 + Y 2 avec Y 1 ∈ h( χ(TM)) , Y 2 ∈ v( χ(TM)) . Donc on
obtient que [Y 1 , X1] + [Y 2 , X1] appartient Ah

Γ . Par ailleurs, les égalités suivantes sont
obtenues en utilisant directement la déûnition du champ de vecteurs X1,

Γ[Y 1 , X1
] = [ΓY 1 , X1

] = [Y 1 , X1
]

et
Γ[Y 2 , X1

] = [ΓY 2 , X1
] = −[Y 2 , X1

].
On en déduit que

(3.2) Γ([Y 1 , X1
] + [Y 2 , X1

]) = [Y 1 , X1
] − [Y 2 , X1

] ∈ Ah
Γ .
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Alors les [Y 1 , X1] et [Y 2 , X1] sont dans Ah
Γ et donc Y

1 ,Y 2 ∈ NΓ . Or l’image par Γ de
[Y 1 , X1] + [Y 2 , X1] est égal à [Y 1 , X1] + [Y 2 , X1] par déûnition de Ah

Γ . Ainsi par la
relation (3.2) on a [Y 2 , X1] = 0 et Y 2 ∈ Cv

Γ . D’où le résultat.

Proposition 3.18 L’algèbre de Lie Cv
Γ est un idéal de NΓ . On note par N le normali-

sateur de Π∗(Ah
Γ) dans χ(M), si l’algèbre de Lie Ah

Γ vériûe (H) alors les éléments de
h(NΓ) sont projetables et

N ≅ NΓ/C
v
Γ .

Démonstration
● Le centralisateur CΓ étant toujours un idéal de NΓ cf. [4], on a une somme directe
de modules CΓ = Ch

Γ ⊕ Cv
Γ . De la proposition 3.14, on trouve que Cv

Γ est un idéal de
NΓ .

● Soient Y ∈ NΓ et Ah
Γ vériûant (H). D’après le théorème de Fröbenius et la pro-

position 3.12, il existe en tout point de TM une carte qui le contient, de système
de coordonnées (x i , y j) tels que Y(F(x i)) = Y j ∂F(x i)

∂x j ⊂ F(x i) et Y j ∈ F(x i), où
F(x i) l’ensemble des fonctions qui ne dépendent que des x i . Donc tous les éléments
deNΓ sont projetables, ainsi que ceux de h(NΓ). En utilisant la proposition 3.17, on
aNΓ = h(NΓ)⊕C

v
Γ . Alors la restriction de Π∗, Π∗∶NΓ → Π∗(NΓ) est un homomor-

phisme d’algèbres et a pour noyau Cv
Γ . Donc, l’application Π′

∗∶NΓ/C
v
Γ → Π∗(NΓ)

est un isomorphisme d’algèbres de Lie.
Montrons que Π∗(NΓ) = N. Si X ∈ NΓ alors Π∗[X ,Ah

Γ] ⊂ Π∗(Ah
Γ). D’après la

proposition 3.12, [Π∗(X), Π∗(Ah
Γ)] est inclus dans Π∗(Ah

Γ). Donc, on en déduit que
Π∗(NΓ) ⊂ N.

Réciproquement, si X ∈ N alors de la proposition 3.16, [X̄ , Π∗(Ah
Γ)] ⊂ Π∗(Ah

Γ).
De même, on obtient h[X̄ , Π∗(Ah

Γ)] ⊂ Ah
Γ . Or X̄ est projetable, par la preuve de la

proposition 3.16, on a

h[X̄ , Π∗(Ah
Γ)] = h[ X̄ , h(Π∗(Ah

Γ))] = h[X̄ ,Ah
Γ] ⊂ Ah

Γ .

Or Ah
Γ ⊂ Ah alors h[X̄ ,Ah

Γ] = [hX̄ ,Ah
Γ]. Ainsi [hX̄ ,Ah

Γ] ⊂ Ah
Γ et hX̄ ∈ NΓ avec

Π∗(hX̄) = X ∈ N. Donc X ∈ Π∗(NΓ) etN ⊂ Π∗(NΓ). D’où Π∗(NΓ) est égal àN.

_éorème 3.19 ([2]) Une distribution Ω de M est involutive si et seulement si
[Ω, Ω] = Ω.

Démonstration Immédiate en utilisant la proposition 2.9 de [2, p. 141].

_éorème 3.20
(i) L’algèbre de Lie Ah

Γ (resp. CΓ) est un idéal caractéristique de AΓ et deNΓ (resp. de
NΓ). Plus précisement, on a [Ah

Γ ,A
h
Γ] = Ah

Γ .
(ii) Si l’ensembleAh

Γ vériûe (H), alors l’algèbre de Lie des dérivations deAh
Γ correspond

à la représentation adjointe de son normalisateur NΓ et les premiers espaces de
cohomologie de Chevalley–Eilenberg sont :

H1
(Ah

Γ) ≅ Π∗(NΓ)/Π∗(Ah
Γ), H1

(NΓ/CΓ) ≅ {0}.
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Démonstration (i) Il est immédiat queAh
Γ est un idéal deNΓ . De la proposition 3.12,

Π∗(Ah
Γ) est une distribution involutive de classe C∞ de M. Donc en vertu du théo-

rème 3.19, on obtient [Π∗(Ah
Γ), Π∗(Ah

Γ)] = Π∗(Ah
Γ). Par l’isomorphisme de la pro-

position 3.16, on a [Ah
Γ ,A

h
Γ] = Ah

Γ . AlorsAh
Γ est un idéal caractéristique deAΓ et deNΓ

d’après une démonstration classique de [4]. Par l’identité de Jacobi, la propriété de CΓ
et le fait que Ah

Γ est un idéal caractéristique de NΓ , CΓ est un idéal caractéristique
deNΓ .

(ii) Si Ah
Γ vériûe (H), alors par isomorphisme, Π∗(Ah

Γ) vériûe (H). D’après un
théorème de [2], toutes ses dérivations sont des dérivées de Lie par rapport à un
champ du normalisateur N. En utilisant les isomorphismes de la proposition 3.16 et
de la proposition 3.18, toute dérivation de Ah

Γ est la dérivée de Lie par rapport à un
champ de NΓ . Ainsi, d’après [2], H1(Π∗(Ah

Γ)) ≅ Π∗(NΓ)/Π∗(Ah
Γ), et H1(Ah

Γ) ≅

Π∗(NΓ)/Π∗(Ah
Γ) en vertu de la proposition 3.16. De même, toute dérivation de N

est intérieure, alors H1(N) ≅ {0}, et H1(NΓ/CΓ) ≅ {0} en appliquant la proposi-
tion 3.18.

4 Propriétés de la connexion par l’étude de quelques algèbres de Lie
qui lui sont associées

Proposition 4.1 Un champ de vecteurs X de TM est un élément deAΓ si et seulement
si X laisse invariant les distributions généralisées déûnies par les sous-espaces propres
de Γ.

Démonstration Soient X ∈ AΓ et Y ∈ h( χ(TM)) (resp. Y ∈ v( χ(TM)) ). On
obtient Γ[X ,Y] = [X , ΓY], donc Γ[X ,Y] = [X ,Y] (resp. Γ[X ,Y] = −[X ,Y]).

Réciproquement, soit X ∈ χ(TM) préservant h( χ(TM)) et v( χ(TM)) . Soit Y
dans χ(TM), Y se décompose en une somme Y h + Y v avec Y h ∈ h( χ(TM)) et Y v

appartient à v( χ(TM)) . On a Γ[X ,Y]−[X , ΓY] = ([X ,Y h]−[X ,Y v])−([X ,Y h]−

[X ,Y v]) = 0. D’où le résultat.

Proposition 4.2 Un champ vertical X est un élément deAv
Γ si et seulement si X com-

mute avec tout champhorizontal projetable. Si on note parAH0 l’algèbre de Lie engendrée
par les champs horizontaux projetables, alors Av

Γ est son centralisateur dans χ(TM).

Démonstration On sait que tout champ vertical peut s’écrire comme JX avec X ∈

h( χ(TM)) . L’espace vertical est toujours involutif, alors JX est dans AΓ si et seule-
ment si JX laisse invariant l’espace horizontal.

Soient U un domaine d’une carte de système de coordonnées (x i , y i) de TM, et
X ∈ h( χ(TU)) . L’ensemble h( χ(TU)) étant engendré par h( ∂

∂x i ) sur F(TU). On
a [JX , f h( ∂

∂x i )] = ( JX( f ))h( ∂
∂x i ) + f [JX , h( ∂

∂x i )] ∈ h( χ(TU)) pour tout f dans
F(TU) est équivalent à [JX , h( ∂

∂x i )] = 0. Comme AH0 est un F(M)-module, alors
son centralisateur dans l’espace horizontal est nul en raisonnant comme dans la pro-
position 3.14. Donc, son centralisateur est inclus dans l’espace vertical. D’après ce qui
précède, Av

Γ est le centralisateur de AH0 .
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_éorème 4.3 Si l’algèbre de Lie Ah
Γ vériûe (H), alors le premier espace de cohomo-

logie de Chevalley–Eilenberg de AΓ ∩NR est le produit direct de ceux de Ah
Γ et de A

v
Γ .

Démonstration D’après la proposition 3.10,AΓ = Ah
Γ ×A

v
Γ est un produit direct. En

vertu du théorème 3.20, [Ah
Γ ,A

h
Γ] = Ah

Γ ; et de la première partie de la proposition 3.14,
le centre de Ah

Γ est nul. Ainsi, d’après le lemme 3.7 de [7, p. 8], on a le résultat.

_éorème 4.4 Le premier espace de cohomologie de Chevalley–Eilenberg deAΓ∩NR
est nul si et seulement si la connexion Γ est plate.

Démonstration On suppose que toute dérivation de AΓ ∩NR est intérieure. Or, on
aAΓ ∩NR = Ah

Γ⊗Av
Γ , alors en vertu de la proposition 4.2,Ah

Γ = AH0 . Sur un domaine
d’une carte U de coordonnées locales (x i , y i), (AH0)U contient chaque élément de
base de l’espace horizontal ∂

∂x i − Γ j
i

∂
∂y j . Comme l’espace vertical est contenu dansNR ,

par suite, chaque ∂
∂x i ∈ (NR)U . Or (NR)U est une distribution de TU , donc χ(U) ⊂

(NR)U , pour tout U . Ainsi,NR = χ(TM) et que R = 0. C’est-à-dire que la connexion
est plate.

Réciproquement, si la connexion est plate, la distribution ∆∶ x ∈ TM ↦ Im hx
est intégrable, cf. [6]. Pour cette raison, il existe une structure de feuilletage sur TM.
Par ailleurs, l’espace de nullité de la courbure NR est χ(TM). D’après la proposi-
tion 3.12, on a Ah

Γ = H0. En tenant compte du feuilletage sur TM, on peut aõrmer
que Ah

Γ = χ(M). Et par la proposition 4.2, Av
Γ est localement χ(Rn). Alors, à l’aide

de la proposition 4.3 et d’un résultat de [2], le premier espace de cohomologie de
Chevalley–Eilenberg de AΓ ∩NR est nul.

Remarque 4.5 Ce théorème est en partie une réponse à une question posée par
[6, p. 6] dans le cas où la forme vectorielle est une connexion au sens de Grifone.

Proposition 4.6 La connexion Γ est plate si et seulement si le centralisateur de Av
Γ

dans l’espace vertical est réduit à zéro.

Démonstration Dans le cas où la connexion est plate, Av
Γ est localement égal

à χ(Rn). Ainsi son centralisateur dans l’espace vertical est égal à {0} d’après [2].
Réciproquement, par la proposition 4.2,AH0 est inclus dans le centralisateur deAv

Γ . Si
le centralisateur vertical deAv

Γ est nul, alors v(AH0) est réduit à zéro carAv
Γ ⊂ AΓ . De

l’équation (3.1), R(X ,Y) ⊂ v(AH0) pour tous X ,Y ∈ H0. On a R(X ,Y) = 0 pour tous
X ,Y ∈ H0. Par le fait que les éléments de H0 engendrent h( χ(TM)) et que R est li-
néaire et semi-basique, alors R(X ,Y) = 0 pour tous X ,Y ∈ χ(TM). D’où, la courbure
est nulle et la connexion est plate.

Remarque 4.7 La connexion est plate si et seulement si l’algèbre de Lie Ah
Γ

(resp.Nh
R) est engendrée par tous les champs horizontaux projetables sur F(M) (resp.

sur F(TM)).

Exemple 4.8 Soient M = R4 de système de coordonnées dans TR4 (x i , y i)1≤i≤4,
et Γ une connexion telle que Γ1

2 = −
y2

2 e
x 1
, Γ2

1 =
y2

2 , Γ
2
2 =

y1

2 , et les autres nuls. Les
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coeõcients de la courbure R sont

R1
2,1 =

y2

2
ex

1
, R2

2,1 = −
y1

4
et les autres nuls.

Les expressions X i et Y i sont dans toute la suite des fonctions C∞ de TR4.
L’espace de nullité de la courbureNR est,

NR = {X3 ∂
∂x3 + X4 ∂

∂x4 + Y i ∂
∂y i } .

Ici, l’espace de nullité est involutif car il est engendré par des champs projetables.
On a

Nh
R = {X3 ∂

∂x3 + X4 ∂
∂x4 } .

Le centralisateur deNh
R est réduit à zéro, son normalisateur est

NR = {X3 ∂
∂x3 + X4 ∂

∂x4 + X i
(

∧
x3 ,

∧
x4

)
i≠3,4

∂
∂x i + Y i

(

∧
x3 ,

∧
x4

)
∂

∂y i }

où dans toute la suite, X(
∧
x i) désigne que l’expression de X ne dépend pas de x i .

Le champ ∂
∂x 1 −

y2

2
∂

∂y2 est dans la partie horizontale de ce normalisateur mais n’ap-
partenant pas à la partie horizontale de l’espace de nullité. Ce qui conûrme que la
connexion est non plate.
Dans la suite, A désigne la classe d’équivalence de A déûnie par un quotient d’algè-

bres de Lie.
On obtient H1(NR) ≅ {0}. Et H1(Nh

R) ≅ NR/N
h
R qui est

{X i
(i≠3,4)(

∧
x3 ,

∧
x4)

∂
∂x i + Y i(

∧
x3 ,

∧
x4)

∂
∂y i } .

L’algèbre de Lie Ah
Γ est donnée par

Ah
Γ = {X3

(x t
)

∂
∂x3 + X4

(x t
)

∂
∂x4 } .

Le normalisateur de Ah
Γ dans χ(TR4) est donc

NΓ = {X3
(x t

)
∂

∂x3 +X
4
(x t

)
∂

∂x4 +X
i
(i≠3,4)(x

t , t ≠ 3, 4)
∂

∂x i +Y
i
(x t , y j , t ≠ 3, 4)

∂
∂y i } .

Et le centralisateur de Ah
Γ dans χ(TR4) coïncide à

CΓ = {Y i
(x t , y j , t ≠ 3, 4)

∂
∂y i } .

Ainsi NΓ/CΓ est

{X3(x t)
∂

∂x3 + X4(x t)
∂

∂x4 + X i
(i≠3,4)(x

t , t ≠ 3, 4)
∂

∂x i }.

On a alors H1(NΓ/CΓ) ≅ {0}, et H1(Ah
Γ) ≅ Π∗(NΓ)/Π∗(Ah

Γ) est

{X i
(i≠3,4)(x

t , t ≠ 3, 4)
∂

∂x i }.
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algèbres de Lie des champs de vecteurs polynomiaux. Afr. Diaspora J. Math.
10(2010), 87–95. MR2774261

2. M. Anona, P. Randriambololondrantomalala et H. S. G. Ravelonirina, Sur les
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Abstract
Let M be an N-dimensional smooth differentiable manifold. Here, we are going to analyze (m>1)-derivations of 

Lie algebras relative to an involutive distribution on subrings of real smooth functions on M. First, we prove that any 
(m>1)-derivations of a distribution Ω on the ring of real functions on M as well as those of the normalizer of Ω are 
Lie derivatives with respect to one and only one element of this normalizer, if Ω doesn’t vanish everywhere. Next, 
suppose that N = n + q such that n>0, and let S be a system of q mutually commuting vector fields. The Lie algebra 
of vector fields SA on M which commutes with S, is a distribution over the ring ( )0 MF of constant real functions on 
the leaves generated by S. We find that m-derivations of SA are local if and only if its derivative ideal coincides with 

SA itself. Then, we characterize all non local m-derivations of SA . We prove that all m-derivations of SA  and of the 
normalizer of SA  are derivations. We will make these derivations and those of the centralizer of SA  more explicit.

AMS Subject Classification: Primary 17B66, 17B40, Secondary 53C12, 53B15, 47B47, 53B40.

Keywords: m-derivations; Vector fields Lie algebras; Distributions; 
Commuting vector fields; Generalized foliations; Compactly supported 
vector fields; µ-projected vector fields; Nullity space of curvature

Introduction and Preliminary 
Let m be a natural integer greater than or equal to 2. We recall that 

an m-derivation D of a Lie 


-algebra A is an endomorphism ofA , 
such that for all 1 2, , , mX X X… ∈A

[ ] ( ) [ ]1 2 1 1 2 1, , , , , , ,m m m mD X X X X D X X X X− −      … … = … … +      

( ) [ ]1 2 1, , , ,m mX D X X X−  + … … +…+  

( )1 2 1, , , ,m mX X D X X−
  + … … +    

( )1 2 1, , , , .m mX X X D X−
  + … …    

This map is inner with respect to Lie algebra if D equals to a Lie 
derivative with respect to X ∈B ; if X ∈A , it is an inner m-derivation. A 
standard m-derivation D is a sum of derivations of A and 


-linear maps 

of A into the center of A such that [ ,[ ,[...,[ , ]...]]] {0}.D A A A A =

Is it sufficient to study derivation of Lie algebras? What is the 
reason for studying the more general notion:” (m>2)-derivation”? 
In other words, can we find (m>2)-derivations of vector fields Lie 
algebra which are not derivations? In [1], we found m-derivations of all 
polynomial vector fields Lie algebras P on n



, where P contains Euler 
vector fields  E and all constant vector fields. We remark that all these 
m-derivations are derivations when m is even. If m is an odd number, 
m-derivations are generally sum of derivations and m-derivations with 
homogeneous degree -2. Over 3


, we can take a simple example where 

the Lie  -algebra is spanned by 2, , , , , ( )E z z
x y z x x
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

and the   

linear map D is defined by 2( )D z
x x
∂ ∂  = ∂ ∂ 

and vanishing otherwise. It 

is a 3-derivation, but not a derivation. In [2], some graded Lie algebra 
m-derivations are discussed. Here, we are interested in m-derivations 
of distribution Lie algebra on an N-smooth manifold M over an M-real 
functions ring. We know that all smooth vector fields can be locally 
approximated to polynomial vector fields, so we think that all results in 
[1] are naturally true in the case of distributions. But, the results which 

follow are different. The differential operator theory see [3] is the main 
tool throughout our proofs.

We denote by F(M) the ring of all real functions on M, (M)χ
(resp. (TM))χ the vector fields Lie algebras over M(resp. over the 
tangent bundle TM).

At first, we consider an involutive distribution Ω over F(M). That 
is to say, Ω is an F(M)-sub-module of the module of all vector fields on 
M. Assuming that the open set { }M / ( ) {0}O x xΩ = ∈ Ω ≠ equals M, we 
are looking for characteristics of m-derivations of Lie algebras relative 
to Ω and applications of the obtained results on some remarkable 
distributions. We propose to prove that each m-derivation of Ω (resp. 
of the normalizer in ( )Mχ of Ω) is simply a Lie derivative with respect 
to one and only one normalizer’s vector fields (resp. is inner). These 
theorems can be extended where OΩ is dense over M.

Secondly, let be N=n+q with n ≥ 1 and q>0, S a system of q non-
vanishing vector fields which commute mutually. We know by results in 
[4] that S yields a generalized foliation on M. We assume that all leaves 
are regular and we notice that ( )0 MF , the ring of real smooth functions 
which are constant on the leaves over M. Let U be a p-dimensional 

adapted chart domain relative to the foliation and ( ), ,a iU x y  (resp. 

( ), aU x ), where 1 ,1a n q p i p£ £ + - £ £ if 1p ³ (resp. where 

1 a n q£ £ + if p=0). Then, there are two modules over ( )0F U , ( )1
SA U  

spanned by 
1

a
a n q px £ £ + -

æ ö¶ ÷ç ÷ç ÷çè ø¶  and ( )2
S UA generated by

1
i

i py £ £

æ ö¶ ÷ç ÷ç ÷ç ÷ç¶è ø
. These 

previous modules are Lie algebras such that ( )S UA is equal to the semi-

http://dx.doi.org/10.4172/1736-4337.1000217
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direct product of these two algebras: ( ) ( ) ( )1 2
S S SU U U= ÅA A A  for all 

distinguished U. We can say that SA is a smooth distribution of M over
( )0 MF . Throughout this paper, we assume that this chart is ( 0)p>

-dimensional in the sense of the foliation, unless expressly stated. Our 
aims are to characterize all m-derivations of SA , of the normalizer of 

SA  and of the centralizer of SA  in ( )Mc . The corresponding work 
where {0}S = has been done in the previous section. Because of SA ’s 
lower central series constancy, which coincides with the module direct 
sum of 1 1 2,S S S

é ùÅ ê úë ûA A A , our work on these m-derivations is non-trivial. 
The main results of this section are: every m-derivation is local iff the 
derivative ideal of SA is SA itself, which is equivalent to the fact that 

( )( )1
0 MS FA has non-vanishing element over the whole M. Moreover, 

all m-derivations of SA or of the normalizer N  of SA are sums of a Lie 
derivative with respect to one N ’s element, of one local m-derivation 
which takes its value in 2

SA depending on two non-vanishing 
1-differential forms over SA , and of a non-local m-derivation of SA
. We give some recommendations for constructing all these non local 
m-derivations. In addition, all 


-linear maps of S the centralizer 

of SA  into itself are m-derivations. We characterize all local 


-endomorphisms of S in the case where all elements of S are densely 
supported or S is spanned by singleton, and those which are non 
local. It is well known that the open set of all foliation regular points 
is dense in M, then one can extend these results where the foliation is 
singular and if the above 1-forms prolong smoothly on M.

Several applications of our results about Lie algebras relative to: 
all vector fields, all compactly supported vector fields, generalized 
foliations,m -projected vector fields cf. [5], k-nullity space of 
connection curvature, and vector fields Lie algebras on TM commuting 
with Liouville vector fields cf. [6]; are given at the end of this paper.

Throughout this article, the Lie derivative with respect to (M)X cÎ
is denoted Lx. We adopt the Einstein index summation and suppose 
that all considered objects are smooth.

The m-derivations of Lie algebras attached to Ω
According the hypothesis about Ω, we can affirm that Ω is a Lie 

sub-algebra of ( )Mc . A generalization of [7,8]’s theorems in the sense 
of derivation or triple derivation can be stated as follows:

Theorem 2.1. All m-derivations of Ω (resp. of the normalizer of Ω in
( )Mc ) are Lie derivative with respect to one and only one vector field of 

the normalizer of Ω (resp. is inner).

Proof. Assume that Mx Î , X$ ÎW  such that ( ) 0X x ¹ . By 
Frobenius theorem, we find one chart ( ),x xU j which contains x  

and local coordinate system 1 1( ,..., , )nx x y-  where 
xU

X
y
¶

=
¶

. Letting D 

be an m-derivation of Ω, we know that the Lie algebra spanned by 
brackets of all elements in Ω is the derivative ideal of Ω denoted by [Ω; 
Ω]. Local behavior of D can be proved by adapting one of Proposition 
2.4 in [7] and using that the derivative ideal of Ω is Ω itself. Therefore 

xUD
is an m-derivation of 

xUW . Let’s give ( )xf F UÎ , as we know, 
xUy

¶
ÎW

¶
then 0

0
( ) ( )

x

a
U a

a n
D f D f D f

y y x< <

æ ö¶ ¶ ¶÷ç ÷= +ç ÷ç ÷ç ¶ ¶ ¶è ø is uniquely determined, where each Di 

is differential operator over the trivial bundle xU ´  cf. [3]. Thus, if 

necessary we can write 0 ,0 , 0,

0, 1, 1, 1

A B q r
A B q r

A B q r
A B q r

D
x x y y

c c c
+

³ ³ ³ ³

¶ ¶ ¶
= + +

¶ ¶ ¶ ¶
å , where A, B 

are multi-indices corresponding to coordinates.

Let’s apply xUD to , , , ,jx y y f
y y y y

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ê úê úê ú¶ ¶ ¶ ¶ê úë ûë ûë û
, where xn= y.  By 

definition of m-derivations and when f is replaced by monomials, we have:	

-	 If ( ) 2deg f ³ , ( )( )0 0, ,0 0D f ¼ = except for 2f yº .

-	 If ( ) 1deg f ³ , ( )( )0, ,0 0aD f ¼ = except for ( , )if yP x i nº ¹

where ( )iP x are free xn monomials.

By reasoning as in the previous, we compute 

, , , , ( , )
x

m i
UD y P x i n

y y y y

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¹ ¼ê úê úê ú¶ ¶ ¶ ¶ê úë ûë ûë û
. It is easy, using both the 

previous relation and the previous proof, to obtain the nullity of

( )( )( ) 0, ,0a iD yP x ¼ . By coordinates translations, we can affirm that 

each , 0jD j ¹  is a differential operator of order 0 and D0 is a sum of 

one of order 1 with one other	 ( )

2
0,2

2y
c

¶

¶ of order 2.

Computing in the same way as the previous calculus, 

, , , ,
xUD f y y

y y y y

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ê úê úê ú¶ ¶ ¶ ¶ê úë ûë ûë û
gives:

- for f yº ,
0,1

0 (1)D
y
c¶

=-
¶

.

- for jf xº except j n¹ ,
(0, ,0,1 ,0, ,0)

(1)
j

jD
y

c ¼ ¼¶
=-

¶
(1 j  means 1 is in 

j-th rank).	

By these results,	
( )(0, ,0,1 ,0, ,0)0,1

2
0,2

2L .
x a

a
U

y x

fD f f
y y yyc c

c
¼ ¼¶ ¶

+
¶ ¶

æ ö æ ö¶ ¶ ¶ ¶÷ ÷ç ç÷= ÷+ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶ ¶è ø è ø ¶
 

Consequently,

( )

2
0,2

0 2D
yy

c
¶ ¶

= Ä
¶¶

 is an m-derivation of the ( )xF U -sub-module 

spanned by
y
¶
¶

. Applying D0 to 2 1, , , , my y
y y y y

-
é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ê úê úê ú¶ ¶ ¶ ¶ê úë ûë ûë û

, we have 
0,2 ( 0) 0yc = = . By coordinate’s translations,	 we can write that
0,2 0c = .

We take Proposition 2.6 of [7] and we have (0, ,0,1 ,0, ,0)0,1
L

x a
a

U
y x

D
c c ¼ ¼¶ ¶

+
¶ ¶

= . 

Following the arguments of the proof of Theorem 2.7 in [7], we end 
the demonstration of the first assertion of our theorem. Taking that the 
derivative ideal of Ω is Ω itself into account, we can adapt the proof of 
Theorem 2.12 in [7] to state the second assertion.

Remark 2.2. These theorems are correct if we consider OΩ to be 
dense over M and if the corresponding vector of the Lie derivative 
relative to the m-derivation cited by Theorem 2.1 can be smoothly 
extended towards M.

The m-derivations of Lie algebras defined by SA

We know that nilpotency of order 1m-  of SA  forces any 
endomorphism of SA  to be an m-derivation. To avoid this triviality, 
we prove that:

Proposition 3.1. The lower central series of SA  are constant and 
equal to the module 1 1 2,S S S

é ùÅ ê úë ûA A A .

Proof.  The lower central series of is determined by ( )0
S S=C A A

and for all 0p> ,	

( ) ( )1,p p
S S S

-é ù= ê úë ûC A A C A cf.[1]. By Proposition 3.7 of [4], the 
derivative ideal of SA  is 1 1 2,S S S

é ùÅ ê úë ûA A A . From the linearity of brackets, 

the Jacobi identity and the fact that 2
SA  is an ideal of SA , we have

1 1 2 1 1 2, , ,S S S S S S S
é ùé ùé ù é ùÅ = Åê ú ê úê úê úë û ë ûë ûë û
A A A A A A A . Then, we deduce the result.

We assume the following conventions about the indices,
, , {1, , }i j k pÎ ¼ , , , {1, , }a b c n q pÎ ¼ + - , and each index indexed by 0 

is fixed.				  
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Proposition 3.2. Let D be an m-derivation of SA and U a domain 
of distinguished chart such that if SX ÎA over U vanishes, then ( )D X
over U on 1

SA is zero.

Proof. Let D be a such m-derivation and X an element of SA
satisfying the above hypothesis. We assume that ( ) 1|

0
SA U

D X ¹ , then it 
exists an open set zV containing z, such that the a0-th component of 

( ) 1| SA
D X on zV is everywhere non zero. Let’s consider ( )0 Mf FÎ such 

that ( )0
2

| z

a
Vf x= where ( )Supp f UÌ , and 3, , , mY X X¼ are elements of 

SA w i t h
0| ,

zV iY
y
¶

=
¶

0

0 03| 1| |,
z z z

a
V m V m Va aX X x X

x x-

¶ ¶
=¼= = =

¶ ¶
. 

By definition, we obtain

[ ] ( ) [ ] [ ]3 1 3 1, , , , ( ) , , , , ( ) , ( )m m m mD X fY X X X z D X fY X X X z X Z z- -
é ù é ùé ù é ùé ù é ù¼ ¼ = ¼ ¼ +ê ú ê úê ú ê úë û ë ûë û ë ûë û ë û      (3.1)

with SZ ÎA , a contradiction.

Proposition 3.3. The centralizer  of 1 1 2,S S S
é ùÅ ê úë ûA A A coincides with 

the vector 


-space S spanned by S.

Proof. Recall that
( ){ }1 1 2M / , , {0} .S S SX Xc é ùé ù= Î Å =ê úê úë ûë ûA A A

Choose X Î   and let be U a distinguished connected chart 
domain of the foliation. When 0p = , we have 0X = .  For 1p ³ , we 

put |
a i

U Ua iX X X
x y
¶ ¶¢= + Î
¶ ¶

C . By the fact 1, {0}SXé ù =ê úë ûA , 0aX = for all 

a and each ( ) ( )( ) ( ) ( )( )0 0
iX F U F U F U F U¢ Î - È Ç . Therefore, 1|

0
S

X =
A

and i
iX f X=  where all ( ) ( )( ) ( ) ( )( )0 0M M M Mif F F F FÎ - È Ç . Assume 

( )1 1 2,i
i S SY g X é ùÎ ê úë ûA A with 2j

j Sg X ÎA , 1 1
SY ÎA . It’s known that 

1 1 2, , {0}S S SXé ùé ùÅ =ê úê úë ûë ûA A A so ( ) ( )1 0i j
i jY g X f X =  for all ig and 1Y . 

Then all jf are in ( )0 MF and consequently they are constant, and 
is a subset of the 



-vector space spanned by S. The converse inclusion 
is obvious.

Proposition 3.4.  All non-local m-derivations of SA vanish 

on 1 1 2,S S S
é ùÅ ê úë ûA A A and take their values in S . Conversely, all 



-endomorphisms D of SA which have these properties, is an m-derivation 
of SA . All theses maps are standard m-derivations.

Proof. To simplify, we pose a such m-derivation D. Then there 
is SX ÎA and a distinguished chart domain U so that | 0UX º with 

( )( ) 0D X z UÎ ¹ . Thus, we have an open set Vz in U containing 
z, with ( )D X everywhere non-vanishing. Recall that the center of 

SA is the intersection of its centralizer with itself. We reason by 
contradiction, we suppose that ( )D X  doesn’t belong to the center 
of SA . By Proposition 3.2, we claim that on Vz, the i0-th component 
of ( )D X  is everywhere non vanishing. So, this component is not 
a constant function. Consequently, we can assume that its partial 
derivative with respect to a 0ax  is non-zero at z. Then, we consider 

2 , , mX X¼ to be elements of SA  such that 2Supp( )X UÌ and
0

0 02| 1| |,
z z z

a
V m V m Va aX X x X

x x-

¶ ¶
=¼= = =

¶ ¶
. By the m-derivation 

definition,
[ ] ( ) [ ] [ ]2 3 1 2 3 1, , , , ( ) , , , , ( ) , ( )m m m mD X X X X X z D X X X X X z X Z z- -

é ù é ùé ù é ùé ù é ù¼ ¼ = ¼ ¼ +ê ú ê úê ú ê úë û ë ûë û ë ûë û ë û

where SZ ÎA , we have a contradiction. Moreover, Proposition 3.1 
and the previous result lead to nullity of D over 

1 1 2,S S SAé ùÅ ê úë ûA A .

It is easy to prove the last assertions of our proposition. 

We can note immediately that,

Lemma 3.5.  For all 2k ³ , if D is a k-derivation of Lie a 
algebra A  then the center C of A  satisfies the following equation

( ) ( )2C , {0}kD -é ù =ê úë ûC A .

Proposition 3.6. Local m-derivations of SA stabilize 2
SA .

Proof. We set a local m-derivation D, |UD is still an m-derivation. 
Without trivial case 0p = , let , ,a b i be some fixed indices, we write

, ,
b c j m q p

U i b i bi c jD x D D
y x y

+ + -
æ ö¶ ¶ ¶÷ç ÷= +ç ÷ç ÷ç ¶ ¶ ¶è ø

and

1( 1) , , , , , .m b b a a
a U Ui i a a aD D x x x a

y y x x x
d-

æ öé ùé ùæ ö é ùé ù¶ ¶ ¶ ¶ ¶ ÷ç÷ç ê ú÷ê úê úç ê ú- ÷= ¼ ¼ "ç ÷ç÷ ê ú÷ç ê ú÷ ê úç ê úç¶ ¶ ¶ ¶ ¶ ÷è ø ç ë ûè øê úë ûë ûë û
     (3.2)

By using the equality (3.2), Lemma 3.5 and Proposition 3.3, we 

deduce that each ,
c
i bD is constant.

Let f  be an element of ( )0F U , we remark that

, , , , .c c b
b c c i if x x x f

x x x y y

é ùé ùé ùé ù¶ ¶ ¶ ¶ ¶ê úê úê úê ú¼ ¼ =ê úê úê úê ú¶ ¶ ¶ ¶ ¶ê úê úë ûë ûë ûë û
       (3.3)

By mapping UD to (3.3) in the case where f  is a polynomial of degree 

greater or equal than two, the previous result and the fact that ,
c
i bD is a 

differential operator over U´ , prove that ( )2
U SiD f U

y
æ ö¶ ÷ç ÷Îç ÷ç ÷ç ¶è ø

A for 

all i . Furthermore, combining the previous results and the	 obtained 
relation by

( )2
, , , , 2b c c b

U Ub c c b iD x x x D x
x x x x y

é ùé ù æ öé ùé ù¶ ¶ ¶ ¶ ¶ ÷çê úê úê úê ú¼ ¼ =- ÷ç ÷ê úê ú ç ÷ê ú çê ú¶ ¶ ¶ ¶ ¶è øë ûê úë ûë ûë û

we see that , 0c
i bD = . Then, ( )2b

U SiD x U
y

æ ö¶ ÷ç ÷Îç ÷ç ÷ç ¶è ø
A .

In addition,

, , , ,c c b
U Ui b c c iD f D f x x x

y x x x y

é ùé ùé ùæ ö é ù¶ ¶ ¶ ¶ ¶÷ ê úç ê úê úê ú÷= ¼ ¼ç ê ú÷ ê úê úç ê ú÷ç ¶ ¶ ¶ ¶ ¶è ø ê úê úë ûë ûë ûë û

and the previous statement lead to ( )2
U SiD f U

y
æ ö¶ ÷ç ÷Îç ÷ç ÷ç ¶è ø

A for all U.

Proposition 3.7. The Lie algebra 2
SA is stabilized by m-derivations 

of 
SA .

Proof. We deduce the result from Propositions 3.4, 3.6.

Theorem 3.8. We have equivalences between:

1. All m-derivations of SA are local. 

2. There is an 1
SX AÎ and ( )0 Mh FÎ such that ( )( ) 0 MX h x x¹ " Î . 

3. The derivative ideal of SA , [ ],S SA A coincides with SA  itself. 

Proof. In 2. 1.Þ , we use the same reasoning as the one of the 

proof of Theorem 3.11 in [4]. As for 1. 2.Þ  we suppose that there is 
an ( ) ( )( )1

0 0M MSf F FÏ A . Since 0S ¹ , then it exists k such that Xk is non-
zero on the open set Uk, and ( )0 Mg FÎ vanishing on Uk with( )|

0
kU

fg º . 
So, it is immediate that the  -linear map defined by

{ }S k
j

k

0 if - fg ,
( )

if = fg where forall j=1, ,q.j
j

X X
D X

D X X X D
Aì Îïï=íï Î ¼ïî




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is a non-local m-derivation when 0kD ¹ . Thus 1. 2.Û .

We reason in the same way as in [4] for 1. 3..Û

Remark 3.9. We assert that if the derivative ideal of SA  doesn’t 
coincide with SA , then it exists ( ) ( )( )1

0 0M MSf F FÏ A , zero on 
the open set where one Xk is non-vanishing. To realize a non-local 
m-derivation D, we exploit the non-vanishing on ( )1 1 2,S S S S

é ù- Å ê úë ûA A A A

of the following 


-linear map:	

For iX gX= , ( ) ,
j

g i jD X D X= where 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( )

0

0

0

0 0 0 0

,

,

1
0 0 0 0 ,

1
0 0

if there is a non-vanishing over the previous cited open set and

;

such that their multipli

0
0

, M M / Su

cati

pp M and Supp Supp 0

M M on i

k
f k

i
i f k

i
S j j i h j

Sk

D or
X D or

i j h F F X

or it

X X D

X h Fexists and F

A

A



¢

¹
¹

$ Ï ¹ Ì $ ¹

Ï
0

0 ,

s zero on an

open set without non-vanishing both over and if 0there is on k
k h kV V X V D ¢

ìïïïïïïïïïíïïï

î ¹
ïïïïïï

 

These results are immediate by using Theorem 3.8, Proposition 3.4 
and the definition of non-local SA   m-derivations.

Proposition 3.10. The normalizer N  of SA  in ( )  is 
locally isomorphic to ( ),S gl pA Å  as a vector space, where p is 
the corresponding leaf local dimension. So [ ], S SN A A= , locally

1 1 2, ,S S S SN A A A Aé ùé ùÅ =ê úê úë ûë û . Moreover, all local m-derivations of N  

stabilize SA .

Proof. We define N  by the set of all vector fields X such that
[ ], S SX A AÌ . So, we are in a distinguished chart U, all | 'U sN elements 
are obtained with direct use of the definition of the normalizer of 

( ).S UA Indeed, |UN is the sum of ( )S UA and the vector 


-space 

spanned by i
jy

y
¶
¶

 . It’s clear that, this last space is isomorphic to 

( ),gl p  . The two results which follow are easily proved by the same 
argument as the previous. As for the last assertion, let’s take 1X NÎ , 

2 , , m SX X A¼ Î and D a local m-derivation of N . In accordance with 

the m-derivation definition, we have [ ]1 2 1, , , , .m m SD X X X X A-
é ùé ù¼ ¼ Îê úë ûë û

By local equation 1 1 2, ,S S S SN A A A Aé ùé ùÅ =ê úê úë ûë û
, Proposition 3.1 and the 

previous result where each iX runs through over the respective sets, 
we affirm that ( )| S SDA A  is a subset of SA .	

Theorem 3.11. Given that we have a local m-derivation D of SA

towards 2
SA . We find 1-differential closed forms ia and iw over U, 

where 1, ,i p= ¼ with ( )j j
U jD

y
a w

¶
= + Ä

¶
 denoted ( ),

UD a w such that
2( ) ( )j
Sker UAa É  and 1( ) ( )j

Sker UAw É . Besides, 

[ ] ( ) ( )1 2 1 2 2 1, . .i i iX X X X X Xa a a= -

1 2, ( )SX X UA" Î . The converse of this result is also true. 
Furthermore, the condition that the maps ( ),

UD a w , with ( )1, , pa a a= ¼

and ( )1, , pw w w= ¼ , are inner is equivalent to, for all i, 0iw º  and ia
are exact. Then we get ( , ) L

i
i

U f
y

D a w
¶

¶

=-  where, i idfa =  with 0 ( ).if F UÎ  

Generally if 0a= , then ( ), L
ji

i j
U y C

y

D a w
¶

¶

= where j
iC Î .

Proof. Agreeing with the above hypothesis, we pose i
U iD

y
g

¶
= Ä

¶
, where 

the i i a i j
a jdx dyg g g ¢= + with i

ag , i
jg ¢  belong to ( )0 UF . By the relations of 

m-derivations which come from 

0 0
, , , , ,a a

U j aa aD x x
y x x x

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ê úê úê ú¶ ¶ ¶ ¶ë ûë ûë û

we state that 0

0
0

i
j

ax
g ¢¶

=
¶

for all 0j and 0a . We write the subsequent 
equality 

0 0
, , , ,  at (0, ,0).a a

U a ba aD x x
x x x x

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ ¼ê úê úê ú¶ ¶ ¶ ¶ë ûë ûë û
		

				  

Then, we can have ( )0 0

0 0
0, ,0 0

i i
a b
b ax x

g gæ ö¶ ¶ ÷ç ÷ç - ¼ =÷ç ÷÷ç¶ ¶è ø
, for all 0 0,a b . So, 

with the help of coordinate’s translations, we get the previous equality 
at other arbitrary points in U. Thus, each 

ig is closed. By exploiting all 
these assertions, we can adapt the demonstrations of Proposition 3.14, 
3.15 et 3.16 of [4] and we achieve our proof.  

Let Â  be the set of pair of forms ( , )a w quoted before. We will 
denote by ( )UZ , the complement set of those of ( ),a w ÎÂ  such that α 
is exact and 0w= or 0a= . We might assume that (M)Z Z= .

Theorem 3.12. The form of m-derivations of SA  is ( , )
1LX D Dα ω ∈+ +Z

where X ∈N , for every distinguished chart U, ( , )
| 0UD a w = if the leaf 

dimension over U is zero; ( ),( , )
|

U
U UD D Za wa w Î= otherwise. And D1 is a non 

-local m-derivation analogous to the one of Remark 3.9. Particularly, 
these m-derivations are derivations.

Proof. Taking D an m-derivation of SA , it is split into a sum of 
local m-derivation D0 and of a non-local m-derivation D1 of SA . So, 
D1 has the same form as the one of Remark 3.9. We can write D0 as 

11 12 21 22
0 0 0 0D D D D+ + +  with 0

ltD the 


-linear component of D0 

mapping l
SA  to t

SA , where , 1, 2.l t = By Proposition 3.7, 21
0 0D = . In 

accordance with the same proposition, we can divide SA  by 2
SA  and 

the quotient m derivation of D0 is denoted 0D . The map 0D becomes 
an m-derivation of 1

SA by the splitting of D0 . We know that l
SA

is locally isomorphic to ( )n q pc + -
 . Then 0D coincides with LX

where 1
SX AÎ . Consequently, ( , )

0 LYD D a w= + with Y NÎ and ( , )D a w , 
( , ) Za w Î is defined by Theorem 3.11. With the help of Proposition 
3.4, respectively Theorem 3.11, D1 respectively D0 is a derivation.  

Proposition 3.13. Each m-derivation of the Lie 


-algebra of all 
linear fields taking value in the constant fields Lie 



-algebra of t


is 
Lie derivative with respect to one constant field.

Proof. Let D be such m-derivation and ( )
1

l
l t

z
£ £

one coordinates 

system of t


. We note that u ul
vv lD z D

z z
æ ö¶ ¶÷ç =÷ç ÷çè ø¶ ¶

 with , {1, , }u v tÎ ¼ . It’s 

easy to verify that D vanishes if and only if ( )D E is zero too by using 
the following equation	

, , , , , , , ,u u
v vD E E E z E E E D z

z z

é ùé ù é ùé ù é ùé ù æ ö¶ ¶ ÷ê úçê ú ê úê ú ê úê ú¼ ¼ = ¼ ¼÷çê ú÷çê ú ê úê ú ê úê ú è ø¶ ¶ë û ê úë û ë ûë û ë ûë û
     (3.4)

where E is the Euler vector field. Then, we write ( ) l
lD E C

z
¶

=
¶

. For 
different and fixed ,u v , we exploit the obtained relation from

, , , , .u u u u
u u u vD z z z z

z z z z

é ùé ùé ù¶ ¶ ¶ ¶ê úê úê ú¼ ¼ê úê úê ú¶ ¶ ¶ ¶ë ûë ûë û
 

Therefore, we have 0ul
vD =  where ,l u v¹ ; uv uu

v uD D= . In accordance 
with (3.4) when u=v, we state that u uu

uC D= and 0ul
uD =  for l u¹ . In 

addition, (3.4) gives us 0uu
vD = . Thus, we proved that L

l
lC

z

D ¶

¶

= .

Proposition 3.14. Every m-derivation of N  taking its value in 
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S is a sum of m-derivations of SA  towards S  and m-derivations of 
( ) {0}SN A- È  to S .

Proof. Let D be an m-derivation of N  towards S . It is known that 
every local m-derivation of N  stabilizes SA , ( ) {0}SN A- È is a Lie 
algebra and there is a direct sum of modules ( )( ){0}S SN A N A= Å - È
Moreover, every non-local m-derivation of N  vanishes on [ ],SA N NÌ
. Then 11 21D D D= + with 11D  (resp. 21D ) the linear component map 
of D from SA to S  (resp. of ( ) {0}SN A- È towards S ). By the fact that 
D is linear and 11D takes value in S ; 11D , 21D are m-derivations.  

Proposition 3.15. All m-derivations from ( ) {0}SN A- È towards S
are Lie derivative with respect to an element of S .

Proof. For {1, , }k qÎ ¼ , we consider the open set

{ M / ( ) 0}k kU x X x= Î ¹ . We know that all elements of ( ) {0}SN A- È

are of the form i
jCf X whereC Î , ( )0 Mif FÎ  such that ( )jiX f  in

iU  equals 0 for all j i¹ , equals 1 for j i= . First, we show that such 
an m-derivation D is local. We fix ,i j  belonging to {1, , }q¼  with
i j¹ . Only in ( )Supp iX  we can find an distinguished open set 

U such that ( )
|

0j
i U

f X º  or ( )
|

0i
i U

f X º . It is immediate that 
( ) 1, , , , 1 mi i i j j

i i i i if X f X f X f X f X-é ùé ùé ù¼ ¼ = -ê úê úê úë ûë ûë û . By applying D to this last 

expression, we obtain ( )( )
|

0j
i U

D f X º . Now, we let the map D acts 

on the following bracket , , , , 0j j j i
j j j if X f X f X f Xé ùé ùé ù¼ ¼ =ê úê úê úë ûë ûë û . We 

have ( ), , , , 0j j j i
j j j i U

f X f X f X D f Xé ùé ùé ù¼ ¼ ºê úê úê úë ûë ûë û
 and ( )( )

|
0i

i U
D f X º . In 

addition, when we are unable to choose i j¹ , the proof is trivial. 
Thus, D is local.	

Second, suppose that D is local. Agreeing with the result of 
Proposition 3.13, we achieve our proof.

Theorem 3.16. All m-derivations of the normalizer N of SA have 
a form like the one of Theorem 3.12. Moreover, the normalizer of N is 
N itself.

Proof. Given 0 2D D D= + an m-derivation of N , where D0 is local 
and D2 non-local. By Proposition 3.10, 0| S

D A is an m-derivation of 
. Let be 1X NÎ and 2 , , m SX X A¼ Î , we write the equation relative 

to m-derivations corresponding to [ ]0 1 2 1, , , ,m mD X X X X-
é ùé ù¼ ¼ê úë ûë û . By the 

definition of m-derivations, the previous result and Theorem 3.12, we 
prove that

( )( )( ) [ ],
0 1 1 2 1L , , , , 0X m mD D D X X X Xa w

-
é ùé ù- + + ¼ ¼ =ê úë ûë û      (3.5)

2 , , m SX X A" ¼ Î . Let’s denote by D¢ the m-derivation defined 
by ( ),

0 1LXD D Da w- + + , ( )1D X¢ belongs to the intersection of the 

centralizer of 1 1 2,S S SA A Aé ùÅ ê úë û with N . With Proposition 3.3, ( )1D X¢
becomes an element of S . In addition, we know that

2| 0
S

D A = . By 

using 1i SX A¹ Î in the relation of m-derivation similar to (3.5), the 
Proposition 3.1 and Proposition 3.3, we have 2 1( )D X SÎ . Then, 
Proposition 3.14 and Proposition 3.15 split D¢ to a sum of a derivation 
of SA and LX with X SÎ , 2D is zero. Moreover, we can affirm that 
the normalizer of N coincides with N   itself.   

Proposition 3.17. Every endomorphism D of the commutative 
Lie algebra S is an m-derivation of S . If D is local, it is a Lie 
derivative with respect to one element of  N . In the case where D is 
non local, then it is determined by the existence of i j¹ such that 

( ) ( )Supp Suppi jX XÆ¹ Ì with ( ) k
i i kD X Xl= , where each k

il Î

and j
il

*Î .

Proof. The first assertion is obvious. Moreover, it is clear that the 

normalizer of S is N , and its centralizer is SA .  Let D be a local 

endomorphism of S . On U, we put k
ii kD

y y
l

æ ö¶ ¶÷ç ÷=ç ÷ç ÷ç¶ ¶è ø
. Then LXD =

with k i
i kU

X y Y
y

l
¶

=- +
¶

and }{ S UY AÎ | , for all U. Thus, X belongs 

to N . In addition, if D¢ is a non-local endomorphism of  S , let’s 

write ( ) k
l l kD X Xl¢ = . It is easy to see that D¢  is non-local iff our last 

assertion is true.

With the help of the previous proposition, we can confirm 
immediately

Corollary 3.18. If all elements of S are densely supported over M or 
if S is reduced to a singleton, then all endomorphisms of S  are local.

Applications 
The following is a list of some Lie algebras for which our theorems 

hold.

We denote by cC the Lie algebra of all compactly supported vector 
fields on M which is an involutive distribution over M. We know that 
the normalizer of cC in (M)c is (M)c and M

c
OC = see [7].

We suppose that M is a differentiable manifold equipped with a 
nonsingular generalized foliation F see [1]. We denote ( )Fc  (resp. 

( )c Fc the involutive distribution of tangent vector fields to the foliation 
(resp. of compactly supported vector fields in ( )Fc ). The normalizer of 

( )Fc in (M)c is denoted ( )N F . The foliation preserving vector fields 
Lie algebra is named ( )L F . 

Here, V is a smooth manifold and µ is surjective smooth map from 
M to V see [5]. It is well known that the set of µ-projected vector fields 

0 is a Lie algebra, and µ-zero-projected vector fields set 0h is an 
involutive distribution of M. The normalizer of 0h  in (M)c is denoted 
 and we assume that 

0
O Mh = .

Now, let G be a connection in the Grifone sense over M cf. [9]. 
We can cite the curvature horizontal nullity distribution space h

RN  
(R is the curvature), the distribution of horizontal projected vector 
fields in the curvature nullity space hAG

. Their respective normalizers 
in (TM)  are designated by R , G  see [10] and we suppose that

TMh h
R

O O
N AG

= = .

We call Nk the k-nullity space distribution of vector fields in the 
Finsler space considered by [11] such that the nullity index doesn’t 
vanish everywhere. Let’s note that k is its normalizer in the vector 
fields Lie algebra.

Thus, replacing respectively A  by ( )Mc , cC , ( )Fc , ( ),c Fc ( ),L F

0 ,h ,h
RN ,hAG Nk  and B  by ( )Mc , (M),c ( ),N F ( ),N F

( ),N F ,  , ,R , ;k G  we state that ” all m-derivations of A  

(resp. ofB ) are inner with respect to B  (resp. are inner)”.

In addition, let’s consider the system S composed by the Liouville 
vector field C on TM. We work on TM without zero section, we find all 
m-derivations of SA by our theorem, as well as its normalizer which is 

http://dx.doi.org/10.4172/1736-4337.1000217
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locally isomorphic to ( )1,S glA Å  . By density of the foliation regular 
points set defined by S, we obtain analogous results on TM. All 



-linear maps of C  into itself are local.

The author benefits an Ingrid Daubechies initiative scholarship 
in collaboration with” Institute for the Conservation of Tropical 
Environments” (ICTE) Madagascar.

References

1.	 Randriambololondrantomalala P (2014) Les m-dérivations des algèbres de Lie 
de champs de vecteurs polynômiaux, Submitted to Afrika Matematika . 

2.	 Chen C, Lian H (2012) N-derivations for finitely generated graded Lie algebras. 
arXiv 12060309v1.

3.	 Peetre J (1960) Rectifications à l’article ”Une caractérisation abstraite des 
opérateurs différentiels”. Math Scand 8: 116-120.

4.	 Ravelonirina HSG, Randriambololondrantomalala P, Anona M (2012) Sur les 
algèbres de Lie d’un système de champs de vecteurs permutables. Italian 
Journal of Pure and Applied Mathematics – N 29:163-174.

5.	 Randriambololondrantomalala P (2010) Sur les algèbres de Lie d'une 
distribution et d'un feuilletage généralisé. PhD Thesis, University of 
Antananarivo, Madagascar.

6.	 Lecomte P (1981) On the infinitesimal automorphism of the vector bundle. J. 
Math. Pures Appl. 60: 229-239.

7.	 Randriambololondrantomalala P, Ravelonirina HSG, Anona M (2010) Sur 
les algèbres de Lie d’une distribution et d’un feuilletage généralisé. African 
Diaspora Journal of Mathematics 2: 135-144.

8.	 Zhou JH (2013) Triple derivations of perfect Lie algebras. Comm. Algebras 41: 
1647-1654.

9.	 Grifone J (1972) Structure presque-tangente et connexions I. Ann. Inst. Fourier 
22: 287-334.

10.	Randriambololondrantomalala P, Ravelonirina HSG, Anona M (2015) Sur les 
algèbres de Lie associées à une connexion, Canadian Mathematical Bulletin, 
doi: 10.4153/CMB-2015-022-2.

11.	Bidabad B, Rafie-Rad M (2011) On the k-nullity foliations in Finsler space. 
Bulletin of the Iranian Mathematical Society 37: 1-18.

Submit your next manuscript and get advantages of OMICS 
Group submissions
Unique features:

•	 User friendly/feasible website-translation of your paper to 50 world’s leading languages
•	 Audio Version of published paper
•	 Digital articles to share and explore

Special features:

•	 400 Open Access Journals
•	 30,000 editorial team
•	 21 days rapid review process
•	 Quality and quick editorial, review and publication processing
•	 Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
•	 Sharing Option: Social Networking Enabled
•	 Authors, Reviewers and Editors rewarded with online Scientific Credits
•	 Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission

Citation: Randriambololondrantomalala P (2015) The m-Derivations 
of Distribution Lie Algebras. J Generalized Lie Theory Appl 9: 217. doi: 
10.4172/1736-4337.1000217

http://dx.doi.org/10.4172/1736-4337.1000217
http://www.researchgate.net/publication/262640459_Les_m-drivations_des_algbres_de_Lie_de_champs_de_vecteurs_polynomiaux
http://www.researchgate.net/publication/262640459_Les_m-drivations_des_algbres_de_Lie_de_champs_de_vecteurs_polynomiaux
http://arxiv.org/pdf/1206.0309.pdf
http://arxiv.org/pdf/1206.0309.pdf
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.researchgate.net/publication/228067908_Sur_les_algbres_de_Lie_d%27une_distribution_et_d%27un_feuilletage_gnralis
http://www.tandfonline.com/doi/full/10.1080/00927872.2011.649224#.VRpLT205pc4
http://www.tandfonline.com/doi/full/10.1080/00927872.2011.649224#.VRpLT205pc4
https://eudml.org/doc/74069
https://eudml.org/doc/74069
http://www.researchgate.net/publication/262739869_Sur_les_algbres_de_Lie_associes__une_connexion
http://www.researchgate.net/publication/262739869_Sur_les_algbres_de_Lie_associes__une_connexion
http://www.researchgate.net/publication/262739869_Sur_les_algbres_de_Lie_associes__une_connexion
http://bims.iranjournals.ir/pdf_367_fb2ca9742a5a21adfec049f51eb72767.html
http://bims.iranjournals.ir/pdf_367_fb2ca9742a5a21adfec049f51eb72767.html


Randriambololondrantomalala, Princy
The m-derivations of distribution Lie algebras. (English)

�� ��Zbl 06499576
J. Gen. Lie Theory Appl. 9, Article ID 1000217, 6 p. (2015).

Summary: Let M be a N-dimensional smooth differentiable manifold. Here, we are going to analyze
(m > 1)-derivations of Lie algebras relative to an involutive distribution on subrings of real smooth
functions on M . First, we prove that any (m > 1)-derivations of a distribution Ω on the ring of real
functions on M as well as those of the normalizer of Ω are Lie derivatives with respect to one and only
one element of this normalizer, if Ω doesn’t vanish everywhere. Next, suppose that N = n+ q such that
n > 0, and let S be a system of q mutually commuting vector fields. The Lie algebra of vector fields As

on M which commutes with S, is a distribution over the ring F0(M) of constant real functions on the
leaves generated by S. We find that m-derivations of As is local if and only if its derivative ideal coincides
with As itself. Then, we characterize all non local m-derivation of As. We prove that all m-derivations of
As and the normalizer of As are derivations. We will make these derivations and those of the centralizer
of As more explicit.

MSC:
17B66 Lie algebras of vector fields and related (super)algebras
17B40 Automorphisms, derivations and other operators on Lie algebras
53C12 Foliations (differential geometry)
53B15 Other connections
47B47 Commutators, derivations, elementary operators, etc.
53B40 Finsler spaces and generalizations (areal metrics)

Keywords:
m-derivations; vector fields Lie algebras; distributions; commuting vector fields; generalized foliations;
compactly supported vector fields; µ-projected vector fields; nullity space of curvature

Full Text: DOI Euclid

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
c© 2015 FIZ Karlsruhe GmbH Page 1

https://zbmath.org/
https://zbmath.org/authors/?q=ai:randriambololondrantomalala.princy
https://zbmath.org/06499576
https://zbmath.org/06499576
https://zbmath.org/journals/?q=se:00004853
https://zbmath.org/classification/?q=cc:17B66
https://zbmath.org/classification/?q=cc:17B40
https://zbmath.org/classification/?q=cc:53C12
https://zbmath.org/classification/?q=cc:53B15
https://zbmath.org/classification/?q=cc:47B47
https://zbmath.org/classification/?q=cc:53B40
https://zbmath.org/?q=ut:%24m%24-derivations
https://zbmath.org/?q=ut:vector+fields+Lie+algebras
https://zbmath.org/?q=ut:distributions
https://zbmath.org/?q=ut:commuting+vector+fields
https://zbmath.org/?q=ut:generalized+foliations
https://zbmath.org/?q=ut:compactly+supported+vector+fields
https://zbmath.org/?q=ut:%7B%24%5Cmu%24%7D-projected+vector+fields
https://zbmath.org/?q=ut:nullity+space+of+curvature
http://dx.doi.org/10.4172/1736-4337.1000217
https://www.fiz-karlsruhe.de/
http://www.euro-math-soc.eu/
http://www.haw.uni-heidelberg.de/


 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



italian journal of pure and applied mathematics – n. 29−2012 (163−174) 163

SUR LES ALGEBRES DE LIE D’UN SYSTEME DE CHAMPS
DE VECTEURS PERMUTABLES

H.S.G. Ravelonirina
P. Randriambololondrantomalala
M. Anona
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Résumé. Soient M une variété C∞− différentiable et S un système de q C∞− champs
de vecteurs qui commutent deux à deux. Ce système définit une structure de feuilletage
généralisé F sur M. L’algèbre de Lie AS des champs de vecteurs de M qui commutent
avec S est à la fois un module sur l’anneau des C∞− fonctions qui sont constantes sur
les feuilles de F et une sous-algèbre de Lie de l’algèbre de Lie des automorphismes in-
finitésimaux au feuilletage. On détermine toutes les dérivations de l’algèbre de Lie AS .
Mots clés: algèbre de Lie, champ de vecteurs permutables, feuilletage généralisé, co-
homologie locale de Chevalley-Eilenberg, cohomologie de de Rham.

Abstract. Let be M a C∞− differentiable manifold and S a system of q C∞− vector
fields which commute mutually. This system defines a generalized foliation F on M.
The Lie algebra AS of vector fields in M which commute with S is both a module over
the ring of C∞− functions that are constant on the leaves of F and a sub-Lie algebra of
the foliation preserving vector fields. We determine all derivations of the Lie algebra AS .

Keywords: Lie Algebra, commuting vector fields, generalized foliation, local cohomol-
ogy of Chevalley-Eilenberg, cohomology of de Rham.

AMS Subject Classification: Primary 17B66; 17B56; Secondary 53C12; 47B47.

1. Introduction

Soient M une variété différentiable paracompacte de classe C∞ et χ(M) l’algèbre
de Lie des champs de vecteurs de M. Dans son article [8], Takens a montré que
toute dérivation de l’algèbre de Lie χ(M) est une dérivée de Lie par rapport à un
champ de vecteurs de M. Dans le cas où l’algèbre de Lie est une sous-algèbre de
Lie attachée à un feuilletage régulier sur M, Lichnérowicz cf. [3] a prouvé aussi des
résultats analogues. Nous avons étendu ces résultats dans le cas d’une distribution
involutive non régulière cf. [5], où l’anneau de base contient toutes les fonctions
de classe C∞ de la variété. Dans [6], nous avons abordé le même problème sur les
algèbres de Lie des champs de vecteurs polynomiaux P sur Rn qui contiennent tous
les champs constants et le champ d’Euler. Nous avons prouvé que toute dérivation
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de P est une dérivée de Lie par rapport à un champ de vecteurs polynomiaux de
Rn. Dans ce papier, nous étudions une sous-algèbre de Lie de χ (M) dont l’anneau
des fonctions de classe C∞ du module sous-jacent est tronqué. Plus précisement,
M est une variété différentiable de dimension m + q et S un système de q ≥ 1
champs de vecteurs qui commutent deux à deux, et de rang p avec 0 ≤ p (x) ≤ q,
pour tout x ∈ M. Il existe une structure de feuilletage généralisé F définie par le
système S cf. [1]. On note LF l’algèbre de Lie des champs des automorphismes
infinitésimaux de F et, AS l’algèbre de Lie des champs de vecteurs de M qui
commutent avec S. Toutes les feuilles sont supposées régulières. L’algèbre de Lie
AS se décompose en une somme semi-directe d’algèbres de Lie A1

S et A2
S, où A1

S

(resp. A2
S) est un module (resp. l’algèbre de Lie engendrée par S) sur l’anneau des

fonctions constantes aux feuilles. Ainsi AS est une sous-algèbre de Lie de LF. De
plus, l’algèbre de Lie A2

S est un idéal caractéristique de AS. Par ailleurs, on donne
une condition nécéssaire et suffisante pour que toute dérivation de AS soit locale;
de même pour que l’idéal dérivé de AS cöıncide à AS. Ainsi, les caractéristiques
d’une dérivation non locale de AS sont obtenues. En étudiant la dérivation locale
de AS dans l’idéal caractéristique A2

S, on peut déterminer toutes les dérivations
locales non intérieures de AS. Par suite, en utilisant l’algèbre quotient de AS par
A2

S et un résultat de [5], on peut décomposer toute dérivation locale de AS en une
somme de dérivation intérieure de AS et de dérivation locale non intérieure trouvée
auparavant. Dans le cas où le rang p de S est constant supérieur ou égal à 1, le
premier espace de cohomologie locale de Chevalley-Eilenberg de AS est isomorphe
à (H1

R (B)× R)
p × Rp2

, où H1
R (B) désigne le premier espace de cohomologie de

de Rham sur les formes basiques au feuilletage de M. Si le système S est réduit
à un champ de Liouville, on retrouve par une méthode différente un résultat de
Lecomte dans [4].

2. Préliminaires

Soit M une variété réelle C∞− différentiable paracompacte de dimension m + q
où m, q ≥ 1. Tous les objets étudiés sont supposés de classe C∞. On désigne par
F (M) l’anneau des fonctions C∞ sur M, χ (M) l’algèbre de Lie des champs de
vecteurs sur M, S un système {X1, . . . , Xq} de rang p de champs de vecteurs, avec
0 ≤ p (x) ≤ q pour tout x ∈ M. Les éléments de S vérifient [Xi, Xj] = 0 pour
tous i, j ∈ {1, . . . , q}. On considère l’algèbre de Lie AS des champs de vecteurs X
de M tels que [X, Xi] = 0 pour tout i ∈ {1, . . . , q}.

On peut déduire du système S un champ de plans P , qui à tout x ∈ M
correspond le sous-espace vectoriel engendré par X1(x), . . . , Xq(x) de Tx (M). P
est un champ de plans de classe C∞ de système générateur S. Tout champ de
vecteurs X = gjXj de P avec gj ∈ F (M), vérifie pour tout i

[X,Xi] = − (
Xi(g

j)
)
Xj

c’est-à-dire, P est invariant par tout champ de vecteurs de P . D’après le théorème
de Sussmann cf. [7], il existe un feuilletage généralisé F sur M dont la feuille en un
point x de M est la variété intégrale maximale I(x) telle que pour tout y ∈ I(x),



sur les algèbres de lie d’un système de champs de vecteurs... 165

Ty (I(x)) = Py cf. [1]. On note F0 (M) l’anneau des fonctions sur M constantes aux
feuilles. La sous-algèbre de Lie A2

S des champs de vecteurs de M engendrée par S
sur F0 (M) est commutative. De plus A2

S est une sous-algèbre de Lie de l’algèbre
de Lie L des champs de vecteurs tangents aux feuilles. Par ailleurs, A1

S désigne
l’ensemble des champs de vecteurs de M tel que A1

S et L sont deux sous-modules
supplémentaires dans l’algèbre de Lie LF des automorphismes infinitésimaux au
feuilletage.

On suppose que toutes les feuilles soient régulières, sauf mention expresse. Le
théorème de Dazord cf. [1] p.415 assure l’existence d’une carte adaptée (U, xa, yi)
(resp. (U, xa)), avec 1 ≤ a ≤ m+ q−p, 1 ≤ i ≤ p si p ≥ 1 (resp. 1 ≤ a ≤ m+ q si
p = 0) au voisinage de chaque point x de M où la dimension de I(x) est constante
p(x) = p. Il existe une permutation ζ de {1, . . . , q} tels que pour p ≥ 1 (resp.

p = 0)
(
Xζi

=
U

∂
∂yi

)
1≤i≤p

et
(
Xζl

=
U

0
)

p<l≤q
(resp.

(
Xl =

U
0
)

1≤l≤q
). On utilisera de

tels ouverts pour les domaines de cartes adaptées au feuilletage. On conviendra
dans la suite sauf mention expresse que les indices a, b, c vont de 1 à m + q − p
et i, j, l de 1 à p si p ≥ 1. De même, les indices fixes a0, a1, b0 appartiennent à
{1, . . . , m + q − p} et i0, j0 à {1, . . . , p} si p ≥ 1.

L’anneau F0 (U) =
{
f|U tel que f ∈ F0 (M)

}
est l’ensemble des fonctions sur

U ne dépendant pas des coordonnées yi. L’algèbre de Lie AS sur toute carte
adaptée U , cöıncide au F0 (U)-module des champs sur U engendré par ∂

∂x1 , . . . ,
∂

∂xm+q−p , ∂
∂y1 , . . . ,

∂
∂yp où p ≥ 1. Le module AS (U) se décompose en produit semi-

direct

AS (U) = A1
S (U)⊕ A2

S (U)

où A1
S (U) est la sous-algèbre de AS (U) engendrée par ∂

∂x1 , . . . ,
∂

∂xm+q−p sur F0 (U)
et, où A2

S (U) est l’idéal commutatif de AS (U) engendré par ∂
∂y1 , . . . ,

∂
∂yp sur

F0 (U).
Dans le cas où p = 0, F0 (U) = F (U) et

AS (U) = A1
S (U)⊕ A2

S (U)

avec A1
S (U) = χ(U) et A2

S (U) = {0}.
On s’interesse à l’étude des R−dérivations de l’algèbre de Lie AS. Le cas

trivial où le rang est identiquement nul sur M, est déjà étudié par [8]. Donc, on
suppose que S 6= {0}.

Remarque 2.1 Si la variété M est connexe, le feuilletage défini est régulier
d’après une assertion de [1] p.416.

3. Etude des dérivations de AS

Dans toute la suite x ∈ M est un point quelconque, U est une carte adaptée
contenant x telle que la dimension de I(x) est une constante égale à p sur U .
On utilisera la convention d’Einstein sur la sommation d’indices, sauf mention
expresse.



166 h.s.g.ravelonirina, p.randriambololondrantomalala, m.anona

Définition 3.1 Le centralisateur (resp. Le centre) de AS est l’ensemble des X
dans χ (M) (resp. dans AS) tels que [X,AS] = {0}.

Proposition 3.2 Le centralisateur C de AS est le R−espace vectoriel engendré
par S.

Démonstration. Il est immédiat que le R−espace vectoriel engendré par S est
inclus dans C.

Réciproquement, soit X appartenant à C. Sur U , si p = 0, alors la preuve est
donnée par un résultat de [8]. Si p ≥ 1, soit X|U = Xa ∂

∂xa + X ′i ∂
∂yi ∈ CU , on a

[
Xa ∂

∂xa
+ X ′i ∂

∂yi
,

∂

∂xb

]
= 0,

[
Xa ∂

∂xa
+ X ′i ∂

∂yi
,

∂

∂yj

]
= 0

pour tous b, j. Ainsi, chaque Xa et X ′i sont des constantes réelles en supposant
que U est connexe. Par ailleurs,

[
Xa ∂

∂xa
+ X ′i ∂

∂yi
, xc ∂

∂xc

]
= 0

alors on en déduit que chaque Xa = 0 pour tous X ∈ C et U adaptée à F. Donc
C est contenu dans le R−espace vectoriel engendré par S. D’où le résultat.

Remarque 3.3 Le système S n’est pas en général une base du centre de AS. Par
exemple, sur le tore T 2 avec S = {X}, où X est un champ de vecteurs invariant
ayant une trajectoire dense.

Définition 3.4 Une R-dérivation D d’une sous-algèbre de Lie A des champs de
vecteurs sur M, est une application R−linéaire de A dans A telle que

(3.1) ∀X,Y ∈ A, D [X, Y ] = [D (X) , Y ] + [X, D (Y )] .

L’application D est dite dérivation intérieure de A si D = [X, .] = LX , avec LX la
dérivée de Lie par rapport à X ∈ A.

Dans cette section, une R-dérivation d’une algèbre de Lie A est tout simple-
ment appelée dérivation de A.

Proposition 3.5 Soient D une dérivation de AS et U un domaine d’une carte
adaptée de M tels qu’il existe X ∈ AS avec X|U ≡ 0, alors (D (X))|A1

S
≡
U

0

Démonstration. On considère une dérivation D de AS. On suppose que X ∈ AS

et X|U ≡ 0. On peut écrire (D (X))|A1
S

=
U

Da
X

∂
∂xa . Si D (X) est non identiquement

nul sur A1
S(U), il existe un point z ∈ U tel que l’une au moins des composantes

correspondantes de D (X) soit non nulle en z. On suppose qu’il existe un en-
tier a0 tel que Da0

X (z) 6= 0, donc on peut trouver un ouvert Vz contenant z tel
que Da0

X (y) 6= 0 pout tout y ∈ Vz. On prend f ∈ F0 (M) où f|Vz = xa0 avec
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supp (f) ⊂ U et, Y ∈ AS tel que Y|Vz = ∂
∂yi0

. De cette façon, [X, fY ]|U ≡ 0 et

[X, fY ]|{U⊂{supp(f) ≡ 0 et [X, fY ] ≡ 0. Ainsi, la relation suivante

(3.2) D ([X, fY ]) = [D (X) , fY ] + [X, D (fY )]

aboutit à une contradiction. D’où le résultat.

Définition 3.6 Soient A et B deux sous-modules d’une même algèbre de Lie.
Le sous-module engendré par tous les crochets de X ∈ A et Y ∈ B est noté par
[A, B]. Si A = B et que A est une algèbre de Lie, alors on l’appelle idéal dérivé
de A.

Proposition 3.7 L’idéal dérivé de A1
S est égal à A1

S, l’idéal dérivé de A2
S est

nul. Ainsi, l’idéal dérivé de AS cöıncide à la somme directe de module A1
S et de

l’algèbre de Lie A engendrée par les [X, Y ] où X ∈ A1
S et Y ∈ A2

S.

Démonstration. On peut adapter la preuve de la Proposition 2.9 p.141 de [5]
pour avoir [A1

S, A1
S] = A1

S. Ainsi, l’idéal dérivé de A1
S cöıncide à A1

S. Par ailleurs,
il est clair que [A2

S, A2
S] est réduit à {0}. Comme [AS, AS] = [A1

S ⊕ A2
S, A1

S ⊕ A2
S],

alors cette dérnière devient A1
S ⊕ [A1

S, A2
S] avec ⊕ désigne une somme directe de

modules, d’où le résultat.

Dans la suite, on note A = [A1
S, A2

S].

Proposition 3.8 Toute dérivation non locale de AS est à la fois à valeur dans le
centre de AS, nulle sur A1

S et sur A ⊂ A2
S.

Démonstration. Soit D une dérivation non locale de AS, alors on peut trouver
X ∈ AS et U un ouvert de M tel que X|U ≡ 0 avec D (X) n’est pas nul sur U .
Donc il existe un ouvert W ⊂ U contenant x ∈ M tel que D (X) (y) 6= 0 pour
tout y ∈ W . D’après la Proposition 3.5, on écrit D (X) =

U
Di

XXi. Il s’en suit qu’il

existe i0 tel que Di0
X(y) 6= 0 pour tout y dans un ouvert W ′ ⊂ W contenant x.

Supposons que D (X) n’appartient pas à C, alors on peut supposer que
(
Di0

X

)
|W ′

est non constante. On prend f ∈ F0 (M) tel que supp (f) ⊂ U avec f(x) 6= 0.

Aussi, peut-on trouver Y ∈ A1
S tel que Y|U = ∂

∂xa0
de façon que

∂D
i0
X

∂xa0
(x) 6= 0. Dans

ce cas, une relation analogue à celle de (3.2) donne une contradiction au point x.
Par conséquent, D (X) ∈ C. On déduit du résultat qui précède et de la propriété
(3.1) d’une dérivation que D [AS, AS] = {0}. Par la Proposition 3.7, on en tire
que D (A1

S) = {0} et D (A) = {0}.

Proposition 3.9 L’algèbre de Lie A2
S est stable par toute dérivation locale de AS.

Démonstration. Soit D une dérivation locale de AS, DU est une dérivation
de AS (U) en faisant le même raisonnement que celui de [8] p.157. Sur U , si
p = 0 alors la preuve est évidente. Sur cet ouvert, si p ≥ 1 alors l’algèbre de
Lie AS s’écrit AS (U) = A1

S (U)⊕ A2
S (U) . Or, chaque ∂

∂yi est un élément du cen-

tre de AS (U) et que le centre d’une algèbre de Lie est un idéal caractéristique,
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alors DU

(
∂

∂yi

)
appartient au centre qui est contenu dans A2

S (U) par la Propo-

sition 3.2. Pour chaque a, b, de la relation
[

∂
∂xa , xb ∂

∂yi

]
= δb

a
∂

∂yi , on obtient

δb
aDU

(
∂

∂yi

)
=

[
DU

(
∂

∂xa

)
, xb ∂

∂yi

]
+

[
∂

∂xa , DU

(
xb ∂

∂yi

)]
. Or A2

S (U) est un idéal

de AS (U), alors
[

∂
∂xa , DU

(
xb ∂

∂yi

)]
∈ A2

S (U). Ainsi, en posant DU

(
xb ∂

∂yi

)
=

Dc
i,b

∂
∂xc +Dj+m+q−p

i,b
∂

∂yj , chaque Dc
i,b est constant. D’autre part, en appliquant DU à

l’égalité xb ∂
∂yi =

[
xc ∂

∂xc , x
b ∂

∂yi

]
, il s’en suit que DU

(
xb ∂

∂yi

)
+

[
DU

(
xb ∂

∂yi

)
, xc ∂

∂xc

]

appartient à A2
S (U). Comme chaque Dc

i,b est constant, on obtient Dc
i,b = 0.

Autrement dit, DU

(
xb ∂

∂yi

)
est un élément de A2

S (U). En dérivant par DU la

relation
[
f ∂

∂xa , xa ∂
∂yi

]
= f ∂

∂yi pour tout f ∈ F0 (U), on trouve que DU

(
f ∂

∂yi

)
est

encore dans A2
S (U). Sachant que tout élément de A2

S (U) est engendré par les ∂
∂yi

sur les fonctions de F0 (U), toute dérivation DU de AS (U) préserve l’idéal A2
S (U).

D’où le résultat.

Proposition 3.10 L’algèbre de Lie A2
S est un idéal caractéristique commutatif

de AS.

Démonstration. Soit D une dérivation de AS, D est la somme d’une dérivation
locale D0 et d’une dérivation non locale D1 de AS. D’après la Proposition 3.9,
on a D0 (A2

S) ⊂ A2
S; et de la Proposition 3.8, D1 (AS) ⊂ A2

S. En utilisant la
R-linéarité de D et [A2

S, A2
S] = {0}, on a le résultat.

Théorème 3.11 On suppose que pour tout x ∈ M, 0 < p(x) < q. Les assertions
suivantes sont équivalentes:

1. Toute dérivation de AS est locale.

2. Il existe X ∈ A1
S et h ∈ F0 (M) tels que X (h) est partout non nul sur M.

3. L’idéal dérivé de AS est AS.

Démonstration. (1.) ⇔ (2.): Soit D une dérivation de AS, D est la somme
d’une dérivation locale et d’une dérivation non locale de AS. On note alors D1

cette dérivation non locale. Etant donné un X ∈ A2
S−{0}, on calcule D1 (X). Par

le fait que D1 soit R−linéaire, on peut supposer seulement qu’il existe f ∈ F0 (M)
et i0 tels que X = fXi0 . On écrit D1 (X) = Di

fXi; avec les Di
f ∈ R d’après la

Proposition 3.8 et la Proposition 3.2. Soient Y ∈ A1
S, g ∈ F0 (M) tels que Y (g) est

partout non nul, et h ∈ F0 (M). Comme D1[hY, gXi0 ] = 0 d’après la Proposition
3.8, alors chaque Di

hY (g) = 0. Or, on peut trouver h tel que hY (g) = f en posant

h = f
Y (g)

∈ F0 (M). Ainsi, D1 (X) = 0 pour tout X ∈ A2
S et par conséquent,

D1 = 0 car D1|A1
S

= 0 d’après la Proposition 3.8. C’est-à-dire que toute dérivation
D de AS est locale. Réciproquement, soit D l’application R-linéaire définie par

D(X) =





0 si X ∈ AS − C,∑
1≤j≤q

αj
∑

1≤k≤q

Xk si X = αiXi où αj ∈ R pour tout j = 1, . . . , q.
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En supposant que quel que soit x ∈ M, p(x) < q; il existe i0 dans {1, . . . , q} et
un ouvert U de M, tels que Xi0 |U ≡ 0. Ainsi, on a D(Xi0) =

∑
1≤k≤q

Xk tel que,

D (Xi0)|U est non nul, car pour tout x ∈ U, p(x) > 0. Si pour tous X ∈ A1
S et

h ∈ F0 (M), il existe x ∈ M tels que X (h) (x) = 0, alors fX (h) = 1 est impossible,
quel que soit f ∈ F0 (M). Alors, [A1

S, A2
S] ne contient pas d’éléments de C− {0},

et on a D (A) = {0}. Ainsi, D est une dérivation non locale de AS.

(2.) ⇔ (3.): Si l’idéal dérivé de AS est AS, alors toute dérivation non locale de
AS est nulle, d’après la Proposition 3.8. Ainsi, toute dérivation de AS est locale.
D’après (1.) ⇒ (2.), on a le résultat. Réciproquement, la deuxième partie de la
preuve de (1.) ⇔ (2.) permet de conclure.

Remarque 3.12 On peut omettre l’hypothèse ”pour tout x ∈ M, 0 < p(x) < q”
en prouvant (2.) ⇒ (1.), et (2.) ⇒ (3.) du Théorème 3.11.

Remarque 3.13 Si quels que soient f, h ∈ F0 (M) et X ∈ A1
S, fX (h) 6= 1, la

réciproque de la Proposition 3.8 est fausse car la dérivation D de AS définie par

D(X) =

{
0 si X ∈ AS − C,

αkXk si X = αkXk où αk ∈ R pour tout k = 1, . . . , q.

est une dérivation locale. Pourtant, D vérifie toutes les conditions nécéssaires de
cette proposition.

Dans les trois propositions suivantes, on suppose que p ≥ 1 sur U .

Proposition 3.14 Soit D une dérivation locale de AS dans A2
S. Si DU = βj⊗ ∂

∂yj

où chaque βi est une forme linéaire de AS (U) dans F0 (U), alors βi est fermée.
De plus, si chaque βi s’annule sur A2

S (U), alors pour tous X, Y ∈ AS(U), on a
pour tout i

(3.3) βi [X, Y ]
∂

∂yi
=

[
βi (X)

∂

∂yi
, Y

]
+

[
X, βi (Y )

∂

∂yi

]
.

Démonstration. On prend i ∈ {1, . . . , p}, βi est de la forme βi = βi
adxa +

β′ijdyj où chaque βi
a, β

′i
j ∈ F0 (U). Soient X, Y ∈ AS (U), par la propriété d’une

dérivation, on obtient

(3.4) DU [X,Y ] = [DU (X) , Y ] + [X,DU (Y )]

En posant X = Xa ∂
∂xa + X ′j ∂

∂yj et Y = Y a ∂
∂xa + Y ′j ∂

∂yj , alors on doit avoir

DU [X,Y ] = βi
bX

a ∂Y b

∂xa

∂

∂yi
− βi

bY
a ∂Xb

∂xa

∂

∂yi
+ β′ijX

a ∂Y ′j

∂xa

∂

∂yi
− β′ijY

a ∂X ′j

∂xa

∂

∂yi
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Le second membre de (3.4) devient

Y a ∂βi
b

∂xa
Xb ∂

∂yi
− Y a ∂Xb

∂xa
βi

b

∂

∂yi
− Y a

∂β′ij
∂xa

X ′j ∂

∂yi
− Y a ∂X ′j

∂xa
β′ij

∂

∂yi

+ Xa
∂β′ij
∂xa

Y ′b ∂

∂yi
+ Xa ∂Y ′j

∂xa
β′ij

∂

∂yi
(3.5)

Par identification membre à membre, on a

(3.6) −Y a ∂βi
b

∂xa
Xb ∂

∂yi
− Y a

∂β′ij
∂xa

X ′j ∂

∂yi
+ Xa ∂βi

b

∂xa
Y b ∂

∂yi
+ Xa

∂β′ij
∂xa

Y ′j ∂

∂yi
= 0

Par ailleurs, βi est fermée si et seulement si

dβi =

(
∂βi

a

∂xb
− ∂βi

b

∂xa

)
dxb ∧ dxa

a<b
+

(
∂β′ij
∂xa

)
dxa ∧ dyj = 0

où d désigne la différentielle extérieure. C’est-à-dire ∂βi
a

∂xb − ∂βi
b

∂xa = 0 et
∂β′ij
∂xa = 0

quels que soient j, a, b.
On prend a0, b0 avec Y a0 = Xb0 = 1, X ′j = Y ′j = 0 pour tout j, et les autres

nuls dans la relation (3.6). Ainsi,
∂βi

a0

∂xb0
− ∂βi

b0

∂xa0
= 0, pour toute valeur arbitraire de

a0, b0.
Soient a1, j0 avec Y a1 = X ′j0 = 1, tous les autres sont nuls et, Y ′j = Xa = 0

pour tous j, a dans (3.6). On a alors
∂β′ij0
∂xa1

= 0, pour chaque valeur arbitraire de
a1, j0. D’où la forme βi est fermée.

Si βi s’annule sur A2
S (U), alors βi = βi

adxa, pour tout a. On a

(3.7)

βi [X, Y ]
∂

∂yi

= βi

(
Xa ∂Y b

∂xa

∂

∂xb
+ Xa ∂Y ′l

∂xa

∂

∂yl
− Y a ∂Xb

∂xa

∂

∂xb
− Y a ∂X ′l

∂xa

∂

∂yl

)
∂

∂yi

= βi
aX

b ∂Y a

∂xb

∂

∂yi
− βi

aY
b ∂Xa

∂xb

∂

∂yi

.

De plus,

[
βi (X)

∂

∂yi
, Y

]
+

[
X, βi (Y )

∂

∂yi

]
= −Y a ∂βi

a

∂xa
Xb ∂

∂yi
− Y aβi

b

∂Xb

∂xa

∂

∂yi

+ Xa ∂βi
b

∂xa
Y b ∂

∂yi
+ Xaβi

b

∂Y b

∂xa

∂

∂yi
.(3.8)

Comme la forme βi est fermée, alors ∂βi
a

∂xb − ∂βi
b

∂xa est nul quels que soient a, b. Par

conséquent, Xa ∂βi
b

∂xa Y b ∂
∂yi = Y a ∂βi

b

∂xa Xb ∂
∂yi . Ainsi, en identifiant (3.7) et (3.8); on

obtient le résultat (3.3).
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Proposition 3.15 Soit D une dérivation locale de AS vers A2
S. Il existe des

1−formes différentielles fermées αi et ωi dans U , avec i = 1, . . . , p telles que:

1. DU = (αj + ωj)⊗ ∂
∂yj , où chaque ker(αj) contient A2

S(U) et chaque ker(ωj)

contient A1
S(U).

2. chaque αi [X,Y ] = X.αi (Y )− Y.αi (X), pour tous champs X, Y ∈ AS(U).

On notera Dα,ω
U la dérivation (αj + ωj)⊗ ∂

∂yj de AS (U) vers A2
S (U).

Démonstration. Soit D : AS −→ A2
S une dérivation locale de l’algèbre de Lie

AS, donc la restriction DU : AS(U) −→ A2
S(U) l’est aussi. La dérivation DU étant

une application R−linéaire de AS(U) vers A2
S(U). DU doit s’écrire sous la forme

DU = βj ⊗ ∂

∂yj

où les βi sont des formes linéaires de AS(U) sur F0(U).
L’algèbre de Lie A2

S étant un idéal caractéristique commutatif de AS d’après
la Proposition 3.9, la restriction de D sur A2

S est donc une dérivation de A2
S. Alors

DU |A2
S

= ωj⊗ ∂
∂yj , où ωi sont des formes linéaires de AS(U) dans F0(U). En vertu

de la Proposition 3.14, les formes βi et ωi sont fermées. Les formes ωi peuvent
se décomposer en ωi = ωi

|A1
S(U)

+ ωi
|A2

S(U)
. En posant αi = βi − ωi, les formes αi

s’annulent sur A2
S(U) pour tout i. On peut choisir αi pour que chaque ωi

|A1
S(U)

soit

nulle. D’où l’assertion 3.15..
Comme αi = βi − ωi, alors chaque forme αi est fermée. Par le fait que les αi

soient fermées, pour tous X, Y ∈ AS(U), on a l’égalité suivante pour tout j

αj [X,Y ]
∂

∂yj
=

[
αj (X)

∂

∂yj
, Y

]
+

[
X, αj (Y )

∂

∂yj

]

d’après la Proposition 3.14. D’où l’assertion 3.15.
Réciproquement, il est immédiat de constater qu’une application DU de AS(U)

dans A2
S(U) vérifiant les assertions 3.15. et 3.15. est une dérivation de AS(U).

Proposition 3.16 La dérivation Dα,ω
U de AS (U) vers A2

S (U) de la Proposition
3.15, avec α = (α1, . . . , αp) et ω = (ω1, . . . , ωp) est intérieure si et seulement si,
pour tout i, ωi ≡ 0 et αi sont des formes exactes. Dans ce cas, on a Dα,ω

U =
−Lf i ∂

∂yi
, où chaque αi = df i avec f i sont des fonctions de F0(U).

Démonstration. On suppose que Dα,ω
U = LY avec Y = Y ′i ∂

∂yi ∈ A2
S(U). Pour

simplifier les notations, on prend αi = αi
jdxj et ωi = ωi

jdyj, pour chaque i.
Soit X = (X1, . . . , Xm+q−p, X ′1, . . . , X ′p) un élément de AS(U), or DU =

(αi + ωi)⊗ ∂
∂yi donc

DU (X) =

((
αi + ωi

)⊗ ∂

∂yi

)
(X) =

(
Xjαi

j + X ′jωi
j

) ∂

∂yi

=

[
Y ′i ∂

∂yi
, Xj ∂

∂xj
+ X ′j ∂

∂yj

]
= −Xj ∂Y ′i

∂xj

∂

∂yi
.
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On a pour tout i

(3.9) Xjαi
j + X ′jωi

j = −Xj ∂Y ′i

∂xj

On pose dans (3.9) Xj = 0 quel que soit j et, X ′j = 1 pour un j fixé, avec X ′l = 0
pour l 6= j; on obtient ωi

j = 0 quel que soit i.
Maintenant, on pose dans (3.9) Xj = 1 pour j fixé, avec X l = 0 pour

l 6= j, on a αi
j = −∂Y ′i

∂xj quel que soit i. Ainsi chaque αi = −∂Y ′i
∂xj dxj = df i et

f i = −Y ′i ∈ F0(U). Donc αi est une 1-forme exacte sur U , pour tout i.
Inversement, d’après l’assertion 3.15. de la Proposition 3.15, DU = αi ⊗ ∂

∂yi

car ωj = 0 quel que soit j. Or les αi sont des formes exactes, alors αi = df i où f i

sont des fonctions de F0(U).
Soit X = (X1, . . . , Xm+q−p, X ′1, . . . , X ′p) ∈ AS(U), on obtient

αi (X) =

(
∂f i

∂x1
dx1 +

∂f i

∂x2
dx2 + · · ·+ ∂f i

∂xm+q−p
dxm+q−p

)
(X)

= X1 ∂f i

∂x1
+ X2 ∂f i

∂x2
+ · · ·+ Xm+q−p ∂f i

∂xm+q−p

Comme

DU

(
X1, . . . , Xm+q−p, X ′1, . . . , X ′p) =

(
αi ⊗ ∂

∂yi

)
(X)

=

(
X1 ∂f i

∂x1
+ X2 ∂f i

∂x2
+ · · ·+ Xm+q−p ∂f i

∂xm+q−p

)
∂

∂yi
= −

[
f i ∂

∂yi
, Xj ∂

∂xj

]

= −
[
f i ∂

∂yi
, Xj ∂

∂xj

]
−

[
f i ∂

∂yi
, X ′j ∂

∂yj

]
= −

[
f i ∂

∂yi
, Xj ∂

∂xj
+ X ′j ∂

∂yj

]

car f i et X ′i ne dépendent pas des yl.
Alors Dα,0

U = DU = −Lf i ∂

∂yi
avec f j ∂

∂yj ∈ A2
S(U).

Il en résulte que Dα,ω
U est une dérivation intérieure si et seulement si les ωi ≡ 0

et αi = df i, où les f i sont des fonctions de F0(U). Dans ce cas, la dérivation
Dα,0

U = −Lf i ∂

∂yi
.

On rappelle le résultat classique suivant:

Proposition 3.17 Soit A une sous-algèbre de Lie des champs de vecteurs de M,
Γ un idéal caractéristique de A, D une dérivation sur A, π la projection canonique
de A sur l’algèbre-quotient A/Γ. En posant D′

π (X) = π (D (X)) pour tout X ∈ A,
D′ définit une dérivation sur A/Γ. En particulier, si D = LX alors D′ = Lπ(X).

Proposition 3.18 Toute dérivation locale D de l’algèbre de Lie AS s’écrit d’une
manière unique sous la forme LX + D0 avec X ∈ A1

S et, pour toute carte adaptée
U , D0|U = 0 si la dimension de U est nulle; D0|U = Dα,ω une dérivation définie
par la Proposition 3.15 sinon.
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Démonstration. Soit D une dérivation locale de AS. Il vient que l’algèbre de Lie
quotient AS (U) /A2

S (U) est isomorphe à A1
S(U) , et est donc isomorphe à l’algèbre

de Lie des champs de vecteurs sur un ouvert de Rm+q−p. Or toute dérivation
de χ (Rm+q−p) est intérieure d’après un résultat de [5], alors toute dérivation de
l’algèbre de Lie AS (U) /A2

S (U) est intérieure. En vertu de la Proposition 3.17,
toute dérivation DU de AS(U) est de la forme D′

U = Lπ(Y ), avec Y ∈ A1
S (U), où

π : AS(U) → AS (U) /A2
S (U) est la projection canonique. En posant D0 = D−LX

où X ∈ A1
S tel que X|U = Y , la dérivation correspondante D0′

U de l’algèbre-
quotient est nulle, D0

U est donc une dérivation de AS(U) dans A2
S(U). Si p = 0

alors D0
U = 0. Si p > 0, d’après la Proposition 3.15, sur une carte adaptée au

feuilletage; D0
U est de la forme Dα,ω

U . D’où la décomposition annoncée.

Théorème 3.19 Si le rang de S est constant égal à p ∈ [1, q], le premier espace
de cohomologie locale de Chevalley-Eilenberg H1

loc (AS) de AS est isomorphe à
(H1

R (B)× R)
p × Rp2

, où H1
R (B) désigne le premier espace de cohomologie de de

Rham sur les formes basiques au feuilletage de M.

Démonstration. Soit D une dérivation locale de AS, alors la restriction DU de
D à une carte adaptée U au feuilletage est une dérivation de AS (U). D’après
la Proposition 3.18, DU se décompose en une somme de deux dérivations DU =
LX|U + Dα,ω

U , où X|U ∈ A1
S (U) et, où Dα,ω

U est une dérivation définie dans la
Proposition 3.15. Si le rang p ≥ 1 de S est constant, une dérivation Dα,ω

U s’écrit
d’une façon unique Dα,ω

U = Dα,0
U + D0,ω

U et l’expression Dα,0
U ◦ D0,ω

U est nulle.
L’algèbre des dérivations de la forme D0,ω

U est isomorphe à l’algèbre gl (Rp) des
endomorphismes de A2

S (U). D’autre part, en notant αU = (α1
U , . . . , αp

U), on a la

somme des dérivations Dα,0
U = Dα1,0

U + · · · + Dαp,0
U telles que Dαi,0

U ◦ Dαj ,0
U = 0

pour tous i, j. Les αi, i = 1, . . . , p sont des tenseurs invariants par transition des
cartes adaptées. L’ensemble des αi s’identifie à Z1 (B)|U×R cf. [4], Z1 (B)|U étant
l’ensemble des 1-formes basiques et fermées sur U . L’ouvert U est un domaine
d’une carte adaptée quelconque de M, d’où le résultat.

Remarque 3.20 On suppose qu’il existe une feuille singulière du feuilletage F.
En travaillant sur l’ensemble ouvert des points réguliers R dense dans M, on
trouve sur la variété R le même résultat que celui de la Proposition 3.18. Si le
prolongement de X correspondant à D dans cette proposition est dans A1

S et que
chaque prolongement de α et de ω sont C∞, alors la Proposition 3.18 reste valable
sur M.

Exemple 3.21 Soit M = R3 de coordonnées canoniques (x, y, z) , S =
{

∂
∂y

, ∂
∂z

}
.

Les éléments de AS sont de la forme f (x) ∂
∂x

+ g (x) ∂
∂y

+ h (x) ∂
∂z

, pour toutes
fonctions C∞, f, g et h ne dépendant que de x. D’après nos théorèmes, le premier
espace de cohomologie de Chevalley-Eilenberg H1 (AS) = H1

loc (AS) est de dimen-
sion six. La Proposition 3.15 donne la construction d’une base des dérivations
non intérieures de AS dont les éléments sont les suivants:

D1 = dy ⊗ ∂

∂y
D2 = dz ⊗ ∂

∂y
D3 = dy ⊗ ∂

∂z
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D4 = dz ⊗ ∂

∂z
D5 = ψ ⊗ ∂

∂y
D6 = ψ ⊗ ∂

∂z

où ψ désigne l’application ψ
(
f (x) ∂

∂x

)
= ∂f(x)

∂x
.

Remarque 3.22

1. Si la structure de la variété M feuilletée par {X1, . . . , Xp} est transversale-
ment orientable, alors chaque forme αi du Théorème 3.19 s’écrit

αi = γi + kϕ

où chaque γi est une 1-forme basique fermée, k un nombre réel et ϕ la
divergence de la structure transversale.

2. Si C est le champ de Liouville sur le fibré vectoriel TM de la variété M.
On désigne par AC = {X ∈ χ(TM) tel que [X,C] = 0}. Soit {0} la section

nulle de TM, on pose S = {C} dans la variété
◦

TM = TM− {0}. L’algèbre

de Lie AS est égale à l’algèbre de Lie
◦

AC définie dans [2]. Toute dérivation

de
◦

AC est une dérivation indiquée dans la Proposition 3.18. Ce résultat est
prolongeable sur TM, d’où le résultat de [4] sur H1 (AC).
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Résumé

On étudie la dérivation de l’algèbre de Lie des champs de vecteurs polynomiaux
sur Rn qui contient tous les champs constants et le champ d’Euler. Elle est adjointe de
son normalisateur sur les champs de vecteurs polynomiaux de Rn. Si de plus, l’algèbre
de Lie contient tous les champs linéaires diagonaux alors toutes ses dérivations sont
intérieures. On donne une classification de cette algèbre de Lie.
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1 Introduction

Etant donnée une R-sous-algèbre de Lie P de l’algèbre de Lie des champs de vec-
teurs polynomiaux sur Rn, l’objectif central de notre article est de savoir si toutes les R-
dérivations de P sont intérieures. Dans l’article [7], l’auteur considère le même problème
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pour l’algèbre de Lie des champs de vecteurs lisses sur une variété différentiable, et montre
que toute dérivation est intérieure en utilisant le résultat de [5] sur les operateurs différen-
tiels linéaires. Par un principe analogue, à savoir, une dérivation est une application linéaire
et locale, [4] a étudié l’algèbre de Lie des champs de vecteurs analytiques réels et a montré
que toute sa dérivation est intérieure en passant par l’étude des dérivations des champs ho-
lomorphes sur l’espace de Stein. Or, un champ de vecteurs polynomial nul sur un ouvert est
trivial, donc la condition locale de sa dérivation ne marche pas. [2] a utilisé le ” toral method
” pour étudier les dérivations de certaines algèbres de Lie (nilpotentes) en tenant compte du
calcul de leurs dimensions. Dans ce papier, nous étudions les R-sous-algèbres de Lie P des
champs de vecteurs polynomiaux sur Rn qui contiennent tous les champs constants et le
champ d’Euler. On démontre que le normalisateur N de P est une sous-algèbre de Lie des
champs de vecteurs polynomiaux de Rn. En utilisant une graduation de P, et le rôle des
champs constants et du champ d’Euler par le crochet des champs de vecteurs, on trouve
que toute sa dérivation est adjointe par rapport à son normalisateur. On montre de plus
que si tous les champs linéaires diagonaux appartiennent à P alors toute sa dérivation est
intérieure. En particulier, le normalisateur N de P contient tous les champs linéaires diago-
naux. Le centralisateur de P est réduit à zéro. Ainsi, on peut calculer le premier espace de
cohomologie de Chevalley-Eilenberg de P et de N. On donne des exemples d’illustration
de ces résultats, des exemples d’algèbres de Lie de champs de vecteurs polynomiaux qui
ne vérifient pas la condition sus-mentionnée, et où il existe une dérivation ne provenant pas
des champs de vecteurs de χ(Rn). La classification des algèbres de Lie simples complexes
(et réels) est bien connue. C’est en partie dûe aux travaux d’Elie Cartan, de Dynkin et de
Killing. Ici, en utilisant la divergence de champs de vecteurs sur Rn, on peut classifier les
algèbres de Lie P contenant tous les champs constants et le champ d’Euler. Le calcul du
premier espace de cohomologie de Chevalley-Eilenberg des sous-algèbres de l’algèbre de
Lie des dérivations d’un anneau associatif, commutatif et unitaire ; a été traité dans [6].
Mais en fait, les hypothèses dans [6] p.71 ne permettent pas d’aboutir à tous nos résultats.

2 Etude des algèbres de Lie de P

On désigne par χ(Rn) l’algèbre de Lie des champs de vecteurs sur Rn. Dans tout ce
paragraphe, on considère une R-sous-algèbre de Lie P (consistant) de champs de vecteurs
polynomiaux sur Rn qui contient tous les champs constants et le champ d’Euler E , où
E = ∑

i
xi ∂

∂xi en coordonnées
(
xi

)
1≤i≤n de Rn, N son normalisateur dans χ(Rn) ; Hi l’espace

vectoriel des champs homogènes de degré i avec i∈N∪{−1}. On note Hd
0 l’algèbre de Lie

engendrée par tous les champs linéaires diagonaux. Les champs constants sont homogènes
de degré −1 et les champs linéaires de degré 0. On désigne par LX la dérivée de Lie par
rapport à X ∈ χ(Rn). On adopte la convention d’Einstein sur la sommation d’indices sauf
mention expresse.
Le crochet de deux champs de vecteurs X = X i ∂

∂xi et Y = Y j ∂

∂x j de χ(Rn) en coordonnées(
xi

)
1≤i≤n est donné par :

[X ,Y ] =
(

X i ∂Y j

∂xi −Y i ∂X j

∂xi

)
∂

∂x j (2.1)
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En utilisant la formule (2.1), P est graduée de la façon suivante :
P = ⊕

i≥−1
Pi , où chaque Pi est un sous-espace vectoriel de dimension finie de Hi, tels que

[P−1,P−1] = {0} et ∀i, j ≥−1 , où i+ j ≥−1, [Pi,P j]⊂Pi+ j (2.2)

Proposition 2.1. Un champ X de P est homogène de degré p si et seulement si [E,X ] = pX.

Démonstration. D’après (2.1) et (2.2), on a le résultat.

Remarque 2.2. On peut identifier un champ linéaire c’est à dire de degré 0 à un et un seul
élément de gl (n,R), cf.[3] p.5.

Lemme 2.3. Si F = ∑
−1≤i≤k

Fi ∈P suivant la graduation de P, alors ∀i, Fi ∈P.

Démonstration. Soit F = ∑
−1≤i≤k

Fi, la décomposition d’un champ de vecteurs F de P en

ses composantes homogènes.
[F,E] = ∑

−1≤i≤k
(−i)Fi ∈P, on peut recommencer (k−1) fois ce processus et on a :

∀ j ∈ [0,k] , ∑
−1≤i≤k

(−i) j Fi ∈P, d’où un système linéaire à la Vandermonde dont on déduit

que tous les Fi appartiennent à P.

Définition 2.4. Le normalisateur N de P est défini par N = {X ∈ χ(Rn)/ [X ,P]⊂P} .

Proposition 2.5. Le normalisateur N est une R-algèbre de Lie (consistant) des champs de
vecteurs polynomiaux sur Rn.

Démonstration. N étant une R-algèbre de Lie cf. [1].
Soit X i ∂

∂xi ∈N dans χ(Rn) , où (x j)1≤ j≤n est un système de coordonnées de Rn.

Pour tout j,
[
X i ∂

∂xi ,
∂

∂x j

]
=− ∂X i

∂x j
∂

∂xi ∈P alors chaque ∂X i

∂x j est un polynôme.

Donc
[
X i ∂

∂xi ,xk ∂

∂xk

]
=

(
Xk− xi ∂Xk

∂xi

)
∂

∂xk est un champ de vecteurs polynomial.

D’où ∀k, Xk sont des polynômes.

Définition 2.6. Une dérivation D de P est une application R−linéaire de P dans P telle
que ∀X ,Y ∈P, D [X ,Y ] = [D(X) ,Y ]+ [X ,D(Y )] .

Proposition 2.7. Une dérivation D de P est nulle sur tous les champs constants et le champ
d’Euler si et seulement si D est nulle.

Démonstration. Supposons que D(E) = D(C) = 0 , où C ∈ H−1.
Compte tenu du Lemme 2.3, soit P ∈ Hk , où k ∈ N∪{−1} et raisonnons par récurrence.
Pour P ∈ H−1 , on a par hypothèse D(P) = 0.
On suppose que D(P) = 0 soit vrai jusqu’au rang k >−1.
Si P ∈ Hk+1, d’après (2.1) on a D [C,P] = (k + 1)D(Q) , où Q ∈ Hk. Donc c’est nul par
hypothèse.
Par la définition d’une dérivation, [D(C),P]+ [C,D(P)] = 0.
C’est à dire pour tout C ∈ H−1, [C,D(P)] = 0, ainsi D(P) ∈ H−1.
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On pose D(P) = C′, d’après la Proposition 2.1 on a D [E,P] = kD(P).
Par définition et par hypothèse sur D, kC′ = [E,C′] =−C′, ainsi C′ = 0.
D’où ∀k ≥ 0, D(P) = 0 et D ≡ 0.
La réciproque est évidente.

Proposition 2.8. Si D est une dérivation homogène de degré 0 sur P, nulle sur E alors
D = LX avec X un champ de vecteurs polynomial homogène de degré 0.

Démonstration. Soit D une dérivation homogène de degré 0 de P, c’est à dire pour tout
i ∈ N∪{−1}, D(Hi∩P)⊂ Hi∩P. Alors pour C ∈ H−1, D(C) = C′ , où C′ ∈ H−1.
Par (2.1) ∃!X ∈ H0 tel que D(C) = [X ,C] pour tout C ∈ H−1 et D(E) = 0 = [X ,E].
Donc D|H−1⊕〈E〉 = LX et d’après la Proposition 2.7, D = LX .

Théorème 2.9. Toute dérivation de P est intérieure par rapport au normalisateur N de P.
De plus D = L(F+X) avec X ∈ H0 et F ∈P−H0.

Démonstration. Soit D une dérivation de P. D’après le Lemme 2.3, il suffit de considérer
D(Vm), où Vm est un champ homogène de degré m ≥−1 de P.
On pose D(Vm) = ∑

−1≤i≤k
Wi et D(E) = ∑

−1≤i≤l
Ei, où les Wi, Ei ∈Hi∩P en vertu du Lemme

2.3.
Utilisant la définition de la dérivation en terme de composantes homogènes de même degré,
on a :

D [E,Vm] = [D(E),Vm]+ [E,D(Vm)]

Entraîne
mW−1 = 0 − W−1
mW0 = 0 + 0
mW1 = 0 + W1
mW2 = 0 + 2W2
. . . = . . . . . .

mWm−2 = 0 + (m−2)Wm−2
mWm−1 = [E−1,Vm] + (m−1)Wm−1
mWm = [E0,Vm] + mWm

. . . = . . . . . .
mWm+l = [El,Vm] + (m+ l)Wm+l

mWm+l+1 = 0 + (m+ l +1)Wm+l+1
mWm+l+2 = 0 + (m+ l +2)Wm+l+2

. . . = . . . . . .

– Pour −1 ≤ i ≤ m−2 et i > m+ l, on a (i−m)Wi = 0 ⇒Wi = 0
– Pour m−1 ≤ i ≤ m+ l, on obtient (i−m)Wi +[Ei−m,Vm] = 0.

En particulier

[E0,Vm] = 0 (2.3)
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Par suite,

D(Vm) = [E−1,Vm]+Wm + ∑
m+1≤i≤m+l

(
1

m− i

)
[Ei−m,Vm]

= [E−1,Vm]+Wm + ∑
1≤i≤l

(
−1
i

)
[Ei,Vm]

= Wm +

[
∑
i6=0

(
−1
i

)
Ei,Vm

]

On note F = ∑
−1≤i≤l,i6=0

(−1
i

)
Ei ∈P, et on a D(Vm) = Wm +[F,Vm].

Posant D′ = D−LF , c’est une dérivation homogène de degré 0 de P.
D’après (2.3) et le fait que tous les champs constants sont dans P, on a [E0,C] = 0 ∀C∈H−1.
Par conséquent, E0 = 0 et D′(E) = 0.
D’après la Proposition 2.8, D′ = LX avec X ∈ H0.
Alors D = L(F+X) avec F +X est un champ de vecteurs polynomial sur Rn.
Dans ce cas, F +X ∈N avec F ∈P−H0.

Remarque 2.10. Le champ F +X du Théorème 2.9 peut ne pas être dans P, car LX avec X
un champ linéaire diagonal est toujours une dérivation de P. Or, tous les champs linéaires
diagonaux ne sont pas forcément dans P.

Proposition 2.11. Le centralisateur C(P) de P est nul.

Démonstration. Par définition C(P) = {X ∈ χ(Rn)/ [X ,P] = {0}}.
Soit X ∈ C(P)⊂N, X est un champ de vecteurs polynomial d’après la Proposition 2.5.
Alors X = ∑

−1≤i≤k
Xi avec Xi ∈ Hi.

De la Proposition 2.1 et par définition, [E,X ] = ∑
−1≤i≤k

(i)Xi = 0. Alors ∀i 6= 0 on a Xi = 0.

Or [C,X ] = [C,X0] = 0 ∀C ∈ H−1, alors X0 = 0 et X = 0.
D’où C(P) = {0}.

Théorème 2.12. Le premier espace de cohomologie de Chevalley-Eilenberg de P noté
H1 (P) est isomorphe à une R-sous-algèbre de Lie de H0. Si tous les champs linéaires
diagonaux appartiennent à P alors H1 (P) est nul.

Démonstration. Par définition, H1 (P) = Der(P)/adP cf. [8] avec Der(P) l’algèbre de
Lie des dérivations de P et adP l’ensemble des dérivations intérieures de P.
Soit L : X ∈N 7−→ adX ∈ Der(P) qui est R-linéaire.
Si LX = 0, c’est à dire [X ,Y ] = 0 ∀Y ∈P, alors X ∈ C(P).
Par la Proposition 2.11, C(P) = {0} et X = 0. D’où l’injectivité de L.
Soit D ∈ Der(P), d’après le Théorème 2.9 ∃X ∈N tel que D = LX . D’où la surjectivité.
Par ailleurs, pour X ,Y,Z ∈ χ(Rn) [X , [Y,Z]]+ [[X ,Z] ,Y ] = [X , [Y,Z]]− [Y, [X ,Z]] et en uti-
lisant l’identité de Jacobi, on a [[X ,Y ] ,Z] = LX LY (Z)−LY LX (Z).
Donc L[X ,Y ] (Z) = [LX ,LY ] (Z) ∀X ,Y ∈ N et ∀Z ∈ χ(Rn), ainsi L est un homomorphisme
d’algèbres de Lie.
Par suite N∼= Der(P).
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D’une manière analogue que précédemment, L′ : X ∈P 7−→ adX ∈ adP est R-linéaire. C’est
donc un isomorphisme d’algèbres de Lie. Par suite P∼= adP.
Alors

H1 (P)∼= N/P

, où N/P est isomorphe à une R-sous-algèbre de Lie de H0 d’après le Théorème 2.9.
Par ailleurs, soit D = L(F+X) avec F ∈P, X ∈ H0 du Théorème 2.9.
∃Y ∈

(
H0−Hd

0

)
∪{0} et C0 ∈ Hd

0 tels que X = C0 +Y .
Par (2.1), il existe C′

0 ∈ Hd
0 tel que [Y,C′

0] = Y . Si Hd
0 ⊂P alors Y ∈P car LY ∈ Der(P).

Ainsi X ∈P et toute dérivation de P est intérieure.

Corollaire 2.13. Toute dérivation de N est intérieure .

Démonstration. D’après la Remarque 2.10, le normalisateur N contient tous les champs
linéaires diagonaux. Alors par le Théorème 2.12 on a le résultat.

Exemple 2.14. L’algèbre de Lie des champs affines H−1⊕H0 sur Rn de dimension n2 + n
est résoluble d’ordre 3, toute sa dérivation est intérieure par le Corollaire 2.13.

Exemple 2.15. Chacune des R-algèbres de Lie suivantes est un exemple de P.

1. Dans R2, l’algèbre de Lie engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x +y ∂

∂y est résoluble d’ordre 2 et sa

dérivation D est LX avec X appartient à l’algèbre de Lie engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,

,y ∂

∂x ,x
∂

∂y . Ainsi son normalisateur est H−1⊕H0 et H1 (P)∼= H0/ < E >.

2. Sur R2, soit l’algèbre de Lie non simple et non résoluble, engendrée par ∂

∂x ,
∂

∂y , x ∂

∂x ,

,y ∂

∂y ,(x)
2 ∂

∂x . Sa dérivation D est LX telle que X appartenant à l’algèbre de Lie engen-

drée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,(x)
2 ∂

∂x , et H1 (P)∼= {0}.

3. Sur R2, on considère l’algèbre de Lie résoluble d’ordre 3, engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x +

+y ∂

∂y ,x
∂

∂y ,(x)
2 ∂

∂y . Sa dérivation D est LX avec X appartient à l’algèbre de Lie engen-

drée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,x
∂

∂y ,(x)
2 ∂

∂y , et H1 (P)∼= Hd
0 / < E >.

4. Sur R2, l’algèbre de Lie engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,(x)
3 ∂

∂x est de dimension infinie
dénombrable, dont le seul idéal commutatif est {0}, et [P,P] = P. Sa dérivation D
est LX telle que X appartenant à l’algèbre de Lie engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,(x)
3 ∂

∂x ,
et H1 (P)∼= {0}.

5. On considère l’algèbre de Lie sur R2 de dimension infinie dénombrable, engendrée

par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,xy ∂

∂x . Elle a un idéal commutatif non nul engendré par

{
yr ∂

∂x
r≥0

}
et

coïncide avec son idéal dérivé. Sa dérivation D est LX avec X appartient à l’algèbre
de Lie engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,xy ∂

∂x , et H1 (P)∼= {0}.

6. Sur R2, soit l’algèbre de Lie de dimension infinie dénombrable engendrée par ∂

∂x ,
∂

∂y ,

,x ∂

∂x ,y
∂

∂y ,x
∂

∂y ,(x)
2 ∂

∂x . Sa dérivation D est LX telle que X appartenant à l’algèbre de Lie

engendrée par ∂

∂x ,
∂

∂y ,x
∂

∂x ,y
∂

∂y ,x
∂

∂y ,x
2 ∂

∂x . H1 (P)∼= {0} et [P,P]⊂
6=

P.
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Remarque 2.16. Si un champ constant ou le champ d’Euler E n’appartient pas à P alors il
peut exister des dérivations qui ne sont pas intérieures dans le normalisateur de P :
Soit la R-algèbre de Lie des champs de vecteurs polynomiaux engendrée par ∂

∂x ,x
∂

∂x ,y
∂

∂y

sur R2. Sa dérivation définie par D
(

∂

∂x

)
= D

(
y ∂

∂y

)
= 0, D

(
x ∂

∂x

)
= y ∂

∂y est une dérivation

non intérieure de χ
(
R2

)
.

La R-algèbre de Lie dans R2 engendrée par ∂

∂x ,
∂

∂y ,y
∂

∂y (resp. ∂

∂x ,
∂

∂y ,x
∂

∂y ) admet une dériva-
tion D (resp. D′) non intérieure de son normalisateur, définie respectivement par :

D
(

∂

∂x

)
= D

(
∂

∂y

)
= 0, D

(
y

∂

∂y

)
=

∂

∂x

D′
(

∂

∂x

)
= D′

(
∂

∂y

)
= 0, D′

(
x

∂

∂y

)
=

∂

∂x

Définition 2.17. On désigne par λX le degré d’homogénéité d’un champ homogène X de
P. λS est le degré d’homogénéité maximal de tous les champs homogènes de S ⊂P. Ce
dernier peut être infini.

Lemme 2.18. Soient X un champ homogène de degré k ≥ 1, (Vi)i une suite de sous-espace
de ∑

−1≤i≤k
Hi définie par V0 = RX et la relation de récurrence : pour tout i ∈ N, Vi+1 =

[H−1⊕〈E〉 ,Vi]. Cette suite stationne en Vk+1. Si div(X) = 0 , où div est la divergence de
champ de vecteurs de χ(Rn) alors ∀Y ∈Vk, div(Y ) = 0.

Démonstration. Soit X un champ homogène de degré k ≥ 1. En vertu du rôle des champs
constants et du champ d’Euler par le crochet de champs de vecteurs, la suite (Vi)i stationne
lorsque ∃ j et Y ∈Vj tels que λY =−1. Dans ce cas (Vi)i converge vers Vk+1.
La formule de divergence donne div([A,B]) = A(div(B))− B(div(A)) et div([E,A]) =
Ediv(A)∀A,B ∈ χ(Rn). Par conséquent, si div(X) = 0 alors div(Y ) = 0, ∀Y ∈Vk+1.

Lemme 2.19. Il existe un champ quadratique ω de P de divergence non nulle tel que[
ω,P−

(
H−1⊕Hd

0

)]
6= {0} si et seulement si (il existe un champ quadratique Y de P de

divergence non nulle et ∃Z ∈
(
H0−Hd

0

)
∩P) ou (il existe un champ quadratique Y de P

de divergence non nulle et ∃Z ∈ H2 ∩P) tel que le degré (λVi)i tend vers +∞, où (Vi)i la
suite définie par V0 = Y et la relation de récurrence ∀i ∈ N, Vi+1 = [Z,Vi].

Démonstration. S’il existe un champ quadratique ω de P avec div(ω) 6= 0 tel que[
ω,P−

(
H−1⊕Hd

0

)]
6= {0}

Comme div(ω) 6= 0, alors ∃C ∈ H−1 tel que [C,ω] 6= 0.
1er cas : Il existe C′ ∈ H−1 avec [C′,ω] ∈

(
H0−Hd

0

)
∩P tel que le degré de la suite (Vi)i

tend vers +∞, où (Vi)i est définie par V0 = ω et la récurrence Vi+1 = [[C′,ω] ,Vi].
2ème cas : ∃C′ ∈ H−1 tel que [C′,ω] ∈ Hd

0 ∩P et ∀h ∈ H−1, [h,ω] /∈
(
H0−Hd

0

)
.

Soit X ∈P−
(
H−1⊕Hd

0

)
, avec deg(X) = k ≥ 1 tel que [ω,X ] 6= 0.

1. Pour k = 1 : Il existe C′′ ∈ H−1 avec [C′′,X ] ∈
(
H0−Hd

0

)
∩P tel que le degré de

la suite (Vi)i tend vers +∞, où (Vi)i est définie par V0 = ω et la récurrence Vi+1 =
[[C′′,X ] ,Vi].
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2. Pour k≥ 2 : Des crochets successifs avec les champs constants permettent de ramener
X au degré 2.
– Si ∃C′′′ ∈ H−1 avec [C′′′,X ] = αω + ω′ ∈ H1∩P , où α ∈ R∗ alors le degré de la

suite (Vi)i tend vers +∞, où (Vi)i est définie par V0 = ω et la récurrence Vi+1 =
[X ,Vi].

– Si ∀C′′′ ∈ H−1, [C′′′,X ] 6= αω + ω′ ∈ H1∩P alors on peut faire des crochets suc-
cessifs de X avec les champs constants jusqu’à ce qu’on obtienne le sous-cas 1..

La réciproque est évidente.

Proposition 2.20. Il existe un champ quadratique ω de P de divergence non nulle tel que[
ω,P−

(
H−1⊕Hd

0

)]
6= {0} si et seulement si λP est infini.

Démonstration. D’après le Lemme 2.19, on a la nécessité.
Réciproquement, si pour tout ω∈H1∩P tel que div(ω) 6= 0 et

[
ω,P−

(
H−1⊕Hd

0

)]
= {0},

montrons que λP est fini.
Soit alors ω un champ vérifiant ces hypothèses. On peut décomposer ω en une somme des
champs quadratiques ω = ∑

i
ωi tels que ∆ωi 6= 0 ∀i , où ∆ désigne le laplacien de champ de

vecteurs de χ(Rn), sinon il existe C ∈H−1 tel que [C,ω]∈
(
H0−Hd

0

)
∩P et [ω, [C,ω]] 6= 0.

Alors les champs de vecteurs polynomiaux homogènes X de degré supérieur ou égal à 2 de
P sont de divergence nulle avec [ω,X ] = 0, et les champs homogènes Y de degré inférieur
ou égal à 1 de P−

(
H−1⊕Hd

0

)
vérifient [ω,Y ] = 0.

Donc le degré maximal des champs de P dépend de l’existence dans P d’un champ homo-
gène de degré arbitraire supérieur ou égal à 2.
D’où λP ≥ 2 est fini.

Théorème 2.21. Les seules R-algèbres de Lie des champs de vecteurs polynomiaux P sur
Rn contenant tous les champs constants et le champ d’Euler sont :

1. Les R-sous-algèbres de Lie de H−1 ⊕H0 contenant tous les champs constants et le
champ d’Euler.

2. Les R-algèbres de Lie de champs de vecteurs polynomiaux sur Rn contenant tous les
champs constants et le champ d’Euler, dont il existe un champ homogène de diver-
gence non nulle de Hk avec k ≥ 1 vérifiant : λP est infini si et seulement s’il existe un
champ quadratique ω de P de divergence non nulle tel que

[
ω,P−

(
H−1⊕Hd

0

)]
6=

{0}.

3. Les R-algèbres de Lie des champs de vecteurs polynomiaux sur Rn contenant tous
les champs constants et le champ d’Euler, dont les champs homogènes de degré su-
périeur ou égal 1 sont de divergence nulle (λP peut être fini ou infini).

Démonstration. 1. Immédiate.
Sinon λP ≥ 1, car P n’est plus un sous-espace de H−1⊕H0.

2. S’il existe X ∈ Hk ∩P , où k ≥ 1 tel que div(X) 6= 0, d’après le Lemme 2.18 et
la Proposition 2.20, on peut construire toutes les R-algèbres de Lie des champs de
vecteurs polynomiaux satisfaisant :
λP est infini si et seulement s’il existe un champ ω ∈ H1 ∩P, avec div(ω) 6= 0 tel
que

[
ω,P−

(
H−1⊕Hd

0

)]
6= {0} .
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3. Si ∀X ∈ Hk ∩P , où k ≥ 1 tel que div(X) = 0, en vertu du Lemme 2.18, on peut
construire toutes les R-algèbres de Lie des champs de vecteurs polynomiaux véri-
fiant :
∀Y ∈P−Hd

0 , div(Y ) = 0 et ∀Y,Z ∈P, div([Y,Z]) = 0.

Corollaire 2.22. En coordonnées
(
xi

)
1≤i≤nde Rn, la valeur de λP est infini si et seule-

ment si
(
∃i 6= j / xix j ∂

∂x j

)
ou

(
∃i 6= j / x j ∂

∂xi ,
(
x j

)2 ∂

∂x j

)
ou

(
∃i /

(
xi

)3 ∂

∂xi

)
figurant dans

l’expression d’un élément non nul de P.

Proposition 2.23. Toute dérivation des champs de vecteurs polynomiaux P sur R est inté-
rieure, toute dérivation des champs de vecteurs polynomiaux P de dimension infinie sur R2

est intérieure.

Démonstration. C’est une conséquence du Théorème 2.12 et du Théorème 2.21.

Nous tenons à remercier M. Jean Moulin Ollagnier, Université Paris XII ; M. Didier
Pinchon, Université Toulouse III ; pour leurs suggestions au cours de ce travail.
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Résumé

On étudie le premier espace de cohomologie de Chevalley-Eilenberg des algèbres
de Lie attachées à une distribution non régulière involutive d’une variété différentiable.
On applique les résultats obtenus à l’algèbre de Lie des champs de vecteurs à support
compact et aux algèbres de Lie relatives à un feuilletage généralisé, conduisant à une
généralisation d’un théorème de Kanie et de certains résultats de Lichnérowicz.
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Keywords : Algèbre de Lie, Distribution non-régulière, Cohomologie de Chevalley-
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1 Introduction

En 1960, Peetre cf. [7] a prouvé que tout opérateur différentiel linéaire sur l’anneau
des fonctions réelles d’une variété différentiable s’écrit localement en une somme finie de
dérivations sur cet anneau. En utilisant ces résultats, Takens cf. [8] a démontré que toute
dérivation de l’algèbre de Lie des champs de vecteurs sur une variété différentiable est
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intérieure. Cette étude a été étendue par Kanie cf. [4] et Lichnérowicz cf. [6] dans le cas
des algèbres de Lie attachées à un feuilletage régulier. Soient M une variété différentiable,
F(M) l’anneau des fonctions réelles de M, χ(M) l’algèbre de Lie des champs de vecteurs
sur M. Dans ce papier, on se propose d’étudier la dérivation d’une distribution involutive
Ω de classe C∞ sur M. L’algèbre de Lie Ω vérifie, pour tout x ∈ M il existe X ∈ Ω tel
que X(x) 6= 0. On montre que toute dérivation de Ω est locale. Pour tout x ∈ M il existe
un ouvert Ux contenant x et un F(Ux)-sous-module de rang 1 de Ω sur Ux, tels que la
restriction d’une dérivation de Ω sur Ux est la dérivée de Lie par rapport à un champ de
vecteurs ψx sur Ux. Alors, il existe un et un seul ψ ∈ χ(M) tel que sa restriction sur Ux

est ψx pour tout x ∈ M. Ainsi, on peut montrer que toute dérivation de Ω est la dérivée de
Lie par rapport à un et un seul champ de vecteurs appartenant à son normalisateur N dans
χ(M). Le centralisateur de Ω est nul, l’idéal dérivé de Ω coïncide à Ω. Par conséquent, Ω

est un idéal caractéristique de N. De plus, on montre que toute dérivation du normalisateur
N est intérieure. Ainsi, l’application qui à X de N fait correspondre la dérivée de Lie par
rapport à X , est un isomorphisme d’algèbres de Lie de N dans l’algèbre de Lie de toute
dérivation de Ω. Alors, le premier espace de cohomologie de Chevalley-Eilenberg de Ω

(resp. de N) est isomorphe à N/Ω (resp. à {0}). On utilise ces résultats pour calculer le
premier espace de cohomologie de Chevalley-Eilenberg de l’algèbre de Lie des champs de
vecteurs à support compact et des algèbres de Lie attachées à un feuilletage généralisé, car
elles sont des distributions involutives sur M. Si la variété M est munie d’une structure de
feuilletage régulier, Ω est l’algèbre de Lie des champs de vecteurs tangents au feuilletage,
alors certains résultats correspondants de [4] et de [6] découlent de nos résultats. Dans un
autre article, on considérera d’autres applications sur les algèbres de Lie des champs de
vecteurs attachées à une connexion et définies à la manière de [5].

2 Etude des dérivations des algèbres de Lie d’une distribution
involutive de M

Dans toute la suite, M est une variété différentiable de classe C∞ de dimension n, tous les
objets utilisés sont supposés C∞ sur M. Dans cette section, F(M) est l’anneau des fonctions
réelles de M, χ(M) désigne l’algèbre de Lie des champs de vecteurs sur M avec son crochet
habituel. Ω est une distribution involutive de M, autrement dit un F(M)−sous-module de
χ(M) stable par le crochet de champs de vecteurs. Dans la suite, sauf mention expresse ;
pour tout x ∈ M, il existe un champ X ∈ Ω tel que X(x) 6= 0. On note par LX la dérivée de
Lie par rapport à X ∈ χ(M), et Supp(X) le support de X sur M. On adopte la convention
d’Einstein sur la sommation d’indices, sauf mention expresse.

Définition 2.1. Une R-dérivation D de Ω est une application R−linéaire de Ω dans Ω telle
que ∀X ,Y ∈ Ω, D [X ,Y ] = [D(X) ,Y ]+ [X ,D(Y )] .

Dans cette section, une R-dérivation de Ω est tout simplement appelée dérivation de Ω.

Proposition 2.2. Soient U un ouvert de M contenant x, et X ∈ χ(M) tel que X(x) 6= 0 , alors
il existe Y ∈ Ω avec Supp(Y )⊂U tel que [X ,Y ](x) 6= 0.

Démonstration. Soit X ∈ χ(M) vérifiant les hypothèses ci-dessus. Par le théorème clas-
sique de Fröbenius appliqué à {X} dans un ouvert contenu dans U , on réduit l’équation
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aux dérivées partielles correspondante à une forme plus facile à résoudre. Ce qui donne
l’existence du champ Y de Ω à support contenu dans U en utilisant les astuces des fonctions
plateaux.

Définition 2.3. Une dérivation D de Ω est dite locale si pour tout ouvert non vide U de M
et X ∈ Ω tels que X|U ≡ 0, on a D(X)|U ≡ 0.

Proposition 2.4. Toute dérivation de Ω est locale.

Démonstration. Par la Proposition 2.2, on peut adapter la démonstration dans [8].

Proposition 2.5. Soient une carte (U,ϕ) de système de coordonnées (xi)i, et ψ,ψ′,ψ′′,ai ∂

∂xi

i6=n
appartenant à χ(U) :

1. Soit x ∈U tel qu’il existe i0 6= n, avec ai0(x) 6= 0. Si ∀ f ∈ F(U) :

Lψ

 f

ai ∂

∂xi
i6=n

+
∂

∂xn

 = L
ψ
′

 f ai ∂

∂xi
i6=n

+Lψ′′

(
f

∂

∂xn

)
(2.1)

Alors il existe un voisinage V de x dans U, où ψ =
V

ψ
′
=
V

ψ
′′
.

2. On désigne par Prn la n-ième projection de Rn. Soient x0 ∈U tel que ai(x0) = 0 ∀i 6= n
et gx0 : x ∈U 7→ gx0(x) = xn−Prn(ϕ(x0)). Si ∀ f ∈ F(U) :

Lψ

 f

ai ∂

∂xi
i6=n

+(gx0 +1)
∂

∂xn

 = Lψ′

 f

ai ∂

∂xi
i6=n

+
∂

∂xn

+

+Lψ′′

(
f gx0

∂

∂xn

)
(2.2)

Alors ψ(x0) = ψ′(x0) = ψ′′(x0).

Démonstration. Pour avoir le résultat de 1., on utilise la relation (2.1) en remplaçant f par
des polynômes convenables sur un voisinage V de x, tel que pour tout y ∈ V , ai0(y) 6= 0.
Le résultat de 2. est obtenu en travaillant sur un voisinage Wx0 de x0, où pour tout y ∈Wx0 ,
gx0(y) 6= −1 ; et en remplaçant f de la relation (2.2) par des polynômes et exponentielle
convenables.

Proposition 2.6. Soient D une dérivation de Ω et U un domaine d’une carte tels qu’il
existe un F (U)-sous-module ΓU de rang 1 de ΩU et ψ ∈ χ(U) avec DU |ΓU = Lψ. Si pour
tout x ∈U, il existe un ouvert V ⊂U contenant x tel que pour tout F (V )-sous-module ∆V

de rang 1 de ΩV , il existe ζ ∈ χ(V ) avec DV |∆V = Lζ ; alors DU = Lψ et réciproquement.

Démonstration. Soient D une dérivation de Ω et U un domaine d’une carte contenant z.
D’après la Proposition 2.4, DU est une dérivation de ΩU . On peut considérer un système
de coordonnées (x1, ...,xn−1,y) de U tel que ΓU est le F (U)-module engendré par ∂

∂y . Soit

Y = ai ∂

∂xi

i6=n
+an ∂

∂y ∈ ΩU , alors Z = ai ∂

∂xi

i6=n
∈ ΩU . Procédons en 3 étapes :
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1) Si Z = ai ∂

∂xi

i6=n
, où il existe i0 6= n tel que ai0(z) 6= 0 :

En utilisant le théorème classique de Fröbenius sur les deux champs Z + ∂

∂y et Z, on trouve
un ouvert V ⊂U contenant z et deux F (V )-sous-modules correspondants de rang 1 de ΩV .
La restriction de DV sur ces deux modules correspond respectivement à la dérivée de Lie
par rapport à ζ et ζ′ de χ(V ). En appliquant 1. de la Proposition 2.5, il existe un voisinage
Wz de z tel que ζ =

Wz
ζ′ =

Wz
ψ.

2) Si Z = ai ∂

∂xi

i6=n
avec ai(z) = 0 ∀i 6= n :

Soit la fonction gz dans la Proposition 2.5, d’une façon analogue à 1), on utilise le théorème
classique de Fröbenius sur les deux champs Z + (gz + 1) ∂

∂y , Z + ∂

∂y . Il existe un ouvert
V ⊂ U contenant z tel que la restriction de DV sur les deux modules correspondants est
respectivement égale à la dérivée de Lie par rapport à ζ et ζ′ de χ(V ). On applique 2. de la
Proposition 2.5, et on trouve ζ(z) = ζ′(z) = ψ(z).
3) En utilisant la R-linéarité de DU et en combinant les deux cas précédents pour tout z∈M,
on a DU (Y ) = Lψ (Y ) pour tout Y ∈ ΩU . Ainsi, on obtient DU = Lψ.
La réciproque est immédiate.

Théorème 2.7. Toute dérivation de l’algèbre de Lie Ω est une dérivée de Lie par rapport
à un et un seul champ de vecteurs sur M.

Démonstration. Soit x∈M, il existe X ∈Ω tel que X(x) 6= 0. D’après le théorème classique
de Fröbenius, il existe une carte (Ux,ϕx) contenant x et un système de coordonnées locales
(x1, ...,xn−1,y) correspondant, tels que X =

Ux

∂

∂y .

Soit D une dérivation de Ω qui est locale par la Proposition 2.4, donc DUx est une dérivation
de ΩUx . Soit f ∈ F(Ux), comme ∂

∂y ∈ ΩUx , alors on peut écrire d’une manière unique :

DUx

(
f

∂

∂y

)
= D0( f )

∂

∂y
+Da( f )

0<a<n

∂

∂xa (2.3)

Ω étant une distribution involutive de M, alors
[

∂

∂y , f ∂

∂y

]
∈ ΩUx . Par la Définition 2.1, on

obtient :

DUx

[
∂

∂y
, f

∂

∂y

]
=

[
DUx

(
∂

∂y

)
, f

∂

∂y

]
+

[
∂

∂y
,DUx

(
f

∂

∂y

)]
On a[

DUx

(
∂

∂y

)
, f

∂

∂y

]
=

(
D0(1)

∂ f
∂y

+Da(1)
∂ f
∂xa − f

∂D0(1)
∂y

)
∂

∂y
− f

∂Da(1)
∂y

∂

∂xa

et [
∂

∂y
,DUx

(
f

∂

∂y

)]
=

∂D0( f )
∂y

∂

∂y
+

∂Da( f )
∂y

∂

∂xa

Donc

DUx

[
∂

∂y
, f

∂

∂y

]
=

(
D0(1)

∂ f
∂y

+Da(1)
∂ f
∂xa − f

∂D0(1)
∂y

+
∂D0( f )

∂y

)
∂

∂y
+

+
(

∂Da( f )
∂y

− f
∂Da(1)

∂y

)
∂

∂xa
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Or [
∂

∂y
, f

∂

∂y

]
=

∂ f
∂y

∂

∂y

Alors

D0(1)
∂ f
∂y

+Da(1)
∂ f
∂xa − f

∂D0(1)
∂y

= D0
(

∂ f
∂y

)
− ∂D0( f )

∂y
(2.4)

∂Da( f )
∂y

− f
∂Da(1)

∂y
= Da

(
∂ f
∂y

)
(2.5)

, où a = 1, . . . ,n−1.
∀ j = 1, . . . ,n; soit x j

1 un point arbitraire de Pr j (ϕx (Ux)) avec xn = y, on a :

DUx

[
(x j− x j

1)
∂

∂y
, f

∂

∂y

]
=

[
DUx

(
(x j− x j

1)
∂

∂y

)
, f

∂

∂y

]
+

[
(x j− x j

1)
∂

∂y
,DUx

(
f

∂

∂y

)]
, et d’une manière analogue aux (2.4) et (2.5), on a :

D0
(

(x j− x j
1)

∂ f
∂y

)
= D0(x j− x j

1)
∂ f
∂y

+Di(x j− x j
1)

∂ f
∂xi −δ

j
i Di( f )− f

∂D0(x j− x j
1)

∂y
+

+(x j− x j
1)

∂D0( f )
∂y

(2.6)

Da
(

(x j− x j
1)

∂ f
∂y

)
= (x j− x j

1)
∂Da( f )

∂y
− f

∂Da(x j− x j
1)

∂y
+δ

j
nDa( f ) (2.7)

pour a = 1, ...,n−1.
En outre, par la relation (2.3) et la Proposition 2.4, chaque Da est R-linéaire et locale. Alors
chaque Da est un opérateur différentiel d’après un théorème dans [7]. Ainsi on peut écrire :

D0 = ψ = ∑
|A|≥0

ψ
A ∂|A|

∂xA ; pour a ∈ {1, ...,n−1},Da = ∑
|A|≥0

η
A
a

∂|A|

∂xA

, où A = (A1, . . . ,An) ∈ Nn avec |A| =
n
∑

i=1
Ai, ∂|A|

∂xA = ∂|A|

(∂x1)A1 ...(∂xn−1)An−1 (∂y)An et les ψA, ηA
a

appartiennent à F (Ux).
En remplaçant f dans les relations (2.4), (2.5), (2.6) et (2.7) par des polynômes de degré
quelconque s’annulant en un point arbitraire de Ux, on prouve :

D0(1) =−∂ψ(0,...,0,1)

∂y
= ψ

(0,...,0),Da(1) =−∂ψ(a,0,...,0)

∂y
pour a = 1, ...,n−1

et D0 (resp. Da a = 1, ...,n−1) est un opérateur différentiel d’ordre ≤ 1 (resp. d’ordre 0).
Dans toute la suite, ψ(0,...,0,1) (resp. ψ(a,0,...,0)) est noté par ψ0,1 (resp. ψa,0).
On écrit

ψ = ψ0 +ψ1x , où ψ0 = D0(1) et ψ1x = ψ
0,1 ∂

∂y
+ψ

a,0 ∂

∂xa ∈ χ(Ux)
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Ainsi pour f ∈ F (Ux)[
ψ1x , f

∂

∂y

]
=

(
ψ

0,1 ∂ f
∂y

+ψ
a,0 ∂ f

∂xa − f
∂ψ0,1

∂y

)
∂

∂y
− f

∂ψa,0

∂y
∂

∂xa

Alors[
ψ1x , f

∂

∂y

]
+

(
f

∂ψa,0

∂y
+Da( f )

)
∂

∂xa =
(
− f

∂ψ0,1

∂y
+ψ

0,1 ∂ f
∂y

+ψ
a,0 ∂ f

∂xa

)
∂

∂y
+

+Da( f )
∂

∂xa

et [
ψ1x , f

∂

∂y

]
+

(
f

∂ψa,0

∂y
+Da( f )

)
∂

∂xa = (ψ0 +ψ1x)( f )
∂

∂y
+Da( f )

∂

∂xa

Donc

DUx

(
f

∂

∂y

)
=

[
ψ1x , f

∂

∂y

]
+

(
f

∂ψa,0

∂y
+Da( f )

)
∂

∂xa

Mais chaque Da a = 1, ...,n−1 est d’ordre 0 et Da(1) =− ∂ψa,0

∂y ∀a 6= 0,n ; alors

f
∂χa,0

∂y
+Da( f ) = 0 ∀a 6= 0,n

Donc

DUx

(
f

∂

∂y

)
=

[
ψ1x , f

∂

∂y

]
∀ f ∈ F(Ux)

Pour tous z ∈Ux et Y ∈ Ω tels que Y (z) 6= 0, on peut répéter le même raisonnement utilisé
pour X à Y et on a :
Il existe Uz contenant z, un domaine d’une carte dans Ux de système (x

′i)i tel que Y = ∂

∂x′n

et ∃ζ ∈ χ(Uz) tel que DUz

(
f ∂

∂x′n

)
= Lζ

(
f ∂

∂x′n

)
∀ f ∈ F(Uz). D’après la Proposition 2.6, on

a DUx = Lψ1x
pour tout x ∈M. Donc (Ux,ϕx)x∈M forme un atlas de M, et pour tout x ∈M, il

existe ψ1x ∈ χ(Ux) avec DUx = Lψ1x
. Pour tous x,y ∈M tels que Ux∩Uy 6= ∅, ψ1x =

Ux∩Uy
ψ1y

par la Proposition 2.6. Ainsi

∃ψ ∈ χ(M) tel que D = Lψ avec ∀x ∈ M, ψ|Ux = ψ1x

Soit y∈M, il existe X ∈Ω tel que X(y) 6= 0. En utilisant le théorème classique de Fröbenius
sur {X} et en faisant le crochet de ψ avec f X , pour tout f ∈ F (M), on obtient l’unicité de
ψ en y quelconque de M.

Proposition 2.8. Le centralisateur C de Ω dans χ(M) est réduit à zéro.

Démonstration. Par définition, C = {X ∈ χ(M) tel que [X ,Ω] = {0}}.
Soit X ∈ C 6= ∅ car 0 ∈ C, raisonnons par l’absurde.
On suppose que X 6= 0, donc il existe x ∈ M tel que X(x) 6= 0. D’après la Proposition 2.2,
il existe un ouvert U contenant x et Y ∈ Ω tels que [X ,Y ](x) 6= 0. Ce qui contredit X ∈ C,
donc X ≡ 0 ; d’où C = {0}.
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Proposition 2.9. L’idéal dérivé de Ω coïncide à Ω.

Démonstration. L’idéal dérivé de Ω noté par [Ω,Ω] est l’algèbre de Lie engendrée par tous
les crochets de deux éléments de Ω.
[Ω,Ω] 6= ∅ car 0 ∈ [Ω,Ω]. Comme Ω est une algèbre de Lie, alors [Ω,Ω]⊂ Ω.
Pour montrer que Ω ⊂ [Ω,Ω], raisonnons par l’absurde.
Supposons qu’il existe X ∈ Ω− {0} tel que X /∈ [Ω,Ω], alors il existe x ∈ M tel que
X(x) 6= 0 et X(x) /∈ [Ω,Ω](x). Par le théorème classique de Fröbenius dans un ouvert conve-
nable U contenant x, il existe f ∈ F(U) telle que X f =

U
1. Donc, on a [X , f X ] =

U
X et

[X , f X ](x) = X(x). Alors [X , f X ](x) ∈ [Ω,Ω](x) car Ω est une distribution involutive de
M. Ce qui contredit X(x) /∈ [Ω,Ω](x), ainsi Ω ⊂ [Ω,Ω]; d’où [Ω,Ω] = Ω.

Remarque 2.10. Cette dernière proposition est toujours vraie pour toute distribution involu-
tive de M, c’est à dire pour tout F (M)-sous-module de χ(M) stable par le crochet habituel.

Définition 2.11. Le normalisateur N de Ω est {X ∈ χ(M) tel que [X ,Ω]⊂ Ω}.

Théorème 2.12. Toute dérivation de N est intérieure.

Démonstration. Ω est un idéal caractéristique du normalisateur N si elle est stable par toute
dérivation de N.
Par la Proposition 2.9 et un résultat classique cf. [1], on prouve que Ω est un idéal caractéris-
tique de N. En utilisant le Théorème 2.7, la Proposition 2.9, la Proposition 2.8 et en adaptant
une preuve de [6] pp.68-69 ; on montre que toute dérivation de N est intérieure.

Définition 2.13. Soient (A, [, ]A) et (B, [, ]B) deux R−algèbres de Lie. Un homomorphisme
d’algèbres de Lie de A dans B est une application R-linéaire h telle que pour tous X ,Y de
A, h([X ,Y ]A) = [h(X) ,h(Y )]B. C’est un isomorphisme si h est bijective.

Corollaire 2.14. On note par Der(A) l’ensemble de toute dérivation d’une algèbre de Lie
A. Les algèbres de Lie Der(Ω), N, Der(N) sont isomorphes et le premier espace de coho-
mologie de Chevalley-Eilenberg de Ω (resp. de N) est isomorphe à l’algèbre de Lie N/Ω

(resp. à {0}).

Démonstration. On note par adΩ l’ensemble des dérivations intérieures de Ω. Par défini-
tion, H1 (Ω) = Der(Ω)/adΩ cf. [10].
Soit l’application R-linéaire θ : N −→

X 7−→θX =LX
Der(Ω) , où le crochet dans Der(Ω) est dé-

fini par ∀D,D′; [D,D′] = D ◦D′−D′ ◦D avec ◦ la loi de composition des applications.
L’application θ est bijective en utilisant la Proposition 2.8, le Théorème 2.7 ; et un ho-
momorphisme par l’identité de Jacobi. D’une manière analogue, on a les deux résultats :
Ω ∼= Der(Ω) et, N∼= Der(N) en utilisant le Théorème 2.12. Ainsi Der(Ω)∼= N∼= Der(N).
Par isomorphisme, on obtient H1(Ω)∼= N/Ω et H1(N)∼= {0}.

Remarque 2.15. Supposons que l’algèbre de Lie Ω n’est pas identiquement nulle et l’en-
semble O = {x ∈ M tel que Ω(x) 6= 0} est différent de M. La Proposition 2.4 reste valable
en utilisant un résultat analogue sur la sous-variété ouverte O. En s’inspirant d’une preuve
faite dans [6] pp.458-463, si O est partout dense dans M, alors :
D’après le Théorème 2.7, pour tout D ∈Der(Ω) il existe X ∈ χ(O) tel que D|O = LX . Si le
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prolongement X de chaque X correspondant à D ∈ Der(Ω), appartient à N ; alors D = LX .
Le centralisateur de Ω est nul, ainsi le Corollaire 2.14 reste valable.

Exemple 2.16. Sur R3, l’ensemble B des champs de vecteurs de la forme f ∂

∂x +g ∂

∂y +h ∂

∂z

avec f ,g,h ∈ F
(
R3

)
, s’annulant en (0,0,0), est une distribution non-régulière, involutive.

Le normalisateur de B est B lui-même, le premier espace de cohomologie de Chevalley-
Eilenberg H1(B)∼= {0}.

3 Application à l’algèbre de Lie des champs de vecteurs à sup-
port compact et aux algèbres de Lie attachées à un feuilletage
généralisé

Soit Cc l’ensemble des champs de vecteurs à support compact sur M, il est facile de
vérifier que Cc est une distribution involutive de M.

Théorème 3.1. L’idéal dérivé de l’algèbre de Lie Cc coïncide à Cc, son centralisateur
est nul et son premier espace de cohomologie de Chevalley-Eilenberg est isomorphe à
χ(M)/Cc.

Démonstration. On peut montrer que pour tous X ∈ χ(M) et Y ∈ Cc :

[X ,Y ] ∈ Cc (3.1)

Ainsi, le normalisateur de Cc dans χ(M) est χ(M). Par la Proposition 2.9, [Cc,Cc] = Cc,
c’est un idéal caractéristique de χ(M).
Par ailleurs, pour tout x ∈ M, il existe X ∈ Cc tel que X(x) 6= 0, donc son centralisateur est
nul par la Proposition 2.8. D’après le Corollaire 2.14 :

H1 (Cc)∼= χ(M)/Cc

Définition 3.2. Un feuilletage généralisé F = {Fα}
α∈I sur M est une partition en sous-

variétés connexes de M = ∪
α∈I

Fα qui sont exactement les orbites des compositions des flots

engendrés par les champs de vecteurs localement tangents aux feuilles de F cf. [2].

Dans toute la suite, M est une variété différentiable munie d’une structure de feuilletage
généralisé F.

Définition 3.3. L’algèbre de Lie des champs de vecteurs tangents au feuilletage F est dé-
signée par χ(F). Le normalisateur de χ(F) dans χ(M) est noté par N(F). On désigne par
L(F) l’algèbre de Lie des champs de vecteurs qui préservent le feuilletage F, L(F) est
contenu dans N(F) cf. [2].

Exemple 3.4. Les feuilletages engendrés par les champs hamiltoniens de l’algèbre de Lie
locale de Kirillov cf. [3] ou ceux engendrés par la structure de Jacobi ou de Poisson, sont
des feuilletages généralisés. Ils définissent un χ(F) finiment engendré cf. [2].
La structure hamiltonienne dans [9] définit un feuilletage généralisé aux feuilles présym-
plectiques dont l’algèbre de Lie χ(F) y est détaillée.
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Théorème 3.5. L’algèbre de Lie χc (F) = χ(F)∩Cc est un idéal caractéristique de χ(F)
tel que [χc (F) ,χc (F)] = χc (F). Si ∀x ∈M, ∃X ∈ χc (F) tel que X(x) 6= 0, alors le centrali-
sateur de χc (F) est nul et H1 (χc (F))∼= N(F)/χc (F).

Démonstration. Comme χ(F) , Cc sont des distributions involutives sur M ; alors χc (F) =
χ(F)∩Cc l’est aussi. Par la Proposition 2.9, [χc (F) ,χc (F)] = χc (F) ; c’est un idéal ca-
ractéristique de χ(F). Par ailleurs χc (F) ⊂ χ(F), alors [N(F) ,χc (F)] ⊂ χ(F). D’après la
relation (3.1), les champs de [N(F) ,χc (F)] sont à support compact, alors [N(F) ,χc (F)] est
contenu dans χ(F)∩Cc = χc (F). On en tire que N(F) est le normalisateur de χc (F) dans
χ(M).
Le centralisateur de χc (F) est nul d’après la Proposition 2.8 ; par le Corollaire 2.14, on a :

H1 (χc (F))∼= N(F)/χc (F)

Remarque 3.6. Ce dernier théorème est en partie une généralisation dans le cas non régulier
d’un théorème dans [6] p.64.

Théorème 3.7. L’idéal dérivé de χ(F) est égal à χ(F). Si le feuilletage est non singulier,
c’est à dire que chaque feuille a une dimension superieure ou égale à un, alors le centrali-
sateur de χ(F) est nul et

H1 (χ(F))∼= N(F)/χ(F) , H1 (N(F))∼= {0}, H1 (L(F))∼= N(F)/L(F) .

Démonstration. D’après [2], χ(F) est une distribution involutive de M. Par la Proposition
2.9, [χ(F) ,χ(F)] = χ(F), c’est un idéal caractéristique de N(F).
Si le feuilletage est non singulier, alors ∀x ∈M, ∃X ∈ χ(F) tel que X(x) 6= 0. En utilisant la
Proposition 2.8 et le Corollaire 2.14, on a les trois résultats suivants. Par ailleurs, l’algèbre
de Lie L(F) contient χ(F) et [L(F) ,χ(F)]⊂ χ(F) cf. [2]. Ainsi, on adapte une preuve de
[6] pp.68-69 et on trouve que toute dérivation de L(F) est une dérivée de Lie par rapport
à un champ de N(F). En faisant un raisonnement analogue à celui du Corollaire 2.14, on
trouve le dernier résultat.

Remarque 3.8. Si le feuilletage F est singulier, et χ(F) vérifie toutes les hypothèses de la
Remarque 2.15, alors on retrouve les mêmes résultats du Théorème 3.7.

Remarque 3.9. Si le feuilletage F est régulier alors on retrouve un théorème de Kanie cf.
[4] p.487 et certains résultats de Lichnérowicz cf. [6] p.55, p.64, p.69, à partir du Théorème
3.7.

Remarque 3.10. Si on a l’égalité N(F) = L(F), alors

H1 (χ(F))∼= L(F)/χ(F) , H1 (L(F))∼= {0}.
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It is well known that Marius Sophus Lie (1842-1899) and John 
Forbes Nash (1928-2015) are great mathematicians. Sophus Lie comes 
from Norway and John Nash from United States of America. Their 
stories have certain resemblances and remarkable relations. This 
editorial would emphasize some of them. When they have started their 
university studies, their respective first interests were not mathematics.

That is to say, Lie has been in Astronomy and Nash in Chemical 
Engineering. Whereas, when they worked on mathematics, the first had 
Lobatchevski award in 1897 and the second, Nobel prize 1994 and Abel 
award 2015 (Niels Abel is the uncle of the wife of Sophus Lie: Anna 
Birch). In addition, their contributions in geometry are considerable, 
particularly in differential equations. Lie worked on transformation 
groups relative to partial differential equations, in other words, on Lie 
groups and on special non-associative algebras named Lie algebras. Nash 
discovered an important isometrically embedding theorem for a Ck-
Riemannian manifold into an Euclidian space (k=1,3,4… ), by studying 
an undetermined partial differential equations. Now, the methods they 
used offer us an important tool for continuing researches in differential 
geometry and in other fields cf. [1-9]. Next, these exceptional persons 
have continued to put more efforts into their mathematics works, even 
if they had a serious health problem in the middle of their careers. We 
hope that several mathematicians continue to make profits from results 
of Lie and Nash for the mathematics’s promotion. 

This special issue “Recent Advances of Lie Theory in Differential 
Geometry, in memory of John Nash” honored both Sophus Lie and 
John Nash as well as their works. John Nash died recently with his 
wife in a car crash on May 23, 2015. We are grateful regarding their 
contributions in differential geometry, generally in mathematics.
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Abstract
In group theory the chief factors allow a group to be studied by its representation theory on particularly natural 

irreducible modules. It is to be expected, therefore, that they will play an important role in the study of Lie algebras. In 
this article we survey a few of their properties. 

Keywords: L-Algebras; L-Equivalence; c-factor; m-factor; cc-type

Introduction
 Throughout L will denote a finite-dimensional Lie algebra over a 

field F. We call a subalgebra I a subideal of a Lie algebra L if there is a 
chain of subalgebras 

0 1= < < < = ,nI I I I L

where Ij is an ideal of Ij+1 for each 0 1j n≤ ≤ − . 

Put 1 1= , = [ , ]k kL L L L L+  for k ≥ 1. These are the terms of the lower 
central series for L. We say that L has  nilpotency class n if 0nL ≠  but 

1 = 0nL + . Let U be a subalgebra of L. If F has characteristic p>0 we call U  
nilregular if the nilradical of U, N(U), has nilpotency class less than p − 
1. If F has characteristic zero we regard every subalgebra of L as being 
nilregular. We say that U is  characteristic in L if it is invariant under 
all derivations of L. Nilregular ideals of L have the property that their 
nilradicals are characteristic in L. Details of the results in this section 
can be found in studies of Towers [1].

Theorem 1.1.   

(i) If I is a nilregular ideal of L then ( ) ( )N I N L⊆ . 

(ii) If I is a nilregular subideal of L and every subideal of L containing 
I is nilregular, then ( ) ( )N I N L⊆ . 

This result was proved by Schenkman [2] for fields of characteristic 
zero; in characteristic p it follows from a more recent result of 
Maksimenko [3]. Similarly, we will call the subalgebra U  solregular if 
the underlying field F has characteristic zero, or if it has characteristic p 
and the (solvable) radical of U, R(U), has derived length less than log2p. 
Then we have the following corresponding theorem, which uses a result 
of Petravchuk [4].

Theorem 1.2.   

(i) If I is a solregular ideal of L then ( ) ( )R I R L⊆ . 

(ii) If I is a solregular subideal of L and every subideal of L containing 
I is solregular, then ( ) ( )R I R L⊆ .

These enable us to determine what the minimal ideals of L look like.

Theorem 1.3. Let L be a Lie algebra over a field F, and let I be a 
minimal non-abelian ideal of L. Then either  

(i) I is simple or 

(ii) F has characteristic p, N(I) has nilpotency class greater than or 
equal to p − 1, and R(I) has derived length greater than or equal to log2p. 

 As a result of the above we will call the subalgebra U regular if it is 
either nilregular or solregular; otherwise we say that it is irregular. Then 

we have the following corollary.

Corollary 1.4. Let L be a Lie algebra over a field F. Then every 
minimal ideal of L is abelian, simple or irregular. 

Block’s Theorem on differentiably simple rings [5] describes the 
irregular minimal ideals as follows.

Theorem 1.5. Let L be a Lie algebra over a field of characteristic p>0 
and let I be an irregular minimal ideal of L. Then nI S≅ ⊗ , where S is 
simple and n is the truncated polynomial algebra in n indeterminates. 
Moreover, N(I) has nilpotency class p − 1 and R(I) has derived length 
[log2p]. 

Primitive Lie algebras
Next we introduce the concept of a primitive Lie algebra. Details 

of the results in this section can be found in literature of Towers [6]. 
A word of warning - this terminology has been used for a different 
concept elsewhere. If U is a subalgebra of L we define UL, the core 
(with respect to L) of U to be the largest ideal of L contained in U. 
We say that U is core-free in L if UL = 0. We shall call L primitive if 
it has a core-free maximal subalgebra. The centraliser of U in L is 

( ) = { :[ , ] = 0}LC U x L x U∈ . 

There are three types of primitive Lie algebra:  primitive of type 1 if 
it has a unique minimal ideal that is abelian; primitive of type 2 if it has 
a unique minimal ideal that is non-abelian; and primitive of type 3 if it 
has precisely two distinct minimal ideals each of which is non-abelian. 

Of course, primitive Lie algebras of types 2 and 3 are semisimple, 
and those of types 1 and 2 are monolithic. (A Lie algebra L is called 
monolithic if it has a unique minimal ideal W, the monolith of L.)

Example 2.1. Examples of each type are easy to find.  

Clearly every primitive solvable Lie algebra is of type 1. Every simple 
Lie algebra is primitive of type 2. 

If S is a simple Lie algebra then =L S S⊕  is primitive of type 3 with 
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core-free maximal subalgebra = { : }D s s s S+ ∈ the diagonal subalgebra 
of L. 

Let M be a maximal subalgebra of L. Then M/ML is a core-free 
maximal subalgebra of L/ML. We say that M is  

1.	 a maximal subalgebra of type 1 if L/ML is primitive of type 1; 

2.	 a maximal subalgebra of type 2 if L/ML is primitive of type 2; 
and 

3.	 a maximal subalgebra of type 3 if L/ML is primitive of type 3. 

We say that an ideal A is complemented in L if there is a subalgebra 
U of L such that L = A + U and A ∩ U = 0. For primitive solvable Lie 
algebras we have the following analogue of Galois’ Theorem for groups.

Theorem 2.2.   

1.	 If L is a solvable primitive Lie algebra then all core-free maximal 
subalgebras are conjugate. 

2.	 If A is a self-centralising minimal ideal of a solvable Lie algebra L, 
then L is primitive, A is complemented in L, and all complements 
are conjugate. 

The Frattini ideal of L, φ(L), is the core of intersection of the 
maximal subalgebras of L. We say that L is φ-free if φ(L) = 0. Then we 
have the following characterisation of primitive Lie algebras of type 1.

Theorem 2.3.  Let L be a Lie algebra over a field F.  

1.	 L is primitive of type 1 if and only if L is monolithic, with abelian 
monolith W, and φ-free. 

If F has characteristic zero, then L is primitive of type 1 if and only if 
= ( )L W C S⊕  (semi-direct sum), where W is the abelian monolith of L, 

C is an abelian subalgebra of L, every element of which acts semisimply 
on W, and S is a Levi subalgebra of L. 

If L is solvable, then L is primitive if and only if it has a self-
centralising minimal ideal A. 

For type 2 we have

Theorem 2.4.   

L is primitive of type 2 if and only if ( )nL U S≅ + ⊗ , where nS ⊗  
is an ideal of L and S is simple. 

If F has characteristic zero, then L is primitive of type 2 if and only 
if L is simple. 

L is primitive of type 2 if and only if there is a primitive Lie algebra X 
of type 3 such that /L X B≅  for a minimal ideal B of L. 

For type 3 we have

Theorem 2.5.   

L is primitive of type 3 if and only if L has two distinct minimal ideals 
B1 and B1 with a common complement and such that the factor algebras 
L/B1 are primitive of type 2 for i = 1, 2. Moreover, B1 and B1 are both 
isomorphic to nS ⊗ , where S is simple. 

If F has characteristic zero, then L is primitive of type 3 if and only if 
=L S S⊕ , where S is simple. 

Chief Factors
The factor algebra A/B is called a chief factor of L if B is an ideal of 

L and A/B is a minimal ideal of L/B. So chief factors are as described in 

Corollary 1.4 and Theorem 1.5. We can identify different types of chief 
factor; details for this section can be found in studies of Towers [6]. A 
chief factor A/B is called Frattini if ( )/ / .A B L Bφ⊆  This concept was 
first introduced in literature of Towers [7]. 

If there is a subalgebra, M such that L = A + M and ,B A M⊆ ∩  
we say that A/B is a supplemented chief factor of L and that M is a 
supplement of A/B in L Also, if A/B is a non-Frattini chief factor of L, 
then A/B is supplemented by a maximal subalgebra M of L 

If A/B is a chief factor of L supplemented by a subalgebra M of L, 
and =A M B∩  then we say that A/B is complemented chief factor of L, 
and M is a complement of A/B in L. When L is solvable, it is easy to see 
that a chief factor is Frattini if and only if it is not complemented. Then 
we have the following generalisation of the Jordan-Hölder Theorem.

Theorem 3.1. Let 

10 < < < =nA A L

                          		              	                  (1)

10 < < < =nB B L

			                	                (2)

be chief series for the Lie algebra L. Then there is a bijection between 
the chief factors of these two series such that corresponding factors are 
isomorphic as L-modules and such that the Frattini chief factors in the 
two series correspond. 

The number of Frattini chief factors or of chief factors which are 
complemented by a maximal subalgebra of a finite-dimensional Lie 
algebra L is the same in every chief series for L. However, this is not the 
case for the number of chief factors which are simply complemented in 
L; in framework of Towers [8] we determine the possible variation in 
that number. 

Note that if L is a primitive Lie algebra of type 3, its two minimal 
ideals are not L-isomorphic, so we introduce the following concept. 
We say that two chief factors of L are L-connected if either they are 
L-isomorphic, or there exists an epimorphic image L  of L which is 
primitive of type 3 and whose minimal ideals are L-isomorphic, 
respectively, to the given factors. (It is clear that, if two chief factors of 
L are L-connected and are not L-isomorphic, then they are nonabelian 
and there is a single epimorphic image of L which is primitive of type 3 
and which connects them.) Then, as we would hope,

Theorem 3.2. The relation ‘is L-connected to’ is an equivalence 
relation on the set of chief factors. 

Let A/B be a supplemented chief factor of L and put  = {ML : M is 
a maximal subalgebra of L supplementing a chief factor L-connected 
to A/B}. Let = { : }R N N∩ ∈  and = ( / )LC A C A B+ . Then we call C/R 
the crown of L associated with A/B. This object gives much information 
about the supplemented chief factors of L.

Theorem 3.3. Let C/R be the crown associated with the supplemented 
chief factor A/B of L. Then C/R = Soc(L/R). Furthermore  

(i) every minimal ideal of L/R is a supplemented chief factor of L 
which is L-connected to A/B, and 

(ii) no supplemented chief factor of L above C or below R is 
L-connected to A/B. 

In other words, there are r ideals A1,…, Ar of L such that 

1/ = / /rC R A R A R⊕ ⊕

where Ai/R is a supplemented chief factor of L which is L-connected to 
A/B for i = 1,…, r and r is the number of supplemented chief factors 
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of L which are L-connected to A/B in each chief series for L. Moreover, 
( / ) = 0L Rφ . 

Corollary 3.4. Two supplemented chief factors of L define the same 
crown if and only if they are L-connected. 

Theorem 3.5. Let L be a solvable Lie algebra, and let / =C R C be 
the crown associated with a supplemented chief factor of L. Then C  is 
complemented in L , and any two complements are conjugate by an 
automorphism of the form 1 + ad a for some a C∈ . 

Finally, in [9], Barnes determined for a solvable Lie algebra which 
irreducible L-modules A have the property that 1( , ) = 0H L A .

Theorem 3.6. Let L be a solvable Lie algebra and let A be an 
irreducible L-module. Then 1( , ) = 0H L A  if and only if L has no 
complemented chief factor isomrphic to A. 

Covering and Avoidance
 The subalgebra U avoids the factor algebra 1/i iA A −  if 

1=i iU A U A −∩ ∩ ; likewise, U covers 1/i iA A −  if 1=i iU A U A −+ + . We say 
that U has the covering and avoidance property of L if U either covers 
or avoids every chief factor of L. We also say that U is a CAP-subalgebra 
of L. Then these subalgebras give characterisations of solvable and 
supersolvable Lie algebras; details can be found in studies of Towers 
[10]. 

There are a number of ways in which CAP-subalgebras arise. For a 
subalgebra B of L we denote by [B : L] the set of all subalgebras S of L 
with B S L⊆ ⊆ , and by [B : L]max the set of maximal subalgebras in [B : 
L]; that is, the set of maximal subalgebras of L containing B. We define 
the set  by i∈ if and only if 1/i iA A −  is not a Frattini chief factor of L. 
For each i∈ put 

1= { [ , ] : }.i i max iM A L A M−∈ ⊆

Then U is a prefrattini subalgebra of L if 

= .i i i
i

U M for some M
∈

∈






It was shown in [8] that, when L is solvable, this definition does not 
depend on the choice of chief series, and that the prefrattini subalgebras 
of L cover the Frattini chief factors and avoid the rest; that is, they are 
CAP-subalgebras of L. 

Further examples were given by Stitzinger [11], where he proved 
the following result [11] for definitions of the terminology used).

Theorem 4.1. ([11], Theorem 2) Let  be a saturated formation of 
solvable Lie algebras, and let U be an  -normaliser of L. Then U covers 
every -central chief factor of L and avoids every -eccentric chief factor 
of L. 

The chief factor 1/i iA A −  is called central if 1[ , ]i iL A A −⊆ and  eccentric 
otherwise. A particular case of the above result is the following theorem, 
due to Hallahan and Overbeck.

Theorem 4.2. ([12], Theorem 1) Let L be a metanilpotent Lie 
algebra. Then C is a Cartan subalgebra of L if and only if it covers the 
central chief factors and avoids the eccentric ones. 

A subalgebra U of L will be called  ideally embedded in L if IL(U) 
contains a Cartan subalgebra of L, where ( ) = { :[ , ] }LI U x L x U U∈ ⊆  is 
the  idealiser of U in L . Clearly, any subalgebra containing a Cartan 
subalgebra of L and any ideal of L is ideally embedded in L. Then we 
have the following extension of Theorem 4.2.

Theorem 4.3. Let L be a metanilpotent Lie algebra and let U be 
ideally embedded in L. Then U is a CAP-subalgebra of L. 

Corollary 4.4. Let L be any solvable Lie algebra and let U be an 
ideally embedded subalgebra of L with 2= ( )K N L U⊆ . Then U is a CAP-
subalgebra of L. 

Another set of examples of CAP-subalgebras, which don’t require L 
to be solvable, is given by the next result.

Theorem 4.5. Let L be any Lie algebra, let U be a supplement to an 
ideal B in L, and suppose that kB U⊆  for some k ∈ . Then U is a CAP-
subalgebra of L. 

We can calculate the dimension of CAP-subalgebras in terms of the 
chief factors that they cover.

Lemma 4.6. Let U be a CAP-subalgebra of L, let 0 10 = < < < =nA A A L  
be a chief series for L and let 1= { :1 , / }i ii i n U covers A A −≤ ≤ . Then 

1dim = (dim dim )i ii
U A A −∈

−∑ 
. 

We have the following characterisations of solvable and 
supersolvable Lie algebras.

Theorem 4.7. Every one-dimensional subalgebra of L is a CAP-
subalgebra of L if and only if L is supersolvable. 

Theorem 4.8. Let L be a Lie algebra over any field F. Then L is solvable 
if and only if all of its maximal subalgebras are CAP-subalgebras. 

Theorem 4.9. Let L be a Lie algebra over a field F which has 
characteristic zero, or is algebraically closed field and of characteristic 
greater than 5. Then L is solvable if and only if there is a maximal 
subalgebra M of L such that M is a solvable CAP-subalgebra of L. 
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Abstract
In previous papers the structure of the jet bundle as P-module has been studied using different techniques. In 

this paper we use techniques from algebraic groups, sheaf theory, generliazed Verma modules, canonical filtrations 
of irreducible SL(V)-modules and annihilator ideals of highest weight vectors to study the canonical filtration Ul (g)L

d 
of the irreducible SL(V)-module H0 (X, X(d))* where X = (m, m + n). We study Ul (g)L

d using results from previous 
papers on the subject and recover a well known classification of the structure of the jet bundle l ((d)) on projective 
space (V*) as P-module. As a consequence we prove formulas on the splitting type of the jet bundle on projective 
space as abstract locally free sheaf. We also classify the P-module of the first order jet bundle 1 ( ( ))X X d   for any d 
≥ 1. We study the incidence complex for the line bundle (d) on the projective line and show it is a resolution of the 
ideal sheaf of I l ((d)) - the incidence scheme of (d). The aim of the study is to apply it to the study of syzygies of 
discriminants of linear systems on projective space and grassmannians.

Keywords: Algebraic group; Jet bundle; Grassmannian; P-module; 
Generalized verma module; Higher direct image; Annihilator ideal; 
Canonical filtration; Discriminant; Koszul complex; Regular sequence; 
Resolution

Introduction
In a series of papers of Maakestad [1-4], the structure of the jet 

bundle as P-module has been studied using different techniques. In 
this paper we continue this study using techniques from algebraic 
groups, sheaf theory, generalized Verma modules, canonical filtrations 
of irreducible SL(V)-modules and annihilator ideals of highest weight 
vectors and study the canonical filtration Ul (g)Ld of the SL(V)-module 
H0 (X, X(d))* where X = (m, m + n) is the grassmannian of m-planes 
in an m + n-dimensional vector space. Using results obtained in studies 
of Maakestad [1] we classify Ul (g)Ld and as a corollary we recover a 
well known result on the structure of the jet bundle l ((d)) on (V*) 
as P-module. As a consequence we get well known formulas on the 
splitting type of the jet bundle on projective space as abstract locally 
free sheaf. We also classify the P-module of the first order jet bundle 

1 ( ( ))X X d   on any grassmannian X = (m, m + n) (Corollary 3.10).

In the first section of the paper we study the jet bundle / ( )l
G H   of 

any locally free G-linearized sheaf ε on any quotient G / H. Here G is 
an affine algebraic group of finite type over an algebraically closed field 
K of characteristic zero and H ⊆ G is a closed subgroup. There is an 
equivalence of categories between the category of finite dimensional 
H-modules and the category of finite rank locally free G / H-modules 
with a G-linearization. The main result of this section is Theorem 
2.3 where we give a classification of the Hl -modules structure of the 
fiber *

/ ( )( )l
G H x   where Hl ⊆ H is a Levi subgroup. Here x G / H is the 

distinguished K-rational point defined by the identity e ∈ G. We also 
study the structure of *( ( ))( )l

X X d x   as Hl-module where X = (m, m 
+ n) is the grassmannian of m-planes in an m + n-dimensional vector 
space (Corollary 2.5 and 2.8).

In the second section we study the canonical filtration Ul (g)Ld for 
the irreducible SL(V)-module H0 (, (d))*. Here  = (m, m + n). 
We prove in Theorem 3.5 there is an isomorphism

U ( ) Sym ( / )d d l l
l LL L L−≅ ⊗ ⊗g g p

of P-modules when  = (1, n + 1) =  n is projective n -space. As a result 
we recover in Corollary 3.6 the structure of the fiber *( ( ))( )l d x    as 
P-module. This result was proved in another paper [5] using different 

techniques. We also recover in Corollary 3.8 a known formula on the 
structure of the jet bundle on projective space as abstract locally free 
sheaf [2,6-10].

In the third section we study the incidence complex 
*

*( )
( 1) ( ( ))l

Y YW
d•∧ − ⊗  



of the line bundle (d) on the projective line. Using Koszul complexes 
and general properties of jet bundles we prove it is a locally free 
resolution of the ideal sheaf of I l((d)) - the incidence scheme of (d).

In Appendix A and B we study SL(V)-modules, automorphisms of 
SL(V)-modules and give an elementary proof of the Cauchy formula.

Hence the paper initiates a general study of the canonical filtration 
Ul (g)Ld for any line bundle (d) with d ≥ 1 on any grassmannian (m, 
m + n) as P-module. In Section 3 we show some of the complications 
arising in this study by giving explicit examples.

The study of the jet bundle ( ( ))l
X X d   of a line bundle X (d) on the 

grassmannian X = (m, m + n) is motivated partly by its relationship 
with the discriminant DlX (d) of the line bundle X (d). There is by 
studies of Maakestad [11] for all 1 ≤ l < d an exact sequence of locally 
free X-modules 

00 H ( , ( )) ( ( )) 0l
X X X xX d d→ → ⊗ → →Q    

giving rise to a diagram of maps of schemes 

(∗ ) i

π

(W ∗) × X

p

D l (X (d))
j

(W ∗)

,
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Where W = H0 (X, X(d)), π is the restriction of the projection map 
and i, j are closed immersions. By definition *( ( )) := ( ( ))l

XD d π Q  is 
the schematic image of (Q*) via π. The K-rational points of (Q*) 
are pairs of K-rational points (s, x) with the property that T l(x)(s) = 0 
in ( ( ))( )l

X X d x  . The scheme (Q*) is the incidence scheme of the l’th 
Taylor morphism 

0: H ( , ( )) ( ( )).l l
X X X xT X d d⊗ →   

The map π is a surjective generically finite morphism between 
irreducible schemes. There is by literature of Maakestad [11] a Koszul 
complex of locally free sheaves on Y = (W*) × X 

* *0 ( ) ( ( )) ( 1) ( ( ))r l l
Y X X Y Y X X Yr d d→ − ⊗∧ → → − ⊗ →         (1.0.1)

*( )
0Y → →

Q
 



which is a resolution of the ideal sheaf of (Q*) when it is locally 
generated by a regular sequence. The complex 1 might give information 
on a resolution of the ideal sheaf of Dl (X (d)). A resolution of the ideal 
sheaf of Dl (X (d)) will give information on its syzygies. By literature 
of Maakestad [11] the first discriminant D1 ( (d)) on the projective 
line  = 1 is the classical discriminant of degree d polynomials, hence 
it is a determinantal scheme. By the results of Lascoux [12], we get an 
approach to the study of the syzygies of D1 ( (d)). Hence we get two 
approaches to the study of syzygies of discriminants of line bundles on 
projective space and grassmannians: One using Taylor maps, incidence 
schemes, jet bundles and generalized Verma modules. Another one 
using determinantal schemes.

Jet Bundles on Quotients
In this section we study the jet bundle of any finite rank G-linearized 

locally free sheaf  on the grassmannian G/P=(m, m + n) as Pl 
-module, where Pl ⊆ P is a maximal linearly reductive subgroup.

Let K be an algebraically closed field of characteristic zero and let 
V be a K-vector space of dimension n. Let H ⊆ G ⊆ GL(V) be closed 
subgroups. The following holds: There is a quotient morphism 

π : G → G / H	                                                                                 (2.0.2)

 and G / H is a smooth quasi projective scheme of finite type over 
K. Moreover 

H ⊆ G is parabolic if and only if G / H is projective.                  (2.0.3)

 For a proof refer to literature of Jantzen [13]. Let X = G / H and 
let modG (G/H) be the category of locally free G/H-modules with a 
G-linearization. Let mod(H) be the category of finite dimensional 
H-modules. It follows from Jantzen [13], there is an exact equivalence 
of categories 

mod(H) ≅ modG (G/H). 

Let  ∈ modG (G/H) be a locally free G/H-module.

Let Y = G / H × G / H and p, q : Y → G / H be the canonical projection 
maps. The scheme G / H is smooth and separated over Spec(K) hence 
the diagonal morphism 

∆ : G / H → Y 

is a closed immersion of schemes. Let  ⊆ Y be the ideal of 
the diagonal and let 1= / l

l Y
+

∆
    be the structure sheaf of the n’th 

infinitesimal neigborhood of the diagonal. 

Definition 2.1. Let  be a locally free finite rank G/H-module. Let 

*
/ *( ) = ( )l

G H lp q
∆
⊗   

be the l’th jet bundle of . 

Proposition 2.2. There is for all l ≥ 1 an exact sequence of locally 
free G/H-modules 

1 1
/ / /0 ( ) ( ) ( ) 0l l l

G H G H G HSym φ −→ Ω ⊗ → → →     	                          (2.2.1)

 with G-linearization. 

Proof. By literature of Maakestad [4] sequence 2.2.1 is an exact 
sequence of locally free G/H-modules. The scheme Y is equipped with 
the diagonal G-action. It follows *p  and q* preserve G-linearizations. We 
get a diagram of exact sequences of Y-modules with a G-linearization 

0  l+1 ⊗ q∗ Y ⊗q∗ ∆ l ⊗ q∗ 0

0  l ⊗q∗ Y ⊗q∗ ∆ l −1 ⊗ q∗ 0

.
 

Since *p preserves G-linearization we get a morphism 
1

/ /: ( ) ( )l l
G H G Hφ −→   

preserving the G-linearization, and the Proposition is proved. 

Let g = Lie(G) and h = Lie(H). Let Hl ⊆ H be a Levi subgroup of H. It 
follows Hl is a maximal linearly reductive subgroup of H. The group Hl 
is not unique but all such groups are conjugate under automorphisms 
of H. Let x ∈ G / H be the K-rational point defined by the identity e ∈ G.

Theorem 2.3. There is for all l ≥ 1 an isomorphism 
* *

=( )( ) ( ) ( Sym ( / ))l l i
X ix x≅ ⊗ ⊕   g h 			               (2.3.1)

 of L-modules. 

Proof. Dualize the sequence 2.2.1 and take the fiber at x to get the 
exact sequence 

1 * * *0 ( )( ) ( )( ) ( ) Sym ( / ) 0l l l
X Xx x x−→ → → ⊗ →     g h

of H-modules (and Hl -modules). This sequence splits since Hl is 
linearly reductive and the Theorem follows by induction on l. 

Hence the study *( )( )l
X x   as Hl -module is reduced to the study of 

 (x)* and Syml (g / h).

Let W ⊆ V be K-vector spaces of dimension m and m + n and let G 
= SL(V) and P ⊆ G the subgroup fixing W. It follows G / P = (m, m + 
n) is the grassmannian of m-planes in V. Let g = Lie(G) and p = Lie(P). 
Fix a basis e1, .., em for W and e1, .., em, em+1, .., em+n for V. It follows the 
K-rational points of P are matrices M on the form

=
0
A X

M
B

 
 
 

where det(A)det(B) = 1, A an m × m-matrix and B an n × n-matrix. Let 
Pl ⊆ P be the subgroup defined as follows: The K-rational points of Pl 
are matrices M on the form 

0
=

0
A

M
B

 
 
 

where det(A)det(B) = 1 and similarly A an m × m-matrix and B an n 
× n-matrix. It follows Pl is a Levi subgroup of P, hence it is a maximal 
linearly reductive subgroup.

Proposition 2.4. There is a canonical isomorphism 

/ Hom( , / )W V W≅g p

http://dx.doi.org/10.4172/1736-4337.S2-001
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of P-modules. 

Proof. By definition g = sl(V), hence φ ∈ g is a map 

φ : V → V

with tr(φ) = 0. Let i : W → V be the inclusion map and p : V → V / W the 
projection map. Define the following map: 

J : Hom( , / )' W V W→g

by 

j′(φ) = p ο φ  i.

It follows j(p) = 0 hence we get a well defined map 

j : g/p → Hom(W, V / W) 

defined by 

( ) = .j p iφ φ 

One checks g/p and Hom(W, V/W) are P-modules and j a 
morphism of P-modules. It is an isomorphism and the Proposition 
follows. 

Corollary 2.5. On X = (m, m + n) there is an isomorphism 
* *

=0( )( ) ( ) ( Sym (Hom( , / ))l l i
X ix x W V W≅ ⊗ ⊕  

of Pl -modules. 

Proof. The proof follows from Theorem 2.3 and Proposition 2.4. 

There is an isomorphism of P-modules 

Hom(W, V / W) ≅ W* ⊗ V / W 

hence the decomposition into irreducible components of the 
module Symi(W* ⊗ V / W) as Pl -module may be done using the 
Cauchy formula (Appendix B).

Let λ − |i| denote λ is a partition of the integer i If λ = {λ1, .., λd} is a 
partition of an integer l, let µ (λ) denote the following partition: 

µ (λ)i = l − λd+1−i. 

Let for any partition λ of an integer l and any vector space W, λ(W) 
denote the Schur-Weyl module of λ.

Corollary 2.6. There is an isomorphism 
* * *

=0 ( )
| |

( )( ) ( ) ( ( ( ) ( / )))l l
X i

i
x x W V Wλ µ λ

λ−
≅ ⊗ ⊕ ⊗⊕    

of SL(W) × SL(V/W)-modules. 

Proof. By Corollary 2.5 there is an isomorphism 
* *

=0( )( ) ( ) ( Sym (Hom( , / ))l l i
X ix x W V W≅ ⊗ ⊕  

of Pl -modules and SL(W) × SL(V/W)-modules, since SL(W) × 
SL(V/W) ⊆ Pl is a closed subgroup. Since 

Symi(Hom(W, V / W)) ≅ Symi (W* ⊗ V / W) 

the result follows from the Cauchy formula (Appendix B or [14]). 

Example 2.7. Calculation of the cohomology group 
*H ( , ( ( )) ).i j l

X XX d∧  

 In the following we use the notation introduced in litertature of 
Jantzen [13]. Let Psemi = SL(m) × SL(n) ⊆ P be the semi simplification of 
P. We get a vector bundle 

π : G / Psemi → G / P = (m, m + n). 

Let X = G / P and Y = G / Psemi Given any finite dimensional 
P-module W, let X (W) denote its corresponding X-module. Let 
Wsemi denote the restriction of W to Psemi. By the results of Perkinson 
[13] it follows there is an isomorphism 

π*X (W) ≅ Y (Wsemi) 

of locally free sheaves. This will help calculating the higher 
cohomology group 

Hi (X, X (W)) 

since Psemi is semi simple and π is a locally trivial fibration. If W is 
the P-module corresponding to the dual of the j’th exterior power of 
the jet bundle *( ( ))j l

X X d∧    we can use this construction to calculate 
the cohomology group 

*H ( , ( ( )) ).i j l
X XX d∧  

Such a calculation will be by the results of Maakestad [11], Example 
5.12 give information on resolutions of the ideal sheaf of Dl(X (d)) 
since the push down of the Koszul complex 1.0.1 is the locally trivial 
sheaf 

*( ) H ( , ( ( )) ).i j l
X Xj X d− ⊗ ∧  

To describe the locally trivial sheaf *( ) H ( , ( ( )) )i j l
X Xj X d− ⊗ ∧   for 

all i, j we need to calculate the dimension *( , ( ( )) )i j l
X Xh X d∧    and this 

calculation may be done using the approach indicated above.

Let m = 2, n = 4 and X = (2, 4).

Corollary 2.8. There is an isomorphism 
* * 2 * 2

=0 =0( )( ) ( ) ( Sym ( ) Sym ( / ))l l n j m j m
X i jx x W V W+ +≅ ⊗ ⊕ ⊕ ⊗  

of SL(2) × SL(2)-modules. Here ( , ) = ( ,0)
2
in m  if i = 2n and 

1( ,1)
2

i −
 if 

i = 2n + 1. 

Proof. This follows from Corollary 2.5 and Proposition 5.1. 

On Canonical Filtrations and Jet Bundles on Projective 
Space

In this section we study the canonical filtration for the dual of 
the SL(V)-module of global sections of an invertible sheaf on the 
grassmannian. We classify the canonical filtration on projective space 
and as a result recover known formulas on the splitting type of the jet 
bundle as abstract locally free sheaf.

Let W ⊆ V be vector spaces over K of dimension m and m + n. Let 
W have basis e1, .., em and V have basis e1, .., em+n. Let V * have basis x1, 
.., xm+n. Let G = SL(V) and P ⊆ G the parabolic subgroup of elements 
fixing W. It follows there is a quotient morphism 

π : G → G / P 

and G / P ≅ (m, m + n) is the grassmannian of m-planes in V. Let 
 = (1, n+1) = (V *). Let Ld = Symd(∧mW). There is an inclusion of 
P-modules Ld ⊆ Symd(∧mV). Since K has characteristic zero there is an 
inclusion of G-modules 

0 * * *
/H ( / , ( )) Sym ( ) Sym ( ).d m d m

G PG P d V V⊆ ∧ ≅ ∧

Let g = Lie(G) and p = Lie(P). Let U(g) be the universal enveloping 
algebra og g and let Ul (g) be the l’th term to its canonical filtration.

By the Corollary 3.11 in studies of Maakestad [15] there is for all 1 
≤ l ≤ d an exact sequence of P-modules 

* 0 * 0 1 *0 ( ( ))( ) H ( , ( )) H ( , ( )) 0.l ld x d d+→ → → →   m    
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Since the grassmannian is projectively normal in the Plucker 
embedding we get an inclusion 

0 *H ( , ( )) Sym ( )d md V⊆ ∧

of P-modules. The highest weight vector for 0 *H ( , ( ))d is the line Ld 

= Symd(∧mW). Let ( ) U( )dann L ⊆ g be the left annihilator ideal of Ld. It 
is the ideal generated by elements x ∈ U (g) with the property x(Ld) = 
0. Let annl (Ld) be its canonical filtration. We get an exact sequence of 
G-modules 

0 *0 ( ) U( ) H ( , ( )) 0d d d
Xann L L L X d→ ⊗ → ⊗ → →g 

and an exact sequence of P-modules 

0 ( ) U ( ) U ( ) 0d d d d
l l lann L L L L→ ⊗ → ⊗ → →g g

for all l ≥ 1. The G-module U(g) ⊗ Ld is the generalized Verma 
module corresponding to the P-module defined by Ld = Symd(∧mV). 
There is an inclusion of P-modules 

0 *U ( ) H ( , ( )) .d
l L d⊆g 

Definition 3.1. Let{Ul (g)Ld}l≥1 be the canonical filtration for 
H0(,(d))*. 

Lemma 3.2. Assume y ∈ g and x1⋅⋅⋅xi ∈ Ui (g) with xi ∈ g. The 
following holds: 

y(x1⋅⋅⋅xi) = (x1⋅⋅⋅xi)y + w

where w ∈ Ui−1(g) 1( )iUω −∈ g . 

Proof. The proof is by induction. 

The Lie algebra p is the sub Lie algebra of g = sl(V) given by matrices 
M of the following type: 

=
0
A X

M
B

 
 
 

where A is an m × m-matrix, B and n × n-matrix and tr(A) + tr(B) = 
0. Let pL be the sub Lie algebra of p consisting of matrices M ∈ p of the 
following type: 

=
0
A X

M
B

 
 
 

where tr(A) + tr(B) = 0.

Proposition 3.3. 

The sub Lie algebra pL ⊆ p is a sub P-module of p.                     (3.3.1)

There is an exact sequence of P-modules 

0 → p/pL → g/pL →g/p→ 0.                                                               (3.3.2)

 and p/pL is the trivial P-module.

The following holds: 

( Sym ( / )) = .d k k
K L

mn k
dim L L

mn
− + 
⊗ ⊗  

 
g p 	                          (3.3.3)

There is a filtration of P-modules 

1 00 = = Sym ( / )d l l
l l LG G G L L−
+ ⊆ ⊆ ⊆ ⊗ ⊗ g p 	                            (3.3.4)

 with quotients 
( )

1/ Sym (( / )d l i l i
i iG G L L− − −

+ ≅ ⊗ ⊗g p

for 1 ≤ i ≤ k.

Assume dimk(W) = 1 and let W = L. There is an exact sequence of 

P-modules 

0 → pL ⊗ L → g ⊗ L → V → 0                                                         (3.3.5)

 giving an isomorphism of P-modules g/pL ⊗ L ≅ V. 

Proof. We prove 3.3.1: In the following A, a are square matrices of 
size m and b, B square matrices of size n. The K -rational points of the 
group P are matrices g on the form 

=
0
A X

B
 
 
 

g

where det(A)det(B) = 1. Assume x ∈ p is the following element: 

=
0
a x

x
b

 
 
 

with tr(a) + tr(b) = 0. It follows g(x) = gxg −1 has tr(gxg−1) = tr(gg −1x) = 
tr(x) = 0 hence gxg−1 ∈ p and p is a P-module. Assume x ∈pL ie tr(a) = 
tr(b) = 0. It follows

1
1

1

*
=

0
aAa

x
bBb

−
−

−

 
 
 

g g

and tr(aAa−1) + tr(aa−1A) = tr(A) = 0 hence g(x) ∈pL and 3.3.1 is proved.

We prove 3.3.2: By 3.3.1 it follows pL ⊆ p is a sub P-module. One 
checks  p/pL is a trivial P-module. We clearly get an exact sequence of 
P-modules and 3.3.2 is proved.

We prove 3.3.3: Since 

dimK(g) = (m + n)2 − 1 = n2 + 2mn + m2−1

and 

dimK(pL) = m2 + mn + n2 − 2 

it follows dimk(g/pL) = mn + 1. It follows 
1 1

( Sym ( / ) = = .
1 1

d l l
K L

mn l mn l
dim L l

mn mn
− + + − +   
⊗ ⊗    + −   

g p

We prove 3.3.4: Since p/pL is a trivial P-module there are 
isomorphisms of P-modules 

( ) Sym ( / ) Sym ( / )d k i k i d k i k i
L LL L L L L− − − − −⊗ ⊗ ≅ ⊗ ⊗ ⊗ ≅g p g p

Sym ( / ) Sym ( / )d k i k i
L LL L L− −⊗ ⊗ ⊗ ⊗p p g p

for all 1 ≤ i ≤ k. We get an injection 

: Sym ( / ) Sym ( / ) Sym ( / )d k i k i d k k
L L Lj L L L L L− − −⊗ ⊗ ⊗ ⊗ → ⊗ ⊗p p g p g p

defined by 

1 1 1 1( ) = .d k d k
i k i i k ij L y L y L x L x L L y L y Lx L x− −

− −⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗   

The injection j gives rise to an injection 
( ) Sym ( / ) Sym ( / ) Sym ( / )d k i k i d k i k i j

L L LL L L L L− − − − −⊗ ⊗ ≅ ⊗ ⊗ ⊗ ⊗ →g p p p g p

Sym ( / )d k k
LL L− ⊗ ⊗g p

of P-modules for all 1 ≤ i ≤ k. The exact sequence 

0 → p/pL → g/pL →g/p→ 0 

gives rise to a filtration of P-modules 

1 00 = = Sym ( / )l
l l LF F F L+ ⊆ ⊆ ⊆ ⊗ g p

with quotients 

1/ Sym ( / ).i l i
i iF F L L−

+ ≅ ⊗ ⊗g p
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Put Gi = Ld−1 ⊗ Fi. It follows 
( )= Sym ( / ).d l i l i

i LG L L− − −⊗ ⊗g p

There is an isomorphism 
( )

1/ Sym ( / )d l i l i
i iG G L L− − −

+ ≅ ⊗ ⊗g p

and claim 3.3.4 is proved.

We prove 3.3.5: Let V = K{e0, .., en} and L = W = e0. It follows P ⊆ G 
= SL(V) is the group whose K-rational points are the following: 

*
=

0
a

B
 
 
 

g

with 1=
( )

a
det B

. Also B is an n × n-matrix with coefficients in K. By 

definition the maps in the sequence are maps of P-modules. It follows 
p = Lie(P) is the Lie algebra whose elements x are matrices on the 
following form: 

( ) *
=

0
tr B

x
B

− 
 
 

where B is any n × n-matrix with coefficients in K. The sub Lie algebra 
pL ⊆ p is the Lie algebra of matrixes x ∈ p on the following form: 

0 *
=

0
x

B
 
 
 

where B is any n × n-matrix with tr(B) = 0. Let xi ∈ g be the following 
element: Let the first column vector of xi be the vector ei and let the rest 
of the entries be such that tr(xi) = 0. It follows xi ⊗ e0 ∈ g ⊗ L and xi(e0) 
= ei hence the vertical map is surjective. One easily checks the sequence 
is exact and 3.3.5 is proved. 

We get two P-modules: pL ⊆ p and = Sym ( ) Sym ( )i i m i mL W V∧ ⊆ ∧ . 
We get for all 1 ≤ k ≤ d a P-module 

Sym ( / ).d k k
LL L− ⊗ ⊗g p

There is an injection of P-modules 

: Sym ( / ) Sym ( )d k k d m
Li L L V− ⊗ ⊗ → ∧g p

defined by 

1 1( ) = ( ) ( ).d k d k
k ki L x L x L L x L x L− −⊗ ⊗ ⊗ 

There are natural embeddings of P-modules 

( ) Sym ( )d d m
kU L V⊆ ∧g

and 
( 1) 1Sym ( / ) Sym ( / ) Sym ( ).d k k d k k d m

L LL L L L V− − − −⊗ ⊗ ⊆ ⊗ ⊗ ⊆ ∧g p g p

Assume in the following m = 1 and L = W. It follows  = (V*) = 
 is projective n-space. 

Proposition 3.4. Let 1 ( ) ( )d d
k kx x L U L∈ g . The following formula 

holds: 

1 1( ) = ( ) ( )d d k
k kx x L L x L x Lα − +  w

where ( 1) 1Sym ( / )d k k
LL L− − −∈ ⊗ ⊗g pw . 

Proof. we prove the result by induction on k. Assume k=1 and let 
x(Ld)∈U1(g)Ld. It follows 1 1 1( ) = ( ) Sym ( / )d d d

Lx L dL x L L L− −∈ ⊗ ⊗g p and 
the claim holds for k =1. Assume the result is true for k. Hence 

1 1( ) = ( ) ( )d d k
k kx x L L x L x Lα − +  w

with ( 1) 1Sym ( / )d k k
LL L− − −∈ ⊗ ⊗g pw . Assume 

( 1)
1 1= ( ) ( ).d k i i

i k
i

L x L x Lα − −
−∑ w

We get 

0 1 0 1( ) = ( ( ) ( ) ) =d d k
k kx x x L x L x L x Lα − +  w

( 1)
0 1( ) ( ) ( ) ( )d k

kd k L x L x L x Lα − +− +

1 0( ) ( ( )) ( )d k
j k

j
L x L x x L x Lα − +∑  

0 1 1( ( 1)) ( ) ( ) ( )d k i i
i k

i
d k L x L x L x Lα −

−− − +∑ 

( 1)
1 0 1( ) ( ( )) ( ).d k i i i

i l k
i l

L x L x x L x Lα − −
−∑∑  

Let 0( ) = ( ( ))j jz L x x L  and ( ) = ( ( ))i i
l lz L x x L . Such elements exist 

since / L L V⊗ ≅g p  as P-module. Let 

1= ( ) ( ) ( )d k
j k

j
L x L z L x Lα − +∑  w

0 1 1( ( 1)) ( ) ( ) ( )d k i i
i k

i
d k L x L x L x Lα −

−− − +∑  

( 1)
1 1( ) ( ) ( ).d k i i i

i l k
i l

L x L z L x Lα − −
−∑∑  

it follows Sym ( / )d k k
LL L−∈ ⊗ ⊗g pw . Moreover 

( 1)
0 1 0( ) = ( ) ( )d d k

k kx x x L L x L x Lα − + +
  w

where = ( )d kα α− . The Proposition is proved. 

Theorem 3.5. There is for all 1 ≤ l ≤ d an isomorphism 

U ( ) Sym ( / )d d l l
l LL L L≅ ⊗ ⊗g g p

of P-modules. 

Proof. There are embeddings of P-modules 

U ( ) Sym ( )d d
l L V⊆g

and 

Sym ( / ) Sym ( ).d l l d
LL L V− ⊗ ⊗ ⊆g p

Recall from studies of Maakestad [1] it follows (U ( ) ) =d
K l

l n
dim L

n
+ 

 
 

g

where dimk(V) = n+1. Assume 1= ( ) U ( )d d
l lz x x L L∈ g . It follows from 

Proposition 3.4 

1= ( ) ( )d l
lz L x L x Lα − + w

where 
( 1) 1Sym ( / ) Sym ( / ).d l l d l l

L LL L L L− − − −∈ ⊗ ⊆ ⊗ ⊗g p g p

Since 

1( ) ( ) Sym ( / )d l d l l
l LL x L x L L Lα − −∈ ⊗ ⊗ g p

it follows Sym ( / )d l l
Lz L L−∈ ⊗ ⊗g p  Hence we get an inclusion of 

P-modules U ( ) Sym ( / )d d l l
l LL L L−⊆ ⊗ ⊗g g p . 

Since 

(U ( ) ) = ( Sym ( / ))d d l l
K l K Ldim L dim L L− ⊗ ⊗g g p

the Theorem follows. 

Corollary 3.6. There is for all 1≤ l ≤ d an isomorphism 
* l *( ( ))( ) ( ) Sym ( )l d ld x L V−≅ ⊗  

of P-modules. 
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Proof. There is by studies of Maakestad [1], Theorem 3.10 an 
isomorphism 

*( ( ))( ) U ( )l d
ld x L≅ g  

of P-modules. From this isomorphism and Theorem 3.5 the Corollary 
follows since 

* * *( Sym ( / )) ( ) Sym ( )d l l d l l
LL L L V− −⊗ ⊗ ≅ ⊗g p

as P-modules. 

Note: Corollary 3.6 is proved in literature of Maakestad [5] 
Theorem 2.4 using more elementary techniques.

Let Y = Spec(K) and π : (V*) → Y be the structure morphism. Let 
 = (V*). Since Sym1(V*) is a finite dimensional SL(V)-module it 
follows it is a free Y-module with an SL(V)-linearization. It follows 
π*Sym1(V*) is a locally free -module with an SL(V)-linearization 
since π* preserves the SL(V)-linearization.

Proposition 3.7. There is for all 1≤ l ≤ d an isomorphism 
* *( ( )) ( ) Sym ( )l ld d l Vπ≅ − ⊗    

of locally free -modules with an SL(V)-linearization. 

Proof. Let P ⊆ SL(V) be the subgroup fixing the line L ∈ V There is 
an exact equivalence of categories 

mod(P) ≅ modG(G/P).                                                                  (3.7.1)

The P-module corresponding to * *( ) Sym ( )ld l Vπ− ⊗  is 
*( ) Sym ( )d l lL V− ⊗ . By the equivalence 3.7.1 and Corollary 3.6 we get an 

isomorphism 
* *( ( )) ( ) Sym ( )l ld d l Vπ≅ − ⊗    

of locally free sheaves with SL(V)-linearization and the Proposition is 
proved. 

We get a formula for the splitting type of ( ( ))l d    on projective 
space:

Corollary 3.8. There is for all 1 ≤ l ≤ d an isomorphism 

( ( )) ( )
n l
nl d d l
+ 

 
 ≅ ⊕ −   

of locally free sheaves. 

Proof. The P-modules Sym1(V*) corresponds to the free -module 
n l
n
+ 

 
 ⊕ 

. The Corollary now follows from Proposition 3.7. 

Let X = (m, m + n) and consider the P-modules 
1 1Sym ( / ) Sym ( )d d m

LL L V− ⊗ ⊗ ⊆ ∧g p

and 

1U ( ) Sym ( ).d d mL V⊆ ∧g

Proposition 3.9. There is an isomorphism 
1 1

1U ( ) Sym ( / )d d
LL L L−≅ ⊗ ⊗g g p

of P-modules. 

Proof. Pick an element 1
1( ) = ( ) ( )d d dx L dL x L U L− ∈ g . It follows 

1 1 1( ) Sym ( / )d d
LdL x L L L− −∈ ⊗ ⊗g p hence there is an inclusion 

1 1
1U ( ) Sym ( / ).d d

LL L L−⊆ ⊗ ⊗g g p

Let 1 1 1( ) Sym ( / )d d
LL x L L L− −∈ ⊗ ⊗g p . It follows 

1
1

1( ) = ( ) U ( )d d dL x L x L L
d

− ∈ g

hence there is an inclusion 1 1Sym ( / )d
LL L− ⊗ ⊗g p and the Proposition 

is proved. 

Corollary 3.10. There is an isomorphism 
1 * 1 1( ( ))( ) Sym ( / )d

X X Ld x L L−≅ ⊗ ⊗g p 

of P-modules. 

Proof. There is by studies of Maakestad [1], Theorem 3.10 an 
isomorphism 

1 *
1( ( ))( ) U ( ) d

X X d x L≅ g 

of P-modules. The Corollary follows from this fact and Proposition 5.1. 

Note: By studies of Maakestad [11], Example 5.12 there is a double 
complex 

*( ) H ( , ( ( )) )i j l
X X Xj X d⊗ ∧  

of sheaves on (W*) where 0= H ( , ( ))XW X d and X = (m,m + n). 
This double complex might give rise to a resolution of the ideal sheaf 
of the l’th discriminant *( ( )) ( )l

XD d W⊆   of the line bundle X (d). 
By the literature of Maakestad, Theorem 5.2 it follows knowledge 
on the P-module structure of ( ( ))l

X X d   gives information on 
the SL(V)-module structure of the higher cohomology groups 

*H ( , ( ( )) )i j l
X XX d∧   for all i ≥ 0. This again gives information on the 

dimension *( , ( ( )) )i j l
X Xh X d∧   . We get a description of the locally free 

sheaf 
*( ) H ( , ( ( )) ).i j l

X X Xj X d⊗ ∧  

for all i, j.

Example 3.11. Canonical filtration for the grassmannian (2,4).

 Consider the example where m = n = 2 and X = (2,4). We get 
two inclusions 

2 2 2Sym ( / ) Sym ( )d d
LL L V− ⊗ ⊗ ⊆ ∧g p

and 
2

2U ( ) Sym ( ).d dL V⊆ ∧g

We may choose a basis for p ⊆ g on the following form: 

= L xL⊕p p

where Lx is the line spanned by the following vector x: 

0 0 0 0
0 1 0 0

=
0 0 1 0
0 0 0 0.

x

 
 
 
 −
  
 

Let n ⊆ g be the sub Lie algebra spanned by the following vectors: 

1

0 0 0 0
0 0 0 0

=
1 0 0 0
0 0 0 0

x

 
 
 
 
  
 

2

0 0 0 0
0 0 0 0

=
0 1 0 0
0 0 0 0

x

 
 
 
 
  
 
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3

0 0 0 0
0 0 0 0

=
0 0 0 0
1 0 0 0

x

 
 
 
 
  
 

and 

4

0 0 0 0
0 0 0 0

= .
0 0 0 0
0 1 0 0

x

 
 
 
 
  
 

Let n  be the vector space spanned by the vectors x1, x2, x4, x4 and 
x. It follows 2

2 2U ( ) = U ( ) Sym ( )d d dL L V⊆ ∧g n . The vector space V has 
a basus e1, e2, e3 and e4. The vector space W has basis e1, e2. It follows 
∧2W has a basis given by e1∧ e2 = e[12] and ∧2V has basis given by 
e[12], e[13], e[14], e[23], e[24], e[34]. By definition L = e[12]. We get 
the following calculation: 

1 2 3( ) = [23], ( ) = [13], ( ) = [24]x L e x L e x L e− −

4 ( ) = [14], ( ) = [12].x L e x L e

A basis for the P-module 2 2Sym ( / )d
LL L− ⊗ ⊗g p are the following 

vectors:
2 2 2( ) ( ) = [12]d dL x L x L L e− −

2 2
2 ( ) ( ) = [12] [13]d dL x L x L L e e− −

2 2
4 ( ) ( ) = [12] [14]d dL x L x L L e e− −

2 2
1( ) ( ) = [12] [23]d dL x L x L L e e− −−

2 2
3 ( ) ( ) = [12] [24]d dL x L x L L e e− −−

2 2 2
2 2( ) ( ) = [13]d dL x L x L L e− −

2 2
2 4( ) ( ) = [13] [14]d dL x L x L L e e− −

2 2
1 2( ) ( ) = [13] [23]d dL x L x L L e e− −−

2 2
2 3( ) ( ) = [13] [24]d dL x L x L L e e− −−

2 2 2
4 4( ) ( ) = [14]d dL x L x L L e− −−

2 2
1 4( ) ( ) = [14] [23]d dL x L x L L e e− −−

2 2
3 4( ) ( ) = [14] [24]d dL x L x L L e e− −−

2 2 2
1 1( ) ( ) = [23]d dL x L x L L e e− −

2 2
1 3üüüüüüd dL x L x L L e e− −

2 2 2
3 3( ) ( ) = [24]d dL x L x L L e− −

Let a = d(d−1). A basis for the P-module 2 2U ( ) = U ( )d dL Lg n are the 
following vectors: 

2 2 2( ) = [12]d dx L L e−

2 1
2 ( ) = [12] [13] [13]d d dx x L aL e e dL e− −+

2 1
4 ( ) = [12] [14] [14]d d dx x L aL e e dL e− −+

2 1
1 ( ) = [12] [23] [23]d d dx x L aL e e dL e− −−

2 1
3 ( ) = [12] [24] [24]d d dx x L aL e e dL e− −−

2 2 2
2 ( ) = [13]d dx L aL e−

2
2 4 ( ) = [13] [14]d dx x L aL e e−

2
1 2 ( ) = [13] [23]d dx x L aL e e−

2 1
2 3 ( ) = [13] [24] [34]D d dx x l aL e e dL e− −− −

2 2 2
4 ( ) = [14]d dx L L e−

2 1
1 4 ( ) = [14] [23] [34]d d dx x L aL e e dL e− −− +

2
3 4 ( ) = [14] [24]d dx x L aL e e−−
2 2 2
1 ( ) = [23]d dx L aL e−

2
1 3 ( ) = [23] [24]d dx x L aL e e−

2 2 2
3 ( ) = [24] .d dx L aL e−

In the case where W ⊆ V have dimensions m and m + n we get 
embeddings of P-modules 

U ( ) Sym ( )d d m
l L V⊆ ∧g

and 

Sym ( / ) Sym ( ).d l l d m
LL L V− ⊗ ⊗ ⊆ ∧g p

There is no equality 

U ( ) = Sym ( / )d d l l
l LL L L− ⊗ ⊗g g p

of P-modules as submodules of Symd(∧mV) in general as Example 
3.11 shows.

Since Ul (g)Ld and Sym ( / )d l l
LL L− ⊗ ⊗g p by Theorem 3.5 and 

Proposition 3.3 are isomorphic when m = 1 and 1 ≤ l ≤ d, have the 
same dimension over K and both have natural filtrations of P-modules 
we may conjecture they are isomorphic as P-modules for all m,n ≥ 1. 
Note: There is a canonical line Ld ∈ Ul (g)Ld for all l. There is similarly 
a canonical line 

Sym ( / ) Sym ( / ).d d l l d l l
L LL L L L L− −≅ ⊗ ⊗ ∈ ⊗ ⊗p p g p

Hence the two P-modules Ul (g)Ld and Sym ( / )d l l
LL L− ⊗ ⊗g p look 

similar.

In general the SL(V)-module Symd(∧mV) decompose 

Sym ( ) ad m i
i i

V Vλ∧ ≅ ⊕

where i
Vλ are irreducible SL(V)-modules and ai ≥ 1 are integers 

(Proposition 5.4 for the situation of (2,4). One may ask if there is a 
non-trivial automorphism 

SL( )Aut (Sym ( ))d m
V Vφ ∈ ∧

with the property that the morphism 

:Sym ( ) Sym ( )d m d mV Vφ ∧ → ∧

induce an isomorphism 

: Sym ( / ) U ( )d l l d
L lL L Lφ − ⊗ ⊗ → g p g

of P-modules. In general the SL(V)-module Symd(∧mV) has lots of 
automorphisms. When m = 2 and dimk(V) = 4 it follows by Corollary 
5.4 there is for every d ≥ 1 an equality 

2 *
SL( )

=0

Aut (Sym ( )) =
l

d
V

i

V K∧ ∏
where l = k if d = 2k or d = 2k + 1. For m = n = 2 the SL(V)-module 
Symd(∧mV) is by Proposition 5.4 multiplicity free. The module 
Symd(∧mKm+n) is not multiplicity free in general when m, n > 2.

Jet Bundles and Incidence Complexes on the Projective Line
In this section we construct a resolution by locally free sheaves 
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of the ideal sheaf of the l’th incidence scheme *( ( )) ( )lI d W⊆ ×   . 
Here (d) is an invertible sheaf on the projective line  = 1 and 

0= H ( , ( ))pW d . There is on Y = (W*) × 1 a morphism φ((d)) of 
locally free sheaves 

*( )
( ( )) : ( 1) ( ( ))l

Y YW
d dφ − →   



Its zero scheme ( ( ( ))) = ( ( ))lZ d I d Yφ ⊆   is the l’th incidence 
scheme of (d). The Koszul complex of the morphism φ((d))

* 2 *0 ( 1) ( ( )) ( 1) ( ( ))l l l
Y Y Y Yd d→∧ − ⊗ → →∧ − ⊗ →     

*

( ( ))
( 1) ( ( )) 0l

Y Y Y lI d
d− ⊗ → → →


    

- called the incidence complex of (d) - is a resolution of the ideal 
sheaf of  I l ((d)). This follows from the fact that the ideal sheaf of I 
l((d)) is locally generated by a regular sequence. We also calculate the 
higher direct images of the terms 

*( ) ( ( ))j l
Y Yj d− ⊗∧  

appearing in the incidence complex.

The aim of the construction is to use it to construct a resolution of 
the ideal sheaf of the discriminant D l((d)) where (d) is a line bundle 
on projective space or a grassmannian.

Example 4.1. The Koszul complex of a map of locally free modules.

Let A be an arbitrary commutative ring with unit and let φ : E → F 
be a map A-modules. 

Define the following map: 
0 *: Ad E F A⊗ →

by 

0 ( ) = ( ( )).d x f f xφ⊗

Let I  A be the image of d1. We let Iφ be the ideal of φ. Define the 
following map 

* 1 *:p p pd E F E F−∧ ⊗ → ∧ ⊗

by 


1
1 1 1 1

=1
( ) = ( 1) ( ( )) .

p
p r

p p r r r r p p
r

d x f x f f x x f x f x fφ−⊗ ∧ ∧ ⊗ − ⊗ ∧ ∧ ⊗ ∧ ∧ ⊗∑  

Lemma 4.2. The following holds for all p ≥ 1: dp ο dp−1 = 0. 

Proof. We get 

1
1 1( ) =p p

p pd d x f x f− ⊗ ∧ ∧ ⊗

1

=1
( 1) ( ( ))

p
r

r r
r

f xφ−−∑

 

1
1 1( 1) ( ( )) = 0l

l l l l r r p p
l r

f x x f x f x f x fφ−

≠

− ⊗ ∧ ∧ ⊗ ∧ ∧ ⊗ ∧ ∧ ⊗∑   

and the claim of the Lemma follows. 

Assume E, F are locally free of finite rank and let r = rk(E ⊗ F*). We 
get a complex of locally free A-modules 

* 2 * *0 / 0r E F E F E F A A Iφ→ ∧ ⊗ → →∧ ⊗ → ⊗ → → →

called the Koszul complex of the map φ

Example 4.3. The Koszul complex of a regular sequence.

 Let 1= { ,.., }nx x x  be a regular sequence of elements in A and let E = 
Ae be the free A-module on the element e. Let F = A{e1, .., en} be a free 
rank n module on e1, .., en. Let *=i iy e . Define 

φ : E → F 

by 

1 1( ) = .n ne x e x eφ + +

Let e ⊗ yi = zi. It follows 
* 1 *:p p pd E F E F−∧ ⊗ → ∧ ⊗

looks as follows: 

1
( ) =p

i ip
d z z∧ ∧



1

1
=1

( 1) ( ( )) =
p

p
i i i ir r p

r
y e z z zφ−− ∧ ∧ ∧ ∧∑  



1

1
=1

( 1) .
p

r
i i i ir r p

r
x z z z−− ∧ ∧ ∧ ∧∑  

Hence the complex ∧• E ⊗ F * equals the Koszul complex ( )K x•
 

of the regular sequence x . It is an exact complex since x  is a regular 
sequence.

Example 4.4. The Koszul complex of a morphism of locally free 
sheaves.

The construction of the differential in the Koszul complex of a 
map of modules is intrinsic, hence we may generalize to morphisms of 
locally free sheaves. Let Y be an arbitrary scheme and let φ :  →  be a 
map of locally free Y-modules. Let 

0 *: Yd ⊗ →  

be defined locally by 
0 ( ) = ( ( )).d s v v sφ⊗

Let 0= ( ) YIm dφ ⊆   be the ideal sheaf defined by d 1. Since φ is 
quasi coherent sheaf of ideals it follows the ideal sheaf φ corresponds 
to a subscheme Z(φ) ⊆ Y - the zero scheme of φ. Let U ⊆ Y be an open 
subset and define the following map: 

* 1 *: ( )( ) ( )( )p p pd U U−∧ ⊗ → ∧ ⊗   

by 


1
1 1 1 1

=1
( ) = ( 1) ( ( )) .

p
p r

p p r r r r p p
r

d s v s v v s s v s v s vφ−⊗ ∧ ∧ ⊗ − ⊗ ∧ ∧ ⊗ ∧ ∧ ⊗∑  

This gives a well defined map of locally free sheaves since we have 
not chosen a basis for the module *( )( )p U∧ ⊗   to give a definition. 
By Lemma 4.2 it follows d p ο d p+1 = 0 for all p ≥ 1 hence we get a 
complex of locally free sheaves. The sequence of maps of locally free 
sheaves 

* 2 * *
( )0 0r

Y Z φ→ ∧ ⊗ → →∧ ⊗ → ⊗ → → →       

is called the Koszul complex of φ. Here r = rk( ⊗ *).

Example 4.5. Koszul complexes and local complete intersections. 

Assume φ :  →  is a map of locally free Y-modules where  is 
a line bundle. Let Z(φ) ⊆ Y be the subscheme defined by φ - the zero 
scheme of φ. Let r = rk (). Choose an open affine cover Ui of Y where 
 and  trivialize, i.e 

1( ) = ( ){ ,.., }i i i irU U f f 

and 

( ) = ( ) .i i iU U e 

Let (Ui) = Ai, Li = (Ui) and Fi = (Ui). Assume the image 
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( ) :i i iU L Fφ →

has 

1 1( )( ) =i i i i ir irU e x f x fφ + +

where 1{ ,.., }i ir ix x A⊆  is a regular sequence. Let 1= = { ,.., }i i i irI x x x . It 
follows from Example 4.3 the Koszul complex 

* 2 * *0 ( ) ( )r
i i i i i iL F L F L F→∧ ⊗ → →∧ ⊗ → ⊗

→ Ai → Ai / Ii → 0

is a resolution of the ideal Ii since Ii is generated by a regular 
sequence. The complex *

i iL F•∧ ⊗  is isomorphic to the Koszul complex 
( )iK x•  on the regular sequence ix . It follows the global complex 

* 2 2 * *
( )0 0r r

Y Z φ
⊗ ⊗→ ∧ → → ∧ → ⊗ → → →       

is a resolution of the ideal sheaf Z(φ) of Z(φ) ⊆ Y since it is locally 
isomorphic to the Koszul complex ( )iK x• for all i.

Since the ideal Ii is generated by a regular sequence of length r it 
follows dim(Ai / Ii) = dim(Ai) − r. If Y is irreducible of dimension d it 
follows Z (φ) ⊆ Y is a local complete intersection of dimension d − r.

Example 4.6. The incidence complex of (d) on the projective line. 

Let 1= K   where K is a field of characteristic zero and let (d) ∈ 
Pic() = Z be a line bundle where d ∈ Z. Let 

0
0= H ( , ( )) = { ,.., }dW d K e e

where 0 1= d i i
ie x x− . Let *=i iy e . Let Y = (W*) ×  and consider the 

following diagram 

Y
p

q



π

(W∗) π Spec(K )

.

There is a sequence of locally free Y-modules 
0

*( )
( 1) H ( . ( )) ( ( ))

lT lY
Y Y YW

d d− → ⊗ →    




and let φ ((d)) be the composed map 

*( )
( ( )) : ( 1) ( ( )) .l

Y YW
d dφ − →   


	 (12)

 It follows by studies of Maakestad [11], the zero scheme Z(φ 
((d))) equals the incidence scheme I l ((d)) of the line bundle (d). 
By definition *

0( ) = Proj( [ ,.., ])dW K y y where *=i iy e . It has an open 
cover on the following form: 0( ) = Spec( [ ,.., ])i dD y K u u where we let 

= j
j

i

y
u

y
. Let yj / yj = 1. Let 

0 1 0( ) = [ ,.., , ].d
d dF t u u t u t K u u t+ + + ∈

Restrict the map 4.6.1 to the open set 0 0= ( ) ( )i iU D y D x Y× ⊆ . We 
get the following two maps of modules: 

0
*( ) 0 0

: ( 1) | H ( , ( ))U UW i i
dα − → ⊗  




0
1: [ , ] [ , ] { ,.., }i i d

i

K y t K u t K e e
y

α → ⊗

defined by 

0 1 0
=0 =0 =0

(1 / ) = = = .
d d d

d k k k d
i k k k k

k k k
y u e u x x u t xα −⊗ ⊗ ⊗∑ ∑ ∑

We get the map 

0

0 0 0
: H ( , ( )) ( ( )) |l l

U U Ui i i
T d d⊗ →   

defined by 

0 1 0 0(1 ) = (1 ) = ( ) .l d i i l i d i dT x x T t x t dt x−⊗ ⊗ + ⊗

The composed map 

00

1( ( )) : [ , ] [ , ]{ }j d
U i ii

i

d K u t K u t dt x
y

φ → ⊗

is the map 

0
=0

1( ( ))( ) = ( ) =
d

k d
k

ki

d u t dt x
y

φ + ⊗∑

( )

0 0 0
=0

( ) [ , ]{1 ,.., }.
!

kl
k d d l d

i
k

F t dt x K u t x dt x
k

⊗ ∈ ⊗ ⊗∑

Let Ui1 = D(yi) × D(x1) ⊆ Y and let 0

1

=x s
x . Let 

2
1 2 0 0( ) = [ ,.., , ].d

d d d dG s u u s u s u s K u u s− −+ + + + ∈

Restrict the map 4.6.1 to the open set Ui1

We get the following two maps of modules: 
0

*( ) 1 1
: ( 1) | H ( , ( ))U UW i i

dα − → ⊗  




0
1: [ , ] [ , ] { ,.., }i i d

i

K y s K u s K e e
y

α → ⊗

defined by 

0 1 1
=0 =0 =0

(1 / ) = = = .
d d d

d k k d k d
i k k k k

k k k
y u e u x x u s xα − −⊗ ⊗ ⊗∑ ∑ ∑

We get the map 
0

1 1 1
: H ( , ( )) ( ( )) |l l

U U Ui i i
T d d⊗ →   

defined by 

0 1 1 1(1 ) = (1 ) = ( ) .l d i i l d i d d i dT x x T s x s ds x− − −⊗ ⊗ + ⊗

The composed map 

11

1( ( )) : [ , ] [ , ]{ }j d
U i ii

i

d K u s K u s ds x
y

φ → ⊗

is the map 

1
=0

1( ( ))( ) = ( ) =
d

k d
d k

ki

d u s ds x
y

φ − + ⊗∑

( )

1 1 1
=0

( ) [ , ]{1 ,.., }.
!

kl
k d d l d

i
k

G s ds x K u s x ds x
k

⊗ ∈ ⊗ ⊗∑

It follows the ideal sheaf ( ( ))lI d
  of Il ((d)) is generated by 

( ) ( 1)( ) ( ){ , ,.., ( )}
! ( 1)!

l lF t F t F t
l l

−

−

on Ui0 and by 
( ) ( 1)( ) ( ){ , ,.., ( )}

! ( 1)!

l lG s G s G s
l l

−

−

on Ui1. Let 
( ) ( )=
( )!

i

i
F tz

i  and 
( ) ( )=
( )!

i

i
G sw

i
 for i = 0, .., l. 

Lemma 4.7. Assume B is a commutative ring of characteristic zero 
and let 

0 1( ) = [ ]d
df t a a t a t B t+ + + ∈

be an arbitrary degree d polynomial with ad ≠ 0. Let f (i)(t) denote the 
formal derivative with respect to t. It follows 

http://dx.doi.org/10.4172/1736-4337.S2-001
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( )

=

( ) = .
!

k d
i k

i
i k

if t a t
kl

− 
 
 

∑

Proof. The proof is by induction. It is clearly true for l = 1. Assume 
it is true for l > 1. Consider k = l + 1. We get 

( 1) ( )( )( ) 1= =
( 1)! 1 !

l l t

t

f t f
l l l

+ ∂
+ + ∂

( 1)
1 2

1 21 ( 2 ( ) ) =
1

d l
l l d

l l d
a a t d l a t

l l ll
− +

+ +

+ +     
+ + + −     +      



( 1)
1 2

1 2
=

1 1 1
d l

l l d

l l d
a a t a t

l l l
− +

+ +

+ +     
+ + +     + + +     



( 1)

= 1 1

d
i l

i
i l

i
a t

l
− +

+

 
 + 

∑

and the claim of the Lemma follows. 

Lemma 4.8. The sequence {zl, .., z0} is a regular sequence in K[ui, t]. 
The sequence {wl, .., w0} is a regular sequence in K[ui, s]. 

Proof. Let 
( ) ( )=

!

i

i
F tz

i
 and 

( )

=
!

j

j
Gw

j . Assume l < i and consider 

the sequence 1 0 0, ,.., [ ] = [ ,.., ][ ]l l dz z z A t K u u t− ⊆ . Since A[t] is a domain it 

follows zl is a non zero divisor in A[t]. We see from Lemma 4.7 

0 1 1[ ] / [ ,.., , ,.., , ]l l l dA t w K u u u u t− +≅

which is a domain, hence wl−1 is a non zero divisor in A[t] / wl. By 
induction it follows zl, .., z0 is a regular sequence in A[t]. Assume i ≤ l. It 
follows the sequence zl, .., zi+1 is a regular sequence in A[t]. We see from 
Lemma 4.7 zl is non zero in 

1 0 1[ ] / ( ,.., ) = [ ,.., , ,.., , ]l i i l dA t z z K u u u u t+ +

and 0 1[ ,.., , ,.., , ]i l dK u u u u t+  is a domain. It follows zi is a non zero divisor 
in A[t] / (zl, .., zi+1). It follows zl, .., z0 is a regular sequence in A[t] and the 
claim follows. A similar argument proves wl, .., w0 is a regular sequence 
in A[s] and the Lemma is proved. 

One may prove using similar methods for any permutation σ ∈ Sl+1 
the sequences 

z (l), .., zσ (0) 

and 

w (l), .., wσ (0) 

are regular sequences.

It follows the ideal sheaf 
( ( ))lI d

  is locally generated by a regular 
sequence.

The morphism 

*( )
( ( )) : ( 1) ( ( ))l

Y YW
d dφ − →   



gives by Example 4.3 rise to a Koszul complex 
*

*( )
( 1) ( ( ))l

YW
d•∧ − ⊗  



of locally free sheaves of Y = (W*) × 1.

Definition 4.9. Let the complex 
* 2 *0 ( 1) ( ( )) ( 1) ( ( ))l l l

Y Y Y Yd d→∧ − ⊗ → →∧ − ⊗ →         (4.9.1)
*

( ( ))
( 1) ( ( )) 0l

Y Y Y lI d
d− ⊗ → → →


    

be the incidence complex of (d). 

Since the ideal sheaf of I l ((d)) by the discussion above is locally 
generated by a regular sequence it follows from Example 4.3 the 
complex 4.9.1 is a resolution.

In framework of Maakestad [5], Theorem 5.10 one calculates the 
higer direct images 

*
*R ( ( 1) ( ( )) )i j l

Y Yq d∧ − ⊗  

for all i, j. We get the following calculations:

Let V = K{e0, e1} and  = (V *). Let W = H0(,(d)) = Symd(V *) 
and consider the diagram 

Y = (W ∗) × 
p

q



π

(W ∗) π Spec(K )

.

By the results of this paper it follows there is an isomorphism 
* *( ( )) ( ) Sym ( )l ld d l Vπ≅ − ⊗   

a sheaves with an SL(V)-linearization. We get 
* *( ( )) ( ( )) Sym ( ).j l j ld j d l Vπ∧ ≅ − ⊗ ∧    

By the equivariant projection formula for higher direct images we get 
* *

* *( )
R ( ( 1) ( ( )) ) ( ) H ( , ( ( )) ).i j l i j l

Y Y W
q d j d∧ − ⊗ ≅ − ⊗ ∧      



Let 

π :  → Spec(K). 

It follows 
* * *( ( )) ( ( )) Sym ( ).j l j ld j l d Vπ∧ ≅ − ⊗ ∧    

We get 
* *

*H ( , ( ( )) ) R ( ( Sym ( )) ( ( )))i j l i j ld V j l dπ π∧ ≅ ∧ ⊗ − ≅  

(Sym ( )) H ( , ( ( ))).j l iV j l d∧ ⊗ −

We get the following Theorem:

Theorem 4.10. The following holds: 
*

*R ( ( ) ( ( )) ) 0 0 1 ( ) 2.i j lp j d if i or i and j d l− ⊗∧ = = = − <      
1 * ( ) 2

*R ( ( ) ( ( )) ) = ( ) Sym ( ) Sym ( )j l j d l j lp j d j V V− −− ⊗∧ − ⊗ ⊗∧   

if j(d − l) ≥ 2. 

Proof. The proof follows from the calculation of the equivariant 
cohomology of line bundles on projective space [13]. 

Hence we have complete control on the sheaf 
*

*R ( ( 1) ( ( )) )i j l
Y Yq d∧ − ⊗  

on the projective line and projective space for all i, j. Using the 
techniques introduced in this paper one may describe resolutions of 
incidence schemes I l ((d)) on more general grassmannians and flag 
varieties. The hope is we may be able to construct resolutions of the 
ideal sheaf of D l ((d)) using indicence resolutions in a more general 
situation.

Note: In literature of Lascoux [12] resolutions of ideal sheaves 
of determinantal schemes are studied and much is known on such 

http://dx.doi.org/10.4172/1736-4337.S2-001
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resolutions. In studies of Maakestad [11] it is proved Dl ((d) is 
a determinantal scheme for any d ≥ 2 on the projective line 1. 
Assume  ∈ PicG(G/P) is a G-linearized linebundle, G a semi simple 
linear algebraic group and P a parabolic subgroup. If one can prove D 
l() is a determinantal scheme we get two approaches to the study of 
resolutions of ideal sheaves of discriminants: One using jet bundles and 
incidence schemes, another one using determinantal schemes.

Appendix A: Automorphisms of Representations
Let W ⊆ V be vectorspaces of dimension two and four over the 

field K. Consider the subgroup P ⊆ G = SL(V) where P is the parabolic 
subgroup of elements fixing W. It follows π : G → G/P = (2,4) is a 
principal P-bundle. Let g = Lie(G) and p = Lie(P) be the Lie algebras of G 
and P. In this section we study the decomposition into irreducibles and 
automorphisms of some G-modules. We also study some Psemi-modules 
where Psemi is the semi-simplification of P. It follows Psemi equals SL(2) 
× SL(2). Since p ⊆ g is a P-sub module it follows the quotient g/p is a 
P-module hence a Psemi module. We may apply the theory of highest 
weights since Psemi = SL(2) × SL(2) is a semi simple algebraic group.

Proposition 5.1. The following hold: There is an isomorphism of 
SL(2) × SL(2)-modules 

2 * 2
=0Sym ( / ) = Sym ( ) Sym ( / ).k n i m i m

i W V W+ +⊕ ⊗g p 	                             (5.1.1)

for all k ≥ 1. Here ( , ) = ( ,0)n m  if k = 2n and 1( , ) = ( ,1)
2

kn m −  if k = 2n 
+ 1. 

Proof. Recall the canonical isomorphism from Lemma 2.4 
*/ Hom( , / ) /W V W W V W≅ ≅ ⊗g p

of P-modules. It follows 
*Sym ( / ) Sym ( / )k k W V W≅ ⊗g p

and its decomposition into irreducible SL(2) × SL(2)-modules 
can be done using well known formulas [14]. Alternatively one may 
compute its highest weight vectors and highest weights explicitly using 
the construction from Section 5. 

Let i : G / P → (∧2V*) =  be the Plucker embedding and let 
G/P(1) = i*(1) be tautological line bundle on G / P and let G/

P(d) = G/P(1)⊗d. It follows from the Borel-Weil-Bott Theorem [16] 
H0(,(d)) is an irreducible SL(V)-module. Let V have basis e1, e2, e3, 
e4 and let ∧2V have basis eij for 1 ≤ i ≤ j ≤ 4, with eij = ei ∧ ej. Consider the 
element f ∈ Sym2(∧2V) where 

f = e12e34 − e13e24 + e14e23. 

One checks f is a highest weight vector for SL(V) with highest 
weight 0, hence it defines the unique trivial character of SL(V). Its dual 

f *= x12 x34 − x13 x24 + x14 x23 ∈ Sym2(∧2V*)

is the defining equation for  = G / P as closed subscheme of (∧2V*).

Proposition 5.2. The following hold: there is an isomorphism of 
SL(V)-modules 

2 0 *
=0Sym ( ) = H ( , ( 2 )) ,d l

iV d i∧ ⊕ − 			               (5.2.1)

 where l = k if d = 2k or d = 2k + 1. 

Proof. The result is proved using the theory of highest weights. 
There is a split exact sequence of SL(V)-modules 

* 2 2 * 2 * 00 Sym ( ) Sym ( ) H ( , ( )) 0.d df V V d−→ ∧ → ∧ → →

Dualize this sequence to get the split exact sequence 
2 2 20 Sym ( ) Sym ( ) 0.d d

df V V Q−→ ∧ → ∧ → →

where Qd = H0(,(d))*. Since f is the trivial character it follows there 
is an isomorphism 

2 2Sym ( ) Sym ( )d df V V∧ ≅ ∧

of SL(V)-modules. By the Borel-Weil-Bott Theorem it follows Qd is an 
irreducible SL(V)-module. If d = 2k we get by induction the equality 

2 *
2 2 0Sym ( ) = ,d

d dV Q Q Q Q−∧ ⊕ ⊕ ⊕ ⊕

and the claim of the Proposition is proved in the case where d = 2k. 
The claim when d = 2k + 1 follows by a similar argument and the 
Proposition is proved. 

Corollary 5.3. Let =0= (2 )l
i i d⊕ −   where l = k if d = 2k or d = 2k 

+ 1. It follows 

H0(,) ≅ Symd (∧2V*)

as SL(V)-module. 

Proof. We get by Proposition 5.4 isomorphisms of SL(V)-modules 
0 0

=0H ( , ) H ( , ( 2 ))l
i d i≅ ⊕ − ≅  

0 2 * 2 *
=0 H ( , ( 2 )) Sym ( ) Sym ( )l d d

i d i V V⊕ − ≅ ∧ ≅ ∧

and the Corollary is proved. 

Corollary 5.4. There is for every d ≥ 1 an equality 
2 *

SL( )
=0

Aut (Sym ( )) =
l

d
V

i

V K∧ ∏
where l = k if d = 2k or d = 2k + 1. 

Proof. This follows from Proposition 5.4 and the Borel-Weil-Bott 
theorem (BWB). From the BWB theorem it follows H0(,(d))* is 
an irreducible SL(V)-module for all d ≥ 1. From this and Proposition 
5.4 the claim of the Corollary follows. 

Hence the SL(V)-module Symd (∧2V) is a multiplicity free SL(V)-
module for all d ≥ 1. This is not true in general for Symd (∧mKm+n) when 
m, n > 2.

In general if λ and µ are two Schur-Weyl modules [14] there is a 
decomposition 

( ( )) i i
V Vλ µ λ≅ ⊕ 

where i
Vλ is an irreducible SL(V)-module for all i. It is an open problem 

to calculate this decomposition for two arbitrary partitions λ and µ.

Appendix B: The Cauchy Formula
We include in this section an elementary discussion of the Cauchy 

formula using multilinear algebra. Let W ⊆ V be vector spaces of 
dimension m and m + n over K and let P ⊆ SL(V) be the subgroup fixing 
W. Let g = Lie(G) and p = Lie(P). There is a canonical isomorphism 

g/p ≅ Hom(W, V / W) 

of P-modules, hence the elements of g/p may be interpreted as 
linear maps. The symmetric power Symk (g/p) ≅ Symk (Hom(W, V / 
W)) is a P-module hence a Psemi = SL(m) × SL(n)-module and we want 
to give an explicit construction of its highest weight vectors as Psemi-
module.

Proposition 6.1. Let U = Km. There is a canonical map of SL(V)-
modules 
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*( ) Sym (Hom( , ))m m mU U U U∧ ⊗∧ →

defined by 
1 1 1 2 1

1 1 2 1 2 2 2

1 2 .

m

m m m

m m m m

x e x e x e
x x e e x e x e x e

x e x e x e

⊗ ⊗ ⊗
∧ ∧ ⊗ ∧ ∧ → ⊗ ⊗ ⊗

⊗ ⊗ ⊗



  



Here e1, .., em is a basis for U and x1, .., xm is a basis for U*. 

Proof. The proof is left to the reader as an exercise. 

Note: in Proposition 6.1 the element xi ⊗ ej is an element of U*⊗U 
= Hom(U,U). Hence the determinant 

1 1 1 2 1

2 1 2 2 2

1 2 .

m

m

m m m m

x e x e x e
x e x e x e
x e x e x e

⊗ ⊗ ⊗
⊗ ⊗ ⊗
⊗ ⊗ ⊗







may be interpreted as a polynomial of degree m in the elements xi ⊗ ej, 
hence it is an element of Symm(Hom(U,U)).

Let B ⊆ SL(m,K) × SL(n,K) ⊆ SL(V) = SL(m + n,K) be the following 
subgroup: B consists of matrices with determinant one of the form 

1

2

0
0

U
U

 
 
 

where 

11

21 22

1

1 2

0 0
0

=

m m mm

a
a a

U
a a a

 
 
 
 
 
 
 
 





   



and 

11

21 22
2

1 2

0 0
0

.

0n n nn

b
b b

U

b b b

 
 
 
 
  
 





   



Let T be a B-module and v ∈ T a vector with the property that for 
all x ∈ B it follows 

xv = λ(x)v

where λ ∈ (Hom(B,K*) is a character of B. It follows v is a highest weight 
vector for T as SL(m, K) × SL(n, K)-module. The group B ⊆ SL(V) 
defines filtrations of W and V/W as follows: Let W have basis e1, .., em 
and V have basis e1, .., em, f1, .., fn. Let W1={em}, W2 = {em, em−1}, and 

Wi = {em, ..em−i+1}.

It follows we get a filtration 

0 1 10 = =mW W W W−⊆ ⊆ ⊆

of the vector space W. Let 

1 1= { ,.., }j m n n jU W f f− − +∪

and let Vi = (V/W)/Un−i. We get a surjection 

V/W → Vi

for i = 1, .. , n−1. It follows dimWi = dimVi = di for all i. Let x : W → V/ 
W be a linear map of vector spaces. We get an induced map 

xi : Wi → Vi

wich is a square di matrix for all i. Let g∈B be the element

1

2

0
0

G
G

 
 
 

where 

1

2

1

0 0
0

=
* m

a
a

G
a

 
 
 
 
 
 
 
 





   



and 

1

2
2

0 0
0

.

0 n

b
b

G

b

 
 
 
 
  
 





   



The i’th wedge product 
*| |= Hom( , ) = ( )i i i i i

i i i i i ix x W V W V∧ ∈ ∧ ∧ ∧ ⊗∧

may be viewed as an element in 

| | Sym (Hom( , )) Sym (Hom( , / ))i i
i i ix W V W V W∈ ⊆

via Proposition 6.1.

Proposition 6.2. The following formula holds: 

1

1

| |= | |= ( ) | |i
i i i

m i m

b bx x x
a a

λ
− +





g g

for all g∈B. Here 1

1

( ) = i

m i m

b b
a a

λ
− +





g  is a character λ ∈ Hom(B, K*). 

Proof. The proof is left to the reader as an exercise. 

Hence the i’th determinant | xi | ∈ Symi(Hom(W,V/W)) is a highest 
weight vector for the SL(m) × SL(n)-module Symi(Hom(W,V/W)). By 
the results of studies Brion [17-22], it follows the vectors 0 1

0 1
d dd i

ix x x  
with =iid k∑  are all highest weight vectors for the module 

Symk(Hom(W,V/W)) ≅ Symk(W* ⊗V/W). 
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Abstract
We consider a (real or complex) analytic manifold M. Assuming that F is a ring of all analytic functions, full 

or truncated with respect to the local coordinates on M; we study the (m ≥ 2)-derivations of all involutive analytic 
distributions over F and their respective normalizers. 

Keywords: m-derivations; Analytic vector fields Lie algebras; 
Distributions; Generalized foliations; Stein manifolds; Compact 
holomorphic manifolds; Chevalley-Eilenberg’s cohomology; 
Compactly supported vector fields    

Introduction and Preliminary
We know several embedding theorems in differential geometry, 

some of them are of John F. Nash in Riemannian manifolds [1,2], of 
Whitney [3] in differentiable manifolds and of Grauert in analytic 
manifolds cf. [4]. They make easy certain study on a differentiable 
manifold. Here, we are interested to a real or complex analytic 
n-dimensional manifold M and let F(M) be the ring of all analytic 
functions on M. We know that these manifolds can be considered as 
smooth manifolds. But certain property on a smooth manifold cannot 
be true on M, for example the global representation of a smooth 
function germ theorem. Grabowski had this problem when he studied 
derivations of the real or complex analytic vector fields Lie algebra cf. 
[5] and he used Stein manifolds to avoid technical difficulties in them. 
Here, we examine not only the derivations but the (m ≥ 2)-derivations 
(generalization of derivation’s notion) of a Lie subalgebra of the 
real or complex analytic vector fields Lie algebra on M, using Lie 
algebra tools. In advance, we state that the considered Lie algebras 
have enough sections more than constant ones in the Lie algebra of 
all analytic vector fields. Then, we consider only Stein spaces unless 
expressly stated in a complex analytic case. In the real analytic one, 
we don’t need more hypothesis because of the imbedding theorem of 
Grauert and Cartan theorems [6]. More precisely, any real analytic 
manifold can be considered as a closed submanifold of a certain l 
(a ” real Stein manifold”). Now, an m-derivation of a Lie algebra A 
is a linear map from A to itself which is distributive on the brackets 

1 2 1[ ,[ , [ , ] ]]m mX X X X−  , where all Xi are in A. On the one hand, we 
have studied the m-derivations of polynomial vector fields Lie algebras 
on n in studies of 7. Randriambololondrantomalala [7], an important 
Lie subalgebra of analytic vector fields, we found that Lie algebras 
of derivations are different to those of (m > 2)-derivations. One can 
see the following example, on 3, the Lie -algebra is spanned by 

2, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
x y z y y

x y z x y z x x  and let’s define the −linear 

map D by 2( ) =D ∂ ∂ 
 ∂ ∂ 

y
x x  which is zero otherwise. It’s clear that D is not 

a derivation, but a 3-derivation. On the other hand, all m-derivations of 
a distribution over the full or truncated rings of smooth functions on a 
differentiable manifold in literature of Randriambololondrantomalala 
[8], are derivations. These facts lead us to ask if a distribution Lie 
algebra on an analytic manifold has results as the one or the other 
above results. So, we will divide our paper into three parts. First, we 
take a real or complex analytic involutive distribution Ω over M. That 
is to say, Ω is a F(M)-submodule of the analytic vector fields Lie algebra 

( )Mχ  on M. We can find some examples of these distributions and the 
interests for studying their derivations in literature of Grabowski and 
Cartan [5,6]. Here, we find the Ω’s centralizer and the derivative ideal 
of Ω. We can say also that the normalizer of Ω is a Lie subalgebra of 
analytic vector fields. In addition, we find out that all m-derivations of 
Ω (resp. of the normalizer of Ω) are inner with respect to a normalizer’s 
vector field (resp. are inner). Second, assuming that Ω is an involutive 
distribution on M over a subring F of F(M), namely an F-submodule 
of ( )Mχ  stable by the vector fields bracket, where F≠ F(M). One can 
consider a system of commuting vector fields on M as in studies of 
Randriambololondrantomalala [8] and all distribution Lie subalgebras 
of the Lie algebra of analytic vector fields which commute with this 
system. The normalizer of Ω is an analytic vector fields Lie algebra and 
contains locally all constant vector fields and Euler’s vector field. But in 
general, we can’t use the reasoning by Randriambololondrantomalala 
[7] to characterize m-derivations of Ω. We make more explicit all 
m-derivations of Ω and of some of its normalizer. Whereas, in the end, 
we discuss the Lie algebras of holomorphic vector fields, especially 
when the holomorphic manifold is not a Stein one, and Lie algebras 
of locally polynomial vector fields on an analytic manifold M. Their 
m-derivations as well as their normalizers can be characterized by 
using some results of Randriambololondrantomalala [7].

Therefore, we have found the m-derivations of all distributions 
over a set of full or truncated analytic functions with respect to the 
local coordinates on M. When m = 2, we deduce from our results some 
[5]’s theorems. Third, we can apply our theorems on Lie algebras of 
real or complex analytic vector fields on M, of generalized foliation on 
M cf. [9], a Lie subalgebra of analytic vector fields on 2 and on 2, 
Riemann surfaces, etc. Relations between the Lie algebra of compactly 
supported vector fields and the compactness of M are discussed. 
Moreover, we emphasize the extensions of our theorems when the 
studied distributions are singular, by using the complexification of a 
real analytic manifold, Hartogs and Riemann extension theorems. Of 
course, in these circumstances, we can use theory of coherent sheaves 
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made by Cartan [6] in a Stein case or pass into Grabowski’s conjecture 
cf. [9]. We interpret our results in Chevalley-Eilenberg cohomology 
sense when m = 2.

Following the above notations, let M be a real or complex analytic 
n-dimensional manifold. In complex case, we regard a Stein manifold 
unless special mention. We denote by ( )Mχ  the Lie algebra of 
analytic vector fields on M and F(M) the ring of analytic functions on 
M. Throughout this paper, we take an atlas in which every chart are 
connected. Then, the open subset of a chart U where a non-trivial subset 
of ( )Mχ  doesn’t vanish, is dense on U (non-trivial means different 
to {0}). We can use certain results of Randriambololondrantomalala 
[7,8] because in the proofs of theorem of these papers we consider 
only analytic functions (polynomials, exponentials). In the same way, 
we don’t need partition of the unity to make global some local results 
cf. [10]. In all sections of this article, we set an integer m ≥ 2, recall 
that D is an m-derivation of a Lie algebra A if for 1( )i iX A≤ ≤ ⊂m , we get 

[ ] ( ) [ ] ( )1 2 1 1 2 1 1 2 1, , , , = , , , , , , , , .D X X X X D X X X X X X X D X− − −
          + +                   m m m m m m  

This D is said inner on a Lie algebra  containing A, if D is a Lie 
derivative with respect to an element of . Recall us another basic 
definition cf. [11]. 

Definition 1.1. A complex manifold M is a Stein manifold, if we 
have simultaneously the three following conditions: For every x ≠ y, 
both in M; there is a holomorphic function f over M such that f (x) ≠ 
f (y). For all x ∈ M, it exists n holomorphic functions (fi) over M such 
that dfi are linearly independent over  on x. If K is a compact set of M, 
the following set is compact (holomorphic convexity of M) 

/ ( ) sup ( ) , for all holomorphic functions over .
K

M M
∈

 ∈ ≤ 
 y
x f x f y f

From these assertions, every local ring of holomorphic functions 
around x ∈ M is spanned by holomorphic functions on M cf. [12].

 Some results of the Lie algebra of compactly supported vector 
fields Cc relative to a Stein manifold are the following, 

Proposition 1.2. A complex analytic manifold M is compact iff Cc 
is non trivial, particularly if M is a Stein holomorphic manifold, Cc is 
trivial. 

Proof. It’s obvious that if M is compact, then = ( )c MχC  and Cc is 
not trivial. Conversely, suppose that M isn’t a compact set and there is 
X ∈ Cc such that K = Supp(X) ≠ ∅. We can consider K ≠ M because M 
is not compact. Then, we have the nullity of X in the open set K ≠ ∅ . 
By analyticity, X vanishes in whole M. Hence, we have a contradiction 
about K ≠ ∅ and we obtain M is a compact set. It’s clear that a Stein 
space is never a compact set by definition, then its Lie algebra of 
compactly supported vector fields is trivial. 

The m-derivations defined by distributions on F(M) 

 Let Ω be a non-trivial involutive analytic distribution over the 
analytic functions ring on M. Let N be the normalizer of Ω in ( )Mχ
, that is to say that the set of all ( )X Mχ∈  such that [ ],X Ω ⊂Ω , and 

= { / ( ) {0}}M∈ Ω ≠x xB . We can choose a connected domain Ui of a 
chart. If we suppose that it exists an open set Oi in Ui where Ω vanishes, 
then | = {0}Ui

Ω  by analyticity. Otherwise, every open set in Ui contains 
an element of B. So, B∩Ui is dense over Ui. Moreover, the collection 
of Ui forms an atlas of M, then B is dense over M. The set B is an open 
analytic submanifold of M. Particularly, B is a Stein cf. [13]. Thus, 
every vector field defined over B admits a continuous extension on M, 
and if this last one is analytic, then it’s necessarily an element of the 
normalizer of Ω. We use this last fact when we deal with extension 
theorems.

We know by literature of Nagano’s [14] result that Ω is integrable, 
then it yields a generalized foliation F on M cf. [10]. So, Ω is the Lie 
algebra of tangent vector fields to the foliation and LF the one of all 
foliation preserving vector fields. It is known that the normalizer N in 

( )Mχ  of Ω contains LF cf. [10]. Hence, the restriction of the foliation 
in B is non singular. 

Proposition 2.1. The centralizer of Ω vanishes and the derivative 
ideal of Ω coincides with Ω itself. 

Proof. We say that ( )X Mχ∈  is in the centralizer of Ω if [X, Ω]={0}; 
and the derivative ideal of  denoted by [Ω, Ω] is the Lie algebra spanned 
by all brackets of two elements of Ω. Suppose there is an non zero 
element X of the centralizer, we have [ ] ( ), = ( ) = {0}X f X fΩ Ω , for 
all f ∈ F(M). It’s not possible in a Stein manifold or in a real analytic 
manifold if X doesn’t vanish identically over M and if Ω ≠ {0}. Along 
with this result, we can adapt the proof of Proposition 2.28 of studies of 
Randriambololondrantomalala [15] and assert that [Ω, Ω] = Ω. 

 Let’s recall an Hartogs’s extension theorem and Riemann extension 
theorem. 

Theorem 2.2. (Hartogs [16]) Let be t ≥ 2 and D be a bounded 
domain in t. In addition, K be a compact subset of D such that D − K 
is a connected set. Then all holomorphic functions f over D − K can be 
extended holomorphically to D. 

Theorem 2.3. (Riemann extension theorem) Let U be an open set 
in  and z0 ∈ U. If { }0:f U − →z   is holomorphic function such that 
z0 is a removable singularity of f, then f can be extended into an unique 
holomorphic function f  in U where ( )0 0

= ( )lim z zf f→z z . 

Theorem 2.4. In holomorphic case, all m-derivations of Ω, LF, and 
of N are Lie derivatives with respect to elements belonging to N. In real 
analytic one, we have the same results if B = M. 

Proof. We can prove this assertion over B by Theorem 2.1 of 
studies of Randriambololondrantomalala [8] using Proposition 2.1 and 
partially Theorem 3.7 of literature of Randriambololondrantomalala 
[10]. For the corresponding extension theorem over M, we adopt 
the following arguments. We know that B is dense over M, then the 
restriction of B in each domain of a chart U is dense over U (U is a 
bounded set). The complement of this B∩U in U can be considered as 
a compact set of the chart such that B∩U is connected. In holomorphic 
case, when n ≥ 2, we use Hartogs’s theorem in a domain of the chart, so 
the extension theorem over M holds. If n = 1, we know by the isolated 
zeros principle that the domain of chart contains only a finite number 
of zeros in the corresponding restriction of B. By continuity at these 
zeros, which are removable singularities, the Riemann extension 
theorem can be used. Of course, if B = M in real analytic situation, the 
extension theorem is applicable. 

Definition 2.5. The complexification of a real analytic manifold 
M is a holomorphic manifold  such that there is a real analytic 
embedding f: M →  where  has a holomorphic atlas ( ),i i i

U ϕ  and 
( )( ) ( )= n

i i i if M U Uϕ ϕ∩ ∩ . We have a Stein complexification if  is 
Stein. 

 The next theorem is due by Grauert cf. [4,12]. 

Theorem 2.6. Every real analytic manifold has a Stein 
complexification and can be analytically properly embedded into an 
Euclidean space N . 

 The following complexification of a Lie subalgebra  of the real 
analytic vector fields Lie algebra of M is in the following sense: if M can 
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be embedded in a holomorphic manifold , the complexification   of 
 in  is such that | =M  . 

Theorem 2.7. If the complexification of Ω in a Stein space T is still 
an involutive distribution, then the first result of the Theorem 2.4 holds 
in real analytic case. 

Proof. We use the complexification of M on a Stein space T. 
Consequently, let be Ω  the complexification over T of Ω. Recall that 
Ω  is an involutive distribution over T where its normalizer on ( )Tχ  
is denoted by N0. So, all m-derivations of Ω, of LF, and of N have their 
complexified m-derivations over T on respectively Ω , the Lie algebra 
of all foliation preserving vector fields LF  on T and N0. By the results 
of Theorem 2.4, these last m-derivations are Lie derivatives with 
respect to elements belonging to N0. We can affirm that 0| =MN N  and 

|
=

M
L LF F  by | =MΩ Ω . Thus, we have the same result as in the first part 

of Theorem 2.4. 

 By definition, the first space of Chevalley-Eilenberg’s cohomology 
of a Lie algebra  denoted by ( )1H   is ( )Der / ad  with Der() the 
Lie algebra of all derivations of  and ad the set of inner derivations 
of .

Throughout this paper, we suppose that all hypothesis of Theorem 
2.7 are satisfied or B = M, in real analytic case.

Following ideas of Theorem 3.7, Corollary 2.14 and Remark 2.15 of 
literature of Randriambololondrantomalala [10], we state 

Corollary 2.8. The first space of Chevalley-Eilenberg’s cohomology of 
Ω, L

F
, and of N is respectively isomorphic to the following respective Lie 

algebras, N/Ω, N/L
F
, {0}. 

Remark 2.9. By Theorem 2.4, we deduce Theorem 3.2 and 4.1 of 
studies of Grabowski [5]. 

The m-derivations associated to a distribution over a subring 
of F(M) 

Let be an atlas of M such that Ω is locally spanned by 
1

i
i n≤ ≤

∂ 
 ∂ x

  over 

the ring F0 of real or complex functions depending only on 1( )j
j kx ≤ ≤  

with respect to the atlas (where 1 ≤ k < n). We can consider Ω to be 
a Lie algebra which commutes with a system S of commuting vector 
fields by the usual bracket. That is to say, 1= { , , }qS X X  such that 

, = 0i jX X    and S is locally of rank n − k (0 < q ≤ n). It is easy to check 
that [ ], =Ω Ω Ω  because of Randriambololondrantomalala’s [8] result. 
So with the same reason, every m-derivation of Ω is local. Moreover, 
the normalizer N of Ω is locally isomorphic to ( , or )l n kΩ⊕ −g    as a 
vector space. We consider the closed 1−differential forms αi and wi over 
a (n − k)-dimensional distinguished connected chart of the generalized 
foliation generated by S, where = 1, ,i k n+   and an m-derivation of 

Ω, 
( ) ( ), =

1

j j
jD

k j n

α α ∂
+ ⊗

∂
+ ≤ ≤

x
w w  such that 0

1

( ) ( )j
i

i k
ker F U

≤ ≤

∂
⊃

∂x
w and 

0
1

( ) ( )j
i

k i n
ker F Uα

+ ≤ ≤

∂
⊃

∂x
 (S in this chart is 1{ }j k j n+ ≤ ≤

∂
∂x

, F A  

denotes a module spanned by A over a ring F) cf. [8]. We have omitted 
all singular charts of the foliation because the open set R of all regular 
points is dense over M cf. [10], we have no problem for the extension 
of our results from R towards M as in the previous section. By adapting 
Theorem 3.12 of literature of Randriambololondrantomalala [8], we 
obtain easily 

Theorem 3.1. All m-derivations of Ω (resp. of N) are a sum of a Lie 
derivative with respect to one element of N and a derivation D(α,w) as 
denoted before (resp. are similar to m-derivations of Ω). 

 Hence, adopting the arguments of Theorem 3.19 of studies of 
Ravelonirina [17], we hold the following 

Corollary 3.2. When the rank of S is a positive constant n − k, the 
first spaces of Chevalley-Eilenberg’s cohomology of Ω and of N are both 
isomorphic to ( )( ) ( )2 2( ) ( )H B

− − + − − + −×
n k n k n k n k n k

R or   with HR (B) is the de 
Rham cohomology of foliation basic forms of M. 

 As we know, we can split the above Ω into a semi-direct sum of 
Lie algebras 1

SΩ  and 2
SΩ  as in studies of Randriambololondrantomalala 

[8], where they are modules on the ring F0(M) of constant functions 
over the leaves relative to the above generalized foliation. We notice 
that 2

SΩ  is spanned by S on F0(M). We can reason on a distinguished 

chart U with the coordinates 1( )i
i nx ≤ ≤ . The 0 ( )F U  is the set of all analytic 

functions depending only on 1( )i
i kx ≤ ≤ , 1

|S UΩ  is spanned by 
1

i
i kx ≤ ≤

∂ 
 ∂ 

 

and 2
|S UΩ  by 

1
i

k i nx + ≤ ≤

∂ 
 ∂   on 0 ( )F U .

Now, we discuss the m-derivations of 1
SΩ . The normalizer 

N1 of this Lie algebra can be written as a direct sum of Lie algebras 

[ ]1 1 1= , ,S S Ω Ω ⊕   N , where  is the centralizer of 1
SΩ  in ( )Mχ  and 

the center of 1
SΩ  is zero ( is locally spanned by 

1
i

k i nx + ≤ ≤

∂ 
 ∂ 

 on the 

ring of all analytic functions depending only on 1( )i
k i nx + ≤ ≤ ). By a 

similar argument of Nakanishi [18], we deduce that all m-derivations 

of N1 are a direct sum of those of 1
SΩ  and of . By Theorem 2.4, it’s 

clear that 

Theorem 3.3. Each m-derivation of 1
SΩ  (resp. of N1) is a Lie 

derivative with respect to an element of N1. 

 The normalizer of 2
SΩ  is locally the sum of the F0(U) -module 

spanned by 
1

ix
i n

∂
∂
≤ ≤

 and a vector space generated by 
1 ,

l
ix

x
k i l n

∂
∂

+ ≤ ≤
. That is to 

say, its normalizer is N. In addition, its centralizer is 2
SΩ  itself. Because 

of 2 2, = {0}S S Ω Ω   or 2
SΩ  is nilpotent of order 1, we obtain easily 

Theorem 3.4. Every endomorphism of 2
SΩ  is an m-derivation of 2

SΩ . 

So, it’s immediate that 

Corollary 3.5. The first space of Chevalley-Eilenberg’s cohomology of 
1
SΩ , 2

SΩ  and of N1 are respectively isomorphic to the following respective 
Lie algebras, 1 1/ SΩN , ( )2 2End /S SΩ Ω , {0} . 

Let’s consider 3
SΩ  the Lie subalgebra of Ω, spanned by Xi over a ring 

( )F F M⊆ . That is to say, F is locally the set of all analytic functions 
depending only on ( )i

l i nx ≤ ≤  where 0 < l < k + 1 (resp. k + 1 < l < n + 1). 
When F = F(M) (resp. 0= ( )F F M ), it is a special case of Lie algebras 
defined in Theorem 2.4 (resp. in Theorem 3.1) when the submodule is 
generated by Xi. In the distinguished local coordinates, 3

SΩ  is spanned 

by 
1

j
k j n+ ≤ ≤

∂ 
 ∂ x  over F. The normalizer N3 of 3

SΩ  coincides with the 

sum of 3
SΩ  and 4

SΩ  where the element of this last one is locally the 

following analytic vector fields ( , ) ( ,1 )
1 1

i t j t
i j

l

f l t k t k
i k j l

∂ ∂
≤ ≤ + ≤ ≤

∂ ∂
≤ ≤ ≤ ≤ −

x g x
x x  
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1

resp. ( ,1 ) ( , )
1 1

i t j t j
i jf t k h l t n

i k k j l

 
∂ ∂ ≤ ≤ + ≤ ≤ ∂ ∂ ≤ ≤ + ≤ ≤ − 

x x x
x x

. In the first case, we can 

adapt Theorem 2.4 because all analytic functions depending on ( )jx  
where 1k j n+ ≤ ≤ , are in the base ring of 3

SΩ . In the following case, it is 
easy to see that Theorem 3.1 can be adapted to 3

SΩ . Thus 

Theorem 3.6. In the first case, every m-derivation D of 3
SΩ  is a Lie 

derivative with respect to a N3’s element; in the second, it is a sum of a Lie 
derivative of an element of N3 and a D(α,w) analogous to that of Theorem 
3.1. In addition, the corresponding extension theorems hold. 

Corollary 3.7. The first space of Chevalley-Eilenberg’s cohomology of 
3
SΩ  is respectively isomorphic to 4

SΩ  in the first case;

( )( ) ( )( )14 ( )( 1) ( )( 1)H B
l k l k l k l k l k

S R ou
− − − − − − − −′Ω ⊕ ×  

in the other one if S has a constant rank (⊕ is a module direct sum and 
B′ is the set of the corresponding foliation basic forms of M). 

 When we regard all the above normalizers on a distinguished 
chart, they contain locally all constant fields and Euler vector field. So, 
we ask one question: could we adapt Theorem 3.6 and Theorem 3.9 
in [7] to these normalizers? The following remark shows us that this 
argument is false. 

Remark 3.8. On 3, we consider the Lie -algebra A spanned by 

, , ,∂ ∂ ∂
∂ ∂ ∂x y z  2 2, , ( ) , , , ,ye e e∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂



y yx y z y y y y
x y z x x x x x

. 

Lemma 2.3 of literature of Randriambololondrantomalala [10] is not 
true for A, so the arguments proposed in the proof of Theorem 3.6 of 
Princy [7] don’t hold in this situation. 

Whereas, let P be a Lie subalgebra consisting locally of polynomial 
vector fields in ( )Mχ , where the Euler vector field and all constant 
vector fields are locally in P. Especially, M is not supposed to be a Stein 
in the holomorphic case. Let’s recall a well known theorem, 

Theorem 3.9. (The maximum principle) [12] Let be M a connected 
holomorphic manifold and f a holomorphic function on M such that 

( ) ( )0f f≤z z , where z0 ∈ M for all z ∈ M; then f is a constant function. 

One consequence of the maximum principle is the following, if 
the holomorphic manifold M is compact, every holomorphic function 
on M is constant in every connected component of M. We know that 
M is locally connected, then each function over M is locally constant. 
Therefore, it’s clear that if M is a compact and connected holomorphic 
manifold, the ring of all holomorphic functions on M is the complex 
constant functions ring. It’s confirm that results of the following 
theorem complete our study about an involutive analytic distribution 
when F(M) is reduced to .

By adapting Randriambololondrantomalala’s [7] theorems and 
taking account that the vector field found in the proof of Theorem 3.6 
of Princy [7] is analytic, it follows that 

Theorem 3.10. When m is even, all m-derivations of P (resp. of the 
normalizer  of P in ( )Mχ ) are a Lie derivative with respect to one and only 
one vector field belonging to  (resp. to the normalizer of  in ( )Mχ ). If 
m is an odd number, they are sum of a Lie derivative with respect to one 
element of  (resp. of the normalizer of ) and an m-derivation of local 
homogeneous degree -2 of P. 

 So, taking into account: the vanishing of the centralizer of P 
cf. [19] p.91; both the proofs of Theorem 2.12 of Ravelonirina [19], 

Corollary 3.12 of Randriambololondrantomalala [7] and Theorem 3.7 
in literature of Randriambololondrantomalala [10], we obtain 

Corollary 3.11. The first space of Chevalley-Eilenberg’s cohomology 
of P, of  and of N is respectively isomorphic to the following respective 
Lie algebras  / P, N / , {0}, where N is the normalizer of . 

Illustrations
Some illustrations of our theorems are given in this section. 

Example 4.1. It’s clear that Theorem 2.4 works well on the Lie 
algebra of all analytic vector fields ( )Mχ , that is to say, all m-derivations 
of ( )Mχ  are Lie derivatives by elements of ( )Mχ . We can define the 
Lie algebra of compactly supported real analytic vector fields C and this 
theorem holds for this last one. In particular, 1H ( ) = ( ) /MχC C  for a 
non-trivial C. More, 1H ( ) = {0}C  if and only if M is compact. Obviously, 
we can use the above cited theorem on the Lie algebras of vector fields 
relative to a generalized foliation over M. We can cite some well known 
Stein spaces, n, an open poly-disc in n, non-compact Riemann 
surfaces, ... and build our results in these. 

Example 4.2. Let be 2 a holomorphic compact connected 
manifold. It’s not a Stein manifold nor a submanifold of u for any u, 
it’s a compact Riemann surface. We choose the modified stereographic 
coordinates over this manifold. The 2 has an atlas composed by two 
charts (U, z1) and (V, z2) with the overlap map 1( ) =ψ −z z  in U ∩ V. We 
remark that the Lie algebra  of vector fields on M spanned over  by 
Y1, Y2 and Y3 is the one of all polynomial vector fields in 2, where

1

1
2 2

2

in
: ,

( ) in

U
Y

V

∂
∂
 ∂−
 ∂

z

z
z

2
1 1

2

2

( ) in
: ,

in

U
Y

V

∂− ∂
 ∂
∂

z
z

z
1

1

3
2

2

in
:

in

U
Y

V

∂− ∂
 ∂
 ∂

z
z

z
z

. By Theorem 3.10, all m-derivations of  are Lie 

derivatives with respect to a vector field in  itself. That is to say, if D is 
an m-derivation of  defined by 1( ) = i

iD Y Yα , 2( ) = i
iD Y Yβ , 2( ) = i

iD Y Yγ ; 
we have 1 2 1

1 2 3
= L

Y Y Y
D

γ γ α− + + .

When we look at 2 as a real analytic manifold, we set the charts 
1 2( , ( , ))U x x  and 1 2( , ( , ))V y y  with the overlap map 

1 2
1 2 1 2

1 2 2 2 1 2 2 2( , ) = = , = .
( ) ( ) ( ) ( )

φ
 
 + + 

x x
x x y y

x x x x

We set the real analytic vector field 

1 2
1 2

3
1 2

1 2

in
:

in

U
Y

V

∂ ∂− − ∂ ∂
 ∂ ∂ +
 ∂ ∂

x x
x x

y y
y y

 on 2 

and the Lie algebra A of real analytic vector fields which commute with 
Y3. This A consists of real analytic vector fields Y such that 

2 1
1 2

1 21 1 2 2

2 1
1 2

3 41 1 2 2

in
:

in

    ∂ ∂
+    ∂ ∂    


   ∂ ∂ +    ∂ ∂   

F F U
Y

F F V

x x
x x

x x x x

y y
y y

y y y y

where in the U ∩ V,
2 1 2 2

2 2 1 2
3 2 1 11 1 2 2 2 2 1 1

1= 2 ( ) ( )
( ) ( )

F F F F
         
− + −           +         

y y y y
y y

y y y y y y
 and 
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1 2 1 1
1 2 2 2

4 1 2 22 1 2 2 2 1 2 2
1= 2 ( ) ( )

( ) ( )
F F F F

         
− + −           +         

y y y y
y y

y y y y y y
 

with Fk are arbitrary convenient functions of one variable. So, we can 
apply all theorems in Section 3 to A. Particularly H1() = {0} and 

1 1 2H ( ) = ( )RH B ×A . 

Example 4.3. Indeed, Theorem 3.10 can be applied to a polynomial 
vector fields Lie algebra on the real analytic manifold n or the Stein 
manifold n having the corresponding hypothesis. 

Example 4.4. We set the Lie algebra  over the Stein manifold 3 

spanned over  by 1 2 3 2 2 2
1 2 3 1 2 3 1 1, , , , , ( )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

z z z z z
z z z z z z z z

.  The 

normalizer of  is 0 =  + R, where R is the space over  generated 

by 1 2 3 2 3
1 2 3 3 1, , , ,∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
z z z z z

z z z z z
. It is permit to use Theorem 3.10 

and when m is even, every m-derivation of  is inner on 0. If m is odd, 
the m-derivation is a sum of an inner derivation on 0 with a -linear 

map D defined by 2 2
1 1( ) =D α∂ ∂ 

 ∂ ∂ 
z

z z
 which is zero otherwise (α 

∈ ). Moreover, all m-derivations of 0 are inner for all m ≥ 2. So, 

1 1 2 3
1 2 3H ( ) R ∂ ∂ ∂

≅ + +
∂ ∂ ∂

z z z
z z z

   and ( )1
0H {0}≅ . 

Remark 4.5. In the following example, Theorem 3.10 cannot be 
applied. We take the 2-torus 2 = /(+i), which is a holomorphic 
connected compact manifold cf. [20], it’s not a Stein. All overlap maps 
are translations, that is to say, they are holomorphic. We can define 
globally the Lie algebra of all constant vector fields Q on M and find 
that Q is the Lie algebra of all holomorphic vector fields over M. All 
endomorphisms of each Lie subalgebra of Q, which is inevitably 
nilpotent of order 1, are m-derivations of this subalgebra. The normalizer 
of this subalgebra or its centralizer is the Lie algebra of all vector fields 
over 2. But 1H ( ) End( ) / ad≅ QQ Q  and 1

( )H ( ( )) End( ( )) / ad MM M χχ χ≅  
since 1H ( ( )) = {0}Mχ  in smooth cases. 
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Abstract
In this paper, we present a relative version of the concept of lower marginal series and give some isomorphisms 

among G-marginal factor groups. Also, we conclude a generalized version of the Stalling’s theorem. Finally, we 
present a sufficient condition under which the order of the generalized Baer-invariant of a pair of finite groups divides 
the order of the generalized Baer-invariant of its factor groups. 

Keywords: Schur-Baer variety; Pair of groups; G-marginal series 

Introduction
There exists a long history of interaction between Schur multipliers 

and other mathematical concepts. This basic notion started by Schur 
[1], when he introduced multipliers in order to study projective 
representations of groups. It was known later that the Schur multiplier 
had a relation with homology and cohomology of groups. In fact, if G 
is a finite group, then 2 *

2( ) ( , ) ( , )M G H G H G≅ ≅  , where M(G) is the 
Schur multiplier of G, H2(G, *) is the second cohomology of G with 
coefficient in * and H2(G, ) is the second internal homology of G [2]. 
Hopf [3] proved that 2( ) ( ) / [ , ]M G R F R F≅ ∩ . He also proved that the 
Schur multiplier of G is independent of the free presentation of G. Let 
(G, N) be a pair of groups, where N is a normal subgroup in Ellis [4] 
defined the Schur multiplier of the pair (G, N) to be the abelian group 
M(G, N) appears in the following natural exact sequence

3 3                    ( ) ( , ) ( , ) ( ) ( / )H G H G N M G N M G M G N→ → → → 	

                                  / [ , ] ( ) ( / ) 1,ab abG N G G G N→ → → →

where H3(−) denote the third homology of a group with integer 
coefficients. He also proved that if the normal subgroup N possess a 
complement in G, then for each free presentation 1 1R F G→ → → →  
of G, M(G, N) is isomorphic with the factor group ( [ , ]) / [ , ]R S F R F∩ , 
where S is a normal subgroup of F such that /S R N≅ . In particular, if N = 
G then the Schur multiplier of (G, N) will be ( ) = ( [ , ]) / [ , ].M G R F F R F∩

We assume that the reader is familiar with the notions of the verbal 
subgroup V(G), and the marginal subgroup 

V *(G), associated with a variety of groups  and a group G [5] 
for more information on varieties of groups). Let F∞ be the free group 
freely generated by the countable set X = {x1, x 2,…} and  and  be two 
varieties of groups defined by the sets of laws  and , respectively. Let 
N be a normal subgroup of a group G, then we define [NV *G] to be the 
subgroup of G generated by the elements of the following set:

1
1 2 1 2 1{ ( , ,..., ,..., ) ( , ,..., ) |1 , , ,..., ,  }.i r r rv n i r V G n Nν ν− ≤ ≤ ∈ ∈ ∈g g g g g g g g g

It is easily checked that [NV *G] is the least normal subgroup T of G 
such that N/T is contained in V *(G/T) [6].

The first to create the generalization of the Schur multiplier to any 
variety of groups was Baer [7]. It is well known fact that the recent 
concept is useful in classifying groups into isologism classes. Leedham-
Green and McKay [8] introduced the following generalized version of 
the Baer-invariant of a group with respect to two varieties  and .

Let G be an arbitrary group in  with a free presentation 
1 1,R F G→ → → →  in which F is a free group. Clearly, 

1 = ( ) = ( ) /W G W F R R  and hence (  )W F R⊆ , therefore, 

1 / (  ) / (  ) 1R W F F W F G→ → → →

is a -free presentation of the group G. We call 

/ (  ) ( / (  )) (  )( (  )) ( ) = =
[ / (  ) ( / ( ))] (  )[  ]
R W F V F W F W F R V FM G
R W F V F W F W F RV F∗ ∗

∩ ∩

the generalized Baer-invariant of the group G in  with respect to the 
variety . Now if N is a normal subgroup of the group G for a suitable 
normal subgroup S of the free group F, we have N ≅ S/R. Then we can 
define the generalized Baer-invariant of the pair of groups with respect 
to two varieties  and  as follows: 

/ (  ) [ / (  ) ( / ( ))] ( )( [ ])( ,  ) = = .
[ / ( ) ( / ( ))] ( )[ ]

R W F S W F V F W F W F R SV FM G N
R W F V F W F W F RV F

∗ ∗

∗ ∗

∩ ∩

One may check that M(G, N) is always abelian and independent 
of the free presentation of G. In particular, if  is the variety of all 
groups and N=G then the generalized Baer-invariant of the pair (G, 
N) will be 

(  )( , ) = = ( ),
[  ]

R V FM G G M G
RV F∗
∩ 

which is the usual Baer-invariant of G with respect to  [8].

It is interesting to know the connection between the Baer-invariant 
of a pair of finite groups (G, N) and its factor groups with respect to 
the Schur-Baer variety . In the next section, we show that under 
some circumstances there are some isomorphisms among G-marginal 
factor groups (Theorem 2.2). Also, a sufficient condition will be given 
such that the order of the generalized Baer-invariant of a pair of finite 
groups divides the order of the generalized Baer-invariant of the pair of 
its factor groups (Theorem 2.5).

Variety  is called a Schur-Baer variety if for any group G in which 
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the marginal factor group G / V*(G) is finite, then the verbal subgroup 
V(G) is also finite. Schur [9] proved that the variety of abelian groups 
is a Schur-Baer variety and Baer [10] showed that a variety defined by 
outer commutator words carries this property. In 2002, Moghaddam et 
al. [11] proved that for a finite group G, M(G) is finite with respect to 
a Schur-Baer variety . In the following lemma we prove similar result 
for the M(G, N) and M(G) with using another technique. 

Lemma 1.1. Let  be a Schur-Baer variety and G be a finite group in 
 with a normal subgroup N. Then there exists a group H with a normal 
subgroup K such that

* * | [ ] || ( , ) |= | [ ] | < .NV G M G N KV H ∞

In particular, | ( ) || ( ) | = | ( ) | < .V G M G V H ∞  

Proof. Let G = F / R be a free presentation for the group G and S be a 
normal subgroup of the free group F such that N ≅ S / R, then 

*
* * .

( )[ ] ( )[ ]
R FV

W F RV F W F RV F
 

⊆  
 

Let *= / ( )[ ]H F W F RV F  and *= / ( )[ ]K S W F RV F , then *| | < | | <
( )
H G

V H
∞  and 

*| [ ] | | ( ) | < .KV H V H≤ ∞  But 
* * *

*
* * *

( )[ ] ( )[ ] ( )( [ ])| [ ] |=| | = | || | .
( )[ ] ( )( [ ]) ( )[ ]

W F SV F W F SV F W F R SV FKV H
W F RV F W F R SV F W F RV F

∩
∩

Also, 
* * *

*
*

[ ] ( )[ ] ( )[ ][ ] = =
( )( [ ])

SV F R W F SV F R W F SV FNV G
R R W F R SV F

≅
∩

. Thus 

the result holds. 

Stallings’ Theorem
In the following lemma we present some exact sequences for the 

generalized Baer-invariant of a pair of groups and its factor groups. 

Lemma 2.1. Let G be a group with a free presentation 
1 1R F G→ → → →  and S, T be normal subgroups of the free group F 
such that T S⊆ , /S R N≅  and /T R K≅ . Then the following sequences 
are exact:

*

*

*

*

( )( [ ])(i) 1 ( , )                                      
( )[ ]

[ ] ( / , / ) 1;
[ ]

W F R TV F M G N
W F RV F

K NV GM G K N K
KV G

∩
→ →

∩
→ → →




 

* * *(ii) ( , ) ( / , / ) 1;
[ ] [ ] [ ]

K N NM G N M G K N K
KV G NV G NV G K

→ → → → → 

(iii) Moreover, if K is contained in V*(G), then the following 
sequence is exact:

*

* *

* *

[ ]    1 ( / , / )                                              
( )[ ] [ ]

1.
[ ] [ ]

R SV F M G K N K
W F TV F SV F

N NK
NV G NV G K

∩
→ →

∩

→ → → →



Proof. Considering the definition mentioned above we can 
conclude:

* * *

* * *

*

*

( )( [ ]) [ ] ( [ ])( / , / ) =                  = ,
( )[ ] [ ] [ ]

( )( [ ])                               ( , ) = .
( )[ ]

W F T SV F K NV G T SV F RM G K N K
W F TV F KV G TV F R

W F R SV FM G N
W F RV F

∩ ∩ ∩

∩





Now one can easily check that the sequences (i) and (ii) are exact.

 (iii) Using the assumption, we have ( )[ ]W F TV F R∗ ⊆ . Therefore, 
one can easily check that the following sequence is exact:

* *

* * *
[ ] ( )( [ ])1

( )[ ] [ ] ( )[ ]
R SV F W F T SV F

W F TV F SV F W F TV F
∩ ∩

→ →
∩

 

* *                                             / 1.
[ ] [ ]

S ST R
SV F R SV F T

→ → → →  

Let N be a normal subgroup of a group G. Then we define a series 
of normal subgroups of N as follows:

0 1 2                  = ( , ) ( , ) ( , ) ( , ) ,nN V N G V N G V N G V N G⊇ ⊇ ⊇ ⊇ ⊇ 

where *
1( , ) = [ ( , ) ]i iV N G V N G V G−  for all n ≥ 1. We call such a series the 

lower G-marginal series of N in G. One may also define the upper G-
marginal series as in studies of Moghaddam et al. [11].

We say that the normal subgroup N of G is G-nilpotent if it has 
a finite lower G-marginal series. The shortest length of such series is 
called the class of G-nilpotency of N in G. If N = G, then this is called 
lower -marginal series of G. The group G is said to be -nilpotent iff 
Vn(G) = 1, for some positive integer n [12].

Now, we want to show that under some circumstances there are 
some isomorphisms among G-marginal factor groups. By using 
Lemma 2.1, we have the following Theorem, which generalizes 7.9.1 of 
literature of Hilton and Stammbach [13].

Theorem 2.2. Let f : G → H be a group homomorphism and N be 
a normal subgroup of G and K be a normal subgroup of H such that 

( )f N K⊆ . Suppose f induces isomorphisms 0 : / /f G N H K→  and 
* *

1 : / [ ] / [ ]f N NV G K KV H→ , and that * : ( , ) ( , )f M G N M H K→   is an 
epimorphism. Then f induces isomorphisms : / ( , ) / ( , )n n nf G V N G H V K H→

  and 
: / ( , ) / ( , )n nnf N V N G K V K H→

  for all n ≥ 0. 

Proof. At first, we want to mention a point that for making it 
easier to draw the following diagrams, we would like to introduce 

= ( , )n nP V N G  and = ( , )n nQ V K H . We proceed by induction. For n = 0 
the assertion is trivial. For n = 1, consider the following diagram:

1 N/ [NV ∗G] G/ [NV ∗G] G/N 1

1 K/ [KV ∗H ] H/ [KV ∗H ] H/K 1.

f 1 f 1 f 0

By the hypothesis 1f and f0 are isomorphism, hence f1 is an 
isomorphism. Assume that n ≥ 2. By consedering Lemma 2.1(ii), we 
can conclude the following communicative diagram:

WV M (G, N ) WV M (G/Pn− 1 , N/Pn− 1) Pn− 1/P n N/ [NV ∗G] N/ [NV ∗G]Pn− 1 1

WV M (H, K ) WV M (H/Q n− 1 , K/Q n−1) Qn− 1/Q n K/ [KV ∗H ] K/ [KV ∗H ]Qn− 1 1

α 1 α 2 α 3 α 4 α 5  

Note that the naturality of the map f induces homomorphisms 
αi, i = 1,2,…,5 such that ( )∗  is commutative. By hypothesis α1 is an 
epimorphism and α4, α5 are isomorphisms. Also, by considering the 
induction hypothesis and definition of the Baer-invariant of the pair of 
groups, α2 is an isomorphism. Hence by five lemma of Rotman’s studies 
[14] α3 is an isomorphism. Now consider the following diagram and in 
the same way, fn is an isomorphism. 

 Now we obtain the following corollary. 

http://dx.doi.org/10.4172/1736-4337.S2-003
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1 Pn− 1/Pn N/Pn N/Pn− 1 1

1 Qn− 1/Q n K/Q n K/Q n− 1 1

α 3 f n f n− 1

By the above discussion α3 is an isomorphism and by induction of 
hypothesis 1nf − is an isomorphism, therefore, nf is an isomorphism. 
Finally, by the following diagram:

1 N/P n G/P n G/N 1

1 K/Q n H/Q n H/K 1

f n f n f 1  

And the same way, fn ia an isomorphism. 

Now we obtain the following collary. 

Corollary 2.3. Let ( , |) : ( , ) ( , )f f G N H K→  are group homomorphisms 
satisfy the hypotheses of Theorem 2.2. Suppose further that N and 
K are G-nilpotent and H-nilpotent, respectively. Then f and f | are 
isomorphisms. 

Proof. The assertion follows from Theorem 2.2 and the remark that 
there exists n ≥ 0 such that Vn(N,G) = {1} and Vn(K,H) = {1}. 

Now, we have the following theorem, which is a generalization of 
Stalling’s theorem [15]. 

Theorem 2.4. Let  be a variety of groups and f : G → H be an 
epimorphism. Let N be a G-nilpotent normal subgroup of G and K 
be a normal subgroup of H such that f (N) = K. If *ker [ ]f NV G⊆  and 
M(H, K) is trivial, then f and f | are isomorphisms. 

Proof. Put M = ker f, then * *[ ] [ ]
N K

NV G KV H
≅ , G H

N K
≅  and 

( , ) = ( , )n
n

V N G M V K H
M

 for all n ≥ 0. Now the result follows from 

Corollary 2.3. 

 Finally, a sufficient condition will be given such that the order of the 
generalized Baer-invariant of a pair of finite groups divides the order 
of the generalized Baer-invariant of the pair of its factor groups with 
respect to two varieties of groups. Let : E Gψ →  be an epimorphism 
such that ker ( )V Eψ ∗⊆ . We denote by ( ) ( )WV G∗ ∗  the intersection of all 
subgroups of the form ( ( ))V Eψ ∗ . Clearly, ( ) ( )WV G∗ ∗  is a characteristic 
subgroup of G which is contained in V *(G). In particular, if  is the 
variety of all groups and  is a variety of abelian groups then this 
subgroup is denoted by Z *(G) as in literature of Karpilovsky [2].

Now using the above concept we have the following Theorem. 

Theorem 2.5. Let K be a normal subgroup of G contained in 
( ) ( )N WV G∗ ∗∩ . Then 

| ( , ) |  | ( / , / ) | .M G N divides M G K N K 

Proof. By theorem 3.2 of Neumann [5], natural homomorphism 
( ) ( / )M G M G K→   will be a monomorphism. Now the following 

commutative diagram 

WV M (G, N ) WV M (G)

WV M (G/K, N/K ) WV M (G/K)

⊆

⊆

implies that the natural homomorphism ( , ) ( / , / )M G N M G K N K→   is 
also a monomorphism. Thus Lemma 1.2 (i) implies that M(G, K) is 
trivial. Now we have *| ( / , / )) | = | [ ] || ( , ) |,M G K N K K NV G M G N∩   which 
completes the result. 
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Abstract
In this paper, we prove that equation 2 2 3( ) = 0t x xx t x x

E f a b≡ − + − −u u u u u u uu  is self-adjoint and quasi self-adjoint, 
then we construct conservation laws for this equation using its symmetries. We investigate a symmetry classification 
of this nonlinear third order partial differential equation, where f is smooth function on u and a, b are arbitrary constans. 
We find Three special cases of this equation, using the Lie group method. 

Keywords: Lie symmetry analysis; Self-adjoint; Quasi self-adjoint; 
Conservation laws; Camassa-Holm equation;  Degas peris-Procesi 
equation; Fornberg whitham equation; BBM equation

Introduction
 A new procedure for constructing conservation laws was developed 

by Ibragimov [1]. For Camassa-Holm equation are calculated in studies 
of Ibragimov, Khamitova and Valenti [2]. In this paper, we study the 
following third-order nonlinear equation 

2 2 3 = 0,t x xx t x x
E f a b≡ − + − −u u u u u uu 		                (1)

and we show that this equation is self-adjoint and quasi self-adjont. 
Therefore we find Lie symmetries and conservation laws. There are three 
cases to consider: 1) b ≠ 0, a = arbitrary constant, 2) b = 0, a ≠ 0, and 
3) b = 0, a = 0. Clarkson, Mansfield and Priestly [3] are concerned with 
symmetry reductions of the non-linear third order partial differential 
equation given by 2 3 2( ) = 0t x xx t x x

u ∈ β− + − − −u k u u uu u u , where ∈, k, and β 
are arbitrary constants. Symmetry classification and conservation laws 
for higher order Camassa-Holm equation are calculated in framework 
of Nadjafikhah and Shirvani-Sh [4].

The special cases of (1) are:  

Camassa-Holm (CH) equation 2 3 2( 3 ) = 2t x xx t x x
− + + +u u k u u uu u u , 

k-arbitrary (real), describing the unidirectional propagation of shallow 
water waves over a flat bottom (let f = k + 3u, a = 2, b = 1 in (1). 

Degas peris-Procesi (DP) equation 2 3 2( 4 ) = 3t x xx t x x
− + + +u u k u u uu u u , 

k-arbitrary (real), is another equation of this class (let f = k + 4u, a = 3, 
b = 1  in (1). 

Fornberg Whitham (FW) equation 2 3 2(1 ) = 3t x xx t x x
− + + +u u u u uu u u , is 

another equation of this class (let f = 1 + u, a = 3, b = 1 in (1)). 

BBM equation 2 ( ) = 0t x xx t
− + +u u u uu , is another equation of this 

class (let f = 1 + u, a = 0, b = 0 in (1)). 

Preliminaries
In this section, we recall the procedure in literature of Ibragimov 

[1]. Let us introduce the formal Lagrangian 

L ≡ vE,	                                                                                     (2)

 where v = v(t, x) is a new dependent variable.

We define the adjoint equation by * = 0LE
u

δ
δ

≡ . Here 

= , , = 1,2,i i j i j k
i ij ijk

D D D D D D i j kδ
δ

∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂


u u u u u

is the variational derivative and Di is the operator of total diferentiation.

An equation E = 0 is said to be self-adjoint [5] if the equation 
obtained from the adjoint equation by substitution v = u is identical 
with the original equation.

An equation E = 0 is said to be quasi- self-adjoint [5] if there 
exists a function = ( )ϕv u , ( ) 0'ϕ ≠u  such that *

= ( )| =E Eϕ λv u  with 
an undetermined coefficient λ. Eq.(1) is said to have a nonlocal 
conservation law if there exits a vector C = (C1, C2) satisfying the 
equation 

1 2( ) ( ) = 0,t xD C D C+ 				                  (3)

on any solution of the system of differential equations comprising (E) 
and the adjoint equation (E*). We say that orginal equation has a local 
conservation law if (3) is satisfied on any solution of Eq.(1). In studies 
of Ibragimov [1], the conserved vector associated with the Lie point 
symmetry 1 2= ( , , ) ( , , ) ( , , )x t uξ ξ φ∂ + ∂ + ∂v x t u x t u x t u  is obtained by the 
following formula : 

= [ ( ) ( )]i i
j j k

i ij ijk

L L LC L W D D Dξ ∂ ∂ ∂
+ − +

∂ ∂ ∂u u u

( )[ ( )] ( ) ,j k j k
ij ijk ijk

L L LD W D D D W∂ ∂ ∂
+ − +

∂ ∂ ∂u u u
  		               (4)

where i, j, k = 1,2 and = i
iW uφ ξ− . (Here ∂x means 

x
∂
∂

).

We recall the general procedure for determining symmetries for an 
arbitrary system of partial differential equations [6]. Let us consider the 
general system of a nonlinear system of partial differential equations of 
order n, containing p independent and q dependent variables is given 
as follows 

( )( , ) = 0, = 1, , ,n lν ν∆ x u 			                 (5)
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involving 1= ( , , )p
x x x , 1= ( , , )q

u u u  and the derivatives of u 
with respect to x up to n, where u (n) represents all the derivatives 
of u of all orders from 0 to n. We consider a one-parameter Lie 
group of transformations acting on the variables of system (5): 

2= ( , ) ( )i i
i O∈ ξ ∈+ +x x x u , 2= ( , ) ( )j j

j O∈ φ ∈+ +u u x u , where i=1,⋅⋅⋅, 
p, j = 1,⋅⋅⋅, q. ξ i, φ j are the infinitesimal of the transformations for 
the independent and dependent variables, respectively, and ∈ is the 
transformation parameter. We consider the general vector field 
v as the infinitesimal generator associated with the above group 

=1 =1
= ( , ) ( , ) .p qi j

i ji jx u
ξ φ∂ + ∂∑ ∑v x u x u  A symmetry of a differential 

equation is a transformation, which maps solutions of the equation to 
other solutions. The invariance of the system (5) under the infinitesimal 
transformation leads to the invariance conditions. (Theorem 2.36 of 
studies of Olver [6], Theorem 6.5 of literature of Olver [7]). 

[ ( , )] = 0, ( , ) = 0, = 1, , ,n n n
ν ν ν∆ ∆ v x u x u r 		                (6)

where vn is called the nth order prolongation of the infinitesimal 
generator given by ( )

=1
= ( , )qn j n

jk uj k k
φ+ ∂∑ ∑v v x u , where k = (i1,⋅⋅⋅iα), 1 

≤ iα ≤ p, 1 ≤ α ≤ n, and the sum is over all k’s of order 0 < #k ≤ n. If #k 
= α, the coeficent j

kφ  of juk
∂ , will depend only on α’th and lower order 

derivatives of u and ,=1 =1
( , ) = ( ( ))p pk n i j i j

j k j i k ii i
x u D u uφ φ ξ ξ− +∑ ∑ , where 

:= /j j i
iu u x∂ ∂  and , := /j j i

k i ku u x∂ ∂ . 

Adjoint Equation and Classical Symmetry Method
Formal Lagrangian for Eq. (1) is 

2 2 3= = [ ].t x xx t x x
L E f a b− + − −v v u u u u u uu 		              (7)

Therefore, the adjoint equation E* to Eq. (1) is 

2 2= 3 3 .x t x x xx x x xx xxx xxtx x
f + + + + + +v v au v au v bu v bu v buv v 	                (8)

Upon setting v = u it becomes 

2 2 2 3= 2 6 .t x x xx t x x x
f− − + +u u u au u bu u buu

Hence, Eq. (1) is self-adjoint if and only if it has the form 

a = 2b.	                                                                                      (9)

Consider again Eq. (1), and substitute 

= ( ), = ,'
t tϕ ϕv u v u

2
2= , = ,' ' ''

x x xx xx
ϕ ϕ ϕ+v u v u u

3
3 2= 3 ,' '' '''

xxx x xx x
ϕ ϕ ϕ+ +v u u u u

2
2 2= 2 ,' '' ''' ''

xxt t x t x xtx t x
v ϕ ϕ ϕ ϕ+ + +u u u u u u u

in the adjoint equation (8), then 
3

2 22 6' ' ' '' '
x t x x xx x

fϕ ϕ ϕ ϕ ϕ− − − − +u u a u u a u b u u

3 3
3 23 3'' ' '' '''

x x xx x
ϕ ϕ ϕ ϕ+ + + +b u b uu b uu u b uu

2
2 2 2' '' ''' ''

t x t x xtx t x
ϕ ϕ ϕ ϕ+ + + +u u u u u u u

2 2 3= ( ).t x xx t x x
fλ − + − −u u u au u buu

Hence, Eq. (1) is quasi self-adjoint if and only if it has the form 

a = 2b, v = −λu + ε                                                                              (10)

In this section, we will perfom Lie group method for Eq. (1) on 
(x1 = x, x2 = t, u1 = u), 2( , ) = ( , , ) ( ( , , ), ( , , ), ( , , )) ( )O∈ ξ τ φ ∈+ +

 x t,u x t u x t u x t u x t u , 

where ε ≤ 1 the group parameter and 1 =ξ ξ , 2 =ξ τ  and 1 =φ φ  are 
the infinitesimals of the transformations for the independent and 
dependent variables respectively. The associated vector fields is of the 
form = ( , , ) ( , , ) ( , , )x t uξ τ φ∂ + ∂ + ∂v x t u x t u x t u  and the third porolongation 
of v is the vector field 

2(3)

2
= ,x t x xt ttt

u u u xt tttx t x
v v u uφ φ φ φ φ+ ∂ + ∂ + ∂ + ∂ + + ∂

with coefficent 
2 2

,
=1 =1

= ( ) ,k i j i
k i k i

i i
Dφ φ ξ ξ− +∑ ∑u u 			                 (11)

where Dk is the total derivative with respect to independent variables. 
The invariance condition (6) for Eq. (1) is given by, 

(3)
2 2 3[ ] = 0,t x xx t x x

− + − −v u u u f au u auu 			              (12)

whenever E = 0. The condition (12) is equvalent to 
2 3 2

3 2( ) = 0,t x x x x t
xx x

φ φ φ φ φ φ− + − − − −bu f au au bu 		            (13)

whenever E = 0. Substituting (11) into (13), yields the determining 
equations. There are three cases to consider: 

a and b ≠ 0 are arbitrary constants

In this case, complete set of determining equation is: 

= 0,uξ 				                                 (14)

= 0,uτ 				                                    (15)

= 0,xτ 					                    (16)

2 = 0,
u
φ 					                     (17)

2 3 = 0,u t xux
φ φ τ ξ+ + −a a a a 				                 (18)

2 2 = 0,uxx
ξ φ− 					                   (19)

23 3 2 = 0,ux x xt utx
φ φ ξ ξ φ+ − + +bu a b u 			                 (20)

22 = 0,x ux
ξ φ− 					                  (21)

2 3 = 0,t x t xux
ξ φ φ τ ξ− − − +b bu bu 			                 (22)

2 2 = 0,uxx
ξ φ−a u a 				                   (23)

2 3 2 2 2= 2 3 ,u x t t xtux t x ux x ux
ξ ξ φ φ ξ τ φ ξ φ φ+ + + + + + + +bu f f f f a bu 	               (24)

3 2 = 0.t xx x t
φ φ φ φ− + + −bu f 				                 (25)

With substituting (14) – (17) into (18) – (23) we have 

1 1 2
1= ( ), = , = ( ).'φ α τ ξ α+ − +c t c t c t
b

		               (26)

With substituting (26) into (24) – (25) we have 

= 1 ( 1),K− + +f bu 				                 (27)

where c1, c2 and K are arbitrary constants. With substituting (27) into 
determining system, we have 

1
1 2 1 3

( 1)= , = , = ,c bu c t c c t c
b

φ τ ξ− +
+ − +

where ci, i = 1,2,3 are arbitrary constants. 

Theorem 3.1.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3
( 1)= , = , = .x t u t x

+
− ∂ + ∂ − ∂ ∂ ∂

bu
v t t v v

b
We want to construct the conservation law associated with the 

symmetry 

1
( 1)= .x t u

+
− ∂ + ∂ − ∂

bu
v t t

b
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We have 
1= .t xW − − − +u tu tu
b

				               (28)

The right-hand side of (4) is written 
1 2 2= ( ( )) ( )( ) ( ) ,x x x xC W D D W D D W− + −v v v v

2 2
2= [ ( ) ( ) 2 ( )]x x x t xx

C W D D D D− + − −vf avu avu buv v 	            (29)

( )[ ( ) ( )] ( )[ ( )]x x x t t xD W D D D W D+ − + + +avu buv v v

22 ( )[ ] ( )[ ].x t xD D W D W− −v buv

We eliminate the term ξ iL since the Lagrangian L is equal to zero 
on solution of Eq.(1). Substituting in (29), the expression (7) for L and 
(28) for W, we obtain 

1 1 1=C − − − + + + + −t x xx xx t xx x xxuv v tu v tu v uv v tu v tu v
b b

2 2 2 3 ,
x x x t x

− − + + + −x x xt x xu v tu v tv u u v tu v tu v 		             (30)

and 
2

2= ( 2 )xx xtx
C − − − −u vf bvu buv v

1
2( ( 2 ))xx xtx

−− − − −b vf bvu buv v

2( 2 )t xx xtx
b− − − −tu vf bvu uv v

2( 2 ) ( )x xx xt x x x tx
+ − − − − − +tu vf bvu buv v u buv bvu v

2( )( ) ( )( ) 2xt x
− − + + − + −x x t x x t t xtu buv bvu v tu buv bvu v u v

2 2 2 3x x x xt xt x x t x
− + + + + −tu v u v tu v buvu tbuvu tbuvu

2 2 24 2 2 2 .xt xt x x t
+ + − −u v tu v u v u v 			               (31)

We can eliminate ut by using Eq.(1) and then substitute in (30) and 
(31) the expression v = u, therefore arrive at the conserved vector with 
the following components: 

1
2 3 2

1= ( (2 )x xx x x t
C −

+ − +t bu u buu u f u ub
b

2 3 2 2(2 )x x xx x x t x
− + − + −t bu u buu u f u u b tu ub 		               (32)

2 2
3 2 2 22 ),xt x xx x t x x

+ + − + − + + −tu u b tu ub tu ub u b uu b u b u u

2 1= ( 2 2 ) ( ( 2 2 ))C −− − − − − −xx xt xx xtu uf buu u b uf buu u

2 3 2(2 )( 2 2 )
x x x t

− + − + − −x x xx xtt bu u buu u f u uf buu u

( 2 2 ) ( ) ( )+ − − − −x xx xt x t xt ttu uf buu u u u tu u

2 2 3 2( )( ) 2(2 )t xx x x x t
+ − + − +x xtu u bu u buu u f u u

2 2 2
2 2 2 3 4x xtt x x t x

− + + + + − +xt xt xtu u u tu u bu u tbu u tbu u u u

2 2 22 2 2 .
xt x x t

+ − −tu u uu u u

Where = 1 ( 1).K b− + +f u  

a is an arbitrary nonzero constant and b = 0.

In this case Eq.(1) is not self adjoint because a ≠ 2b. Complete set 
of determining equation is: 

= 0,uuφ 					                  (33)

= 0,uξ 					                 (34)

= 0,tξ 					                (35)

= 0,uτ 					                  (36)

= 0,xτ 					                  (37)

23 = ,x t uux
ξ φ τ φ+ −a a a a 				                 (38)

= 0,ut xaφ φ+ 					                   (39)

22 = 0,ux x
φ ξ− + 					                  (40)

22 = 0,x ux
ξ φ− 					                  (41)

2 2 = 0,uxx
ξ φ−a a 					                 (42)

2 2= 2 ,t u uxt xux x
f f f fτ φ φ φ ξ φ+ + + +a 			                 (43)

2= .t x x t
fφ φ φ+ 					                 (44)

Now, by considering Eq. (33) – (42) it is not to hard to find that the 
components ξ, τ and φ of infinitesimal generators become 

2
1 1

2 1 2 12
( ) ( )= ( ), = ( ) , = .F F F Fφ τ ξ− + − +

d t d tx
u t t c c

dt a dt
	               (45)

To find complete solution of the above system, we consider Eq. (43) 
and l = dim Spam{f u, f,1}. Three general cases are possible:  

3.2.i) l = 1, then f = constant;  

3.2.ii) l = 2, then fu = αf + β ;  

3.3.iii) l = 3, then αfu + βf + γ ≠ 0, α ≠ 0. 

Case 3.2.i). With substituting f = constant in determining system 
(33)-(44), we have φ = c1, τ = c2, ξ = c3, where ci, i = 1,2,3 are arbitrary 
constants. 

Theorem 3.2.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3= , = , = .x t u∂ ∂ ∂v v v

Case 3.2.ii). With integrating from fu = αf + β with respect to u, 
we obtain 

= ,uf Ceαβ
α
−

+ 					                 (46)

where C is an integrating constant. With substituting (46) into Eq. 
(43)-(44) and Eq. (45), we have 

1
1 1 2

( )= , = , = .
uC et

C

αα βξ τ φ
α

−−
−

c
c c 		               (47)

Theorem 3.2.2. Infinitesimal generator of every one parameter Lie 
group of point symmetries in this case is: 

2= .
u

x t u
C

C

αα β
α

−−
∂ − ∂ + ∂

e
v t 			                 (48)

Case 3.2.iii). The Eq. (43) leads to φ = 0, τ = c1, ξ = c2. 

Theorem 3.2.3. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2= , = .t x∂ ∂v v

b = 0, a = 0.

Complete set of determining equation is 

= 0,uξ 					                  (49)
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= 0,tξ 					                (50)

= 0,uτ 					                   (51)

= 0,xτ 					                  (52)

= 0,utφ 					                (53)

= 0,uuφ 					                   (54)

2 = 2 ,xux
φ ξ 					                  (55)

22 = ,ux x
φ ξ 					                     (56)

2= ,t x x t
φ φ φ+ f 					                   (57)

= 0.t x uτ ξ φ+ +f f f 				                  (58)

To find a complete solution of the above system we consider Eq. 
(58) and with assumption f / fu ≠ 0 we rewrite: 

= ( ).t x
u

φ τ ξ−
+

f
f

				                                 (59)

Two general cases are possible: 
3.3. ) = , 3.3. ) = ( ),

u u

i iif f
c h u

f f

where c is constant. 

Case 3.3.i).

With integrating from f / fu ≠ c with respect to u, we have 

/= ,u cLef 					                     (60)

where L is an integrating constant. Then the Eq. (58) reduce to 

= ( ).t xφ τ ξ− +c 					                    (61)

With substituting Eq. (61) into determining equation, we have 

1 2 3 2= , = , = ,ξ τ φ+ −c c t c cc 			              (62)

where ci, i = 1,2,3 are arbitrary constants. 

Theorem 3.3.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3= , = , = .t u t x∂ − ∂ ∂ ∂v t c v v

We want to construct the conservation law associated with the 
symmetry 

1 = .t u∂ − ∂v t c

We have 

= .W − − tc tu 					                   (63)

The right-hand side of (4) is written 
1 2= ( ) ( ( ))[ ] ( )[ ],xx x x xC W D W D W− + −v v v v 		                (64)
2 = [ 2 ] ( )[ ] ( )[ ] 2 ( )[ ].x t t x tC W D W D W D D W− + + −xt xvf v v v v 	              (65)

Substituting in (64) and (65), the expression (7) for L and (63) for 
W, we obtain 

1 = ,xx tC − + − + − +xx t x tx txxcv cv tvu tv u tv u tvu 		                 (66)
2 = 2C − − + −t x xt xt tcvf u v cv tu v

2 22 2 2 .
t xt

− − + + +x t tx t xttv u tvfu vu tu v tu v 		                (67)

We can eliminate ut by using Eq. (1) and obtain 
1

2= ,
x t

C − + + + − −xx x xx xx x x txcv cv tvfu tv u tfv u tv u 		             (68)

2 2
2 2 2= 2x xx t t x t

C − + + − − − +x x xt xt t xu v fu v cv tu v tv u tvfu tvf u

22 2 2 2 .tx xt
+ + − + −xt xxt x xtvu tu v cvf tv u tfu v 		               (69)

Now, we substitute in (68) and (??) the expression v = u, therefore 
arrive at the conserved vector with the following components: 

1
2 2 2 2= ,xx x x t x

C − + + + − −x x txcu cu tufu tu u tfu u tu u 		            (70)

2 2
2 2= 2 2x x xt xt t x xt xxtx t t

C cuf u u fu cu tu u tu u tu u− − + + − − +

2
2 22 2 2 ,x xt x txx t xt

ftu u tufu tuf u uu tu u− − + + + 		               (71)

where /= .u cLef  

Case 3.3.ii). By considering Eq. (49) − (54), we find that the 
components ξ , τ and φ are ξ = ξ(x), τ = τ (t) and = ( ) ( , )A Bφ +x u x t . By 
considering Eq. (55) and (56) we have 

1 2 3= exp 2 exp 2 ,c c cξ + − +x x

1 2 4( ) = exp 2 exp 2 .A − − +x c x c x c

By considering Eq. (57) we have 
2

1 2 5 6= (2 exp 2 2 exp 2 ) ,τ + − + +ft c x c x c t c

where ci, i = 1..6 are arbitrary constants.

From the following identity: 

( ) ( , ) = ( ),t x
u

A B τ ξ−
+ +

f
x u x t

f
we find that c1 = c2 = 0 and 5= ( / )uφ − f f c . Hence we have two 

particular cases: 

= , = ( ),
u u

K K≠
f f

u u g u
f f

where K is an arbitrary nonzero constant. For the first case, we have 

3 5 6 5= , = , = ,Kξ τ φ+ −c c t c uc

and for the second case, we have 

3 6= , = , = 0.ξ τ φc c

Theorem 3.2. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case, when / =u Kf f u  are 

1 2 3= , = , = ,x t t u∂ ∂ ∂ − ∂v v v t u

and when / = ( )u K≠f f u g u  are 

1 2= , = ,x t∂ ∂v v

where K is an arbitrary nonzero constant. 

To construct the conservation law associated with the symmetry 
= t u∂ − ∂v t u , we find that = tW − −u tu . Therefore, we have the 

conserved vector with the following components: 
1 2=C − + − + +xx xxt x xx xxtu uu tuu tfuu tu u

2 ,
x

− − − + +x xx x xt xx xxttfu u u tu u uu tuu

2 2 2= 2 2 2xC − − + + + −xxt xt xxt xt xt xu f tufu tuf u uu tu u ftu u

24 2 2 2 2 ,x− − + + − + −x t xt t xt ttx xxt x tt xu u tu u u u tu u u u fu u u

where / = ( ).u K≠f f u g u  
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Abstract
In this paper, we introduce the notion of representation of Bol algebra. We prove an analogue of the classical 

Engel’s theorem and the extension of Ado-Iwasawa theorem for Bol Algebras. We study the category of representations 
of Bol algebras and show that it is a tensor category. In the case of regular representations of Bol algebras, we give 
a complete classification of them for all two-dimensional Bol algebras. 

Keywords: Bol algebra; Lie triple System; Non-associative algebras; 
Jordan superalgebras; Nilpotent representation

Introduction
It is well known that the algebraic systems which characterize 

locally a totally geodesic subspace is a Lie triple system [1-3]. A Bol 
algebra is realized by equipping Lie triple System with an additional 
binary skew operation which satisfies a pseudo-differentiation property 
[4,5]. A morphism of Bol algebras is a linear map which preserves 
the ternary and the binary operations. More generally, the algebraic 
structures which characterize locally Bol loops are Bol algebras [6]. 
Until now, the representations of these algebras have not been studied. 
Since the representations of Lie algebras and Lie groups have natural 
connection with particulars physics, we claim that the representations 
of Bol algebras should lead with the physical applications. More 
precisely, in physics the representations of Bol algebras will be useful 
for the description of invariant properties of physical systems. and the 
concomitant conservation laws as a result. In literature of Mostovoy 
and Pérez-Izquierdo [7], it is shown that, Malcev algebras and Lie triple 
systems are particular subclasses of Bol algebras. The representations of 
Malcev algebras can be found studies of Kuz’min [8], and those of Lie 
triple systems were constructed by Hodge and Parshall [9], Bertrand, 
et al. [10]. Now, there already exists some representations of other 
classes of non-associative algebras; the case of alternative algebras was 
constructed by Schafer [11], the one of Leibniz algebras by Kolesnikov 
[12] and for Jordan superalgebras, the representations was given by 
Consuelo and Zelmanov [13].

Let B be a Bol algebra over a field K of characteristic zero, a 
representation of Bol algebra B on a K-vector space V is a triplet of 
maps ( , , )ρ δ ∆  which respect some conditions which will be given later 
in the paper.

Our first main result is the following.

Theorem 1.1. Let B be a finite dimensional Bol algebra over a field 
K and  consist of nilpotent representations of Bol algebra B in a finite 
dimensional space V. Then there exists a vector v ∈ V, v ≠ 0 such that 
( , , )( ) = 0ρ δ ∆ v  for all ( , , ) .ρ δ ∆ ∈

We agree that the image of any vector v of V by the operator ( , , )ρ δ ∆  
is given by 1 2 3( , , )( ) = ( ( ), ( ), ( ))ρ δ ρ δ∆ ∆v v v v , where 3

1 2 3= ( , , )∈v v v v B .

We define also the regular representations and the adjoint 
representations of Bol algebras. As an easy consequence, we show 
that if any representation of Bol algebra is nilpotent, then its adjoint 
representation is also nilpotent.

We are also interested by the question of the extension theorem 
of Ado-Iwasawa for Bol algebras. Pérez-Izquierdo established the 
existence of a Poincaré-Birkhoff-Witt type basis for a universal 
envelope of Bol algebra [5]. The above result allows us to interest 
ourselves to an extension of Ado-Iwasawa theorem for Bol algebra. let 
A be an alternative algebra, the the generalized right alternative nucleus 
is the algebra RNalt (A) defined by ( ) = { / ( , , ) = ( , , )}altRN A a A x a y x y a∈ − . 
We then give our second theorem.

Theorem 1.2. Let B be a finite-dimensional right Bol algebra over 
a field of characteristic different to 2 and 3. Then there exists a unital 
finite-dimensional algebra A and a monomorphism of Bol algebras B→ 
RNalt (A). 

The analogue of our second result above was established for Malcev 
algebras framed by Pérez-Izqquierdo and Shestakov [14]. The collection 
of all representations of Bol algebra and the morphisms between them 
form a category, named the category of representations of Bol algebras 
Rep(B). One can view a representation of Bol algebra as a B-module 
analogously as in literature of Consuelo and Zelmanov [13] in the case 
of Jordan superalgebras. One can understand also the representations of 
Bol algebras in term of matrices with sweet properties. The investigation 
between the category Rep(B) and the category of left U(B) -modules, 
where U(B) is the universal enveloping algebra of B, endowed with its 
bialgebra structure, leads us to our third main theorem.

Theorem 1.3. The category of representations of Bol algebra Rep(B) 
is equivalent to the category of representations of its universal enveloping 
algebra Rep(U(B)). 

The paper is organized as follows: We introduce in section 2 the 
notion of representations of Bol algebra. In section 3 we establish the 
Engel’s theorem for Bol algebras. In section 4 an extension of Ado-
Iwasawa theorem to Bol algebras is proved. Finally in section 5, we 
present the category of representations of Bol algebras and show that 
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it is equivalent to the category of left modules under its universal 
enveloping algebra. As immediate consequence, we show the category 
Rep(B) is a tensor category. We end the section by given a complete 
classification of regular representations of two-dimensional Bol 
algebras.

Bol Algebras and their Representations
Bol algebras were introduced in differential geometry to study 

smooth Bol loops [6,15,16]. A right loop is a set , together with a 
binary operation ( , )a b a b⋅ , such that for any b in , the right 
multiplication operator :bR x x b⋅  is bijective, and there exists an 
element ε ∈ , such that =b bε ⋅  for any b in . The dual definition 
gives rise to a left Bol loop. In case that , ,ε〈 ⋅ 〉  is both left and right 
loop then it is called a loop with identity element ε. 

 A right smooth loop  is a right loop equipped with a structure 
of smooth manifold, that is the map ( , )a b a b⋅  and 1

bR−  are smooth, 
[15,16]. Since groups are particular loops, so the Lie groups are 
particular cases of smooth loops. In scientific literature, many classes 
of loops are known: homogeneous loops, Moufang loops, Bol loops, 
Kikkawa loops among others.

 A right Bol loop , ,ε〈 ⋅ 〉  is a right loop that satisfies the right Bol 
identity 

(( ) ) = (( ) )x a y a x a y a⋅ ⋅ ⋅ ⋅ ⋅ ⋅

for all a, x, y in . Similarly, a left Bol loop satisfies the identity 
( ( )) = ( ( ))a x a y a x a y⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .

As in the case of Lie groups where the tangent space at each point is 
equipped with Lie algebra structure, the tangent space at each point of 
Bol loop is equipped with the structure of Bol algebra.

Definition 2.1. A vector space B over a field K is called Bol algebra 
if it is equipped with a trilinear operation [ ; , ]− − −  and a skew-symmetric 
operation x ⋅ y satisfying the following identities:  

(i)  [ ; , ] = 0x x y  

(ii)  [ ; , ] [ ; , ] [ ; , ] = 0.x y z z x y y z x+ +  

(iii) [[ ; , ]; , ] = [[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]]x y z x y z x y z x y zα β α β α β α β+ +  

(iv) [ ; , ] = [ ; , ] [ ; , ] [ ; , ] [ ] [ ]x y x y x y x y x yα β α β α β α β α β⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅  

for all x, y, z, α and β in B.

In other words, a Bol algebra is a Lie triple system ( ,[ ; , ])− − −B  
with an additional bilinear skew-symmetric operation x ⋅ y such that, 
the derivation , : [ ; , ]D x xα β α β→  on a ternary operation is a pseudo-
differentiation with components α, β on a binary operation, that is; for 
all x, y and z in B, we have 

, , ,( ) = ( ( )) ( ( )) [ ; , ] ( ) ( ).D x y D x y x D y x y x yα β α β α β α β α β⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅

Dα,β is a differentiation on ternary operation [ ; , ]− − −  that is; 

, , , ,[ ; , ] = [ ( ); , ] [ ; ( ), ] [ ; , ( )].D x y w D x y w x D y w x y D wα β α β α β α β+ +

In fact, the Bol algebra defined above is called right Bol algebra. In 
particular, any Lie triple system may be regarded as Bol algebra with 
the trivial multiplication x ⋅ y=0, for all x, y ∈ B.

Bol algebras can be realized as the tangent algebras of Bol loops 
with the right Bol identity, and they allow embedding in Lie algebras 
[6,15].

Definition 2.2. A linear map :ϕ →1 2B B  between two Bol algebras 

is called morphism of Bol algebras if it is preserve the ternary and the 
binary operations. 

The subspace S of Bol algebra B is a sub-Bol algebra if the inclusion 
j : →B  is a morphism of Bol algebras.

Definition 2.3. Let ( ,[ ; , ], )− − − ⋅B  be a Bol algebra over 
a field K, a pseudo-differentiation is a linear map :P →B B  
for which, there exists z ∈ B (a companion of D) such that 

( ) = ( ) ( ) [ ; , ] ( ) ;P x y P x y x P y z x y x y z⋅ ⋅ + ⋅ + + ⋅ ⋅  the companion is not 
necessarily unique. 

The set of all companions of D is denoted Com(D). The map 
, : [ ; , ]D x xα β α β→  is a pseudo-differentiation with companion α . β, 

called inner pseudo-differentiation of B. The pseudo-differentiations 
of B form a Lie algebra, denoted by pder B under the natural product 
[ , ] =P P PP P P′ ′ ′− . The algebra ipder B generate by ,{ / , }a bD a b∈B  is 
a Lie subalgebra of pder B, called the Lie algebra of inner pseudo-
differentiations of B. The enlarged algebra of pseudo-differentiations 
of B is defined as = {( , ), , ( )}Pder D z D pder z Com D∈ ∈B B  and 
the enlarged algebra of inner pseudo-differentiation is defined as 

= {( , ), , ( )}Ipder D z D ipder z Com D∈ ∈B B .

It is showed in [4,5] that, those algebras defined below are the Lie 
algebras with the brackets [ , ] =P P PP P P′ ′ ′−

The direct sum =L Ipder⊕B B  is a Lie algebra with the operation 
,[ , ] = x yx y D , , ,[ , ] = ( )a b a bx D D x , for all x, y, a, b in B. The Lie algebra (L,[,]) 

is called the standard enveloping Lie algebra of Bol algebra B. 

The map :a x x aδ ⋅  is a linear map of B. We denote by B  the 
Lie algebra generate by { , }a aδ ∈B  with brackets [ , ] = .a b a b b aδ δ δ δ δ δ−  
We get an other Lie algebra =L Ipder⊕B B  which is a subalgebra of 
the Lie algebra generated by linear maps of B.

If the subspace  of B satisfies the stronger condition 
( ; , )⋅ + ⊂B B B   , then  is an ideal of B. An ideal  of B automatically 

satisfies ( ; , ) ⊂B B   and ( ; , ) .⊂B B  

For more understanding of Bol algebras and Bol loops, it is 
important to investigate about their representations. We defined a 
representation of Bol algebra as follows.

Definition 2.4. If B is a Bol algebra over a field K and V a 
vector field over K, the pair (ρ,δ) with the skew-symmetric bilinear 
map 2: EndVρ →B  and the linear map : EndVδ →B  is said to be a 
representation of Bol algebra B in V if there exists a bilinear operation 

2: EndV∆ →B  such that the following statements are satisfied:

(R1)  ( , ) = ( , ) ( , )u v u v v uρ ∆ − ∆  

(R2)  [ ( , ), ( , )] = ([ , , ], ) ( ,[ , , ])a b u v a u v b a b u vρ ρ ρ ρ+  

(R3) [ ( , ), ( )] = ([ , , ]) ( , ) ( ) ( )u v a a u v u v a u v aρ δ δ δ δ+ ∆ ⋅ + ⋅

for all x, y, a, b in B.

The operation ∆ is called a companion of the representation (ρ,δ) 
of the Bol algebra B.

In this case we can denoted by (ρ,δ,∆,V) or simply (ρ,δ,∆), the 
representation (ρ,δ,V) with companion ∆. Following the approach 
of Consuelo and Zelmanov for the representations of Jordan 
Superalgebras [2], it is equivalent to say that the vector space V is a 
Bol module (B-module) i.e., =VE V⊕B  possesses the structure of Bol 
algebra such that:

(a) B is a sub-Bol algebra of EV, 
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(b) V is an ideal of Bol algebra EV and 

(c) x ⋅ y = 0 if both x, y ∈V and [ , , ] = 0x y z  if any two of x, y, z lie in V.

A particular instance where V = B and we set ,( , ) = , ( ) =u v uD u v D uδ δ  
the pair (D,δ) is a representation of Bol algebra with companion 

( , ) = [ , , ]u v u v∆ −  called regularrepresentation of B.

Example 2.1. Let ( ,[ ; , ], )− − − ⋅B  be the Bol algebra with basis 1 2( , )e e  
over a field of complex numbers, were 1 2 1 1[ , , ] =e e e e , 2 1 2 2[ , , ] =e e e e  and 

1 2 2=e e e⋅ . We recall that ( , )det u v  is the determinant of the pair of 
vectors ( , )u v  with 1 1 2 2=u u e u e+  and 1 1 2 2= .u u e u e+  Note that this Bol 
algebra arise from the classification of two-dimensional Bol algebras 
obtained by Kuz’min and Zaidi [4]. We set

( , ) 0
( , ) =

0 ( , )
det u v

D u v
det u v

− 
 
 

2 1

0 0
( ) =u

u u
δ

 
 − 

1 2 1 1

2 2 2 1

( , ) = .
u v u v

u v
u v u v
− 

∆  − 

It is clear that ( , , )D δ ∆  is a regular representation of B.

Now let ( , , )ρ δ ∆  and ( , , )ρ δ′ ′ ′∆  be two representations of Bol algebra 
B on V. a morphism of the representation ( , , )ρ δ ∆  to a representation 
( , , )ρ δ′ ′ ′∆  is a linear map :f V V→  such that = fρ ρ′ , = fδ δ′  and 

= .f′∆ ∆  Clearly the composition of morphisms of representations is a 
morphism of representations. The collection of all representations and 
their morphisms forms a K-linear category denoted by Rep(B) and 
called the category of representations of Bol algebra B.

We consider 1( ) = ( )
y

Z ker y
∈

− ⋅


B

B  and 2
,

( ) = [ ; , ]
y z

Z ker y z
∈

−


B

B , the center 

of Bol algebra is 1 2( ) = ( ) ( ).Z Z Z∩B B B  It is simple to see that, the kernel of 
the operation < , >ρ δ  given by < , >= { / ( , ) ( ) = 0}Ker x x xρ δ ρ δ∈ +B B  
is the center of B.

Engel’s Theorem for Bol Algebras 
Before giving the Engel’s theorem, we first need to define and 

characterize the nilpotent representations.

A representation ( , , )ρ δ ∆  of Bol algebra B in V is nilpotent if for all 
, ,x y z∈B , ( , ), ( )x y xρ δ  and ( , )x y∆  are nilpotent endomorphisms; that 

is if there is a positive integer n such that ( , , ) = 0.nρ δ ∆  Let ( , , )ρ δ ∆  be a 
representation of B in V. we define the triplet ( , , )ad ad adρ δ ∆  as follows: 

( , ) = [ ( , ), ]ad x y x yρ ρ − , ( , ) = [ ( ), ]ad x y xδ δ −  and ( , ) = [ ( , ), ].ad x y x y∆ ∆ −

Proposition 3.1. With the above notations, the pair ( , )ad adρ δ  is a 
representation of Bol algebra B in a vector space V with companion ad∆.

Proof. The objective is to show that (R1), (R2) and (R3) are satisfied. 
Let , , ,a b u v∈B  and .f EndV∈  We have 	

[ ( , ), ( , )]( ) = [ ( , ),[ ( , ), ]]
= [ ( , ),[ ( , ), ]] [ ( , ),[ ( , ), ]]
= [[ ( , ), ( , )], ]
= [ ( , ), ( , )] [ ( , ), ( , )]
= ([ ; , ], ) ( ,[ , , ]) ([ ; , ], ) ( ,[ , , ])
= (

ad a b ad u v f ad a b ad u v f
a b u v f u v a b f
a b u v f

a b u v f f a b u v
a u v b f a b u v f f a u v b f a b u v

ad

ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

−

−
+ − −

([ ; , ], ) ( ,[ , , ]))( )a u v b ad a b u v fρ ρ+

Then (R2) holds. In other hand we have
 [ ( , ), ( , )] = ([ ; , ], ) ( ,[ , , ])ad a b ad u v ad a u v b ad a b u vρ ρ ρ ρ+

( , )( ) = [ ( , ), ] = ( , ) ( , )
= ( , ) ( , ) ( , ) ( , )
= [ ( , ), ] [ ( , ), ]
= (( ( , ) ( , ))( )

ρ ρ ρ ρ

∆ ∆

−

∆ − ∆ − ∆ + ∆
∆ − ∆

−

lclad a b f a b f a b f f a b
a b f a b f b a f f b a
a b f b a f

ad a b ad b a f

Therefore we have the desire equality ( , ) = ( , ) ( , ).ad a b ad a b ad b aρ ∆ ∆−  
This shows that (R1) is satisfied. Finally, we have for all ,f EndV∈

Thus [ ( , ), ( )] = ([ ; , ]) ( ) ( ) ( , )ad a b ad u ad u a b ad a b ad u ad a b uρ δ δ δ δ ∆+ ⋅ + ⋅  
and the desire conclusion follows, that is (R3) is verified. 

Definition 3.1. The representation ( , , )ad ad adρ δ ∆  is called the 
adjoint representation of ( , , ).ρ δ ∆  

 Now we give the link between nilpotent representation and adjoint 
representation. The above result arises to the representations of Lie 
algebras.

lemma 3.1. Let ( , , )ρ δ ∆  be a representation of Bol algebra on the 
vector space V. If ( , , )ρ δ ∆  is nilpotent, then its adjoint representation is 
also nilpotent.

Proof. Let ( , , )ρ δ ∆  be a nilpotent representation of Bol algebra, and 
( , , )ad ad adρ δ ∆  its adjoint representation. Then there exists a positive 
integer p such that ( ) = 0pρ , ( ) = 0pδ  and ( ) = 0p∆ . If σ is one of the 
map ρ, δ, or ∆ it is clear that =ad l hσ σ σ+  where lσ and hσ are nilpotent. 
we have 2 1 2 1( ) = ( ) = 0.p pad l hσ σ σ

− −+  Hence the result.

 Now we are in position to prove our first main theorem.

Theorem 3.1. Let B be a finite dimensional Bol algebra over a field 
K and  consists of nilpotent representations of Bol algebra B in a finite 
dimensional space V. Then there exists a vector v ∈V3, v ≠ 0 such that 
( , , )( ) = 0vρ δ ∆  for all ( , , ) .ρ δ ∆ ∈

Proof. We agree that 1 2 3( , , )( ) = ( ( ), ( ), ( ))v v vρ δ ρ δ∆ ∆ , where 
1 2 3= ( , , ),v v v v  that is we identify ( , , )ρ δ ∆  by ( ( , ), ( ), ( , ))a b a a bρ δ ∆  for all 

a, b in B. It is clear that  is a subspace of (Env)3 and we can define 
on it the following bracket [( , , ), ( , , )] = ([ , ],[ , ],[ , ]).f g h f g h f f g g h h′ ′ ′ ′ ′ ′  
( ,[ , ])− −  is a Lie algebra.

The proof of the theorem goes by induction on dim. When dim 
= 1, since  is generated by a single nilpotent representation then the 
claim is immediate.

Suppose now that the claim is true for all subalgebras of nilpotent 
representations spaces of dimension less than dim ≥ 1.

Since, dim ≥ 1, we have a proper Lie subalgebra .L ⊆  We can 
choose L to be a maximal subalgebra. We show before continuing that, 
L has a codimension one in  and L is an ideal.

L acts via the adjoint operator on  and L. In the latter case, 
since dimL< dim, we know by Engel’s theorem apply for L, 
that there exists a nonzero element /r L∈  such that [ , ] = 0l r  
( , , ) / Lρ δ ∆ ∈  and 1 2 3[( , , ), ( , , )] = 0l l l ρ δ ∆  for 1 2 3( , , ) .l l l L∈  We know 
that ( , , ) = ( , , ) ;Lρ δ ρ δ∆ ∆ +  then ( , , ) .Lρ δ ∆ ∈ −  It follows that 
[ ( , , ) , ] .K L L Lρ δ ∆ + ⊆  Moreover [ ( , , ) , ( , , ) ] .K L K L Lρ δ ρ δ∆ + ∆ + ⊆  These 
imply that ( , , )K Lρ δ ∆ +  is a Lie subalgebra of , and contains L as an 
ideal. By maximality of L, it follows that = ,Kr L+   so we are done.

Now we define the vector space 3= { / = 0}.w V Lw∈W  Let 
1 2 3= ( , , )w w w w ∈W  and ( , , ) ,Lρ δ ∆ ∈  then 1 2 3( , , )( , , )( ) = 0l l l wρ δ ∆  for all 

1 2 3( , , ) .l l l L∈  Other we have

1 2 3 1 2 3 1 2 3

1 2 3

( , , )( , , )( ) = ( , , )( , , )( ) [( , , ), ( , , )]( )
= [( , , ), ( , , )]( )

l l l w l l l w l l l w
l l l w

ρ δ ρ δ ρ δ
ρ δ

∆ ∆ + ∆
∆
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and 1 2 3[( , , ), ( , , )] .l l l Lρ δ ∆ ∈  Since L is an ideal, we have also 
1 2 3[( , , ), ( , , )]( ) = 0.l l l wρ δ ∆

Now we have = ( , , )K Lρ δ ∆ +  for some ( , , ) .Lρ δ ∆ ∈  We know 
that ( , , )ρ δ ∆  is a nilpotent operator on W, so ( , , ) 0.ker ρ δ ∆ ∩ ≠W  Let 

1 2 3= ( , , ) ( , , )v v v v ker ρ δ∈ ∆ ∩W  such that 0;v ≠  then any element of L 
and r annihilates v.

An Extension of Ado-Iwasawa Theorem to Bol Algebras
Let L be a finite-dimensional Lie algebra over a field K. The classical 

Ado-Iwasawa theorem asserts the existence of a finite-dimensional 
L-module which gives a faithful representation of L. However, Filippov 
proved [17] showed that this theorem does not hold for Malcev 
algebras, that is homogeneous Bol algebras. Thus it is not hold for 
general Bol algebras.

For the Lie algeras, the Poincaré-Birkhoff-Witt theorem says that 
any Lie algebra L is a subalgebra of A−  for some unital associative 
algebra A. In the case that L is finite dimensional, the Ado-Iwasawa 
theorem says that A can be taken finite dimensional too. This 
extension of Ado-Iwasawa theorem was established for the Malcev 
algebras by Pérez-Izqquierdo and Shestakov [14]. There is a version 
of the Poincaré-Birkhoff-Witt theorem for Bol algebra proved by 
Kuz’min and Zaidi [4]. Now let B be a Bol algebra [14] that there is 
an alternative algebra A and an injective map ( )altRN A→B , where 

( ) = { / ( , , ) = ( , , )}altRN A a A x a y x y a∈ −  is the generalized right alternative 
nucleus. In this section we prove that if B is a finite-dimensional Bol 
algebra then A can be taken finite dimension too. Our second main 
result is the following.

Theorem 4.1. Let B be a finite-dimensional right Bol algebra over a 
field of characteristic ≠ 2,3. Then there exists a unital finite-dimensional 
algebra A and a monomorphism of Bol algebra : ( ).altj RN A→B  

Proof. Let B be a Bol algebra, according to Pérez-Izquierdo 
[5], there exists a linear map : ( ( )),altj RN U→B B  a a  such that 

( ) =j a b ab ba⋅ −  and ( , , ) = ( ) ( ) [ , ]j a b c ab c ac b b c a− − , where U(B) is the 
universal enveloping algebra of B. Since ( ( ))altRN U B  is closed under 
the binary product [ , ]− −  given by the commutators and the ternary 
operation [ , , ] = ( ) ( ) [ , ]a b c ab c ac b b c a− −  for all a,b,c in ( ( )).altRN U B  
By the methods of Pérez-Izquierdo [5], ( ( ))altRN U B  with the binary 
and ternary operations defined above has the structure of Bol 
algebra. Thus j is a monomorphism of Bol algebras. Let EB  be the Lie 
enveloping algebra of B. Then =E E E+ −⊕B  is the 2-gradation and 
E− B  as vector space. According to Pérez-Izquierdo and Shestakov 

[14], there exists a two side ideal ( )U⊆ B  of finite codimension. 
Then = ( ) /A U B   is a unital finite-dimensional algebra and there 
exists an injective map : ( )j U→B B . The injective map j induces a 
monomorphism of Bol algebras : ( ).altj RN A→B

The Category of Representations of Bol Algebra
We give a relation between the category of representation of 

Bol algebra B and the category of representations of its universal 
enveloping algebra. As immediate consequence, we show that the 
representation category of a Bol algebra is monoidal, or tensor 
category. We recall that the category of representations of Bol algebras 
is Rep(B), and the one of finite dimensional representations of Bol 
algebra is rep(B). Let = ( , , , )A A ε⋅ ∆  be a bialgebra, Mod(A) means the 
category of left A-modules (ie., representations of A). If U, V are left 
A-modules, then the tensor product becomes a left A-module with 
multiplication rule ( ) = ( ) ( )a u v a u v⋅ ⊗ ∆ ⋅ ⊗  for all a A∈ , u U∈  and 
v V∈ . The field K is also a left A-module by = ( )a aς ε ς⋅ . The category of 

left A-modules is equivalent to the category of (A, A)-bimodules. Any 
(A, A)-bimodule can be considered as left module over opA A⊗ , where 

opA  is define on the same space as A, by new multiplication = .x y y x⋅ ⋅  
We know in virtue of Pérez-Izqquierdo [5] that for a given Bol algebra 
( ,[ , ],[ , , ])− − − − −B  there exists a universal enveloping U(B) endowed 
with the structure of bialgebra, that is ( ( ), , , )U ε⋅ ∆B  is a bialgebra. 
Analogously we denote Rep(U(B)) the category of representation of the 
bialgebra ( ( ), , , ).U ε⋅ ∆B  Now we state an equivalent characterization of 
the representation category Rep(B). We prove our third main result.

Theorem 5.1. The category of representations of Bol algebra Rep(B) 
is equivalent to the category of representations of its universal enveloping 
algebra Rep(U(B)). 

Proof. We recall that Rep(B) is the category of modules over the 
Bol algebra B. Following the consideration of Consuelo and Zelmanov 
[13], apply for the modules over Bol algebras, every B-module has 
the form =VE V⊕B , where V is a vector space over a field K and EV 
possesses the structure of Bol algebra such that:

(a)  B is a sub-Bol algebra of EV, 

(b)  V is an ideal of Bol algebra EV and 

(c)  x . y=0 if both x, y ∈ V and [x, y, z] = 0 if any two of x, y, z lie 
in V.

We define the multiplication ( )U V V× →B  by = ( )a x a xε⋅ ⋅ . We 
consider the following mapping defined from Rep(B)  to Mod(U(B)) 
define on the objets by ( ) = .VF E V  The map F is naturally extended 
on the morphisms. If U and V are the images of EU and EV under F, in 
virtue of Pérez-Izqquierdo [5] there exits a map : ( ) ( )U Uµ → ⊗B B B  
with ( ) = 1 1 .a a aµ ⊗ + ⊗  This implies that U V⊗  is a (U(B)-module.

Conversely, let V be a (U(B)-module, in virtue of Pérez-
Izquierdo [5] there exist an injective map : ( )Uη →B B . We define the 
multiplication V V× →B  by = ( )a x a xη⋅ ⋅ . Then V has the structure 
of module. We set now the mapping G from Mod(U(B) to Rep(B) 
by ( ) = .VG V E  It remains to define the image of U V⊗ . Let EU and 
EV be two modules over B, We set = .E U V⊕ ⊗B  We define the 
binary operation by [ , ] = [ , ]a u v a u v⊗⊗ ⊗ ; [ , ] = [ , ]a u v a u v⊗⊗ ⊗  and 

a ternary by [ , , ] = [ , , ]a b u v a b u v⊗⊗ ⊗ ; [ , , ] = [ , , ]a u v b a u b v⊗⊗ ⊗  and 

[ , , ] = [ , , ]a b u v a b u v⊗⊗ ⊗  for all a, b in B, u in V and v in V. We assume 
also that the restrictions of [ , ]⊗− −  and [ , , ]⊗− − −  on B correspond 
respectively to the binary and ternary operations of B; and x ⋅ y = 0 if 
both ,x y U V∈ ⊗  and [ , , ] = 0x y z  if any two of x,y,z lie in .U V⊗  

 It remains to show that ( ,[ , ] ,[ , , ] )E ⊗ ⊗− − − − −  is a Bol algebra, that 
is the conditions (i) - (iv) hold. By the definition, the condition (i) is 
satisfied. Now let , , , ,x y z α β  in B; u in U and v in V. We have

[ ; , ] [ ; , ] [ ; , ] = [ ; , ] [ ; , ] [ ; , ]
= ([ ; , ] [ ; , ] [ ; , ])
= 0,

x y u v u v x y y u v x x y u v u x y v y z u v
x y u u x y y z u v

⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗
+ + ⊗

this shows that (ii) is true.

Now let us show that (iii) holds. We have
[[ ; , ]; , ] = [[ ; , ] ; , ]

= [[ ; , ]; , ]
= ([[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]])
= [[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]]

x y u v x y u v
x y u v
x y u x y u x y u v

x y u v x y u v x y u v

α β α β
α β

α β α β α β
α β α β α β

⊗ ⊗
⊗
+ + ⊗

⊗ + ⊗ + ⊗

One can show that the above equality holds for any , , ,x y α β  stands 
for .u v⊗  That is (iii) holds.

http://dx.doi.org/10.4172/1736-4337.S2-005
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Finally, we have

[[ ; ]; , ] = [[ ; ] ; , ]
= [[ ; ]; , ]
= ([ ; , ] [ ,[ ; , ]] [[ , ]; , ] [[ , ],[ , ]]) .

u v y u y v
u y v
u y u y u y u y v

α β α β
α β

α β α β α β α β

⊗ ⊗
⊗

⋅ + + + ⊗

Thus [[ ; ]; , ] = [ ; , ] [ ,[ ; , ]] [[ , ]; , ] [[ , ],[ , ]].u v y u v y u v y u v y u v yα β α β α β α β α β⊗ ⊗ ⋅ + ⊗ + ⊗ + ⊗  
One can show this equality for any y, α, β stands for .u v⊗  This 
completes the proof.

Definition 5.1. A monoidal (tensor) category ( , , , , )α λ⊗ 1  is a category 
 equipped with tensor functor :⊗ × →   , with a fix objet 1 (called the unit 
of a tensor category), : ( ) ( )Id Idα ⊗ ⊗× →⊗ ×⊗ 

, : ,λ ⊗−→ Id1  Id−⊗ →1  are 
natural isomorphisms such that the associativity and unitary constraints 
hold, or equivalently the pentagon and the triangle diagrams are 
commutative [18-20]. 

 We can now give a special characterization of the category 
of representations of Bol algebra as a consequence of the above 
proposition.

Corollary 5.1. Every category of representations of Bol algebras is a 
monoidal category.

Proof. It was proved by Kassel [20] that ( , , , )A ε⋅ ∆  is bialgebra if and 
only if the category Mod(A) is monoidal category. In virtue of Theorem 
5.0.6, the category of representations of Bol algebra is equivalent to the 
category of representations of its enveloping algebra endowed with 
bialgebra structure. Hence the category Rep(B) is monoidal.

More recently it was proved by Huang and Torecillas [21], that 
the path coalgebra KQ of a given quiver Q always admits a bialgebra 
structure. So the monoidal category arising from this quiver bialgebra 
is the category of representations of the bialgebra KQ. This leads to the 
following conjecture.

Conjecture 5.1. Find necessary and sufficient conditions for the 
existence of quiver Q such that the monoidal category arising from 
quiver bialgebra KQ is the category of representations of a Bol algebra 
over algebraically closed field K.

A monoidal category is said to be finite, if it is equivalent 
to the category of finite dimensional comodules over the finite 
dimensional coalgebra. Thus the category Rep(B) of finite dimensional 
representations is finite monoidal category. This is a particular case 
of tensor categories of Etingof et al. [19]. The particular case where Q 
is a quiver without loops and 2-cyles should leads to strong relation 
between Bol algebras and cluster algebras of Fomin and Zelevinsky 
[22,23] for more details. In the same vein, it has been shown in literature 
of Schauenburg [24] that if A is a finite dimensional bialgebra, then A is 
Hopf algebra if and only if the category of finitely generated A-modules 
is rigid, that is finitely generate modules admit dual objets. This allows 
us to the following conjecture.

Conjecture 5.2. Find necessary and sufficient conditions for a finite 
dimensional Bol algebra to have Hopf algebra as universal enveloping 
algebra. 

Representations of Free Bol Algebra Bol[X] of Finite 
Dimension

Let 1 2= { , ,..., },nX x x x  we construct the set of binary-ternary 
monomials BT[X], and we assume that BT[X] is closed under [ , ]− −  
and [ , , ]− − − . Let 

=1
[ ] = { | }i i iBT X xα α ∈∑  be the space spanned by X. 

We define the multiplication by the following rules: if 
=1

= ,
n

i i
i

f xα∑

=1
=

n

j j
j

g xβ∑  and 
=1

=
n

k k
k

h xγ∑  in BT[X], then 
, =1

[ , ] = [ , ]
n

i j i j
i j

f g x xα β∑ , 

, , =1
[ , , ] = [ , , ]

n

i j k i j k
i j k

f g h x x xα β γ∑ . The free Bol algebra Bol[X] is the free 

binary-ternary algebra BT[X] satisfying the identities (i) - (iv). The Bol 
types of degree m are always to construct a product of degree m in 
Bol[X]. For general construction and more details of the free Bol algebra 
Bol[X] [25,26]. In studies of Peresi [26] it has been shown that any 
multilinear identity f of degree m can be written as a linear combination 
of multilinear monomials. We denote the Bol types of degree m by B1, 
B2, …, Bb(m), that is 1 ( )= .. b mf f f+ + , where fk is a linear combination 
of polynomial having Bol type k. Therefore the author regards f as an 
element of b(m) copies of Sm, where Sm is group algebra of the group 
of permutation Sm. Applying the representation : ( )mS Mdσ σΦ →  , (σ 
partition of m) of Sm to f we obtain the representation matrix of f in 
partition σ: 1 2 ( )( ( ) | ( ) | ... | ( ))b mf f fσ σ σΦ Φ Φ . 

Now let V be finite dimensional space, dim(V) = s and B is a Bol 
algebras of dimension n. Give a representation ( , , )ρ δ ∆  of B over the 
space V is equivalent to give the matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆ , where 

( , )D u v , ( , )u v∆  are s × n s × n matrices and ( )uδ  is also a s × n matrix. 
Hence the block matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆  is a (3 )n s×  matrix.

In the special case where = [ ]Bol XB , =K   and V S , with Bol types 
B1, B2, …, Bb(m) the representation matrix 1 2 ( )( ( ) | ( ) | ... | ( ))b mf f fσ σ σΦ Φ Φ  
of f corresponds to the matrix δ f, that is the expression 

1 2 ( )( ) = ( ( ) | ( ) | ... | ( ))b mf f f fδ δ δ δ . At this specific case mentioned 
by Peresi and Jacobson [26,27], the representation of element f is 
understood as a the representation of Bol algebra Bol[X] given by the 
matrix ( ( ,0) | ( ) | ( ,0))D f f fδ ∆ .

Actually we recall the classification theorem of Kuz’min and Zaidi 
for two-dimensional Bol algebras [4] which states as follows. 

Theorem 5.2. (Kuz'min-Zaidi). Every Bol algebra B of dimension 
two over  has a canonical basis (e1,e2) in which its multiplication table 
is one of the following:  

I.  1 2[ , ] = 0e e , 2 1 2 1 1[ , , ] = ,e e e eε  1 2 1 2 2[ , , ] =e e e eε , where 1 2( , ) = (0,0)ε ε , 
( 1,0)− , (1,0) , (1, 1)− , (1,1) , ( 1, 1)− −  

II. 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε  1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −  

2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = .e e e e

Now we are in position to prove our classification result for regular 
representations of the two-dimensional Bol algebras.

Theorem 5.3. Every regular representation of two-dimensional Bol 
algebra B over K is up to equivalence of matrices given by one of the 
following matrices: 

(i)  1 2 2 1 2 1 1
1

2 1 2 2 1 1 2

0 ( , ) 0 0
( , ) =

( , ) 0 0 0
det u v u v u v

R u v
det u v u v u v

ε ε ε
ε ε ε

− 
 − − 

(ii)  2 2 2 1
2

2 1 1 2 1 1

0 ( , ) 0 0
( , ) =

( , ) 0
det u v u v u v

R u v
det u v u v u v u v

ε ε ε
β β β

− 
 − − − 

(iii)  1 2 1 1
3

2 1 2 2 2 1

( , ) 0 0 0
( , ) =

0 ( , )
det u v u v u v

R u v
det u v u v u v u v

− 
 − − 

Proof. In virtue of classification theorem of Kuz’min and Zaidi [4], 
every Bol algebra of dimension two is of type (I) or of type (II) by using 
the items of their theorem. 

We suppose in the first case that our Bol algebra is of type (I), that 
is B has a canonical basis (e1,e2) in which its multiplication table is given 
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by 1 2[ , ] = 0e e , 2 1 2 1 1[ , , ] = ,e e e eε  1 2 1 2 2[ , , ] =e e e eε , where 

 1 2( , ) = (0,0)ε ε , ( 1,0)− , (1,0) , (1, 1)− , (1,1) , ( 1, 1).− −  

 Let u and v be the two vectors of B, with 1 1 2 2=u u e u e+  and 
1 1 2 2= .u u e u e+  We have 1 1 2 1 1 2 2 1 1 2 1( , )( ) = [ , , ] [ , , ].D u v e u v e e e u v e e e+  Since 

1 1 2 1 2 1[ , , ] = [ , , ]e e e e e e− , we have

1 1 2 1 2 1 2 1 1 2 1

1 2 2 1 2 2

2 2

( , )( ) = [ , , ] [ , , ]
= ( )
= ( , ) ,

D u v e u v e e e u v e e e
u v u v e

det u v e
ε

ε

− +
− +
−

We have also 

2 1 2 2 1 2 2 1 2 2 1

1 2 2 1 1 1

1 1

( , )( ) = [ , , ] [ , , ]
= ( )
= ( , ) .

D u v e u v e e e u v e e e
u v u v e

det u v e
ε

ε

+
−

Thus 1

2

0 ( , )
( , ) = .

( , ) 0
det u v

D u v
det u v

ε
ε

 
 − 

Now we compute the matrix of ( , )u v∆  as follows. We have

1 1 2 1 1 2 2 2 2 1 2

2 2 1 1 1 2 2 2

( , )( ) = [ , , ] [ , , ]
= ,

u v e u v e e e u v e e e
u v e u v eε ε

∆ +
−

and 

2 1 1 1 2 1 2 1 2 2 1

2 1 1 1 1 1 2 2

( , )( ) = [ , , ] [ , , ]
= ,

u v e u v e e e u v e e e
u v e u v eε ε

∆ +
− +

hence 2 2 1 2 1 1

1 2 2 1 1 2

( , ) = .
u v u v

u v
u v u v

ε ε
ε ε

− 
∆  − 

 Because 1 2[ , ] = 0,e e  we have ( ) = 0.uδ  

Therefore the bloc matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆  corresponds to the 
matrix 1( , ).R u v

The second case corresponds to Bol algebra of type (I), that is B 
has a canonical basis 1 2( , )e e  in which its multiplication table is given 
by 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε  1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −  

2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = .e e e e  

If 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε  1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −  we use the 

analogous methods as at the first case to get 0 ( , )
( , ) =

( , ) 0,
det u v

D u v
det u v

ε
β

 
 − 

 

2 1

0 0
( ) =u

u u
δ

 
 − 

 and 2 2 2 1

1 2 1 1

( , ) = .
u v u v

u v
u v u v

ε ε
β β

− 
∆  − 

 Hence the bloc matrix 

( ( , ) | ( ) | ( , ))D u v u u vδ ∆  corresponds to the matrix 2 ( , ).R u v

Finally, for 1 2 2[ , ] =e e e  and 2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = ,e e e e  we have
1 2 1 1

2 1 2 2 2 1

( , ) 0 0 0
( ( , ) | ( ) | ( , )) = ,

0 ( , )
det u v u v u v

D u v u u v
det u v u v u v u v

δ
− 

∆  − − 
 this end the proof. 
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Abstract
 This work deals with an extension of the Black-Scholes model for rating options with the Heston volatility model. 

A Lie-algebraic analysis of this equation is applied to reduce its order and compute some of its solutions. As a result 
of this method, a five-parameter family of solutions is obtained. Though, these solutions do not match the terminal and 
boundary conditions, they can be used for the validation of numerical schemes. 

Keywords: Lie algebra; Black-Scholes equation; Differential 
equations; Lie symmetries; Diffeomorphisms

Introduction
Black and Scholes [1] assumed a financial market, where a risk free 

bond with constant interest rate r, an asset with price S that is modelled 
by a geometric Brownian motion, and call and put options related 
to this asset can be traded. With the assumption of an arbitrage free 
market and in the framework of It o ’s stochastic differential equations, 
it is possible to derive the well-known Black-Scholes partial differential 
equation for the fair price of an option V. As the assumptions of this 
first modelling attempt are in practice too restrictive, several extensions 
of this model were proposed. One possible direction is to discard the 
assumption of a constant volatility for the geometric Brownian motion 
of the asset price and to assume that it is itself a random variable 
governed by a stochastic differential equation [2]. The resulting 
stochastic differential problem is given by  

(1)= ,t t t t tdS S dt S dWµ ν+ 				                (1a)

( ) (2)= ,t t t td m dt L dWν α ν ν− + 			              (1b)

  where we suppose that (1) (2),t tW W  are two stochastically independent 
Wiener processes. The model constants α, m and L are supposed to be 
positive. The drift term of (1b) is built in a way such that the average 
of vt tends to have approximately the value m. In particular, if L is zero 
then vt is deterministic and converges exponentially to m as t tends to 
infinity. In this case, the option price behaves according to the solution 
of the usual Black-Scholes equation with a constant volatility = mσ .

Based on (1), it is possible to derive a partial differential equation 
for the price of an option V [2] as it has been done for the model with 
constant volatility in studies of Gunther and Jungel [3]. In contrast to 
the standard Black-Scholes equation the PDE that arises with Heston’s 
volatility model involves one more argument representing the current 
volatility of the market. The resulting two-dimensional Black-Scholes 
equation is as follows.

2 21 1 ( ( ) ) = 0.
2 2t xx yy x yV x yV L yV rxV m y V rVα α λ+ + + + − + − 	               (2)

 In application, this equation is augmented with the following 
terminal and boundary conditions 

( )

( )

( , , ) = [ ( )] ,
1(0, , ) = ,

2
1( , , ) = ,lim 2

if = 1
( , , ) =lim

if = 1

r T t

x
x

r T ty

V x y T a x K
aV y t Ke

aV x y t

x a
V x y t

Ke a

+

− −

→∞

− −→∞

−
−

+
∂

+


−

(3)

 In this setting, a denotes whether a call (a = 1) or a put (a = −1) 
option is considered. T represents the time when one is allowed to buy 
or sell a share of an asset for the prescribed price K, whereas λ is the 
parameter that models the price of volatility risk [2]. In (2), x represents 
the asset price S and y denotes the current volatility v. As the asset 
price and the current volatility are always positive, we are searching 
for a solution of the above differential problem (2)-(3) in the domain 

= [0, ) [0, ) [0, ]TΩ ∞ × ∞ × .

In the following, analytical and numerical solutions of (2) together 
with the boundary and terminal conditions (3) are sought. In particular, 
a quick review of Lie symmetries of partial differential equations is given 
in Section 2. In Section 3, this method is applied to the 2-dimensional 
Black-Scholes equation (2) and we derive a five-parameter family of 
analytical solutions. In Section 4, convergence properties of the Chang-
Cooper discretization are tested with the given analytical solutions. A 
section of conclusion completes the exposition of our work.

Lie Theoretical Analysis of Differential Equations
 In this section, we illustrate how Lie symmetries can be used 

to determine analytical solutions of partial differential equations. 
Applications of this method can be found in literature of Bordag [4] 
and Naicker V, Andriopoulos K, Leach [5]. Our review is based on the 
book of Stephani [6].

Many partial differential equations for a function u that is 
dependent on n variables xi ( = 1, ,i n ) can be written as follows 

( ) = 0,kH y 					                   (4)

 with an analytic function H, where yk denotes subsequently the 
independent variables xi, the dependent variable u, and its derivatives 

, ,1
1

=
j

i i j
i i j

uu
x x
∂

∂ ∂



. Equation (4) defines a manifold in some multi-
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dimensional Euclidean space and its solutions are sub-manifold. 
Diffeomorphisms of n can be used to permute the set of solution and 
find solutions with special properties. Therefore, we observe that a one 
parameter group of diffeomorphisms { }= : |n nG f ε ε→ ∈    can be 
completely determined by the first order differential operator 

1
=1 =0

= , where = ( , , ) ,
n

i i i n
i i

dX f x x
x d

ε

ε

ξ ξ
ε

∂
∂∑  		              (5)

which is called infinitesimal generator or symbol. In fact, the group 
action on a point 0

nx ∈  can be computed by solving the initial value 
problem 

0
0 0 0 0( ) = ( ( )), ( ) = .d f x f x f x x

d
ε εξ

ε 			                (6)

 Moreover, the coefficients of the symbol  =1
= n

ii
i

X
y

η ∂
∂∑ , with 

respect to a change of variables y = T(x) with a transformation 
: n nT →  , can be computed as follows 

1( ) = ( )( ( )),i iy X T T yη − 				                 (7)

 where X(Ti) denotes the application of the first order differential 
operator X on the function Ti. It can be shown that there always exists 
a set of canonical variables in which the symbol has the normal form 


1

=X
y
∂
∂

; [7]. 

As the symbol X acts only on the independent variables, it is 
prolonged to act in a higher dimensional space including also the 
dependent variable and its derivatives up to the order of the partial 
differential equation. The prolonged infinitesimal generator is defined 
as follows 

,1 2
=1 =1 , =1 ,1 2

= ;
n n n

i i i i
i i i ii i i j

X
x u u u

ξ η η η∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂∑ ∑ ∑ 

 where the coefficients 1i is
η

  are given by 

1 1
=1 =11

= ;
s n n

i i j j i i j js s
j ji is

D u u
Dx Dx

η η ξ ξ
 

− + 
 

∑ ∑
 



		                (8)

Here, the total differentiation operator =1

n
i ijj

i i j

D u u
Dx x u u

∂ ∂ ∂
= + + +
∂ ∂ ∂∑   

is used.

A Lie symmetry of a PDE is defined as a group of transformations 
of the independent and dependent variables such that set of solutions is 
invariant under these transformations. From the fact that the image of 
a solution satisfies the PDE, i.e. ( ( )) = 0kH f yε  for all ε, it can be shown 
that 

X(H(yk)) = 0,					                   (9)

holds everywhere on the solution manifold H(yk) = 0, where X is 
the prolonged symbol of the transformation group. For a given Lie 
symmetry, we seek to find its canonical variables wk as the corresponding 
symbol is 

1

=X
w
∂
∂  and (9) then reads as 

1

( ) = 0kH w
w
∂
∂

. Hence, the 
resulting PDE written in the new variable wk is independent of w1 
and therefore involves one independent parameter less. Computing 
solutions of the transformed PDE, which should be easier as less 
independent variables are involved, and reversing the transformation, 
provides solutions of the original PDE.

Lie Analysis of the Two-dimensional Black-Scholes 
Equation

In this section, the Lie method is used to find solutions to the 
2-dimensional Black-Scholes equation (2) written as H = 0, where H 
is defined as follows 

2 21 1( , , , , , , , ) := ( ( ) ) .
2 2x y t xx yy t xx yy x yH x y t V V V V V V x yV L yV rxV m y V rVα α λ+ + + + − + −

We assume that this equation admits a Lie symmetry with the 
infinitesimal generator 

= ( , , , ) ( , , , ) ( , , , ) ( , , , ) .X x y t V x y t V x y t V x y t V
x y t V

ξ γ τ ϕ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
Then, we first apply the prolonged symbol 

1 2 3 11 22=
x y t xx yy

X
x y t V V V V V V

ξ γ τ ϕ ϕ ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 to the function H and then evaluate the resulting function X(H) 
on the solution manifold H = 0. The resulting expression yields zero, 
whenever X is the generator of a Lie symmetry. The exact expressions 
for the prolonged coefficients ϕ1, ϕ2, ϕ3, ϕ11 and ϕ22 according to (8) are 
given by 

1 = ,x V x x x x y x t V x x V x y V x tV V V V V V V V V Vϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

2 = ,y V y y x y y y t V y x V y y V y tV V V V V V V V V Vϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

3 = ,t V t t x t y t t V t x V t x V t tV V V V VV VV VVϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

11 = 2xx xV x V xx VV x x xx x xx y xx tV V V V V V Vϕ ϕ ϕ ϕ ϕ ξ γ τ+ + + − − −

2 2 2 2 2x xx x xy x xt xV x x xV x y xV x tV V V V V V V V Vξ γ τ ξ γ τ− − − − − −

2 2 2V x xx V x xx V y xx V x xy V t xx V x xtV V V V V V V V VV V Vξ ξ γ γ τ τ− − − − − −

,VV x x x VV x x y VV x x tV V V V V V V V Vξ γ τ− − −

22 = 2yy yV y V yy VV y y yy x yy y yy tV V V V V V Vϕ ϕ ϕ ϕ ϕ ξ γ τ+ + + − − −

2 2 2 2 2y yx y yy y yt yV y x yV y y yV y tV V V V V V V V Vξ γ τ ξ γ τ− − − − − −

2 2 2V x yy V y yx V y yy V y yy V t yy V y ytV V V V V V V V VV V Vξ ξ γ γ τ τ− − − − − −

,VV y y x VV y y y VV y y tV V V V V V V V Vξ γ τ− − −

where sub-indices x, y, and V of ξ, γ, τ and ϕ denote partial derivatives 
with respect to the given variables. The equation H = 0 is solved for Vt 
and inserted into X(H) = 0. Afterwards this single equation splits up 
into the determining equations, since the derivative variables (Vx, Vy, 
Vxx, …) are linearly independent. Among the resulting equations, there 
are simple ones as = = = = = = 0V V x y V VVξ γ τ τ τ ϕ . Hence, we solve the 
following remaining system of partial differential equations 

2 20 = y xL x yξ γ+ 					                  (I)

0 = ( 2 )t yyγ τ γ+ − 				                 (II)

0 = ( )y xxξ γ ξ+ − 				                 (III)

2 21 10 = ( 2 ) ( ) ( ( ) )
2 2t xx Vx yy x t yx y L y rx m y rξ ξ ϕ ξ ξ τ α α λ ξ ξ+ − + + − + − + − (IV)

2 21 10 = ( 2 ) ( ( ) )( ) ( )
2 2t xx yy Vy x y tx y L y rx m yγ γ γ ϕ γ α α λ γ τ α λ γ+ + − + + − + − + + (V)

2 21 10 = ( ( ) ) ( )
2 2t xx yy x y V tx y L y rx m y r rVϕ ϕ ϕ ϕ α α λ ϕ ϕ ϕ τ+ + + + − + − + −  (VI)

for the functions ( , , )x y tξ , ( , , )x y tγ , ( )tτ , and 
( , , , ) = ( , , ) ( , , )x y t V x y t V x y tϕ φ β+ . Notice that equations (IV,V and VI) 

are similar to the original PDE we are trying to solve. Inserting the spe-
cial form of ϕ into (VI), it splits up into the following two equations 

2 21 10 = ( ( ) )
2 2t xx yy x y tx y L y rx m y rφ φ φ φ α α λ φ τ+ + + + − + − 	            (VI')

2 21 10 = ( ( ) ) ,
2 2t xx yy x yx y L y rx m y rβ β β β α α λ β β+ + + + − + − 	            (VI'')

 due to the fact that φ, β, and τt are independent of V. The function 
β is independent of the other functions and equations. Furthermore, 
it must be a solution of the PDE (VI'') whose Lie symmetries we are 
looking for. So the transformation V V εβ+  with its infinitesimal 
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generator =X
V

β ∂
∂

 is a Lie symmetry, mapping solutions onto 

solution. As the Lie symmetry corresponding to the coefficient function 
β is as difficult to find as solving the PDE directly, it is not significant 
for our purpose and we do not take (VI'') into account any more.

Instead, let us focus on (II). Differentiating it two times with 
respect to y yields 3 2 = 0yy yyyγ γ+ , whose solution is given by 

= ( , ) ( , ) ( , )A x t B x t y C x t yγ + + . Inserting this expression in (II) gives γ = τt 
y. Hence, γ is independent of x and since (I) holds, the function ξ is 
independent of y, i.e. = = 0y xξ γ .

The same idea works with (III), whose second derivative with 
respect to x is = 0xx xxxxξ ξ+ . The general solution to this ordinary 
differential equation (ODE) is = ( ) ( ) ( ) (log( ) 1)A t B t x C t x xξ + + − . Notice 
that (III) can only be satisfied by = ( ) (log( ) 1)tA t x xξ τ+ − . With this 
knowledge, Equations (III) and (IV) simplify to 

10 = (log( ) 1) ,
2t t tt xA y x xyτ τ φ+ + − − 			                 (III')

20 = ( ) .t tt yLα λ τ τ φ+ + − 				                 (IV')

 From (IV') one can directly derive 2

( )= ( , )t tt y D x t
L

α λ τ τφ + +
+ , as 

φy is not dependent on y. Differentiating (III') with respect to x gives 

/ ( ) = 0.tt x xxx y D xDτ − +

Notice that the functions τ and D are independent of y. Hence 
= 0ttτ  and = 0x xxD xD+  hold, i.e. ( , ) = ( ) ( ) log( )D x t B t C t x+ . (III') becomes 

1 ( ) = 0
2t tA y C tτ + − 

 
, which means that = 0tA  and 1( ) =

2 tC t τ . Using 
previous results in (VI'), we obtain 

2

2 2
2 ( ) 1 ( ) = 0.

4t t t
r mB y

L L
α α λ α λτ τ+ + + +

− −

As the coefficient of y must equal zero, τt = 0 holds and consequently 
Bt is equal to zero. Hence, the most general solution of the determining 
equations is 

1( , , , ) =x y t V c xξ

( , , , ) = 0x y t Vγ

2( , , , ) =x y t V cτ

3( , , , ) = ( , , , )x y t V c V x y t Vϕ β+

where c1, c2 and c3 are real constants and β is a solution of the Black-
Scholes equation.

Hence, the only Lie symmetries that (2) admits have the following 
infinitesimal generators 

	 1 2 3= ( , , ) .X c x c c V x y t
x t V V

β∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
Apart from the last symmetry this is a three dimensional, solvable 

Lie algebra, i.e. the commutator [ , ] = ( ) ( )X Y X Y Y X−  of two arbitrary 
symmetries X and Y equals zero.

Next, we determine the canonical variables for the Lie symmetry 
with fixed constants c1, c2 and c3. Therefore, we search for three 
functionally independent invariants ( , , , )v x y t V , ( , , , )w x y t V , and 

( , , , )u x y t V  that satisfy the following equation 

1 2 3( ) = = 0.f f fX f c x c c V
x t V
∂ ∂ ∂

+ +
∂ ∂ ∂

The evaluation of (7) with the choice of the following new variables

1

2

= exp
 
− 
 

cv x t
c

, w = y, 3

2

= exp cu V t
c

 
− 
 

, and log( )  shows that the 

Lie symmetry with respect to the new variables has the desired normal 

symbol ∂
∂

 and that v, w, u, and s are the canonical variables.

In order to rewrite (2) in the new variables, we differentiate 

3

2

= exp cV t u
c

 
 
 

 with respect to x, y and t and obtain 

3 1 3 1

2 2

3 3

2 2

3 3 1

2 2 2

2= exp , = exp ,

= exp , = exp ,

= exp .

x v xx vv

y w yy ww

t v

c c c cV t u V t u
c c

c cV t u V t u
c c

c c cV t u vu
c c c

   − −
   
   
   
   
   
  

−  
  

Hence, the 2-dimensional Black-Scholes equation in the new 
variables is given by 

	2 2 31

2 2

1 1 ( ( ) ) = 0
2 2vv ww v w

ccv wu L wu r vu m w u r u
c c

α α λ
   

+ + − + − + + −   
   

and by setting 1 3 2= =c c rc  we cancel out terms with u and uv. 
Therefore, the reduced Black-Scholes equation is as follows 

2 21 1 ( ( ) ) = 0.
2 2vv ww wv wu L wu m w uα α λ+ + − + 		             (10)

In order to find solutions to (10), we assume ( , ) = ( ) ( )u v w v wΦ Ψ  
and obtain 

2 21 1 ( ( ) ) = 0,
2 2vv ww wv w L w m wα α λΦ Ψ + ΦΨ + − + ΦΨ

which is equivalent to 
2

22( ( ) ) = .ww w vvL w m w v
w

α α λΨ + − + Ψ Φ
−

Ψ Φ
Since the left-hand side of the equation depends only on w and the 

right hand side only on v, both sides must be equal to a constant C. 
Hence, we obtain two decoupled ordinary differential equations 

	 2 = ,v C′′− Φ Φ 				               (11)

	 2 2( ( ) ) = .L w m w Cwα α λ′′ ′Ψ + − + Ψ Ψ 		             (12)

 The general solution of equation (11) is given by 

1 1 4 1 1 4
2 2

1 2

1 2

1 2

1, if < ,
4
1( ) = log( ), if = ,
4

4 1 4 1 1cos log( ) sin log( ) , if > .
2 2 4

C C

a v a v C

v a v a v v C

C Ca v v a v v C

+ − − −
 +

Φ +

    − −

+           

Regarding the second ordinary differential equation (12), we 
transform it into Kummer’s equation 

( ) ( ) ( ) ( ) = 0,wf w b w f w af w′′ ′+ − −

by defining 1 2
3( ) = ( ),k k ww w e f k wΨ where 1 2

2= 1 ,mk
L
α

−

( )2 2
2 2

1= ( ) ,α λ α λ+ − + +k L C
L

2 2
3 2

2= ( ) ,α λ+ +k L C
L

2 2 2 2

( )= 1
( )

m ma
L L L C
α α α λ

α λ
+

− +
+ +

, and 
2

2= 2 mb
L
α

− . The general solution of 

Kummer’s equation is given by 

3 4( ) = ( , , ) ( , 1, ),f w a M a b w a U a b w+ − −

where M and U are Kummer’s functions of the first and second 
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kind, respectively. For further details, [8]. In case of C = 0, (12) is given 
by 

2 2( ( ) ) = 0ww wL w m wα α λΨ + − + Ψ

and we directly see that the first derivative of Ψ is a multiple of 
2 2( )

2 2
m w

L Lw e
α α λ+

−  and hence a general solution in the interval (0, ∞) is 

given by 
2 2( )

2 2
3 4 1

( ) = .
m sw

L Lw a a s e ds
α α λ+

−

Ψ + ∫
Having found solutions u for (10), we obtain solutions V of (2) by 

applying the reverse variable transformation as follows 

( , , ) = ( , ).rt rtV x y t e u e x y− 				                (13)

 To summarize, we obtain the following five parameter family of 
solutions to the two-dimensional Black-Scholes equation  

( ) ( )( ) ( )

( ) ( )

( ) ( )

1 2 1 2
1 2 3 3 4 3

1 2
1 2 3 3 4 3

1 2

1( , , ) ( , 1, ) , if < ,
4
1log( ) ( , , ) ( , 1, ) , if = ,
4

4 1 4 1( , , ) = cos log sin log
2 2

k k yrt rt rt

k k yrt rt rt

rt rt rt rt

e a e x a e x y e a M a b k y a U a b k y C

a e x a e x e x y e a M a b k y a U a b k y C

C CV x y t a e x e x a e x e x

µ µ− −

−

− −

+ + − −

+ + − −

   − −
+     

   

( )

( )

1 2
3 3 4 3

2 2( )
2 2

1 2 3 4
1

1if > ,
4

( , , ) ( , 1, ) ,

, if = 0.

k k y

my s
rt L L

C

y e a M a b k y a U a b k y

a x a e a a s e ds C
α α λ+

−







 
    

× + − −


   + +    
∫

(14)

where 1,2
1 1 4=

2
Cµ ± − .

These functions do not satisfy the boundary conditions (3) given in 
Section 1. In order to check this we write down the boundary conditions 
in the new variables v, w, and u. They are given by 

( , ) = [ ( )] ,rT rTu v w e a ve K− − +−     (i)

1(0, ) = ,
2

rTau w Ke−−
                   (ii)

1( , ) = ,lim 2v
v

au v w
→∞

+
∂                   (iii)

if = 1
( , ) = if = 1.lim rT

w

v a
u v w Ke a−

→∞

+
 −



          (iv)

So if V would be a solution to the two-dimensional Black-Scholes 
equation subject to the given boundary conditions and if it corresponds 
to a solution u of the reduced equation, then u must satisfy the boundary 
conditions above. Note that, while (i) imply (ii) and (iii), (i) is not 
consistent with (iv). As (i) determines u and therefore u is independent 
of w, (iv) cannot be satisfied as ( , ) = [ ( )]lim rT rT

w
u v w e a ve K− − +

→∞
− , which 

equals neither v nor rTKe− .

Numerical Solution of the Two-dimensional Black-
Scholes Equation

This section deals with a numerical scheme to calculate an 
approximation to the solution of the Black-Scholes equation (2). We 
work with the proposal of Chang-Cooper scheme [9] and analyzed 
in studies of Mohammadi and Borz [10]. This disretization scheme is 
often used for Fokker-Planck equations, as its solutions are probability 
density functions and therefore are non-negative and their integral 
over its domain equals 1. These two properties are preserved by the 
Chang-Cooper (CC) difference scheme. In the case of the Black-
Scholes equation the solution is also non-negative, as it models the 
price of an option, which must be non-negative. Hence, the choice of 
the CC scheme guarantees that the numerical solution will be non-

negative. In order to apply the Chang-Cooper discretization scheme 
the two dimensional Black-Scholes equation (2) must be written in 
flux form. This is not possible, as the coefficient of V is −r and not 

r yα λ− − + − . However, introducing the following new variables 
= logx x , =y y , =t T t− , and ( )( , , ) = ( , , )r tV x y t e V x y tα λ+ −





   and computing 
the derivatives of V with respect to the new variables as follows 

( ) ( ) ( )

( ) ( )
2 2

( )

1= ( ) , = ,

1 1 = , = ,

= ,

r t r t r t
t x xt

r t r t
xx x xx y y

r t
yy yy

V r e V e V V e V
x

V V e V V e V
x x

V e V

α λ α λ α λ

α λ α λ

α λ

α λ + − + − + −

+ − + −

+ −

− + − +

−
+





  



 

  



we obtain the following PDE 

( )21 1 1 ( ) ( ) = 0.
2 2 2t xx yy x yV yV L yV y r V y m V Vα λ α α λ − − + − + + − + + 

 
(15)

 We can write (15) in flux form as follows 

= ( , , ) ( , , ) C ( , , ) ( , , )

( , , ) ( , , ) C ( , , ) ( , , )

x xx

y yy

V B x y t V x y t x y t V x y t
t x x

B x y t V x y t x y t V x y t
y y

∂ ∂ ∂ + ∂ ∂ ∂ 
 ∂ ∂

+ + ∂ ∂ 

	            	             (16)

where 

2 2

1 1( , , ) = , ( , , ) = ,
2 2

( , , ) = ( ) , ( , , ) = .
2 2

x xx

y yy

B x y t r y C x y t y

L LB x y t y m C x y t yα λ α

−

− + + −

 At this point we would like to stress three important properties of 
the flux functions. To begin with, they are all independent of the time 
variable t. Hence, the left-hand side of the resulting linear system of 
equations is the same for each time iteration and the corresponding 
matrix must be computed only once. Moreover, both B x and B y are 
linear functions and therefore Lipschitz continuous with the constants 

1=
2xγ  and =y rγ . Finally, these functions must be positive in our 

domain. This is the case when the condition 
220 < < min 2 ,

2( )
m Ly r α
α λ

 −
 + 

				               (17)

 is satisfied.

The transformed Black-Scholes equation (16) must be solved 
subject to the following transformed initial and boundary conditions: 

( )

( )( )

( )( )

( )( )

( )( )

( , ,0) = [ ( )] ,
1( , , ) = ,lim 2
1( , , ) = ,lim

2
if = 1

( , , )lim
if = 1.

x r T

T t rT

x

x r T t
x

x

x r T t

T t rTy

V x y a e K e
aV x y t Ke

aV x y t e e

e a
V x y t

Ke a

α λ

α λ

α λ

α λ

α λ

+ + −

+ − −

→−∞

− + − −

→∞

+ + − −

+ − −→∞

−
−

+
∂

 += 
−

		              (18)

There are several problems that arise during implementation:  

•	 The domain of the problem (16) subject to (18) is [0, ) [0, ]T× ∞ ×  
and therefore unbounded in the space dimensions. Moreover 
the boundary conditions are given as a limit. For numerical 
purpose the domain was limited to [ , ] [0, ] [0, ]min max maxx x y T× ×  and 
it was assumed that the function attain the limit values already 
at the finite boundaries. 

•	 When ,I x y±  corresponds to a point outside of the domain the 
values 1

,
m

I x yV +
±  with its coefficients are added to the right hand 

side of the linear system of equations, as they are known. 
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•	 The boundary condition for x → ∞ is given only in terms of the 
derivative of V with respect to x. Therefore the value 1m

I xV +
+  is 

approximated by 
1 1 1= .m m m

I x I x x I xV V h V+ + +
+ ++ ∂

•	 The derivative term is known and can be put to the right-hand 
side of the equation. 

The values of the function on the boundary y = 0 are not given. 
Fortunately, as y goes to zero, By goes to 2 / 2m Lα −  and yyC  tends to 
zero. Assuming 2> / 2m Lα , yδ  tends to zero, as = /y yy

yw h B C  goes to 
infinity. Hence, the coefficient of 1m

I yV +
−  is zero and this function values 

need not to be known for the calculations [9]. 

In the following, the numerical scheme is applied to the function 
type C = 0 in (14). After the variable transformation, that is used to 
write (2) in flux form, the test function becomes 

( )
2 2( )

2 2( )( ) ( )
1 2 3 4

1

( , , ) = .
my s

r T t x r T t L Lf x y t e c e c e c c s e ds
α α λ

α λ
− +

+ − − −
 
 + + 
 

∫

Note that this function has a singularity in y = 0, if and only if 

2
2 1m
L
α−

≤ − . As this infinite value might arise problems while numerical 

calculations, the set of parameters is chosen such that 22 <m Lα  
holds. In particular, the test function was calculated in the domain 
[ 0.5,0.5] [0,1]− ×  with the following parameters 

= 0.02, = 0.2, = 1, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

Unfortunately, it is not possible to chose a set of parameters such 
that the test function has no singularity at y = 0 and additionally there 
exists a domain where all flux functions are positive. That is because 

22 <m Lα  imply 
22 < 0

2( )
m Lα
α λ

−
+

 and therefore the necessary condition for 

(17) is not fulfilled. Consequently, there is no proof in this case, that the 
numerical solution is positive. Nevertheless, the convergence order can 
be observed. Figure 1 shows the difference of the numerical solution to 
the exact test function in terms of the norm 

2

,
= .m

x y I
I m

f h h t fδ ∑

The plot data is shown in Table 1 where N, M and Q is the number 
of grid points in the x-, y- and t-dimension, respectively. A small 
time-step size is used in order to have a small error for the time 
discretization and to investigate the dependence of the error on the 
spatial-grid size.

The numerical experiments show that the discretization that is 
used provides only first-order convergence, i.e., doubling the grid point 
number in each spatial dimension and therefore halving the grid size 
h results in an error that is half as big as before. Notice that second-
order convergence is proven in literature of Mohammadi and Borz [10] 
with the assumption of zero boundary conditions. In order to validate 
this theoretical result the same procedure is done with a Gaussian bell 
function that is almost zero on the boundaries: 

( )2 2( , , ) = exp (6 ) (6 3)x y t t x yΦ − − − −

In contrast to the test function f, this function Φ does not satisfy 
the partial differential equation (16). Hence the deviation to the PDE 

	 ( )21 1 1( ) := ( ) ( )
2 2 2t xx yy x yH y L y y r y mα λ α α λ Φ Φ − Φ − Φ + − Φ + + − Φ + + Φ 

 

is added to the right hand side of the linear system of equations 
according to 

( ) 1 2
1 /2 1 /2

=1

23 = 4 ( ) .
n

m i i m m m
I I I I I Ii i

i

t F F H
h
δ − −

+ −Φ − − Φ −Φ + Φ∑
Numerical experiments are performed with the grid sizes according 

to Table 2.

Φ was approximated in the domain [ 0.5,0.5] [0,1]− ×  with the 
parameters being 

= 1, = 3, = 2.5, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

Here, the flux functions are positive, as 
222 = = 2

2( )
m Lr α
α λ

−
+

 With the 

logarithmic plot of the error in Figure 2 we can see that second-order 
convergence is obtained.

In the following, we use the Chang-Cooper numerical scheme to 
calculate a numerical solution. Here, this numerical solution in the 
case of a call option is compared to the solution of the Black-Scholes 
equation, where the volatility is assumed to be constant. It is given by 

( )( )
1 2( , ) = ( ) ( )r T tV S t a S ad Ke ad− −Φ − Φ 			              (19)

2

1,2
ln( / ) ( / 2)( )= ,S K r T td

T t
σ

σ
+ ± −

−

where Φ is the cumulative distribution function of a normally 
distributed random variable with mean 0 and variance 1. This function 
is given by 

2/21( ) = .
2

x sx e ds
π

−

−∞
Φ ∫
The spatial domain of discretization is [ 4,0.5] [0,2]− × . After 

reversing the variable transformation the option price can be evaluated 
for [0.0183,1.6487]x∈  and [0, 2]y∈ . The following parameters are used 

= 0.06, = 0.5, = 2, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

The model constant m represents the square of the average volatility 
and the stochastic process tends to this value. Hence, if one starts the 
process with the value y = 0.5, the stochastic process for the volatility 

tν  is likely to be almost constant to 0.5. As you can see in the 
lower left plot of Figure 3, the calculated price is nearly the same with 
both models. In contrast, regarding the case of a currently volatility 
lower than 0.5  the price of the option calculated with the extended 
Black-Scholes equation is higher than that of the model with constant 
volatility, because it takes into account that the volatility will rise. This 

Figure 1: Logarithmic plot of the norm of the error || f -fex ||.
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effect can be seen in upper left and right plots. Finally, in the lower 
right plot the simpler model overestimates the price, when the initial 
volatility is higher than 0.5 , due to the fact that it is likely to fall. 

In addition, the numerical solution satisfies the so-called Put-
Call-Parity. The price of a call option C and the price of a put option P 
subject to the same asset with price x, that have the strike price K and 
the expiry date T in common, are related by the following formula [3] 

( )= .r T tx P C Ke− −+ −

We compute also the price for the put option and observe the absolute 
deviation for the Put-Call-Parity formula that we average along the 
y-dimension. Figure 4 shows the result depending on x and t. Apart from 
small x values the error is in the range of the numerical error of the Chang-
Cooper-Scheme. The drastic increase of the error for x → 0 is due to the fact, 
that the boundary condition for =x −∞

 for the Black-Scholes equation in 
flux form is applied at the finite value = 4x − . This corresponds to 4=x e−  
as the transformation was = log( )x x . Consequently, the numerical 
solution for the put option takes the value ( )r T tKe− −  at 4=x e− , whereas 
the correct value is ( ) 4r T tKe e− − −− , as C tends to zero as x goes to zero and 
therefore the price for the put option is ( )= r T tP Ke x− − − . To conclude, it is 
evident why there is such a great error for small x, and moreover it is not 
relevant as x gets never so small in applications.

Conclusion
The aim of this work was to solve the partial differential Black-

Scholes equation with Heston volatility model. Therefore, an analytical 
technique due to Sophus Lie that can be use to reduce the number of 
independent variables of a partial differential equation was presented 
and applied to the Black-Scholes equation. A five-parameter family 
of solutions was found. These functions do not satisfy the boundary 
conditions of the option price problem and henceforth numerical 
schemes are necessary to obtain approximate solutions. In the last 
part of this work the Chang-Cooper discretization scheme was used 
to calculate the option price function numerically. Its convergence 
was tested with an exact solution of the PDE, which was found by the 
Lie theoretical analysis. Finally, the numerical scheme was applied 
to compute the price of an option and good result were obtained in 
accordance with economic reasoning.

N 26 51 76 101

M 26 51 76 101

Q 500 500 500 500

hx = hy 1/25 1/50 1/75 1/100

|| f− fex || 0.243 0.122 0.083 0.065

Table  1: Numerical error for different grid sizes.

N 26 51 76 101

M 26 51 76 101

Q 500 500 500 500

hx = hy 1/25 1/50 1/75 1/100

|| Φ − Φex|| 3.25*103 0.83*10−3 0.37*10−3 0.21*10−3

Table 2: Numerical error for different grid sizes.

Figure 2: Logarithmic plot of the norm of the error || Φ−Φex|| against the 
spatial mesh size h.

Figure 3: Comparison between the solutions of the Black-Scholes 
equation with fixed (green) and variable (cyan) volatility.

Figure 4: Arithmetic mean over the y-dimension of the absolute deviation 
from the Put-Call-Parity equation.
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Abstract
 It is proved that the Hilbert class field of a real quadratic field ( )Q D  modulo a power m of the conductor f is 
generated by the Fourier coefficients of the Hecke eigenform for a congruence subgroup of level fD.

Keywords: Class field; Real multiplication

Introduction
The Kronecker’s Jugendtraum is a conjecture that the maximal 

unramified abelian extension (The Hilbert class field) of any algebraic 
number field is generated by the special values of modular functions 
attached to an abelian variety. The conjecture is true for the rational 
field and imaginary quadratic fields with the modular functions being 
an exponent and the j-invariant, respectively. In the case of an arbitrary 
number field, a description of the abelian extensions is given by class 
field theory, but an explicit formula for the generators of these abelian 
extensions, in the sense sought by Kronecker, is unknown even for the 
real quadratic fields.

The problem was first studied by Hecke [1]. A description 
of abelian extensions of real quadratic number fields in terms of 
coordinates of points of finite order on abelian varieties associated 
with certain modular curves was obtained in studies of Shimura [2]. 
Stark formulated a number of conjectures on abelian extension of 
arbitrary number fields, which in the real quadratic case amount to 
specifying generators of these extensions using special values of Artin 
L-functions [3]. Based on an analogy with complex multiplication, 
Manin suggested to use the so-called “pseudo-lattices”  + θ in  
having non-trivial real multiplications to produce abelian extensions of 
real quadratic fields [4]. Similar to the case of complex multiplication, 
the endomorphism ring = O+Rf kf  of pseudo-lattice  + θ is an 
order in the real quadratic field k = (θ), where O

k
 is the ring of integers 

of k and f is the conductor of R
f
; Manin calls these pseudo-lattices with 

real multiplication.

The aim of our note is a formula for generators of the Hilbert class 
field of real quadratic fields based on a modularity and a symmetry of 
complex and real multiplication. To give an idea, let 

1 2( ) = ( ) | 1  , 0  
a b

N SL a d N c N
c d

   Γ ∈ ≡ ≡ ≡  
   

mod mod                            (1)

be a congruence subgroup of level N ≥ 1 and  be the Lobachevsky 
half-plane; let 1 1( ) := / ( )X N NΓ  be the corresponding modular curve 
and 2 1( ( ))S NΓ  the space of all cusp forms on 1( )NΓ  of weight 2. Let ( , )D f

CMε −  
be elliptic curve with complex multiplication by an order = O+Rf kf  
in the field = ( )D−k   [5]. Denote by ( , )( ) := ( ( ))ab D f

CMk k j ε −  the Hilbert 
class field of k modulo conductor f ≥ 1 and let N = fD; let 1 ( ( ))Jac X fD  
be the Jacobian of modular curve 1( )X fD . There exists an abelian sub-
variety 1 ( ( ))A Jac X fDφ ⊂ , such that its points of finite order generate 
ab(k), [2,6,7], Section 8. The ab(k) is a CM-field, i.e. a totally imaginary 
quadratic extension of the totally real field φ generated by the Fourier 
coefficients of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ [2]. In particular, 
there exists a holomorphic map 0 ( , )

1 ( ) D f
CMX fD ε −→ , where 0

1 ( )X fD  is a 

Riemann surface such that 0
1 ( ( ))Jac X fD Aφ≅ ; we refer to the above as a 

modularity of complex multiplication.

Recall that (twisted homogeneous) coordinate ring of an elliptic 
curve ε () is isomorphic to a Sklyanin algebra, [8]; the norm-closure 
of a self-adjoint representation of the Sklyanin algebra by the linear 
operators on a Hilbert space  is isomorphic to a noncommutative 
torus θ, [9] for the definition. 

Whenever elliptic curve ( , )( ) D f
CMCε ε −≅  has complex multiplication, 

the noncommutative torus θ has real multiplication by an order 
= O+Rf kf  in the field = ( )D−k  ; moreover, it is known that f = f m 

for the minimal power m satisfying an isomorphism: 
 ( )  ( ),m ff

Cl Cl R≅R 				                 (2)

where Cl(Rf) and Cl(R
f
) are the ideal class groups of orders Rf and R

f
, 

respectively. We shall refer to (2) as a symmetry of complex and real 
multiplication. The noncommutative torus with real multiplication by 
R

f
 will be denoted by ( , )D

RM
f . 

Remark 1: The isomorphism (2) can be calculated using the well-
known formula for the class number of a non-maximal order  + fOK 
of a quadratic field = ( ) :K D

|

1= 1 ,KO

p ff
fOK

h f Dh
e p p+

  
−  
  

∏                                      	               (3)

where OK
h is the class number of the maximal order OK, ef is the index 

of the group of units of  + fOK in the group of units of OK, p is a prime 
number and D

p
 is the Legendre symbol [10,11].

The (twisted homogeneous) coordinate ring of the Riemann surface 
0
1 ( )X fD  is an AF-algebra 0φ

  linked to a holomorphic differential 
0 ( )z dzφ  on 0

1 ( )X fD , see Section 2.2, Definition 1 and Remark 5 for 
the details; the Grothendieck semigroup 0 0( )K

φ

+   is a pseudo-lattice 
1 1θ θ −+ + + n    in the number field φ, where n equals the genus 

of 0
1 ( )X fD . Moreover, a holomorphic map 0 ( , )

1 ( ) D f
CMX fD ε −→  induces the 

C*-algebra homomorphism ( , )
0

D f
RMφ

→   between the corresponding 
coordinate rings, so that the following diagram commutes:
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ε (− D,f )
CM  (D, f)

RM

X 0
1 ( fD ) φ0

coordinate

map

coordinate

map
But ( , )

0 ( )D
RMK + f  is a pseudo-lattice  + θ in the field k, such that 

End ( + θ ) ≅ Rf ; in other words, one can use the above diagram 
to control the arithmetic of the field φ by such of the real quadratic 
field k. Roughly speaking, this observation solves the Kronecker’s 
Jugendtraum for the real quadratic fields; namely, the following is true. 

Theorem 1. The Hilbert class field of a real quadratic field = ( )Dk   
modulo conductor f m is an extension of k by the Fourier coefficients of 
the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ , where m is the smallest positive 
integer satisfying isomorphism (2). 

Remark 2. Theorem 1 can be used to compute concrete extensions. 
For instance, theorem 1 says that for the quadratic field 15  its 
Hilbert class field is isomorphic to 1 15− +  and for 14 such a field 
modulo conductor f = 8 is isomorphic to ( )4 27 8 14− +  see section 4 
for more examples.	

 The article is organized as follows. Section 2 covers basic facts on 
real multiplication and AF-algebras of the Hecke eigenforms. Theorem 
1 is proved in Section 3. Section 4 contains numerical examples 
illustrating theorem 1.

Preliminaries
 The reader can find basics of the C*-algebras in studies of Murphy 

[12] and their K-theory in theory of Blackadar [13]. The noncommutative 
tori are covered in literature of Rieffel [9] and real multiplication in 
studies of Manin [4]. For main ideas of non-commutative algebraic 
geometry, see the survey by Stafford and van den Bergh [8]. The AF-
algebras are reviewed in studies of Effros [14]. For a general theory of 
modular forms we refer to literature of Diamond and Shurman [15].

Real multiplication

The noncommutative torus θ is a universal C*-algebra generated 
by the unitary operators u and v acting on a Hilbert space  and 
satisfying the commutation relation 2= ivu e uvπ θ , where θ is a real 
number. The C*-algebra θ is said to be stably isomorphic (Morita 
equivalent) to 'θ

 , whenever θ θ′⊗ ≅ ⊗   , where  is the C*-
algebra of all compact operators on ; the θ is stably isomorphic to 

θ′  if and only if 

= a b
c d
θθ
θ
+′
+

 for some matrix 2 ( )
a b

SL
c d

 
∈ 

 
 		               (4)

 The K-theory of θ is two-periodic and 2
0 1( ) ( )K Kθ θ≅ ≅    so 

that the Grothendieck semigroup 0 ( )K θ
+   corresponds to positive 

reals of the pseudo-lattice θ+ ⊂   . The θ is said to have real 
multiplication, if θ is a quadratic irrationality, i.e. irrational root of 
a quadratic polynomial in [x]. The real multiplication says that 
the endomorphism ring of pseudo-lattice  + θ exceeds the ring 
 corresponding to multiplication by m endomorphisms; similar 
to complex multiplication, it means that the endomorphism ring is 
isomorphic to an order = O+f kR f  of conductor f  ≥ 1 in the real 
quadratic field k = (θ ), hence the name. If D > 0 is the discriminant 
of k, then by ( , )D

RM
f  we denote torus θ with real multiplication by the 

order R
f
.

The Sklyanin algebra , , ( )Sα β γ   is a free C-algebra on four generators 
and six relations: 

1 2 2 1 3 4 4 3

1 2 2 1 3 4 4 3

1 3 3 1 4 2 2 4

1 3 3 1 4 2 2 4

1 4 4 1 2 3 3 2

1 4 4 1 2 3 3 2

= ( ),
= ,
= ( ),
= ,
= ( ),
= ,

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

α

β

γ

− +
 + −
 − +
 + −
 − +


+ −

			                 (5)

where = 0α β γ αβγ+ + + ; such an algebra corresponds to a twisted 
homogeneous coordinate ring of an elliptic curve in the complex projective 
space P3 given by the intersection of two quadric surfaces of the form 

3 2 2 2 2 2 2 2
, ,

1 1( ) = {( , , , )  | = = 0}.
1 1

u v w z P u v w z v w zα β γ
α α
β γ

ε − +
∈ + + + + +

+ −
 

Being such a ring means that the algebra , ,Sα β γ  satisfies an 
isomorphism 

, , , , ( ( )) /  ( ( )),α β γ α β γMod Tors Coh  		               (6)

where Coh is the category of quasi-coherent sheaves on , , ( )α β γε  , Mod 
the category of graded left modules over the graded ring , , ( )Sα β γ   
and Tors the full sub-category of Mod consisting of the torsion 
modules, [8]. 

If one sets * *
1 2 3 4= , = , = , =x u x u x v x v , then there exists a self-adjoint 

representation of the Sklyanin ∗-algebra ,1, 1( )Sα −   by linear operators 
on a Hilbert space , such that its norm-closure is isomorphic to θ ; 
namely, 0

,1, 1( ) /S Iθ α µ−≅   where 0
θ  is a dense sub-algebra of θ and Iµ 

is an ideal generated by the “scaled unit” relations 1 3 3 4
1= =x x x x e
µ

, where 
µ > 0 is a constant. Thus the algebra θ is a coordinate ring of elliptic 
curve E(C), such that isomorphic elliptic curves correspond to the 
stably isomorphic (Morita equivalent) noncommutative tori; this fact 
explains the modular transformation law in (4). In particular, if ε () 
has complex multiplication by an order = O+f kR f  in a quadratic field 

= ( )D−k  , then θ has real multiplication by an order = O+f kR f  
in the quadratic field = ( )Dk  , where f is the smallest integer satisfying 
an isomorphism  ( )  ( )fCl Cl R≅fR , [16]; the isomorphism is a necessary and 
sufficient condition for ( , )D

RM
f  to discern non-isomorphic elliptic curves 

( , )D f
CMε −  having the same endomorphism ring Rf . For the constraint f = 

f m, see remark 6.

AF-algebra of the Hecke eigenform

An AF-algebra (Approximately Finite C*-algebra) is defined to 
be the norm closure of an ascending sequence of finite dimensional 
C*-algebras Mn, where Mn is the C*-algebra of the n × n matrices with 
entries in . Here the index 1= ( , , )kn n n  represents the semi-simple 
matrix algebra 

1
=n n nk

M M M⊕ ⊕ . The ascending sequence mentioned 
above can be written as 1 2

1 2 ,M Mϕ ϕ→ →  where Mi are the finite 
dimensional C*-algebras and ϕi the homomorphisms between such 
algebras. The homomorphisms ϕi can be arranged into a graph as follows. 
Let 

1
=i i ik

M M M⊕ ⊕  and 
1

=i i ik
M M M′ ′ ′

⊕ ⊕  be the semi-simple C*-
algebras and :i i iM Mϕ ′→  the homomorphism. One has two sets of vertices 

1
, ,i ik

V V  and 
1

, ,i ik
V V

′ ′
  joined by brs edges whenever the summand ir

M  
contains brs copies of the summand is

M
′
 under the embedding ϕi. As i 

varies, one obtains an infinite graph called the Bratteli diagram of the AF-
algebra. The matrix = ( )rsB b  is known as a  partial multiplicity matrix; an 
infinite sequence of Bi defines a unique AF-algebra. An AF-algebra is called 
stationary if Bi = Const = B, [14], when two non-similar matrices B and B’ 
have the same characteristic polynomial, the corresponding stationary AF-
algebras will be called companion AF-algebras.
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Let N ≥ 1 be a natural number and consider a (finite index) 
subgroup of the modular group given by the formula: 

1 2( ) = ( ) | 1  , 0  .
a b

N SL a d N c N
c d

   Γ ∈ ≡ ≡ ≡  
   

mod mod            (7)

 Let = { =  | > 0}z x iy y+ ∈   be the upper half-plane and let 
1( )NΓ  act on  by the linear fractional transformations; consider an 

orbifold 1/ ( )NΓ . To compactify the orbifold at the cusps, one adds 
a boundary to , so that * = { }∪ ∪ ∞    and the compact Riemann 
surface *

1 1( ) = / ( )X N NΓ  is called a modular curve. The meromorphic 
functions  (z) on  that vanish at the cusps and such that 

2
0= ( ) ( ), ( ),

a baz b cz d z N
c dcz d

φ φ
 +  + ∀ ∈Γ  +   

	               (8)

are called cusp forms of weight two; the (complex linear) space of such 
forms will be denoted by 2 1( ( ))S NΓ . The formula ( ) = ( )z z dzφ ω φ  
defines an isomorphism 2 1 1( ( )) ( ( ))holS N X NΓ ≅ Ω , where 1( ( ))hol X NΩ  
is the space of all holomorphic differentials on the Riemann surface 

1( )X N . Note that 2 1 1( ( ( )) = ( ( ( )) =dim dim holS N X NΓ Ω g  , where g =g(N) 
is the genus of the surface 1( )X N . A Hecke operator, Tn, acts on 

2 1( ( ))S NΓ  by the formula = ( ) m
n m Z

T m qφ γ
∈∑ , where 2| ( , ) /

( ) =
a m n mn a

m acγ ∑ GCD  
and ( ) = ( ) m

m
z c m qφ

∈∑   is the Fourier series of the cusp form ϕ at 
2= izq e π . Further, Tn is a self-adjoint linear operator on the vector space 

2 1( ( ))S NΓ  endowed with the Petersson inner product; the algebra 
1 2:= [ , , ]N T T    is a commutative algebra. Any cusp form 2 1( ( ))S Nφ ∈ Γ  

that is an eigenvector for one (and hence all) of Tn, is referred to as 
a Hecke eigenform. The Fourier coefficients c(m) of ϕ are algebraic 
integers, and we denote by = ( ( ))K Q c mφ  an extension of the field Q by 
the Fourier coefficients of ϕ. Then φ is a real algebraic number field 
of degree 1 deg ( | )φ≤ ≤ g , where g is the genus of the surface 1( )X N  
[5], Proposition 6.6.4. Any embedding : φσ →  conjugates ϕ by 
acting on its coefficients; we write the corresponding Hecke eigenform 

( ) := ( ( )) m
m Z

z c m qσφ σ
∈∑  and call ϕ σ a conjugate of the Hecke eigenform ϕ.

Let = ( ) ( )holz dz Xω φ ∈Ω  be a holomorphic differential on a 
Riemann surface X. We shall denote by R(w) a closed form on X (the 
real part of w) and consider its periods =  ( )i

iγ
λ ℜ∫ w  against a basis γi 

in the (relative) homology group 1( , (  ( )); )H X Z ℜ w , where (  ( ))Z ℜ w  
is the set of zeros of the form R(w). Assume > 0iλ  and consider the 
vector 1 1= ( , , )nθ θ θ −  with 1 1= /i iθ λ λ+ . The Jacobi-Perron continued 
fraction of θ is given by the formula: 

1

0 10 11 0 0
= = ,lim lim i

i ii

B
I bI bθ →∞ →∞

       
       

        


 
		                (9)

where ( ) ( )
1 1= ( , , )i i T

i nb b b −

 is a vector of non-negative integers, I is the 
unit matrix and = (0, ,0,1)T

 [17]. By ϕ we shall understand the AF-
algebra given the Bratteli diagram with partial multiplicity matrices Bi. 
If 2 1( ) ( ( ))z S Nφ ∈ Γ  is a Hecke eigenform, then the corresponding AF-
algebra ϕ is stationary with the partial multiplicity matrices Bi = Const 
= B; moreover, each conjugate eigenform ϕ σ defines a companion AF-
algebra A σφ

. It is known that 0 1 1( ) nK φ φθ θ+
−≅ + + + ⊂     , where 

φ is an algebraic number field generated by the Fourier coefficients 
of ϕ, [18].

Proof of Theorem 1
Definition 1. Let 1 ( ( ))A Jac X fDφ ⊂  be an abelian variety associated 

to the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ  [15], Definition 6.6.3. By 
0
1 ( )X fD  we shall understand the Riemann surface of genus g, such that 

0
1 ( ( )) .Jac X fD Aφ≅ 				                 (10)

By 0 0
1( ) ( ( ))holz dz X fDφ ∈Ω  we denote the image of the Hecke eigenform 

1( ) ( ( ))holz dz X fDφ ∈Ω  under the holomorphic map 0
1 1( ) ( )X fD X fD→ . 

Remark 3. The surface 0
1 ( )X fD is correctly dened. Indeed, since the 

abelian variety Aφ is the product of g copies of an elliptic curve with 
the complex multiplication, there exists a holomorphic map from Aφ 
to the elliptic curve. For a Riemann surface X of genus g covering the 
elliptic curve εCM by a holomorphic map (such a surface and a map 
always exist), one gets a period map X → Aφ by closing the arrows of a 
commutative diagram Aφ → εCM ← X. It is easy to see, that the Jacobian 
of X coincides with Aφ and we set 0

1 ( ): .X fD X= .

Lemma 1. 0
1( ( )) = deg ( ( ) | )abX fD k kg  . 

Proof. By definition, abelian variety Aφ is the quotient of n by 
a lattice of periods of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ  and all 
its conjugates ( )zσφ  on the Riemann surface 1( )X fD . These periods 
are complex algebraic numbers generating the Hilbert class field ( )abK k  
over imaginary quadratic field = ( )k Q D−  modulo conductor f, [2,6,7], 
Section 8. The number of linearly independent periods is equal to the total 
number of the conjugate eigenforms ( )zσφ , i.e. | |= = ( )dimn Aφσ  . Since 
real dimension ( ) = 2dim A nφ , we conclude that deg ( ( ) | ) = 2ab k n  
and, therefore, deg ( ( ) | ) =ab k k n . But 0

1( ) = ( ( ))dim A X fDφ g  and one gets 
0
1( ( )) = deg ( ( ) | )abX fD k kg  . Lemma 1 follows. 

Corollary 1. 0
1( ( )) = |  ( ) |fX fD Cl Rg . 

Proof. Because ( )ab k  is the Hilbert class field over k modulo 
conductor f, we must have 

 ( ( ) | )  ( ),ab
fGal k k Cl R≅ 				                   (11)

 where Gal is the Galois group of the extension ( ) |ab k k  and  ( )fCl R  
is the class group of ring Rf, [5]. But |  ( ( ) | ) |= deg ( ( ) | )ab abGal k k k k   
and by lemma 1 we have 0

1deg ( ( ) | ) = ( ( ))ab k k X fDg . In view of this 
and isomorphism (11), one gets 0

1|  ( ) | = |  ( | ) |= ( ( ))ab
fCl R Gal k X fDg . 

Corollary 1 follows. 

Lemma 2. 0
1( ( )) = deg (  | )X fD Qφg  . 

Proof. It is known that ( ) = deg (  | )dim Aφ φ   [15], Proposition 
6.6.4. But abelian variety 0

1 ( ( ))A Jac X fDφ ≅  and, therefore, 
0 0
1 1( ) = (  ( ( ))) = ( ( ))dim dimA Jac X fD X fDφ g  , hence the lemma. 

Corollary 2. deg (  | ) =|  ( ) |Clφ fR . 

Proof. From lemma 2 and corollary 1 one gets deg ( | ) =|  ( ) | .φ fCl R
In view of this and equality (2), one gets the conclusion of corollary 2. 

Lemma 3. (Basic lemma)  (  | )  ( )Gal Clφ ≅ fR . 

Proof. Let us outline the proof. In view of lemma 2 and corollaries 1-2, 
we denote by h the single integer 0

1( ( )) = |  ( ) | = |  ( ) | = deg ( | )fX fD Cl R Cl φg fR  . 
Since deg ( | ) =φ h , there exist 1{ , , }hφ φ  conjugate Hecke eigenforms 

2 1( ) ( ( ))i z S fDφ ∈ Γ  [15], Theorem 6.5.4; thus one gets h holomorphic 
forms 0 0

1{ , , }hφ φ  on the Riemann surface 0
1 ( )X fD . Let 0 0

1
{ , , }

h
A A
φ φ
  be 

the corresponding stationary AF-algebras; the 0
i

A
φ

 are  companion AF-
algebras, see Section 1.2. Recall that the characteristic polynomial for 
the partial multiplicity matrices 0

i
B
φ

 of companion AF-algebras 0
i

A
φ

 
is the same; it is a minimal polynomial of degree h and let 1{ , , }hλ λ

 
be the roots of such a polynomial, compare with studies of Effros [14], 
Corollary 6.3. Since 0det ( ) = 1

i
B
φ

, the numbers λi are algebraic units of 
the field φ. Moreover, λi are algebraically conjugate and can be taken 
for generators of the extension |φ  ; since deg ( | ) = =|  ( ) |h Clφ fR  
there exists a natural action of group  ( )Cl fR  on these generators. The 
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action extends to automorphisms of the entire field φ preserving ; 
thus one gets the Galois group of extension |φ   and an isomorphism 

 ( | )  ( )Gal Clφ ≅ fR . Let us pass to a step-by-step argument.

(i) Let 0
1:= ( ( )) =|  ( ) |=|  ( ) |fh X fD Cl R Clg fR  and let 2 1( ) ( ( ))z S fDφ ∈ Γ  

be the Hecke eigenform. It is known that there exists 1{ , , }hφ φ  
conjugate Hecke eigenforms, so that ϕ (z) is one of them [15], Theorem 
6.5.4. Let 0 0

1{ , , }hφ φ  be the corresponding forms on the Riemann 
surface 0

1 ( )X fD . 

Remark 4. The forms 0 0
1{ , , }hφ φ  can be taken for a basis in the 

space 0
1( ( ));hol X f DΩ  we leave it to the reader to verify, that abelian 

variety Aφ is isomorphic to the quotient of h by the lattice of periods 
of holomorphic differentials 0 ( )i z dzφ  on 0

1 ( ).X fD .

 (ii) Let 0
iφ

  be the AF-algebra corresponding to holomorphic 
differential 0 ( )i z dzφ  on 0

1 ( )X fD , see Section 2.2; the set 0 0
1

{ , , }
hφ φ

   
consists of the companion AF-algebras. It is known that each 0

iφ
  is a 

stationary AF-algebra, i.e. its partial multiplicity matrix is a constant; 
we shall denote such a matrix by 0

i
B
φ

.

(iii) By definition, the matrices 0
i

B
φ

 of companion AF-algebras 
iφ

  have the same characteristic polynomial ( ) [ ]p x x∈ ; the matrices 
0
i

B
φ  itself are not pairwise similar and, therefore, the AF-algebras 0

iφ
  

are not pairwise isomorphic. The total number h of such matrices is 
equal to the class number of the endomorphism ring of pseudo-lattice 

0 0 1 1( ) i i
h

i
K φφ

θ θ+
−≅ + + + ⊂     , [14]. 

Remark 5. Notice that there are {X1 ,…, Xh} pairwise non-isomorphic 
Riemann surfaces 0

1: ( )X X fD=  endowed with a holomorphic map Xi→ 
εi where, {ε1 ,…, h} are pairwise non-isomorphic elliptic curves ( , )D f

CMε −

corresponding to elements of the group Cl(Rf). Thus the companion 
AF-algebras 0 0

1
{ , , }

hφ φ
  can be viewed as coordinate rings of {X1 

,…, Xh} the latter means that 0
iφ

  discern non-isomorphic Riemann 
surfaces and 0 0 1 1( ) i i

h
i

K φφ
θ θ+

−≅ + + + ⊂      represents the moduli 
space of 0

1 ( ).X fD

(iv) The polynomial p(x) is minimal and splits in the totally real 
field φ. Indeed, matrices 2 1( ( ))S NΓ  generate the Hecke algebra N on 

2 1( ( ))S NΓ ; thus each 0
i

B
φ

 is self-adjoint and, therefore, all eigenvalues 
are real of multiplicity one; since 0

i
B
φ

 is integer, all roots of characteristic 

polynomial p(x) of 0
i

B
φ  belong to the field φ.

 (v) Let 1( ) = ( ) ( )hp x x xλ λ− − . It is easy to see that λi are algebraic 
units of the field φ because 0det ( ) = 1

i
B
φ

; note that numbers 1{ , , }hλ λ  
are algebraically conjugate. Since deg ( | ) = hφ  , the numbers λi can be 
taken for generators of the field φ, i.e. 

1= ( , , )hφ λ λ .

 (vi) Finally, let us establish an explicit formula for the isomorphism 

 ( )  ( | )Cl Gal φ→fR  				                 (12)

Since  ( | )Gal φ  is an automorphism group of the field φ 
preserving , it will suffice to define the action  of an element  ( )a Cl∈ fR  
on the generators λi of φ. Let 1{ , , }ha a  be the set of all elements of the 
group  ( )Cl fR . For an element  ( )a Cl∈ fR  define an index function α 
by the formula ( )=i ia a aα . Then the action ∗ of an element  ( )a Cl∈ fR  
on the generators λi of the field φ is given by the formula: 

( ):= ,  ( ).i a ia a Clλ λ∗ ∀ ∈ fR 			                (13)

It is easy to verify that formula (13) gives an isomorphism 
 ( )  ( | )φ→Cl GalfR  , which is independ of the choice of {ai} and {λi}. 

This argument completes the proof of lemma 3. 

Remark 6.  The class field theory says that f = f m, i.e. the extensions 
of elds k and k must ramify over the same set of prime ideals. Indeed, 
consider the commutative diagram below, where If and I

f
 are groups of 

all ideals of k and k, which are relatively prime to the principal ideals 
( f ) and (f), respectively. Since  ( ( ) | )  ( | )abGal k Gal φ≅    one gets 
an isomorphism If ≅ If, i.e. f = f m for some positive integer m.

I f Gal (φ |)

I f Gal (ab(k ) |)
Artin

homomorphism

Artin

homomorphism

Corollary 3. The Hilbert class field of real quadratic field = ( )Q Dk  
modulo conductor f ≥ 1 is isomorphic to the field k(φ) generated by the 
Fourier coefficients of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ . 

Proof. As in the classical case of imaginary quadratic fields, notice that 
deg ( | ) = deg ( ( ) | ) =  ( )Clφ φ  fk k R ; therefore corollary 3 is an implication 
of lemma 3 and isomorphism ( | ) =  ( ( ) | ) =  ( )φ φGal Gal Cl fk k R  . 

 Theorem 1 follows from corollary 3. 

Examples
Along with the method of Stark’s units [19], theorem 1 can be used 

in the computational number theory. For the sake of clarity, we shall 
consider the simplest examples; the rest can be found in Table 1. 

Example 1. Let D = 15. The class number of quadratic field 
= ( 15)k −  is known to be 2; such a number for quadratic field 
= ( 15)k  is also equal to 2. Thus 

= 1 = 1 ( )  ( ) / 2 ,fCl Cl R≅ ≅  f  R                                     	 (14)

and isomorphism (2) is trivially satised for each power m, i.e. one 
obtains an unramied extension. By theorem 1, the Hilbert class field 
of k is generated by the Fourier coefficients of the Hecke eigenform 
ϕ(z) ∈ S2 (Γ1(15)). Using the computer programme SAGE created by 
William A. Stein, one finds an irreducible factor p(x) = x2 − 4x + 5 of 
the characteristic polynomial of the Hecke operator Tp = 2 acting on the 
space S2 (Γ1(15)). Therefore, the Fourier coefficient c(2) coincides with 
a root of equation p(x) = 0; in other words, we arrive at an extension of 
k by the polynomial p(x). The generator x of the field φ = (c(2)) is a 
root of the bi-quadratic equation [(x2)2 + 1]2 − 15 = 0; it is easy to see 
that 2 1 15.x = + − + One concludes, that the field 1 15.φ ≅ − +  is the 
Hilbert class field of quadratic field 15= k .

Example 2. Let D = 14. It is known, that for the quadratic field
= ( 14)k −  we have = 1|  ( ) | 4,fCl R =  while for the quadratic field

= 1 ( ) 1.Cl =f R it holds = 1 ( ) 1.Cl =f R However, for the ramified extensions 
one obtains the following isomorphism:  

= 23= 2
 ( )  ( ) / 4 ,fCl Cl R≅ ≅   f 
R  			                (15)

where m = 3 is the smallest integer satisfying formula (2). By theorem 
1, the Hilbert class field of k modulo f = 8 is generated by the Fourier 
coefficients of the Hecke eigenform φ(z) ∈ S2 (Γ1(2 × 4)). Using the 
SAGE, one finds that the characteristic polynomial of the Hecke 
operator Tp = 3 on S2 (Γ1(2 × 4)) has an irreducible factor p(x) = x4 + 3x2+ 
9. Thus the Fourier coecient c(3) is a root of the polynomial p(x) and one 
gets an extension of k by the polynomial p(x). In other words, generator 
x of the field Kφ = (c(3)) is a root of the polynomial equation (x4 + 
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3x2+ 9)2 − 4 × 14 = 0. The bi-quadratic equation 4 2  3  9 2 14 0x x+ + − =
has discriminant 27 8 14− +  and one finds a generator of φ to be 

4 27 8 14.− + Thus the field 4 27 8 14− +  is the Hilbert class over ( 14)  
modulo conductor f = 8. Clearly, the extension is ramified over the 
prime ideal p = (2). 

Remark 7. Table 1 above lists quadratic fields for some square-free 
discriminants 2 ≤ D ≤ 101. The conductors f and f satisfying equation 
(2) were calculated using tables for the class number of non-maximal 
orders in quadratic fields posted at www.numbertheory.org; the site is 
maintained by Keith Matthews. We focused on small conductors; the 

interested reader can compute the higher conductors using a pocket 
calculator. In contrast, computation of generator x of the Hilbert class 
field require the online program SAGE created by William A. Stein. We 
write an explicit formula for x or its minimal polynomial p(x) over k.
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D f  ( )fCl R f Hilbert class field of ( )D  
modulo conductor  f

2 1 trivial 1 ( 2)

3 1 trivial 1 ( 3)

7 1 trivial 1 ( 7)

11 1 trivial 1 ( 11)

14 2 / 4  8 ( )4 27 8 14− +

15 1 / 2  1 ( )1 15− +

19 1 trivial 1 ( 19)

21 2 / 4  8 ( )4 3 2 21− +

35 1 / 2  1 ( )17 35+

43 1 trivial 1 ( 43)

51 1 / 2  1 ( )17 51+

58 1 / 2  1 ( )1 58− +

67 1 trivial 1 ( 67)

82 1
4 3 22 4 8 16x x x x− + − +

1 4 3 22 4 8 16x x x x− + − +

91 1 / 2  1 ( )3 91− +

Table 1: Square-free discriminants 2 ≤ D ≤ 101.
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Abstract
It emphasizes the mathematical aspects of the formation of sikidy. The sikidy as an art of divination is transmitted 

by oral tradition, the knowledge of these mathematical relationships allows for a more consistent language of sikidy. In 
particular, one can calculate systematically all ”into sikidy” special tables of Sikidy used in the ”ody” (kind of talismans). 

Keywords: Sikidy; Divination; Into; Abelian groups 

Introduction
Divination held a special place for all peoples and all times. 

In Madagascar, the sikidy is an enough precise art of divination 
and a remedy to avert the fate of the consultant. The present paper 
is the English version of an unpublished paper [1] translated by 
Randriambololondrantomalala. Only, introduction and bibliography 
of the original paper are modified. I’m a differential geometer and 
Lie theory specialist in this previous domain as [2-6] show. But, this 
Malagasy art of divination which has mathematical practices has 
fascinated me and paid my intention in quality of mathematician. 
So, I made this paper as a first step of long studies about the powerful 
of mathematics in another fields like divinations. The original paper 
had plenary lecture in a scientific conference at the University of 
Fianarantsoa, Madagascar. Next, I think that publication of my paper 
[1] will be useful as well as several authors have cited my results cf. [7-
11]. This article is the first step of my research in this area and mainly, 
my motivation is to build an algorithm about Sikidy’s practice in my 
next paper.

Formation of Sikidy and Mathematical Relations
Generally, we use seeds of ”kily” (Tamarind), the total number of 

seeds must be even and large enough to make all desired combinations, 
at least a hundred seeds. We awakens the sikidy by an invocation that 
expresses a certain oral tradition of Sikidy and, formulates at the end 
the questions that we want to have the answers, while turning in circles 
and always with the right hand the seeds of kily on a mat. Then we take 
a handful of seeds from the pile at random. It would be at this level the 
intervention of the Hereafter. We compute the seeds in pairs, if the 
handle is even number, we align two seeds; in the odd case, we align 
one seed. 

This forms a table from right to left, said mother-sikidy: 
14 13 12 11

24 23 22 21

34 33 32 31

44 43 42 41

a a a a
a a a a
a a a a
a a a a

Each variable aij is composed of one seed or two depending on the 
result obtained by the above method. The index i indicates the position 
of the line, j that of the column ranging from 1 to 4. The quadruplet 

11 21 31 41( , , , )a a a a  designates Tale (Consultant); next 12 22 32 42( , , , )a a a a  
Maly (Wealth), 13 23 33 43( , , , )a a a a  Fahatelo (A third person); next one 

14 24 34 44( , , , )a a a a  Blady (Earth); 11 12 13 14( , , , )a a a a  Fianahana (Child); 
21 22 23 24( , , , )a a a a  Abily (An elderly person); next 31 32 33 34( , , , )a a a a  Alisay 

(Woman); 41 42 43 44( , , , )a a a a  Fahavalo (Enemy). 

We build eight other figures below the mother-sikidy left to right 

derived from the above quadruplets respecting the following law: 

• One seed and one seed yield two seeds, 

• Two seeds and one seed give one seed, 

• Two seeds and two seeds yield two seeds. 

 So the law of inner composition of Abelian group ( )/ 2 ,+  ; two 
seeds represent the identity element 0 , one seed is 1 . The combining 
operation is done in ( )4/ 2   (quadruplets of / 2  ). Thus, we obtain: 

• Fahasivy (9, ninth or talisman) = Alisay (7) + Fahavalo (8); 

• Haja (11, honor or food) = Fianahana (5) + Abily (6); 

• Asorita (13, spirits of deads, or authorities) = Fahatelo (3) + Blady (4); 

• Lalana (15 Road) = Tale (1) + Maly (2). 

Then combined the above results to have: 

• ombiasa (10, soothsayer) Fahasivy = (9) + Haja (11); 

• Sely (14 people) = Asorita (13) + Lalana (15); 

• Aky (12, god) = ombiasa (10) + Sely (14). 

The last figure is: 

• Kiba (16, house) = Aky (12) + Tale (1). 

Then, an array of sikidy is written:

14 13 12 11

24 23 22 21

34 33 32 31

44 43 42 41

(4) (3) (2) (1)

(5)
(6)
(7)
(8)

a a a a
a a a a
a a a a
a a a a

↓ ↓ ↓ ↓
←
←
←
←
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( ) ( )

( ) ( )

1 11 21 1 1 13 14 1 11 12 1 1 1131 41
1 4 1 , 4 1 4 1 , 4

32 42 2 12 22 2 2 23 24 2 21 22 2 2 21
1 4 1 , 4 1 4 1 , 4

(9) (10) (11) (12) (13) (14) (15) (16)

i i j j i j
i i j j i j

i i j j i j
i i j j i j

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + + + +

+ + + + + + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

( ) ( )

( ) ( )

33 43 3 13 23 3 3 33 34 3 31 32 3 3 31
1 4 1 , 4 1 4 1 , 4

34 44 4 14 24 4 4 43 44 4 41 42 4 4 41
1 4 1 , 4 1 4 1 , 4

i i j j i j
i i j j i j

i i j j i j
i i j j i j

a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + + + +

+ + + + + + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

As a result, the number of sikidy’s tables is determined by the 
mother-sikidy or 216 = 65536. 

There are two categories of sikidy’s figures, princes whose number 
of seeds is even, and slaves to the odd number of seeds. 

The tradition imposes this rule: 

”A sikidy can not be interpreted if the Aky (12) is not a prince.” 

In fact, if we sum all elements of Aky, we have 

1 , 4

2 ij
i j

a
≤ ≤
∑

Even if the Aky couldn’t be a prince, we were wrong calculation. 

For clarification on the interpretation, we continue to combine 
the figures that appear on the table [12]. Thereupon, we must take into 
account the mathematical links of the sikidy, otherwise we may give 
different meanings for the same thing [12]: 

”The ninth (9) and the healer (10) give the leaves or plants to be 
used as medicines, ravin’ody”.

In fact, given the binary operation of the group, the combination 
of Fahasivy (9) and Ombiasa (10) gives Haja (11), that is to say a figure 
that already exists on the table (the relationship (9) + (11) = (10) is 
equivalent to (9) + (10) = (11)). 

There are other examples of contradictions. 

Into Sikidy
 The sixteen figures of Sikidy are classified according to the cardinal 

directions. The classification below is used mainly in the southern 
region of Madagascar. Subscripted letters above each figure will be used 
to identify the respective figures.

1. Group of the east: 

1 2 3

Adabara Alatsimay Alamora

E E E
•• •• ••
•• • •
• • ••
• •• ••

2. Group of the north: 

1 2 3 4

Adalo Karija Alimizaha Alibiavo

N N N N
• • • ••
•• • •• ••
• • •• •
•• •• •• ••

3. Group of the West: 
1 2 3 4 5

Alohotsy Alakaosy Alokola Alikisy Alikarabo

O O O O O
•• •• • •• •
• • •• •• ••
•• • •• •• •
• • • • •

4. Group of the South: 

1 2 3 4

Asombola Tareky Asoralahy Betsivongo
or or

Alasady Alikasazy

•• • • •
•• • • •
•• • •• ••
•• • •• •

S S S S

Naturally, these figures have specific meanings [12]. 

If we denote by Pk, k = 1, … , 16, Tale’s locations (1) at Kiba (16) 
in an array of sikidy; we call ”Into” the case where one and only one 
representative of a group appears only once on sixteen seats, P1 to P16. 

Example: Adabara ”Into” to the Tale.

+ E1 E2 E3 N1 N2 N3 N4 O1 O2 O3 O4 O5 S1 S2 S3 S4
E1 S1 O1 O2 O3 S4 O5 O4 E2 E3 N1 N4 N3 E1 S3 S2 N2
E2 O1 S1 N4 S3 N3 N2 E3 E1 O4 S2 O2 S4 E2 O3 N1 O5
E3 O2 N4 S1 N2 N1 S3 E2 O4 E1 S4 O1 S2 E3 O5 N3 O3
N1 O3 S3 N2 S1 E3 N4 N3 S2 S4 E1 O5 O4 N1 O1 E2 O2
N2 S4 N3 N1 E3 S1 E2 S3 O5 O3 O2 S2 O1 N2 O4 N4 E1
N3 O5 N2 S3 N4 E2 S1 N1 S4 S2 O4 O3 E1 N3 O2 E3 O1
N4 O4 E3 E2 N3 S3 N1 S1 O2 O1 O5 E1 O3 N4 S4 N2 S2
O1 E2 E1 O4 S2 O5 S4 O2 S1 N4 S3 E3 N2 O1 N1 O3 N3
O2 E3 O4 E1 S4 O3 S2 O1 N4 S1 N2 E2 S3 O2 N3 O5 N1
O3 N1 S2 S4 E1 O2 O4 O5 S3 N2 S1 N3 N4 O3 E2 O1 E3
O4 N4 O2 O1 O5 S2 O3 E1 E3 E2 N3 S1 N1 O4 N2 S4 S3
O5 N3 S4 S2 O4 O1 E1 O3 N2 S3 N4 N1 S1 O5 E3 O2 E2
S1 E1 E2 E3 N1 N2 N3 N4 O1 O2 O3 O4 O5 S1 S2 S3 S4
S2 S3 O3 O5 O1 O4 O2 S4 N1 N3 E2 N2 E3 S2 S1 E1 N4
S3 S2 N1 N3 E2 N4 E3 N2 O3 O5 O1 S4 O2 S3 E1 S1 O4
S4 N2 O5 O3 O2 E1 O1 S2 N3 N1 E3 S3 E2 S4 N4 O4 S1

Table 1: Inner law of composition.

http://dx.doi.org/10.4172/1736-4337.S2-008
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• • • ••
•• •• •• ••
• • • •
•• •• •• •

•• •• •• • •• • • •
• •• • •• •• •• •• ••
• •• • •• •• •• •• •
• •• • • •• • • ••

In this example, Adabara, E1 one member of the group of the East 
is located at P1, the other El, l = 1,2,3 don’t take place at Pk, 2 ≤ k ≤ 16.

In that table of Sikidy, we say that the Sikidy gives a formal advice 
(mitoka vava). The consultant would be successful.

To calculate these ”Into”, we use the following Table 1 of inner law 
of composition: 

Compute these ”Into” using this table is elementary. The total 
of the ”Into” for one figure in the place Pk takes its value from 0 to a 
hundred. For example, Alohotsy ”Into” to Ombiasa (who means the 
Great Divine), searched by the Mpisikidy, doesn’t exist, but Alohotsy 
”Into” to Sely which has total number 8. Adabara ”Into” to Tale has 
132,...etc.

These ”Into” Sikidy have particular significations and truthfully 
considered. We use them to get talismans. 

Conclusion
 In the present paper, Anona investigated mainly the mother-

Sikidy. In a next paper in the same topic, he will make the Sikidy more 
precise in order to check daughter-Sikidy and so on. The language of the 

Sikidy is very large. Frequently, the data obtained from the Mpisikidy 
are contradictory. Certainly, make a coherent language of the Sikidy 
throughout different collects of data is very interesting.

References

1.	 Anona FM (2001) Aspects mathématiques du Sikidy'', Département de 
Mathématiques et Informatique, Université d'Antananarivo.

2.	 Anona FM (1980) Sur la dL-cohomologie. CRAS, Paris Sér A-B 290: 649-651.

3.	 Randriambololondrantomalala P, Ravelonirina HSG, Anona M (2015) Sur les 
algèbres de Lie associées à une connexion. Canadian Mathematical Bulletin 
58: 692-703.

4.	 Randriambololondrantomalala P, Ravelonirina HSG, Anona M (2010) Sur 
les algèbres de Lie d'une distribution et d'un feuilletage généralisé. African 
Diaspora Journal of Mathematics 10: 135-144.

5.	 Ravelonirina HSG, Randriambololondrantomalala P, Anona M (2012) Sur les 
algèbres de Lie d'un système de champs de vecteurs permutables. Italian 
Journal of Pure and Applied Mathematics 29: 163-174.

6.	 Ravelonirina HSG, Randriambololondrantomalala P, Anona M (2010) 'Sur 
les algèbres de Lie des champs de vecteurs polynomiaux. African Diaspora 
Journal of Mathematics 10: 87-95.

7.	 Chemillier M (2012) La preuve dans la divination à Madagascar.

8.	 Chemillier M (2007) Les mathématiques naturelles. Odile Jacob, Paris.

9.	 Chemillier M (2007) Mathématiques des traditions orales. Math Sci Hum 
Mathematics and Social Sciences, 45th year 2: 11-40.

10.	Chemillier M (2001) Aspects mathématiques et cognitifs de la modélisation des 
structures musicales. HDR memory, Paris.

11.	Chemillier M, Jacquet D, Randrianary V, Zabalia M (2007) Aspects 
mathématiques  cognitifs de la divination Sikidy à Madagascar. L’Homme 1: 
7-39.

12.	Decary R (1970) La divination Malgache par le Sikidy. Publication du Centre 
Universitaire des Langues Orientales vivantes. 6ème Série IX Imprimérie 
nationale. Librairie orientaliste Paul Geuthner, Paris.

OMICS International: Publication Benefits & Features 
Unique features:

•	 Increased global visibility of articles through worldwide distribution and indexing
•	 Showcasing recent research output in a timely and updated manner
•	 Special issues on the current trends of scientific research

Special features:

•	 700+ Open Access Journals
•	 50,000+ editorial team
•	 Rapid review process
•	 Quality and quick editorial, review and publication processing
•	 Indexing at major indexing services
•	 Sharing Option: Social Networking Enabled
•	 Authors, Reviewers and Editors rewarded with online Scientific Credits
•	 Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission

Citation: Anona FM (2016) Mathematical Aspects of Sikidy. J Generalized Lie 
Theory Appl S2: 008. doi:10.4172/1736-4337.S2-008

This article was originally published in a special issue, Recent Advances of 
Lie Theory in differential Geometry, in memory of John Nash handled by 
Editor. Dr. Princy Randriambololondrantomalala, Unversity of Antananarivo, 
Madagascar

http://dx.doi.org/10.4172/1736-4337.S2-008
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://ijpam.uniud.it/online_issue/201229/13-H S G Ravelonirina & P Randriambololondrantomalala & M Anona.pdf
http://www.odilejacob.com/catalogue/science/mathematics/natural-mathematics_9782738119025.php
http://www.cairn-int.info/article-E_LHOM_181_0007--mathematical-and-cognitive-aspects-of.htm
http://www.cairn-int.info/article-E_LHOM_181_0007--mathematical-and-cognitive-aspects-of.htm
http://www.cairn-int.info/article-E_LHOM_181_0007--mathematical-and-cognitive-aspects-of.htm
http://dx.doi.org/10.4172/1736-4337.S2-008


Research Article Open Access

Lantonirina, J Generalized Lie Theory Appl 2016, S2
http://dx.doi.org/10.4172/1736-4337.S2-009Journal of Generalized Lie 

Theory and ApplicationsISSN: 1736-4337

Ge
ne

ra
liz

ed
 Lie Theory and Applications

J Generalized Lie Theory Appl
Recent Advances of Lie Theory in 
differential Geometry, in memory of 

John Nash
ISSN: 1736-4337 GLTA, an open access journal

Trying to Explicit Proofs of Some Vey’s Theorems in Linear Connections
Lantonirina LS*

Department of Mathematics  and Computer Sciences, University of Antananarivo, Madagascar

*Corresponding author: Lantonirina LS, Department of Mathematics  and 
Computer Sciences, University of Antananarivo, Madagascar, Tel: 261334651397; 
E-mail: Laurence@aims-senegal.org 

Received January 23, 2016; Accepted February 15, 2016; Published March 15, 
2016

Citation: Lantonirina LS (2016) Trying to Explicit Proofs of Some Vey’s Theorems 
in Linear Connections. J Generalized Lie Theory Appl S2: 009. doi:10.4172/1736-
4337.S2-009

Copyright: © 2016 Lantonirina LS. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Let Χ a diferentiable paracompact manifold. Under the hypothesis of a linear connection r with free torsion Τ on 

Χ, we are going to give more explicit the proofs done by Vey for constructing a Riemannian structure. We proposed 
three ways to reach our object. First, we give a sufficient and necessary condition on all of holonomy groups of the 
connection ∇ to obtain Riemannian structure. Next, in the analytic case of Χ, the existence of a quadratic positive 
definite form g on the tangent bundle ΤΧ such that it was invariant in the infinitesimal sense by the linear operators 
∇kR, where R is the curvature of ∇, shows that the connection ∇ comes from a Riemannian structure. At last, for a 
simply connected manifold Χ, we give some conditions on the linear envelope of the curvature R to have a Riemannian 
structure.

Keywords: Linear connections; Riemannian connection; Levi-civita 
connection; Holonomy groups; Linear en-velope; Kthderivations; Lie 
algebras

Preliminary and Introduction
In 1978 Vey was the examinator of Anona's phd at Institut Fourier 

Grenoble. In this time, Vey was written some theorems in linear 
connections. The title of this unpublished paper was: "Sur les connexions 
riemanniennes" means "On the Riemannian connections". They had 
discussions, as said Vey, this result was not well explicit. So, one of 
the motivations of this paper is to explicit some of them about linear 
connections. First, we consider a paracompact manifoldΧ, we are looking 
for a Riemannian metric g which is invariant by parallel transport such 
that it produces a linear connection∇ with ∇g = 0. Next, we assume that 
Χ is a simply connected real analytic manifold accompanied by a real 
analytic connection∇, these new assumptions construct us a positive 
definite quadratic form g (satisfying ∇g = 0) infinitesimally preserved 
by the infinitesimal holonomy group. This is obtaining by the fact that 
the Lie algebra of holonomy groups coincides with the Lie algebra of 
the infinitesimal holonomy group. Finally, we present our problem so 
as to consider the linear envelope of the curvature, in the case where X 
is a smooth manifold. However, under these conditions that the linear 
envelope of the curvature of constant dimension coincides with the Lie 
algebra of the holonomy group, make the quadratic form g parallel to∇. 
Thus builds a Riemannian structure. Recently, several authors treat the 
same questions as R. Feres in and A. Vanzurava [1, 2]. This last author 
gave an algorithm for constructing Riemannian structure which is similar 
as Veydone in the end of his paper. This redaction gives an interest for a 
next one where we use some results and idea of the present paper. So, let 
us recall some useful definitions in linear connections.

Definition 1  

First, let X is a smooth manifold,Τx X, x ∈  X the vector space of 
tangent vectors on x and Τ X the tangent bundle defined by Τ  =

x X∈
∪ Τx 

X. Recall that a Riemannian manifold X is a smooth manifold equipped 
with a Riemannian structure g on X which is defined by the morphism 
of bundles

g : ΤΧ × ΤΧ →

such that ∀x∈X

gx : x X × Τx X →

defined an inner product with ∀      U,V ∈ ΤΧ

X   →   

x       gx(U(x),V(x))

is differentiable.

Definition 2 

Let X be a smooth manifold, let Γ(X) be the module of vector fields 
on X and ( ) { : }F X f X smooth= → � the ring of real smooth 
functions. We recall that a linear connection on X is the application

 : Γ(X) × Γ(X) → Γ(X)

(U, V) ∇UV

such that, ∀  U, U’, V, V’∈ Γ(X), f∈F (X) we have:

i.	  ∇ U + U’V= ∇U V+∇’
U V

ii.	  ∇f UV = f ∇UV                                                            

iii.	   ∇U(V +V’ ) = ∇UV + ∇U V’

iv.	   ∇U(fV)  = f ∇UV +  U (f )V  

Theorem 3 

(Fundamental Theorem of Riemannian Geometry) Let X be a 
Riemannian manifold. Any Riemannian structure g produces an 
unique linear connection ∇ called Levi-Civita's connection on X with 
free torsion such that ∇g=0.

The Holonomy Groups and Riemannian Structure
Definition 4 

Let X be a smooth manifold, a path is a smooth function from [0, 1] to X.

http://dx.doi.org/10.4172/1736-4337.S2-009
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Definition 5  

let X be a smooth manifold, x a point of X [3]. We call holonomy 
groups based on a point x of

the Levi-Civita's connection ∇, or Riemannian holonomy, denoted 
by   Η ο l (x) the set

( ) { : }x xH ol x X Xγτ= Τ → Τ

where   γ : [0, 1] →X  is closed path along x to x such that γ(0)= 
γ(1)=x

Proposition 6 

Let X be a smooth manifold, and x, y ∈ X [3]. If X is connected and 
γ a path x to y, the

holonomy groups of the point x, y  are isomorphic and we have

( ) ( )1

.H ol x H ol yγ γτ τ
−

=  

Definition 7 

Let K be a compact group. We call that an Haar measure on K 
denoted µ  is the unique invariant measure by right and left translation 
in K, then

( ) ( ) ( ) ( ) ( ) ( ) ,K K Kf k d k f kh d k f hk d kµ µ µ∫ = ∫ = ∫

such that  f∈L(K) a ring of all functions  f: K→ .

Definition 8 

Let X be a Riemannian manifold, g0 a metric on X, K a compact 
group. We define an invariant metric g on X which normalizes any 
metric g0 of X on the compact group K. Let g=⎰Kk*g0dk Where k* is the 
“pull-back “of k.

This integration follows the Haar measure property.

Proposition 9  

Recall that all paracompact manifolds X admit a Riemannian 
metric [4].

Proposition 10 

Let X be a smooth manifold and  the linear connection on X with 
free torsion.  ∇ proceeds from a Riemannian structure if and only if its 
holonomy groups are relatively compact.

Proof.

On the one hand, suppose ∇ comes from a Riemannian structure 
(X, g).Then by the Fundamental Theorem of Riemannian Geometry, 
we have the Levi-Civita's connection ∇ on X. Consequently, the 
Riemannian holonomy is well defined by the holonomy group of Levi-
Civita's connection on X. But, the holonomy group is a subgroup of the 
orthogonal group O (n) which is compact, so this subgroup is relatively 
compact.

On the other hand, let us suppose that the holonomy group on each 
point of x € X is relatively compact. Let g0 be a Riemannian metric on the 
paracompact manifold X, and x € X. Then, it leaves invariant a positive 
definite quadratic form g on a point x of X on TX. Indeed, we have

Η ο l (x)={τγ;γ :[0,1]→X ; γ(0)=γ(1)= x },

then we define,

( ) ( )( ) ( )*

0, , ; ,x x x x x x xHol xg U V g U V d U V T Xγ γτ τ= ∫ ∈ .

Let ,υα∈Η οι(x),then we have,

 ( ) ( ) ( ) ( )*

0, ,x x x xH ol xg U V g U V dα α γ α α γυ υ τ υ υ τ= ∫

( ) ( ) ( )( )0 ,x xH ol x g U V dγ α γ α γτ υ τ υ τ= ∫ 	
( ) ( )0 ,x xH ol x g U V dγ γ γτ τ τ= ∫

( ) ( ) ( )0* ,x xH ol x g U V dγ γτ τ= ∫

= g(Ux, Vx)  
.

Let y∈Vx ⊂X (Vx neighbourhood of x). Since X a smooth 
manifold, then X is locally homeomorphic to an open set of n. 
Otherwise, n is locally connected, and locally connected is preserved 
by homeomorphism. Consequently, under the Proposition 6, the 
holonomy is independent of the selected base point. Then, the parallel 
transport relatively to ∇ of the quadratic form g along the path from 
x to y is independent of the path, by definition of holonomy. Thus, 
it constructs a Riemannian structure g on X preserved by parallel 
transport, with ∇g = 0. Since ∇ is of free torsion, and uniqueness of ∇, 
and then ∇ is a Riemannian connection.

Real analytic manifold and Riemannian structure
For the following, we suppose X a simply connected manifold to 

have an explicit result.

Definition 11 

Let x a point of X, denoted by C(x) the set of closed curves on x, 
and C0(x) the set of the contractible curves on point x. Take a point u∈ 
p-1(x),

 
where p is the projection of the linear structure bundle L(X) at X 

cf. [5]. We recall that the holonomy group on x denoted by ψ( x)  is the 
subgroup of the diffeomorphism   p-1(x) whose the element are obtained 
by parallel transport of the curves in C(x), that is to say, the element of  
ψ( x)  

 
are of the form τ : p-1(x)→ψ0(x), →τ∈C(x). In the similar ways, we 

call holonomy group restricted on point x denoted  ψ0( x)  the subgroup 
of  diffeomorphism of p-1 (x) whose the element are of the form τ : p-1(x), 
∀τ∈C0(x).

•	 For u∈p-1(x), we define holonomy groups on point u byψ0 

(u)={a∈Gl(n,),Ra(u)= τ(u), for τ∈ψ(x)}∈Gl(n,).The same, 
we define the restricted holonomy groups on point u .

Now, let us define the local holonomy group by  ψ*(u)=∩ψ0(u, Uk) 
where  ψ0(u, Uk) is a subset of ψ0(u) such that ψ0(u, Uk)⊂ψ0(u, Uk+1), with 
Uk indicates a sequence the neighbourhood of x satisfied  Uk+1∈ Uk, for  
k∈ + and 1,2,...

.kk
U x

=
∩ =

Proposition 12  

Let X be a smooth manifold, L(X) a linear structure fiber on X, H a 
connection on L(X) [6].

Then, all tangent vectors U of TuL(X) is called vertical (resp. 
horizontal) when it belong to Vu (resp. Hu), u ∈ L(X), where Vu (resp. Hu) 
indicate the vertical (resp. horizontal) subspace of TuL(X).

Definition 13 

Let m0(u) a subspace of g l (n,) generated by Ωu(U; V )(the 
curvature form on L(X) cf. [6] p.152) the horizontal vectors U; V ∈ 
Tu(L(X)) with u ∈ L(X). By recurrence on k, mk(u) defined a subspace 
of gl(n.) generated by the elements of mk-1 (u) and the element of the 
form V1 _ _ _ _ _ Vk(Ω(U; V )), where U; V; V1,…, Vk are the horizontal 
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vectors. Let g’ (u) the union of all the mk(u); k = 0,1, 2,… . The set of g’ (u) 
is a sub-algebra of gl(n;) and the connected Lie subgroup generated 
by g’ (u) is called infinitesimal holonomy groups on point u of L(X). We 
denote it by  ψ’(u).

For a real analytic manifold, denoted by  Η ο l (x) resp.  Η ο l (x), 
resp.  Η ο l (x) the holonomy groups (resp. the restricted holonomy 
group, resp. the infinitesimal holonomy groups) on point x in X.

Proposition 14 

Let X be a real analytic manifold,  the linear real analytic connection 
[2]. Denoted by

( ) ( ) ( )* ',h x h x h x
− − − the respective Lie algebras of holonomy groups  

Η οl (x),  Η οl*(x),  Η οl’(x). The two groups  Η οl*(x),  Η οl’(x) constitute 
a Lie subgroups of  Η οι (x) namely ( ) ( ) ( )' *H ol x H ol x H ol x⊂ ⊂
and con-sequently ( ) ( ) ( )' * .h x h x h x

− − −
⊂ ⊂ Since X is a real analytic 

manifold, we have the reverse inclusion for the holonomy groups and 
the equality between ( ) ( )' .h x h x

− −
=

Theorem 15 

Let X be a real analytic manifold,∇ the linear real analytic 
connection associated to X [6].

The Lie algebra ( )'h x
−

of the infinitesimal holonomy groups  Η οl’(x) 
is spanned by the kth covariant derivatives

∇k R (U,V;U1 ,…,UK ), where  U,V,U1,…,Uk∈ΤxΧ, 0≤k< ∞ and 
∇0R(U,V)=R(U,V).

Proposition 16 

Let (X;∇) be a real analytic simply connected, with free torsion, x 
a point of X, g a

symmetric bilinear quadratic form on TxX [7]. Then the invariance 
of g by Η ο l (x) is characterized by:

( ) ( ) ( ), , 0, , , , .xg AU V g U AV A h x U V T X x X
−

+ = ∀ ∈ ∈ ∈                (1)

Proposition 17 

Let X be a real analytic manifold, simply connected, ∇ an analytic 
connection with free torsion

on X and R its curvature. Let x be point of X. If there exist a positive 
definite quadratic form g on TxX, preserved in the infinitesimal sens by 
all of linear operators∇k R(W,U1,U2,…..,Uk) (k ≥0,W∈Λ2Τ xΧ,Ui∈Τ xΧ), 
then ∇ proceeds from a Riemannian structure.

Proof.

Let x ∈ X, g a positive definite quadratic form on TxX, ∇ the analytic 
connection associated X , R the curvature of the connection ∇. Suppose 
that g is preserved in the infinitesimal sense by all linear operators ∇k 

R(W,U1,U2,…..,Uk)

of ( )'h x
−

  (according to the Theorem 15), that is to say that we 
have according to the

Propositions 16 and 14.

( )( ) ( )( )1 2 1 2, , ,..., , , , , ,..., 0k k
k kg R W U U U U V g U R W U U U V∇ + ∇ =    (2)

2 ,x i xW T X U T X∀ ∈ Λ ∈  and  ( )1 2,, , ...,k
kR W U U U∇   (k integer  ≥ 

0) in h’(x): Since ( ) ( )'
1 2, , ...,k

kR W U U U h x
−

∇ ∈  and ( ) ( ) ( )' ,k

x
h x h x r

−− −
= =

then ( )1 2, , ,...,k
kR W U U U∇ belongs to the linear envelope in the 

endomorphism of  TxX. Then the equation (2) comes, 

1 2( , , ,..., ) ( , ) 0 , , ,
k

k
R W U U U xg U V U V T X x X∇ = ∀ ∈ ∈

therefore ∇kg = 0 for all k ≥ 0, it follows that ∇g = 0. Since the 
torsion is supposed null, then ∇ comes from a Riemannian structure.

Linear envelope and Riemannian structure
Lemma 18 

Let E be a real vector space of finite dimension, and I an interval of 
, and Vi (t) a sequence of vectors which depend differentially on t ∈ I. 
Let L(t) the vector space spanned by Vi(t). Suppose that L(t) of constant 
dimension, and for all i and for all

( ) ( )i
d V t L t
dt

∈

then L(t) is independent of t.

Proof.

We proceed like the arguments of proof in [8] pp. 943-944.

Theorem 19 

(Ambrose-Singer Theorem) The Lie algebra ( )0hol x
−

of the holonomy 
groups ( )0H ol x  (Lie sub-algebra of the Lie algebra g) are spanned by 
the vectors Ωx(U,V ) for all point x of a principal bundle P cf.[1], link 
with x0 by a piecewise smooth curve of extremity x and x0 and U, V the 
horizontal vectors on x [9].

Proposition 20 

Let X be a smooth manifold, and  a linear connection of X. If the 
tensor ∇R takes all values in the linear envelope of the curvature, and if 
it has a constant dimension, then it coincides with the Lie algebra of the 
holonomy groups in each point.

Proof.

Let x a point of X. Let us indicate by 
x

r
−

 the linear envelope of 
the curvature on x ∈ X; and ( )h x

−
the Lie algebra of the holonomy. 

Let y a point of X, and τ γthe parallel transport along (on End (TX)), 
where γ  indicates a path joins x and y. According to the Ambrose-
Singer theorem, ( )h y

−
is the linear envelope of subspaces ( ).

x
rγτ
− Take 

then a point x ∈ X, a path (t) is parametrized in [0; 1] and joins x to 
y. Recall that R is defined by 2: ( ).R TX End TXΛ → Let (1 ( 1) / 2)iw i n n≤ ≤ −

a basis of ˄2TxX and, wi(t) the basis of ˄2Tγ(t)X obtained by parallel 
transport along of  

( )
,

t
r

γ
γ

−
defined a linear envelope in End (Tγ(t)X) 

of the operators R(t)(wi(t)). Now by hypothesis ∇ R takes its values on 
the linear envelope of the curvature, then ( ) ( )( ) ( )/ id dt t w t t

R rγ γ−
∇ ∈  Let us 

consider the subspace of End (TyX)
'

t
r
−

=τγ[t,1] 
( )t

r
γ−

 
 
 

                      

since the linear envelope is supposed of constant dimension, then '

t
r
−  has an independent dimension that is to say independent of t, and it 

defines the linear envelope of the operators
'
,i tR = τγ[0,1](Rγ(t)(wi(t)))∈END(TyX)

It result from precedent that for all t  ∈ [0, 1];
''

, .i t t

d R r
dt −

∈                                                                                              (3)

Since '
,i tR

 

depends differentially of t for t ∈ [0; 1], 
'

t
r
−

has a 
constant dimension by hypothesis, and that we have the relation (3). 
Then according to the Lemma18, 

'

t
r
−  

t is independent of t. Then, 
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' ' '

1
.

t y
r r r
− − −

= = Consequently ( ) .yh y r
−

−

=

Theorem 21 (Lie-Palais) [6] 

Let X be a compact smooth manifold and we have an action on X by 
the Lie algebra of finite dimension, then this is a lift of an action of Lie 
group of finite dimension.

Proposition 22 

Let X be a simply connected manifold,  ∇ a linear connection on X 
with free torsion, and R its curvature. Supposed that the free conditions 
which follow are verified:

(a) the linear envelope of the curvature R has a constant dimension,

(b) the tensor R takes its values in r
−

,

(c) in all points x of X, there exists a positive definite quadratic form 
on TxX infinitesimally preserved by x

r
−  ,then the connection∇ 

proceeds from a Riemannian structure on X.

Proof.

Let x a point of X, suppose verified the above hypothesis. Since (a) 
and (b) are true by hypothesis, then according to the Proposition 20, the 
linear envelope coincides with the Lie algebra of the holonomy group. 
Consequently, the linear envelope is stable by the Lie bracket and then 
admits a Lie algebra structure. Now according to the condition (c), there 
exist a quadratic positive definite form on TxX preserved infinitesimally 
by 

x
r
−

 It follows that the linear envelope is compact. We deduce there 
that the Lie algebra of holonomy groups is of finite dimension see 
condition (a). Since X is locally compact, then according to Lie-Palais 
theorem, the Lie algebra of the group is the lift of the holonomy group 
whose the topologic structure compact is preserved. Therefore, the 
holonomy group is relatively compact. Now the Proposition 10 says 

that for X be a smooth manifold, ∇ its connection with free torsion, ∇ 
comes from a Riemanniann structure if and only if its holonomy group 
are relatively compact. Then we have the result.
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Abstract
Analytic solutions for cylindrical thermal waves in solid medium are given based on the nonlinear hyperbolic 

system of heat flux relaxation and energy conservation equations. The Fourier-Cattaneo phenomenological law 
is generalized where the relaxation time and heat propagation coefficient have a general power law temperature 
dependence. From such laws one cannot form a second order parabolic or telegraph-type equation.We consider the 
original non-linear hyperbolic system itself with the self-similar Ansatz for the temperature distribution and for the heat 
flux. As results continuous.

Keywords: Self-similar solution; Non-linear heat conduction; Shock 
wave; Cattaneo heat conduction law

Introduction
Analytic solutions for cylindrical thermal waves in solid medium 

are given based on the nonlinear hyperbolic system of heat flux 
relaxation and energy conservation equations. The Fourier-Cattaneo 
phenomenological law is generalized where the relaxation time and 
heat propagation coefficient have a general power law temperature 
dependence. From such laws one cannot form a second order parabolic 
or telegraph-type equation. We consider the original non-linear 
hyperbolic system itself with the self-similar Ansatz for the temperature 
distribution and for the heat flux. As results continuous and shock-
wave solutions are presented. For physical establishment numerous 
materials with various temperature dependent heat conduction 
coefficients are mentioned.

44.90.+c, 02.30.Jr

In contemporary heat transport theory (ever since Maxwell’s paper 
[1]) it is widely accepted in the literature that only for stationary and 
weakly non-stationary temperature fields the constitutive equation 
assumes that a temperature gradient ∇T instantaneously produces heat 
flux q according to the Fourier law.

q(x,t)=-κ∇T(x,t)				                   (1)

Combining this equation with the energy conservation law the 
usual parabolic heat conduction equation is given. Heat conduction 
mechanisms can be classified via the temperature dependence of the 
coefficient κ :Tv. There are three different cases of thermal conductivity, 
normal heat conduction which obeys the Fourier law (v=0), slow (v>0) 
and fast heat conduction -2<v<0.

In plasma physics if the temperature range is between 105K and 
108 K then the coefficient of the heat conductivity κ depends on 
the temperature and density of the material. It is usually assumed 
to have a power dependence κ=κ0T

vvµ
 where v=1/ρ is the specific 

volume the coefficient κ0 and the exponents v, µ depend on the heat 
conduction mechanism [2]. With radiation heat conduction one 
has 4 ≤ v≤ 6, 2mm1≤ µ ≤ 2; with electron heat conduction and fully 
ionized plasma v=5/2, 2mmµ=0. For magnetically confined non-
neutral plasma the classical heat conduction coefficient is the following 

[3] 3/21
2[ ]c ln c T

T
κ ≈ . Parabolic thermal wave theory is based on this 

approach [2,4]. In plasmas heat conduction is strongly coupled to 
flow properties which we will not consider in the following. The linear 

parabolic theory predicts infinite speed of propagation which is known 
as the "paradox of heat conduction" (PHC). The following two theories 
resolve this contradiction.

However, if the time scale of local temperature variation is very 
small, Eq. (1) is replaced by

q(x,t=τ)=-κ∇T(x,t)				                  (2)

Where τ is called the thermal relaxation time. This is a 
thermodynamic property of the materials which was determined 
experimentally for large number of materials. Although τ turns out 
to be very small in many instances e.g. is of order of picoseconds for 
most metals, there are several materials where this is not the case, most 
notably sand (21 s), H acid (25 s), NaHCO3 (29 s), and biological tissue 
(1-100 s) [5].

Unlike the Fourier’s heat conduction law, this constitutive equation 
is non-local in time. The desired local character can be restored with 
the Taylor expansion of q by time which is usually truncated at the first 
order namely

( , )( , ) = ( , ).q x tq x t T x t
t

τ κ∂
+ − ∇

∂
			                  (3)

This is the well-known Cattaneo heat conduction law [6] the 
second term on the left hand side is known as the "thermal intertia". 
Combining this constitutive equation with the energy conservation 
yields the hyperbolic telegraph heat conduction equation where τ and  
are constants. Hyperbolic equations usually ensure finite propagation 
velocity. Unfortunately, the usual telegraph equations has no self-
similar solutions which would be a desirable physical property. In 
the work of [7] a non-autonomous telegraph-type heat conduction 
equation is presented with self-similar non-oscillating compactly 
supported solutions. A review with a large number of physical models 
of heat waves can be found in [5,8]. A recent work on the speed of heat 
waves was published by [9].
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Our starting point is the following

= ,t r
qq Tκ
τ τ

− − 					                     (4)

0 = .t r
qc T q
r

− − 					                   (5)

The first equation of the system is the generalized Fourier-Cattaneo 
heat conduction law and the second one is the energy conservation 
condition for the radial coordinate. The heat flux q=q(r, t) and the 
temperature T=T(r, t) have radial coordinate and time dependence. 
The subscripts r and t denote the partial derivatives with respect to 
the radial coordinate and the time, respectively. (From now on we 
investigate the radial coordinate of a cylindrical symmetric problem as 
spatial dependence.) The parameter c0=ρc where ρ is the mass density 
and c is the specific heat. Second order effects such as compressibility 
are neglected (ρ and c are constants during the process).

In the following we shall suppose that the heat conduction 
coefficient and the thermal relaxation depend on temperature on the 
following way:

κ=κ0T
ω, 1cmτ=τ0T

-δ	        (6)

The κ0 and τ0 are real numbers with the proper physical dimensions. 
Now our dimensionless system reads:

qt=-Tεq-Tε+ωTr					                   (7)

= .t r
qT q
r

− − 					                     (8)

There are various phenomenological heat conduction laws available 
for all kind of solids, without completeness we mention some well-
known examples. For pure metals according to [10] (Page 275 Eq. 27.3) 
the Wiedemann-Franz law the thermal conductivity is proportional 
with the electrical conductivity times the temperature κ=σLT The 
proportionality constant L is the so called Lorentz number with the 
approximate numerical value of 2.44 × 10-8WΩK-2. For exact numerical 
data for various metals see [11]. The relaxation time τ is proportional 
to the heat conduction coefficient divided by the temperature. For 
metals with impurities the thermal resistivity (inverse of the thermal 
conductivity) is κ-1=AT2+BT-1 where A and B can be obtained from 
microscopic calculation based on quantum mechanics [10] (Page 297 
Eq. 40.11).

A hard-sphere model for dense fluids from [12] derives a relation 
where the heat flux q(x,t)=a∇T(x,t)+q2(x,t) which certainly means a non-
linear heat propagation process. For the heat conduction in nanofluid 
suspensions [13] derives the κ ≈ c /(T2-T1) law with additional time 
dependence. Another exotic and very promising new materials are the 
carbon nanotubes which have exotic heat conduction properties. Small 
et al. [14] performed heat conductivity measurements and found that 
at low temperatures there are two distinct regimes κ(T): T2.5(T<50K) 
and κ(t): T2(50<T<150K). Beyond this regime there is a deviance from 
this quadratic temperature dependence and the maximum κ value lies 
at 320 K. Above this value - at large temperatures - there is a κ(T): 
1/T dependence according to [15]. Additional nanoscale systems (like 
silicon films, or multiwall carbon nanotubes) have exotic temperature 
dependent heat conduction coefficients as well, for more see [16]. 
For encased graphene the heat conduction coefficient is κ : Tβ where 
1.5<β<2 at low temperature (T<150K) [17]. A recent review of thermal 
properties of graphene and nanostructured carbon materials can be 
found in [18].

Our model is presented to describe the heat conduction of any kind 
of solid state without additional restrictions, therefore room or even 

higher temperature can be considered with large negative ω exponents.

Even from these examples we can see that it has a need to investigate 
the general heat conduction problem, where the coefficients have 
general power law dependence.

We look for the solutions of (7,8) in the most general self-similar 
form.

T=t-αf(η), q=t-δg(η).				                  (9)

For a better transparency in the following we introduce a new 
variable = r

t β
η , where α, β, δ are all real numbers.

The similarity exponents α, δ and β are of primary physical 
importance since α, δ represents the rate of decay of the magnitude 
T or q, while β is the rate of spread (or contraction if <0 ) of the space 
distribution as time goes on. Self-similar solutions exclude the existence 
of any single time scale in the investigated system.

We substitute (9) into (7) and (8). It can be checked that
1 1 2 3= , 3 = , 3 = , 3 = 1.

1 2( 1) 2( 1)
mm mm mmα β δ ε ω

ω ω ω+ + +
  (10)

Then we can obtain the shape functions f and g the following 
ordinary differential equation (ODE) system

1 2 1= ,g g gf f fω ωδ βη + +′ ′+ + 			               (11)
2( ) = ( )g fη β η′ ′ 					                  (12)

where prime means derivation with respect to η.

The first lucky moment is that (12) relates f and g in a simple way

g=βηf	(13)

if the α=2β universality relation is fulfilled.

Note, that we can immediately read how the self-similar solutions 
of the temperature distribution T and the heat flux q depend on ω

2 31
2( 1)1

1 1
2( 1) 2( 1)

= , 8 = .r rT t f mmq t g
t t

ω
ωω

ω ω

+−
++

+ +

   
   
      
   

		               (14)

The parameter dependence of the complete heat conduction 
coefficient and relaxation time can be expressed via ω as well

1 11
0 01 1

2( 1) 2( 1)

= , = .r rt f t f
t t

ω
ω ωω

ω ω

κ κ τ κ
−

− ++

+ +

   
   
      
   

		                 (15)

Recall that  >-1. These are already very informative and useful 
relations to investigate the global properties of the solutions, note 
that such kind of analysis are available for large number of complex 
mechanical and flow problems [19].

Substituting these relations back to Eq. (11) after some algebra we 
arrive at the following non-linear first-order ODE

( )2 2 2 1 1
2 = [ (2 1)].

2
df ff f

d
ω ωββ η β

η
+ +− − + 		                 (16)

Put y=η2 and x=f. With this notation eq. (16) becomes linear for 
y(x) (this is the second lucky moment of investigation):

2 2 1

1
( ) 4( 1)= .
[( 1) 2]

dy y x x
dx x x

ω

ω

ω
ω ω

+

+

− +
+ − −

				                 (17)

Plainly, f  x is a solution to eq. (16). If y(x) the solution of eq. 
(17) is strictly monotonic then so is the inverse function f=x and no 
discontinuity. However if y(x) is not monotonic on some interval (x1, 
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x2) and has a turning point at x0ε(x1, x2) then the inverse (f=x) has sense 
on [0,y(x)] only. One sets f=0 for y> y(x0) and the discontinuity a y(x0) 
is apparent. The analytical investigation of the linear equation (17) is, 
in general easier than of eq (16). In some cases (for some ω s) one can 
have more explicit or almost explicit solutions.

There are two examples:

The first case is for ω=0,(α=1,β=1/2,δ=3/2,ε=1).

This example was studied by [20] in some details. The 
corresponding ODE (17) reads y’=(y-4x)/x(x-2) which has a solution 

1/2
1= 8 [( 2) / ] [ 8 ( 2)]y x x c ln x x+ − − + −  where c1 is a constant.

It is clear that must be x ≥ 2 and y(x) is monotonic for x>2 until 
x0 where y=0. This means that x(y) exists and monotonic on some 
interval [0,y0], x(y0)=2; for y ≥ y0 we have x(y)=0 so the discontinuity. 
For a better understanding Figure 1a presents the graph of solution of 
Eq. (17) through the point (3,0.5). The inverse of this function for x>2 
is shown on Figure 1b (the nonzero part). The solid line is a solution 
through the f(0)=10.8 point. Figure 2 presents the theoretical shock-
wave propagation of the temperature distribution T(r, t) for ω=0.

The second case is for ω=-1/2,(α=2,β=1,δ=2,ε=1/2).

Now Eq. (17) takes the form of = 2( 1) / [ ( 3)]dy y x x
dx

− − . It can 
be checked that y=c2x

-2/3(x1/2-3)4/3 is a solution for any c2>0. Take 
c2=0. The function y(x) is monotonic on (0,9), y(9)=0. Returning to 
original variables we have f=9/[(η2)3/4+1]2 (which is plainly less than 
9!) According to eq. (14) temperature and heat flux distributions are

3/2 3/2 2 3/2 3/2 2
9 9= , 2 = .

( ) ( )
t rT cmq

r t r t+ +
		                (18)

Figure 3 presents the time and the radial coordinate dependence 
of the temperature and the heat flux. These solutions are not 
discontinuous. Analytical and numerical calculus suggest that ω=-1/2 
is a critical exponent: for -1<ω ≤ -1/2 the solutions are continuous, for 
the shocks always appear ω>-1/2.

Summary
We presented a hyperbolic model for heat conduction in solids 

where the relaxation time and heat conduction coefficients are power 
law functions of time. There are basically two different regimes available 
for different power laws. For 1<ω ≤ -1/2 the solutions are continuous 
for all positive time and radial coordinate, for ω>-1/2 the solutions 
are only continuous on a finite and closed [0: η0] interval and have a 
finite jump at the the endpoint η0. As physical interpretation numerous 

  

 

 

 

 

 

 

 

 

 

                                                  

(a)

 

(b)

 

Figure 1: The direction field of (a) Eq. (17) for!=0 and (b) Eq. (16) for!=0 The solid line presents numerical solutions for a) y(3)=0:5 and for b) f (0)=10:8. 

Figure 1: The direction field of (a) Eq. (17) for !=0 and (b) Eq. (16) for!=0 The solid line presents numerical solutions for a) y (3)=0:5 and for b) f (0)=10:8.

 
 
 
 
 
 Figure 2: The shock-wave propagation of the temperature distribution of T (r; t) for !=0 Figure 2: The shock-wave propagation of the temperature distribution of T (r; t) for !=0
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materials and solid state systems were mentioned with temperature 
dependent heat conduction coefficients.
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Figure 3: The continuous solutions: (a) the temperature distribution of Eq. (18) and (b) the heat flux distribution of Eq. (18). 
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Abstract
The modern Science has now a lot of its branches and meanders, where are working the numerous specialists 

and outstanding scientists everywhere in the whole world. The theme of this article is devoted to mathematics in 
general and to such a new subsidiary science as the Cartesian infinitology (± ∞: x y and x y z) in a whole.

The young and adult modern people of our time, among them, in first turn, are such ones as the usual citizens, 
students or schoolchildren, have a very poor imagination about those achievements and successes that made by our 
scientists in the different parts and divisions of many fundamental sciences, especially in mathematics. This article is a 
short description of the numerous ideas of a new science that is named by its inventor as the mathematical infinitology.

The infinity as the scientific category is a very complicated conception and the difficult theme for professional 
discussing of its properties and features even by the academicians and the Nobelists as well. In spite of all problems, 
the author have found his own road to this Science and worked out independently, even not being a mathematician 
at all, the universal, from his point of view, and unusual theories and scientific methods, which helped him to find 
and name It as the mathematical infinitology, that may be now studied in rectangular system of Cartesian or other 
coordinates, in orthogonal ones, for example, as easy and practically as we study the organic chemistry or Chinese 
language at the middle school or in the University.

The mathematical infinitology, as a separate or independent science, has been never existed in the mathematics 
from the ancient times up to the 90-th years of the XX-th century. All outstanding mathematicians of the past times 
were able only approximately to image to themselves and explain to their colleagues and pupils in addition, what is an 
infinity indeed: the scientific abstraction or the natural mathematical science that can be not only tested by one’s tooth 
or touched by hands, but study and investigate it in schools or the Institutions of higher learning too.

In summer 1993, such a specific mathematical object as the “cloth of Ulam”, was occasionally re-invented by 
the article author without no one imagination, what it is indeed. Very long time working hours spent by the inventor 
with this mathematical toy or the simplest logical entertainment helped him to penetrate into the mysteries of this 
usual intellectual mathematical object and see in it the fantastic perspectives and possibilities as for science as for 
himself in further studying and it investigating. In a result of the own purposefulness and interests to the re-invented 
mathematical idea of the famous American mathematician S.M.Ulam, the new science was born in the World, and 
after long time experiments, it was named as the mathematical or Cartesian infinitology (±∞ : x y and x y z).

Keywords: Cartesian infinitology; Mathematical plus-minus infinity 
(±∞:xy and хyz); Cartesian coordinates; Natural prime and twins 
numbers; Theory of blank spaces; Sieve of Erathosfen; Ulam’s spieral

Introduction
In any, praiseworthy hobby, business or the craft, being appeared 

at the human persons for a long time process of evolution, and 
thanks to the mental and creative abilities growth, sometimes among 
the advanced people were developed such high spheres of human 
knowledge or personal skills or intellectual abilities, that a lot of 
centuries and even the millenniums came or passed away, before some 
difficult scientific idea or the secrets of the craft could be at last found 
their final decisions or they were transformed by the human individuals 
into such form of the representation or embodiment, available for their 
natural perception by people, specialists or scientists, that a team of 
higher skilled experts could only recognize this or that decision as 
a perfect standard [1-8]. And, it isn't necessary to go far very much 
for the examples! The most ancient and the unresolved task is a secret 
of natural prime numbers, the cornerstone of the scientific theory of 
their knowledge and studying was put by Eratosphen Kirensky, the 
Ancient Greece mathematician, being lived in the III century B.C. The 
knowledge by the human persons of the Great truths of the World was 
always, from the time of immemorial destiny, the elite of possessing 
advanced thinkers being had a rich life experience. Such people-the 

unique just always were able and solved the various and most important 
tasks of their time, advancing thereby not only the era itself and its 
potential opportunities, but at the same time they were putting by own 
affairs and talents the progress and forward advance of Mankind on the 
evolution steps, un-looking on all difficulties and adversities of the daily 
occurrence, with their terrible wars, epidemics, personal problems and 
the natural cataclysms [9-15].

And here is already 21 century! It is now improbably interesting 
to look backward to compare the life of people, which were living at 
the very beginning of our era, with today's life of people that are living 
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now in 2013 A.D. The huge abyss between these two eras is more 
than evident. Everything was changed considerably and up to beyond 
recognition! And though the different natural and technogenous 
misfortunes still annoy to people and their countries, the states and 
even the whole continents, but what, after all abundance, a huge variety 
of all forms, and views and types and everything in our civilization! The 
flights in space and the working Hadron collider became already our 
daily occurrence [15-21]. And there is already a future man’s struggle 
against the asteroid danger. And the Cheliabinsk fire-ball has showed 
to the whole world how terrible and dangerous can it be to all living 
beings on the Earth. It is the most convenient time  to think about 
the security of the Mankind, and its planet too, from the space stone 
travelers already today. And at soon the possible flights of people to 
Mars, Venus and other planets of Solar system will be begun. And the 
wide development of new opportunities of the Arctic and Antarctica 
areas with their infinite store rooms of minerals and sea bio-sources, in 
the nearest future! And the problem of shortage of food and drinking 
water consumption!!! And the catastrophic climate surprises which 
provoke high-speed thawing of the ice armor of the Earth! The life on 
the Earth became more unpredictable and dangerous. And in this very 
quickly changing world, it is difficult to the human person correctly and 
in due time to react to all misfortunes that are collapsing upon his head 
from the side of the natural disasters.

Being live rapidly and in the atmosphere of continuous changes, 
the modern human person, nevertheless, doesn't low his hands down 
and continues to create the material and intellectual treasures elsewhere 
on the Earth, and even in the outer space, making better, step by step, 
not only the created by him achievements but this very complicated 
World too, on the base of his own imperfections. The people constantly 
live in continuous creative search, solving the mass of tasks, for what 
they are sometimes encouraged morally or financially. For the sake of 
such bright perspectives of the personal wellbeing, the best minds start 
to look for the solution of the most difficult scientific tasks and other 
problems. And the valuable awards sometimes find the heroes! This 
work is a formal confirmation of the man’s elementary inquisitiveness 
and how it helped him to make an interesting scientific invention in 
sphere of elementary mathematics [22-26].

The Ulam’s Cloth or Spiral
Even some a few people among the today's schoolchildren and 

students know and can convincingly, even on fingers, explain what it 
is the "Eratosphen’s sieve" and/or the "Ulam's spiral", and at least to tell 
elementarily about these objects, and what it is spoken about in principle. 
And not all mathematician will be also able to explain objectively and 
clearly to the ordinary fans of this science, what it is a "bestia" named 
as the spiral of Ulam, and what are the concrete advantages from it 
to the science itself, to the ordinary fellow citizens and, especially, to 
the modern educated people of the world as well [27-30]. If to judge 
on the single publications only, the mathematical idea of Mr. S. M. 
Ulam, the famous American mathematician and the Polish man in his 
original, is not be able to serve as a proof that our authors–educators 
and the legal distributors of the scientific-and-popular literature on 
mathematics among the population, have the elementary interest to 
this, in appearance, the childish mathematical occupation and these 
persons are not sure very much that they could be objectively and in 
details to tell for their readers, on the pages of the famous books, about 
the features of this idea. But what kind of the mathematical interest may 
have this childish mathematical entertainment at readers in fact?

As it is well known today, Stanislav M. Ulam has invented this 
"cloth", or rather, a spiral, in 1963, being presented once upon a time 

at a very boring meeting of his colleges-scientists. To kill time and not 
to fall asleep with boredom, our hero began to draw on the page of 
his note-book in cell a symbolic chessboard for solution of etudes, but, 
occasionally, he has changed his intention and, instead of the chess 
figures drawing, he begun to fill in the center of this, a poor similarity 
of the chessboard, with the natural prime numbers in view of the points 
situated in square cells of the spiral-typed line, turning anticlockwise, 
that replaced such prime numbers as two, three, etc. As for me, I have 
made the same even not being introduced with this idea at all and its 
author in general [30-37]. Both Ulam and me have replaced the prime 
numbers with the points for simplification of the whole work. And at 
soon, the idea of the American mathematician, which was named as 
"the Ulam's cloth" by the scientists, was born and, by the time, it has 
possessed the right to live. Specialists of Los-Alamos laboratory, headed 
by Stanislav Martin Ulam, the author of this idea, did a huge work on 
detection the regularities of prime numbers distribution within this 
helicoid system, but the idea, as it is known, couldn't demonstrate 
itself in its entire beauty since it was needed a perfect modification 
a little. But just on this trifle, the time was absent at S.Ulam and his 
colleges. So it’s a pity! Because Stanislav Martin Ulam and his friends 
in this laboratory have been on the threshold of the Great discovery in 
mathematics, and, as it is supposed by me, in sphere of the elementary 
number theory [38-44].

The spiral of Ulam

82 81 80 79 78 77 76 75 74 73

83 50 49 48 47 46 45 44 43 72

84 51 26 25 24 23 22 21 42 71

85 52 27 10 09 08 07 20 41 70

86 53 28 11 02 01 06 19 40 69

87 54 29 12 03 04 05 18 39 68

88 55 30 13 14 15 16 17 38 67

89 56 31 32 33 34 35 36 37 66

90 57 58 59 60 61 62 63 64 65

91 92 93 94 95 96 97 98 99 100…→ ∞

Even such a small site of mathematical object under the name 
"Ulam's cloth" allows seeing the fine accurate chains of the natural 
numbers-points on the Figures 1-3 below and in the [LI]

Classification of the Natural Numbers in the “Spiral of 
Ulam”

I. 1,2,3,4,5,6,7,8,9,10,11,12,…--- the usual natural numbers 
consequence;

I.' 1,3,5,7,9,11,13,15,17,19,21 --- the odd natural numbers 
consequence,…

I." 2,4,6,8,10,12,14,16,18,20,…--- the even natural numbers 
consequence,

II. 2,3,5,7,11,13,17,19,23,31,…--- the natural prime numbers 
consequence;

III. 3-5,5-7,11-13,29-31,41-43,…--- the natural twin numbers 
consequence;

IV. 1,9,25,49,81,121,169,196,… --- the squares of the odd natural 
numbers consequence;
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V. 4,16,36,64,100,144,196,… --- the squares of the even natural 
numbers consequence;

VI. 1,11,31,41,61,71,101,131,… --- the first kin type of prime 
numbers consequence;

VII. 3,13,23,43,53,73,83,103,… --- the second kin type of prime 
numbers consequence;

VIII. 7,17,37,47,67,97,107,127,… --- the third kin type of prime 
numbers consequence;	

IX. 19,29,59,79,109,139,149,… --- the forth kin type of prime 
numbers consequence;

X. 1,3,11,13,23,31,41,43,53,… --- the fifth kin type of prime 
numbers consequence;

XI. 1,7,11,17,31,37,41,47,61,… --- the sixth kin type of prime 
numbers consequence;

XII. 1,11,19,29,31,41,59,61,71,…--- the seventh kin type of prime 
numbers consequence;

XIII. 3,7,13,17,23,37,43,47,53,… --- the eighth kin type of prime 
numbers consequence;

XIV. 3,13,19,23,29,43,53,59,73,…--- the ninth kin type of prime 
numbers consequence;

XV. 7,17,19,29,37,47,59,67,79,…--- the tenth kin type of the prime 
numbers consequence;

XVI. 1,3,7,11,13,17,23,31,37,41,…--- the eleventh kin type of prime 
numbers consequence;

XVII. 1,3,11,13,19,23,29,31,41,…--- the twelfth kin type of prime 
numbers consequence;

XVIII.1,7,11,17,19,29,31,37,41,… --- the thirteenth kin type of 
prime numbers consequence;

XIX. 3,7,13,17,19,23,29,37,43,… --- the fourteenth kin type of 
prime numbers consequence;

XX. 11-13,41-43,71-73,101-103,…--- the 1-st kin of the twin prime 
numbers consequence;

XXI. 17-19,107-109,137-139,… --- the 2-nd kin of the twin prime 
numbers consequence;

XXII. 29-31,59-61,149-151,… --- the 3-d kin of the twin prime 
numbers consequence;

Figure 1: The mathematical rectangular spiral or “the table-cloth of Ulam” 
(fragment). (the black points are the symbol prime numbers on the white field)

Figure 2: The mathematical rectangular spiral or “the table-cloth of Ulam” 
(fragment), (the white points are the symbol prime numbers on the black field).

Figure 3: The generalized mathematical rectangular spiral or “the table-cloth 
of Ulam” (the dark-blue points are the symbol prime numbers; the green points 
are the symbol odd quadratic numbers; the red points are the symbol even 
numbers on the white field. The fig. was made by the Author of the article after 
careful number coordinates calculation).
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XXIII. 11-13,17-19,41-43,71-73,…--- the 4-th kin of the twin prime 
numbers consequence;

XXIV. 11-13,29-31,41-43,59-61,…--- the 5-th kin of the twin prime 
numbers consequence;

XXV. 17-19,29-31,59-61,107-109, --- the 6-th kin of the twin prime 
numbers consequence (Figure 1-3).

The "Ulam's cloth" accurate chains of the natural numbers and their 
analogs in view of sets of the same dots on the different color fields 
(white, light-blue and black)) are demonstrating the verible variants of 
regularity of the natural number distribution in the spiral of Ulam. But 
if to look at this peculiar roll from numbers indifferently, of course, it 
is nothing interesting will be found in this spiral. For those fifty years, 
which have passed from that day, when Stanislav Ulam has invented 
this "toy", which wasn't attracted only by it to check up one’s intellect 
and satisfy one’s vanity playing with this, in appearance, the usual 
ordinary numerical spiral! But nobody was able to see or understand 
it’s most important and basic features [45-51]. May be this “cat in the 
bag” was “sitting” there up to the end of the times on a scientific shelf or 
in corner of the old store-room or a hose or rectangular "boa" rounded 
tightly and forgotten by everybody forever, if once upon a time, exactly 
twenty years ago, the author of these lines also decided but occasionally 
to solve one simple arithmetic problem. In the course of its decision, 
when all known methods were tried without results, suddenly the 
entertainment of my student's years came to my mind---a mathematical 
rectangular spiral, which sometimes should be drawn by me at very 
boring lectures. In my student years during the boring lectures, I created 
the spiral of natural numbers and marked the natural prime numbers 
situated in cells of it, on the page of my student’s note-book exactly as 
it was made by Stanislav Ulam, (that I know much later, having looked 
through the mountains of mathematical literature). I have been already 
ready to end my empty occupations with this spiral. When I wanted 
to find the possible decision of my arithmetic task, when, at the last 
moment, I have noticed one strangeness, which strongly intrigued and 
surprised me: I noticed, that all squares of odd natural numbers at this 
spiral ideally correctly were situated on the diagonal leaving the center 
of this spiral and gone to the left corner, but the squares of even natural 
numbers---to the opposite side of the spiral (Figure 2) [52-59].

And then a great willing has come to my mind-to fulfill the graphical 
generalization of this elementary spiral. But to do so, one ought to me to 

make a huge volume of calculations and graphical works. And for the 
aim to receive a fine and interesting picture-beautiful and demonstrated 
one, it has been decided to mark the suitable natural numbers with 
the dots of the corresponded color. In a result, the natural prime and 
twin numbers have been coded with the dots of blue-dark color, the 
squares of the odd natural numbers have become the green and the 
squares of the even natural numbers and the null too-the red ones. Such 
simple color coding or marking of the natural numbers have made the 
powerful and strong basement for a new scientific idea and the future 
new mathematical science. And later, after deep studying of it, this idea 
has been named as the “Generalized spiral of Ulam”. It is graphical 
interpretation is shown on the Figures 2 and 4.

“Generalized Spiral of Ulam”
Analogs and derivations of the generalized spiral of Ulam

At once and immediately, when was determined the main 
information about such a strange and even the mysterious scientific 
object as the spiral of Ulam, there were begun the longest searching 
of more detailed descriptions of such spiral in the suited editions, 
publications, and manuals on mathematics. But having reconsidered 
the hills of books and handbooks on the elementary and higher 
mathematics, I was not able to find the information about this neither 
the spiral nor the generalized analog of it. Having supposed that 
this idea has not even the elementary interest and attention at the 
mathematicians, I begun to study this “toy” independently, being 
made my own varieties of this spiral for differentiation of my own 
entertainment only. In a result of my interactivity, the most improbable 
compositions have begun to appear from the natural numbers, which, 
after replacement the natural numbers on the color dots, I have received 
their own names like these ones: triangular, trapeziform, zigzag, and 
so on. There are some types and kinds of such number compositions 
below, that have been created on the base of my big interest and my own 
version of the generalized spiral of Ulam too (Figures 5-10).

If to look attentively and carefully at the natural number 
compositions, we then will not be able to un-notice a new and very 
interesting feature --- the square powers of the odd and even natural 
numbers, as usual, have created again their special configurations and 

82 81 80 79 78 77 76 75 74 73

83 50 49 48 47 46 45 44 43 72

84 51 26 25 24 23 22 21 42 71

85 52 27 10 09 08 07 20 41 70
86 53 28 11 02 01 06 19 40 69

87 54 29 12 03 04 05 18 39 68

88 55 30 13 14 15 16 17 38 67

89 56 31 32 33 34 35 36 37 66

90 57 58 59 60 61 62 63 64 65

91 92 93 94 95 96 97 98 99 100…→ ∞
Figure 4: Generalized “the table - cloth of Ulam”.Figure 4: Generalized “the table - cloth of Ulam”.
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22     7    20

23     8 1 6   19

24 9 2     3     4 5    18

25 1     11   12    13   14   15   16 17

26   27   28   29   30    31   32   33   34   35   36

Figure 5: Triangular spiral. {An}={n}.Figure 5: Triangular spiral. {An}={n}.

50 49

51   26 25 48

52   27   10     9 24   47

53   28   11     2     1 8   23   46
54   29   12     3     4 5     6     7    22   45

55    30   13   14   15   16   17   18   19    20   21   44

56    31    32   33   34   35   36 37   38   39    40   41   42   43

Figure 6: Trapeziform spiral. {An}={n}.Figure 6: Trapeziform spiral. {An}={n}.
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such a manner, that the noticed at the Generalized spiral of Ulam un-
ordinal peculiarity to form their individual sets and subsets in view of 
the consequent chains of red and green dots, is nowhere broken in its 
new verities (Figures 3-9). Such a peculiarity is more persuasive than any 
words can say that perhaps a new and nobody known property of usual 
natural numbers is found in mathematics. The further investigations of 
this property, discovered at the natural numbers, allowed recognizing 
it as the universal low at them and at their algebraic-and-complex 
equivalents as well, and it has been officially registered in the State 
notary office, in the Murmansk Regional town center, situated on Kola 
Peninsula, in Russia.

Triangular structure

When, as it was seemed, the all possible variants and varieties 
of the Generalized spiral of Ulam were invented and compiled, it 
is naturally the idea has appeared to create a new natural number 
configuration in view e.g. of pyramid or isosceles rectangular 
triangle, standing on one of its sides (Figure 11). In a new variant 
one more variety of the Generalized spiral of Ulam, it suddenly has 
been discovered that the spiral of Ulam, written in such a manner, is 
principally differ from its previous variants on the external view and 
other parameters (i.e. red and green dots had other configurations 
at the schematic diagram). In this triangular structure were seen 
clearly the counters of the famous and well-known to everyone in 
mathematics the second order curve - the parabola itself (Figures 
11 and 12).

Graph-and-Analytical Method
Standard variant

Let us write in common view the consequence of derivation 

131

109 129

89   107 127

71   87   105 125

55   69   85 103 123

41   53   67   83   101 121

29   39   51   65   81 99  119

19   27   37   49 63   79  97  117

11   17 25 35   47   61  77  95  115

05 09 15   23   33   45  59  75  93  113

01 03   07   13   21   31  43  57  73  91 111

Figure 7: Zigzag spiral. {An}={2n – 1}Figure 7: Zigzag spiral. {An}={2n – 1}

99 100

80 81 98  101

63 64 79  82  97  103
48 49 62  65  78  83  96  104

35 36 47  50  61  66  77  84  95  105

24 25 34  37  46  51  60  67  76  85  94  106

15 16 23  26  33  38  45  52  59  68  75  86  93  107

8 9 14 17 22  27  32  39  44  53  58  69  74  87  92  108

3 4 7 10 13 18  21  28  31  40  43  54  57  70  73  88  91  109

0 1 2  5  6 11 12 19  20  29  30  41  42  55  56  71  72  89  90  110

Figure 8: Serpentine spiral. {An}={n}.Figure 8: Serpentine spiral. {An}={n}.

223 221 219 217 215 213 211 209 207 205 203 201 199 197  195

225 143 145 147 149 151 153 155 157 159 161 163 165 167  193

227 141 119 117 115 113 111 109 107 105 103 101   99 169 191

229 139 121 63   65   67   69   71  73   75   77   79   97  171  189

231 137 123   61   47   45   43   41  39   37   35   81 95  173  187

233 135 125   59   49 15   17   19  21   23   33   83   93  175  185

235 133 127   57   51   13    7     5    3    25 31   85   91  177  183

237 131 129   55   53   11    9 0 1    27   29   87   89  179  181

Figure 9: Funnel-shaped (vortex) spiral. {An}={2n–1}.Figure 9: Funnel-shaped (vortex) spiral. {An}={2n–1}.

90

91

24        32                    48  54        62              74        84  92
25 33                    49 55        63              75        85  93

8         14        20  26 34  38        44  50  56        64 68        76  80  86  94  98

0                      9         15        21  27        35  39        45  51  57        65  69        77  81 87  95  99

1 4 6  10  12  16 18  22  28  30  36 40  42  46  52  58  60  66  70  72  78  82  88  96 100

2  3  5  7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73  79  83  89  97 101

Figure 10: “The New-York silhouette”. (An}={n}.

01 

02   03 

04   05   06 

07   08   09   10 

11   12   13   14   15 

16   17   18   19   20   21 

22   23   24   25   26   27   28 

29   30   31   32   33   34   35   36 

37   38   39   40   41   42   43   44   45 

46   47   48   49   50   51   52   53   54   55 

56   57   58   59   60   61   62   63   64   65   66 

67   68   69   70   71   72   73   74   75   76   77   78 

79   80   81   82   83   84   85   86   87   88   89   90   91 

92   93   94   95   96   97   98   99  100 101 102 103 104 105 

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 

Figure 11: Triangular stepped structureю. {An}={n}.
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х   х   9   х 

х   х   х   х   х 

16  х   х   х   х   х 

х   х   х  25  х   х   х 

х   х   х   х   х   х   х  36 

х   х   х   х   х   х   х   х   х 

х   х   х  49  х   х   х   х   х   х 

х   х   х   х   х   х   х   х  64  х   х 

х   х   х   х   х   х   х   х   х   х   х   х 

х   х  81  х   х   х   х   х   х   х   х   х   х 

х   х   х   х   х   х   х   х 100 х   х   х   х   х 

х   х   х   х   х   х   х   х   х   х   х   х   х   х   х 

121х   х   х   х   х   х   х   х   х   х   х   х   х   х   х 

х   х   х   х   х   х   х 144 х   х   х   х   х   х   х   х   х 
Figure 12: Triangular stepped structure. {An}={n}.Figure 12: Triangular stepped structure. {An}={n}.

of the second order line equation or the algebraic curve placed 
in Cartesian coordinates and going through the five coordinate 
points. When used with this method, one can calculate all types of 
polynomials and algebraic equations of all quadratic parabolas, the 
thin contours of which are formed by the sets of red, red-green and 
green dots on the plot [L1] of the natural numbers [{An}={n²}] - 
type consequence in the rectangular system of Cartesian coordinates 
[60-65].

The equation of the algebraic curve of the second order, that going 
through the five points: М1 (x1, y1); M2 (x2, y2); M3 (x3, y3); M4 (x4, y4) и 
М5 (x5, y5), one can calculate it with the following method, that well-
known in mathematics as the Method of determinants:

Let us write four determinants and their algebraic equalities:

M1M2:  A(x, y)=
1

2

1
1
1

x y
x y
x y

=0

А(x, y)=xy1+x2y+x1y2 – x2y1 – xy2 – x1y

М2M3:  B(x, y)= 2 2

3 3

1
1
1

x y
x y
x y

=0

В(x, y)=xy2+x3y+x2y3 – x3y2 – xy3 – x2y

M3M4:  C(x, y)= 3 3

4 4

1
1
1

x y
x y
x y

=0

C(x, y)=xy3+x4y+x3y4 – x4y3 – xy4 – x3y

M4M1:  D(x, y)= 4 4

1 1

1
1
1

x y
x y
x y

=0

D(x, y)=xy4+x1y+x4y1 – x1y4 – xy1 – x4y

Let us write the equation:

P.A(x, y) · C(x, y)+Q.B(x, y).D(x, y)=0, 		                    (1)

where P and Q – any real numbers that are not equal to zero 
simultaneously. Let us find such

a relation of P and Q that М5 has become to belong to the line (1).

P: Q=[(–B)(x5, y5) · D(x5, y5)] : [A(x5, y5) · C(x5, y5)]	                (2)

Let us find the meanings of P and Q and then insert these meanings 
in (1) and then we will try to decide this equation. After collecting like 
terms, we will have the algebraic equation of the second order line that 
going through the five known points [66,67].

In view of the practical example, let us calculate the equation of the 
second order line, the main points of which are situated in the negative 
area of the coordinate axis (–ХоХ+), having determined the meaning 
of coordinates of this curve with the help of the plot [L1], where we 
will find easily the first five green points of the furthest parabola, the 
symmetrical axis of which is parallel to the (–ХоХ+) coordinate line 
and combines with it.

M1 (– 130½; 4½); M2 (– 126½; 3½); M3 (– 123½; 2½); M4 (– 121½; 
1½); M5 (– 120½; ½)

Let us find the mediate equations and suited coefficients for 
derivation of the desired algebraic equation or the second order line, 
going through the five given points.

М1М2:  А(x, y)=
1

( 261/ 2) 9 / 2 1
( 253 / 2) 7 / 2 1

x y
−
−

=0

А(x, y)=(9/2)x – (253/2)y – 1827/4+2277/4 – (7/2)x+(261/2)y

→ 2x+8 y+225=0

M2M3:  B(x, y)=

1
( 253 / 2) 7 / 2 1
( 247 / 2) 5 / 2 1

x y
−
−

=0

B(x, y)=(7/2) x – (247/2) y – 1265/4+1729/4 – (5/2) x+(253/2) y

→ x+3y+116=0

M3M4: C(x, y)=

1
( 247 / 2) 5 / 2 1
( 243 / 2) 3 / 2 1

x y
−
−

=0

C(x, y)=(5/2) x – (243/2)y – 741/4+1215/4 – (3/2)x+(247/2)y

→ 2x+4y+237=0

M4M1: D(x, y)=

1
( 243 / 2) 3 / 2 1
( 261/ 2) 9 / 2 1

x y
−
−

=0
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D(x, y)=(3/2) x-(261/2)y – 2187/4+783/4 – (9/2)x+(243/2)y

→ 6x+18y+702=0

6.1.6. Let us write the desired equation:

P (2x+8y+225)(2x+4у+237)+Q (x+3y+116)(6x+18y+702)=0                (3)

Let us find such a relation of P:Q that the М5(–120½;½) point 
became to belong to this line:

х+3y+116=0 		   (–241/2)+3/2+232/2=(–3)

6x+18y+702=0 		 (–1446/2)+18/2+1404/2=(–12)

2x+8y+225=0 		   (– 241)+4+225=(–12)

2x+4y+237=0 		   (– 241)+2+237=(–2)

(P/Q)=[–(–3)(–12)]/[(–12)(–2)]	  (P/Q)=(–3)/2

P=(–3) 	 Q=2

Let us open the brackets in the equality (3) and then collect like 
terms with taking into account the meaning of the P and Q coefficients:

 (–3)(2x+8y+225)(2x+4y+237)+2(x+3y+116) (6x+18y+702)=0

–12x² – 72xy – 2772x – 96y² – 8388 – 159975=0

+{12x²+72xy+2796x+108y²+8388+162864=0

12 y²+24 x+2899=0 				                      (4)

Let us determine the coordinates of М0 top of the parabola (4). Let 
us у0=0.

12 · 0+24х+2889=0 	 24х=–2889; х0=– 120 ⅜ у0=0

By turning the X and Y axes on (± 90º) and (±180°) around the 
null-point of the Cartesian coordinates, we then will have four main 
quadratic equations:

12y2 ± 24 x+2889=0 у=± (½ x2+120 ⅜)

Offered here calculation presents the famous method of determining 
the polynomials of those classical or created by the mathematical Nature 
of idea itself of the algebraic equations, the assemblage of coordinate 
points of which forms the interminable two-color dotted plot [L1] of the 
{An}={n2}-type natural numbers consequence in the rectangular system 
of Cartesian coordinates in the given scale and intervals alongside the X 
and Y axes and far from them on the unlimited fields of the rectangular 
system of Cartesian coordinates [68].

Universal Classifier of the Natural Numbers and Its 
Varieties

For successful continuation of the natural numbers studying and 
investigation them in the limits of this idea, the necessity has suddenly 
appeared how to find or invent independently the universal and 
simplest method of the natural numbers classification. After very long 
and difficult seeks, it was invented at last such a numerical clepsydra or 
mathematical sieve that was able to characterize any natural number 
in view of its simplest parameters like these ones: evenness, oddness, 
simplicity, divisibility, etc. The universal mathematical natural numbers 
detector has been invented at last in the mathematical science.

In fact, the Universal classifier itself is a usual table in view of the 
right isosceles triangle that is widened to its horizontal side, and where 
the natural numbers are consequently roomed in cells from the point 
of their division on all possible whole devisors. It is the Universal 

classifier of the natural numbers that now allows to decide all simplest 
tasks on the any natural numbers parameterization. The Universal 
classifier itself and its varieties are placed below. When analyzing the 
Classifier structure and its principles of working, one can easily to see 
and understand the real Classifier’s advantages in comparison with the 
analogical mathematical tables and schematic diagrams. It is a natural 
mini-mathematical Encyclopedia under ones hand.

In all times, there were people that tried to classify all and everything 
in the World. In a result, all people’s achievements have begun to 
undergo to the common and the all-world classification. Each branch 
or direction of the human activity were analyzing by their pioneers or 
outstanding scientists. The Mankind, thanks to such clever persons, has 
possessed a dozen of sciences and their numerous meanders. All things, 
even the tiniest elements of them, have now their shelf, place or cell in 
the Great archives, created by the people [69,70].

As for our ideas and methods of classification the rules and lows 
for creating the correct different dotted color illustrations, pictures and 
plots (graphs) in Cartesian coordinates, this science or mathematical 
infinitology requires the strong and ideal classification of all aspects and 
ideas in this huge scientific sphere. Having constructed the powerful 
base for such a complicated science like the mathematical infinitology, 
we must be sure that our system of rules, axioms, classifications and 
scientific imaginations, will be strong and undestroyed forever (Figures 
13-16).

After a successful creating of three dotted multi-colored graphs 
and plots in the rectangular system of Cartesian coordinates, the 
most unusual and interesting idea has born suddenly as “Eureka !” 
at Archimedes. It suddenly dawned upon me and the main result of 
such a premonition, presented here like the Classification table, was 
the idea of creating the dotted scientific illustration, the mathematical 
interpretation or close similarity to it would be a formula {An}={n}, 
where the “n” is any natural number, marked in a view of the dot having 
the only possible color for this figure. But because of the absence of 
the axioms and the already written rules on the natural numbers 
color coding, this idea has taken me unawares, and I was needed, by 
all means, to find, invent or work out such method of natural number 
color coding at once, immediately and independently.

Later, in a result of the purposefulness and own interest, this difficult 
task was decided in the shortest time and much enough successfully. To 
be more specific, any natural number in the endless consequence of 
them, one can code (mark) now with the only color, and as for any figure 
color marking, it will be needed only seven “paints” of the rainbow 
spectrum for these purposes. The rules of color natural number coding 
is presented here in the Classification table below, taking, of course, in 
our mind, that each figure on the picture or a plot is represented there 
in a view of the suited color dot. Let us introduce with the elementary 
color coding rules of the natural numbers and their complex-and-
algebraic equivalents as well [71-75].

Classification Table
1.	 Any odd natural number, arisen in “() ^2” or any other “() ^2n” 

power, is coded in view of the green dot(s), e.g.: 1²=1, 3²=9, 
5²=25, etc. The same but the negative odd numbers (-1, -9, -25, 
etc.) must be marked in such a manner, i.e. in view of the green 
dot(s) on the plot or graph, created in the Cartesian coordinates.

2.	 Any even natural number, arisen in “() ^2” or any other “() 
^2n” power, is coded in view of the red dot(s), e.g.: 2²=4, 4²=16, 
6²=36, etc. The same but the negative even numbers (-4, -16, 
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0                    

1 1                   

2 1 2                  

3 1 – 3                 

4 1 2 – 4                

5 1 – – – 5               

6 1 2 3 – – 6              

7 1 – – – – – 7             

8 1 2 – 4 – – – 8            

9 1 – 3 – – – – – 9           

10 1 2 – – 5 – – – – 10          

11 1 – – – – – – – – – 11         

12 1 2 3 4 – 6 – – – – – 12        

13 1 – – – – – – – – – – – 13       

14 1 2 – – – – 7 – – – – – – 14      

15 1 – 3 – 5 – – – – – – – – – 15     

16 1 2 – 4 – – – 8 – – – – – – – 16    

17 1 – – – – – – – – – – – – – – – 17   

18 1 2 3 – – 6 – – 9 – – – – – – – – 18  

19 1 – – – – – – – – – – – – – – – – – 19 

Figure 13: Elementary classifier of the natural numbers.
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Figure 14: Elementary classifier of the even natural numbers.Figure 14: Elementary classifier of the even natural numbers.
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0                   

1 1                  

3 1 3                 

5 1 – 5                

7 1 – – 7               

9 1 3 – – 9              

11 1 – – – – 11             

13 1 – – – – – 13            

15 1 3 5 – – – – 15           

17 1 – – – – – – – 17          

19 1 – – – – – – – – 19         

21 1 3 – 7 – – – – – – 21        

23 1 – – – – – – – – – – 23       

25 1 – 5 – – – – – – – – – 25      

27 1 3 – – 9 – – – – – – – – 27     

29 1 – – – – – – – – – – – – – 29    

31 1 – – – – – – – – – – – – – – 31   

33 1 3 – – – 11 – – – – – – – – – – 33  

35 1 – 5 7 – – – – – – – – – – – – – 35 

Figure 15: Elementary classifier of the odd natural numbers.Figure 15: Elementary classifier of the odd natural numbers.

00 

01    01 

03    01            03 

06    01    02    03                    06 

09    01            03                                           09 

12    01    02    03    04            06                                            12 

15    01            03           05                                                                             15  

18    01    02    03                    06                   09                                                                      18 

21    01            03                            07                                                                                                            21  

24    01    02    03    04            06           08                             12                                                                    

27    01            03                                           09                                                                                             

30    01    02    03           05     06                           10                                     15                                            

33    01            03                                                            11                                                                              

36    01    02    03    04            06                   09                     12                                             18                             

39    01            03                                                                            13                                                            

42    01    02    03                    06    07                                                    14                                                    21              

45    01            03            05                           09                                             15                                              

48    01    02    03    04            06           08                            12                             16                                              

Figure 16: Elementary classifier of the {An}=3n view natural numbers.Figure 16: Elementary classifier of the {An}=3n view natural numbers.
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-36, etc.) must be marked in such a manner, i.e. in view of 
the red dot(s) on the plot or graph, created in the Cartesian 
coordinates.

3.	 Any natural prime or twin numbers must be coded in view 
of the blue dot(s), e.g.: 2=2, 3=3, 5=5, etc. The same but the 
negative numbers (-2, -3, -5, etc.) must be marked in such a 
manner, i.e. in view of the blue dot(s) on the plot or graph, 
created in the Cartesian coordinates.

4.	 Any odd natural number, arisen in “() ^3” or any other “() 
^(2n-1)” power, is coded in view of the dark blue dot(s), e.g.: 
3³=27, 5³=125, 7³=343, etc. The same but the negative numbers 
(-27, -125, -343, etc.) must be marked in such a manner, i.e. 
in view of the dark blue dot(s) on the plot or graph, created 
in the Cartesian coordinates, excluding the natural (negative) 
numbers, which fall under the condition of the item No.1 of this 
Classification, e.g.: 9³=[(3²)]³, etc.

5.	 Any even natural number, arisen in “() ^3” or any other “() 
^(2n-1)” power, is coded in view of the violet dot(s), e.g.: 2³=8, 
6³=216, 2^9=512, etc. The same but the negative numbers (-8, 
-216, -512, etc.)must be marked in such a manner, i.e. in view of 
the violet dot(s) on the plot or graph , created in the Cartesian 
coordinates, excluding the natural (negative) numbers, which 
fall under the condition of the item No. 2 of this Classification, 
e.g.: 4³=[(2²)]³, etc.

6.	 All other odd natural (negative) numbers are coded in view of 
the yellow dot(s), e.g.:15, 21, 33, 35, 39, 45, 51, 55, etc., when 
created the plot or graph in Cartesian coordinates.

7.	 All other even natural (negative) numbers are coded in view of 
the orange dot(s), e.g.: 6, 10, 12, 14, 18, 20, 22, 24, etc., when 
created the plot or graph in Cartesian coordinates.

Such a simple method of any natural number color classification 
in a view of the dot, having the own color among the seven paints of 
the rainbow spectrum, will allow to create for us not only the most 
unusual scientific and art “pictures” but even the fantastic dotted 
illustrations and compositions in the rectangular system of Cartesian 
coordinates in the vicinity of its “null”-point and at any distance from 
it. The modern programmable media products such ones of them 
as MAPLE, MathCAD, MATHEMATICA, MATLAB, WOLFRAM, 
etc., will help to strength the opportunities for our scientists-
mathematicians and specialists in sphere of IBM PC programming up 
to the endless indeed.

And, probably, some new scientific inventions will be made as in 
mathematics as in physics, chemistry, astronomy and other famous 
sciences and their branches. And, may be, at last, the mathematical 
or Cartesian plus-minus infinity (± ∞ : x y and x y z) will tell to its 
investigators all secrets of the prime numbers, twin numbers, proof 
the conjunction of Riemann B and explain a lot of other outstanding 
scientific and mathematical problems of the past centuries and modern 
ones additionally.

Combinatorics
Variants of color coding of natural numbers and formed by 
them consequences

After working out the principles of natural numbers color coding 
in the limits of this idea, it has appeared the possibility to make and 
create as manually as electronically the most variable, dependent on 

their chromaticity and color compositing the dotted illustrations and 
pictures or scientific dotted - colored graphs of the natural numbers and 
formed by them consequences in the rectangular system of Cartesian 
coordinates.

One – color graphs:

1. Green (gr) 2. Red (rd) 3. Blue (bl) 4. (c) Light blue (lb) 5. Violet 
(vt) 6. Yellow (yl) 7. Orange (rn)

С=7!/[1! (7 – 1) !] C=7

Two-color graphs:

1. 1-2  2. 1-3  3. 1-4  4. 1-5  5. 1-6  6. 1-7  7. 2-3
8. 2-4  9. 2-5 10. 2-6 11. 2-7 12. 3-4 13. 3-5 14. 3-6

15. 3-7 16. 4-5 17. 4-6 18. 4-7 19. 5-6 20. 5-7 21. 6-7

C=7!/[2! (7 – 2) !] C=21

Three-color graphs:

1. 1-2-3 2. 1-2-4 3. 1-2-5 4. 1-2-6 5. 1-2-7 6. 1-3-4 7. 1-3-5

8. 1-3-6 9. 1-3-7 10. 1-4-5 11. 1-4-6 12. 1-4-7 13. 1-5-6 14. 1-5-7

15. 1-6-7 16. 2-3-4 17. 2-3-5 18. 2-3-6 19. 2-3-7 20. 2-4-5 21. 2-4-6

22. 2-4-7 23. 2-5-6 24. 2-5-7 25. 2-6-7 26. 3-4-5 27. 3-4-6 28. 3-4-7

29. 3-5-6 30. 3-5-7 31. 3-6-7 32. 4-5-6 33. 4-5-7 34. 4-6-7 35. 5-6-7

C=7 !/[3! (7 – 3) !] 	 C=35

Four-color graphs:

1. 1-2-3-4 2. 1-2-3-5 3. 1-2-3-6 4. 1-2-3-7
5. 1-2-4-5 6. 1-2-4-6 7. 1-2-4-7 8. 1-2-5-6
9. 1-2-5-7 10. 1-2-6-7 11. 1-3-4-5 12. 1-3-4-6

13. 1-3-4-7 14. 1-3-5-6 15. 1-3-5-7 16. 1-3-6-7
17. 1-4-5-6 18. 1-4-5-7 19. 1-4-6-7 20. 1-5-6-7
21. 2-3-4-5 22. 2-3-4-6 23. 2-3-4-7 24. 2-3-5-6
25. 2-3-5-7 26. 2-3-6-7 27. 2-4-5-6 28. 2-4-5-7
29. 2-4-6-7 30. 2-5-6-7 31. 3-4-5-6 32. 3-4-5-7
33. 3-4-6-7 34. 3-5-6-7 35. 4-5-6-7 36. 0-0-0-0

C=7!/[4! (7 – 4)!] C=35

Five-color graphs:

1. 1-2-3-4-5 2. 1-2-3-4-6 3. 1 -2-3-4-7 4. 1-2-3-5-6
5. 1-2-3-5-7 6. 1-2-3-6-7 7. 1-2-4-5-6 8. 1-2-4-5-7
9. 1-2-4-6-7 10. 1-2-5-6-7 11. 1-3-4-5-6 12. 1-3-4-5-7

13. 1-3-4-6-7 14. 1-3-5-6-7 15. 1-4-5-6-7 16. 2-3-4-5-6
17. 2-3-4-5-7 18. 2-3-4-6-7 19. 2-3-5-6-7 20. 2-4-5-6-7
21. 3-4-5-6-7 22. 0-0-0-0-0 23. 0-0-0-0-0 24. 0-0-0-0-0

C=7!/[5! (7 – 5)!] C=21

Six-color graphs:

 1. 1-2-3-4-5-6 2. 1-2-3-4-5-7 3. 1-2-3-4-6-7 4.1-2-3-5-6-7
 5. 1-2-4-5-6-7 6.1-3-4-5-6-7 7. 2-3-4-5-6-7 8. 0-0-0-0-0-0

С=7!/[6! (7 – 6)!]	 C=7

Seven-color graphs:

1.	 1 - 2 - 3 - 4 - 5 - 6 -7
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C=7!/[7! (7 – 7)!] C=1

In a result of our elementary calculations with using the formulas, 
that well-known in combinatorics, we have received at last exactly 
127 different compositions of the seven color-coded consequences of 
the natural numbers. Such a big quantity of combinations between 
the numbers and seven main colors allows to the makers of color 
illustrations “to draw” the natural mathematical Hermitage, consisting 
of the infinitely huge quantity of the scientific illustrations, borne by 
the theory of dot-color coding of the natural numbers on the immense 
spaces of the Cartesian or mathematical plus - minus infinity (± ∞: xy 
and xyz) (Mathematical rose in Figure 17).

Сonclusion
Represented here in this article a new scientific method of 

graphical visualization of the natural numbers and consequences, 
forming by them, in view of chains of the colored dotes and sets in 
2D Cartesian coordinates became possible, when the Author of this 
article salved the nonstandard mathematical task, having united the 
“Ulam’s spiral” and own invention with the rectangular system of 
Cartesian coordinates. The bright and very impressive illustrations 
were appearing in a result, as if someone has correctly distributed 
the confetti on the surface of the magic field, and even their Inventor 
himself was surprised very much observe his “drawings”. Looking at 
my graphs and plots, the thought was born that no one in the World 
can create such “pictures” but Mr. Benoit B. Mandelbrot, the famous 
American mathematician that used in his mathematical creativity 
the complex numbers, his own fantasy and the simplest IBC PC 
programmable media products as well. The results of Mandelbrot’s 
work are known to everybody, but new graphs and plots made by me 
are known to nobody to my big regret.

Many centuries ago, the French scientist R. Descartes has invented 
the method of representation the suited information in view of 
mathematical lines, curves and the schematic diagrams in a symbol 
net, where two lines were crossing under the angle of 90º forming a 
zero-point as the beginning of this system. But the most interesting 
illustrations in this system, named letter in honor of R. Descartes, 

were appearing when the mathematicians dissolved graphically the 
equations and different functional dependences like y=x², y=x³ and 
a lot of others. Now, almost four century later from the invention of 
Cartesian coordinates system, this great idea of the French academician 
has become the first media in many sciences for decision of different 
mathematical tasks that can now decide any educated person from the 
school pupils and ending the Nobel Prize laureates.

When the first natural numbers plots were created by me in the 
Cartesian coordinates, it has been noticed that the investigated idea 
has relation not only to a method of studying the natural numbers and 
their complex-algebraic equivalents but, how strange it may be, to the 
mathematical or Cartesian plus-minus infinity, the perfect theory of its 
studying and representing is worked by no one scientists up to this day. 
The graphic-and analytic method of visualization of natural numbers 
presented in this article opens widely the doors and gates for all and any 
persons, who will introduce with the main principles of this idea. And 
everything that it is needed for this work --- the elementary interest to 
this new idea in mathematics. Thanks to this method, one can make in 
the rectangular system of Cartesian coordinates some beautiful color 
dotted “photo portrait” of any natural number, for example, 1, 2, 3, 5, 
and 17. 35 etc., or the “picture” any, formed from them, consequence, 
such ones as the prime numbers, twin-numbers, Fibonacci numbers 
and etc.

In this article, special attention is paid to the specific rules 
and methods of calculation and creating the prime numbers 
graphs and other plots in Cartesian coordinates, having provided 
them preliminarily with a mathematical tables, where are listed 
all necessary information to create with their help the main 
mathematical “photos” of these consequences in the rectangular 
system of Cartesian coordinates. The method allows making the 
same illustrations in axonometric projection when the three axis 
are under the angle of 120º to one another. It is also existing the 
method of programming the Cartesian system with the help of the 
correspondence basic modules-stencils that can create the initial 
variant of the future colored - dotted mathematical illustrations that 
will allow to convert this idea into the huge interminable scientific 
kaleidoscope or mathematical casket with dozens of drawings and 
illustrations for further professional studying the natural numbers, 
their complex-algebraic equivalents themselves, and their colored 
graphics and the mathematical infinity as well.

List of Illustrations
1.	 Fragment of the interminable red-green dotted plot of the 

Natural numbers consequence in Cartesian coordinates.

2.	 Fragment of the C++ - made interminable red dotted plot 
of the Natural prime numbers consequence in Cartesian 
coordinates.

3.	 Fragment of the interminable red-green dotted plot of the 
Natural – odd-even – numbers consequence in Cartesian 
coordinates.

4.	 Big Bang or four Black Holes merging (Fragment of the 
mathematical model).

5.	 Fragment of the interminable dark-blue dotted plot of the 
Natural twin numbers consequence in Cartesian coordinates 
(Figure 18-22).Figure 17: Mathematical rose.

Figure 17: Mathematical rose.
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List of   Illustrations

1. {An} = {n²}
Figure 18: Fragment of the interminable red-green dotted plot of 
the Natural numbers consequence in Cartesian coordinates.

Figure 18: Fragment of the interminable red-green dotted plot of the Natural 
numbers consequence in Cartesian coordinates.

2. {An} = {πn}
Figure 19: Fragment of the interminable red dotted plot of the Natural prime 
numbers consequence in Cartesian coordinates.

3. {An} = {(2n - 1)² U (4n²)}

Figure 20: Fragment of the interminable red-green dotted plot of 
the Natural – odd-even – numbers consequence in Cartesian 
coordinates.

Figure 20: Fragment of the interminable red-green dotted plot of the Natural – 
odd-even – numbers consequence in Cartesian coordinates.

4. Big Bang
Figure 21: Fragment of the interminable red-green 
dotted plot of the Natural numbers consequence view or 
Big Bang.

Figure 21: Fragment of the interminable red-green dotted plot of the Natural 
numbers consequence view or Big Bang.
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Abstract
We consider aspects of the relationship between nilpotent orbits in a semisimple real Lie algebra g and those in 

its complexification g. In particular, we prove that two distinct real nilpotent orbits lying in the same complex orbit are 
incomparable in the closure order. Secondly, we characterize those g having non-empty intersections with all nilpotent 
orbits in g. Finally, for g quasi-split, we characterize those complex nilpotent orbits containing real ones.

Keywords: Nilpotent orbit; Quasi-split Lie algebra; Kostant-
Sekiguchi correspondence

1. Introduction
1.1 Background and statement of results

Real and complex nilpotent orbits have received considerable 
attention in the literature. The former have been studied in a variety 
of contexts, including differential geometry, symplectic geometry, 
and Hodge theory [1]. Also, there has been some interest in concrete 
descriptions of the poset structure on real nilpotent orbits in specific 
cases [2,3]. By contrast, complex nilpotent orbits are studied in algebraic 
geometry [4,5,6] and representation theory — in particular, Springer 
Theory [7].

Attention has also been given to the interplay between real and 
complex nilpotent orbits, with the Kostant-Sekiguchi Correspondence 
being perhaps the most famous instance [8]. Accordingly, the present 
article provides additional points of comparison between real and 
complex nilpotent orbits. Specifically, let g be a finite-dimensional 
semisimple real Lie algebra with complexification g. Each real 
nilpotent orbit  ⊆ g lies in a unique complex nilpotent orbit  ⊆ g, 
the complexification of . The following is our main result.  

Theorem 1: The process of nilpotent orbit complexification has the 
following properties.

 (i) Every complex nilpotent orbit is realizable as the complexification 
of a real nilpotent orbit if and only if g is quasi-split and has no simple 
summand of the form so (2n+1, 2n −1).

(ii) If g is quasi-split, then a complex nilpotent orbit Q ⊆ g is 
realizable as the complexification of a real nilpotent orbit if and only if 
Q is invariant under conjugation with respect to the real form g ⊆ g.

(iii) If 1,2 ⊆ g are real nilpotent orbits satisfying (1)=(2), 
then either 1=2 or these two orbits are incomparable in the closure order.

1.2 Structure of the article

We begin with an overview of nilpotent orbits in semisimple real 
and complex Lie algebras. In recognition of Theorem 1 (iii), and of the 
role played by the unique maximal complex nilpotent orbit Qreg(g) 
throughout the article, Section 2.2 reviews the closure orders on the sets 
of real and complex nilpotent orbits. In Section 2.3, we recall some of 
the details underlying the use of decorated partitions to index nilpotent 
orbits.

Section 3 is devoted to the proof of Theorem 1. In Section 3.1, we 
represent nilpotent orbit complexification as a poset map  ϕ

g
 between 

the collections of real and complex nilpotent orbits. Next, we show this 

map to have a convenient description in terms of decorated partitions. 
Section 3.2 then directly addresses the proof of Theorem 1 (i), formulated 
as a characterization of when ϕ

g
 is surjective. Using Proposition 2, we 

reduce this exercise to one of characterizing surjectivity for g simple. 
Together with the observation that surjectivity implies g is quasi-split 
and is implied by g being split, Proposition 2 allows us to complete the 
proof of Theorem 1 (i).

We proceed to Section 3.3, which provides the proof of Theorem 
1 (ii). The essential ingredient is Kottwitz’s work [9]. We also include 
Proposition 3, which gives an interesting sufficient condition for a 
complex nilpotent orbit to be in the image of ϕ

g
.

In Section 3.4, we give a proof of Theorem 1 (iii). Our proof makes 
extensive use of the Kostant-Sekiguchi Correspondence, the relevant 
parts of which are mentioned.

2. Nilpotent Orbit Generalities
2.1 Nilpotent orbits

 We begin by fixing some of the objects that will persist throughout 
this article. Let g be a finite-dimensional semisimple real Lie algebra 
with adjoint group G. Also, let g:=g⊗ be the complexification of g, 
whose adjoint group is the complexification G. One has the adjoint 
representations

Ad:G→GL(g) and Ad:G→ GL(g)

of G and G, respectively. Differentiation then gives the adjoint 
representations of g and g, namely

 ad:g→gl(g) and ad:g→gl(g).

Recall that an element  ξ∈g (resp. ξ∈g) is called nilpotent 
if ad(ξ):g→g (resp. ad(ξ):g→g) is a nilpotent vector space 
endomorphism. The nilpotent cone  (g) (resp. (g)) is then the 
subvariety of nilpotent elements of g (resp. g). A real (resp. complex) 
nilpotent orbit is an orbit of a nilpotent element in g (resp. g) under the 
adjoint representation of G (resp. G). Since the adjoint representation 
occurs by means of Lie algebra automorphisms, a real (resp. complex) 
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nilpotent orbit is equivalently defined to be a G -orbit (resp. G-orbit) 
in  (g) (resp. (g)). By virtue of being an orbit of a smooth G -action, 
each real nilpotent orbit is an immersed submanifold of g. However, as 
G is a complex linear algebraic group, a complex nilpotent orbit is a 
smooth locally closed complex subvariety of g.

2.2 The closure orders

The sets  (g)/G and  (g)/G of real and complex nilpotent 
orbits are finite and carry the so-called closure order. In both cases, this 
is a partial order defined by

1 ≤2 if and only if 1 2.⊆  			                     (1)

In the real case, one takes closures in the classical topology on 
g. For the complex case, note that a complex nilpotent orbit Q is a 
constructible subset of g, so that its Zariski and classical closures agree. 
Accordingly, Q  shall denote this common closure.

Example 1: Suppose that g=sln(), whose adjoint group is 
G=PSLn(). The nilpotent elements of sln() are precisely the 
nilpotent n × n matrices, so that the nilpotent PSLn() -orbits are 
exactly the (GLn()-) conjugacy classes of nilpotent matrices. The latter 
are indexed by the partitions of n via Jordan canonical forms. Given a 
partition λ=(λ1,λ2,…,λk) of n, let Qλ be the PSLn()-orbit of the nilpotent 
matrix with Jordan blocks of sizes λ1,λ2,…,λk, read from top-to-bottom. 
It is a classical result of Gerstenhaber [10] that Qλ≤Qµ if and only if  λ≤μ 
in the dominance order [11].

The poset  (g)/G has a unique maximal element Qreg(g), called 
the regular nilpotent orbit. It is the collection of all elements of g which 
are simultaneously regular and nilpotent. In the framework of Example 
1, Qreg (sln()) corresponds to the partition(n).

2.3 Partitions of nilpotent orbits

Generalizing Example 1, it is often natural to associate a partition 
to each real and complex nilpotent orbit. One sometimes endows these 
partitions with certain decorations and then uses decorated partitions 
to enumerate nilpotent orbits. It will be advantageous for us to recall 
the construction of the underlying (undecorated) partitions. Our 
exposition will be largely based on Chapters 5 and 9 of [12].

Suppose that g comes equipped with a faithful representation g 
⊆ gl(V)=End(V), where V is a finite-dimensional vector space over 
= or . The choice of V determines an assignment of partitions to 
nilpotent orbits in both g and g. To this end, fix a real nilpotent orbit 
 ⊆ (g) and choose a point ξ∈ . We may include ξ as the nilpositive 
element of an sl2() –triple (ξ,h,n), so that

[ξ,n]=h,[h,ξ]=2ξ,[h,n]=− 2n 

Regarding V as an sl2()-module, one has a decomposition into 
irreducibles,

=1
= ,

k

j
j

V Vλ⊕
where 

j
Vλ  denotes the irreducible λj -dimensional representation of 

sl2() over . Let us require that λ1 ≥ λ2 ≥ … ≥ λk, so that (λ1,λ2,…,λk) is 
a partition of dim(V). Accordingly, we define the partition of  to be

λ():=(λ1,λ2,…,λk).

It can be established that λ() depends only on .

The faithful representation V of g canonically gives a faithful 
representation V  of g. Indeed, if V is over , then one has an inclusion 
g ⊆ gl(V) (so =V V ). If V is over , then the inclusion g ⊆ gl(V) 

complexifies to give a faithful representation g ⊆ gl(V) (ie. =V V

 ). 
In either case, one proceeds in analogy with the real nilpotent case, 
using the faithful representation to yield a partition λ(Q) of a complex 
nilpotent orbit Q ⊆ (g). The only notable difference with the real case 
is that sl2() is replaced with sl2().

Example 2: One can use the framework developed above to index 
the nilpotent orbits in sl2() using the partitions of n. This coincides 
with the indexing given in Example 1.

Example 3: The nilpotent orbits in sl2() are indexed by the 
partitions of n, after one replaces certain partitions with decorated 
counterparts. Indeed, if λ is a partition of n having only even parts, we 
replace λ with the decorated partitions λ+ and λ−. Otherwise, we leave 
λ undecorated.

Example 4: Suppose that n ≥ 3 and consider g=su(p,q) with 1≤q≤p 
and p+q=n. This Lie algebra is a real form of sln(). Now, let us regard a 
partition of n as a Young diagram with n boxes. Furthermore, recall that 
a signed Young diagram is a Young diagram whose boxes are marked 
with + or −, such that the signs alternate across each row [12]. We 
restrict our attention to the signed Young diagrams of signature (p,q), 
namely those for which + and − appear with respective multiplicities p 
and q. It turns out that the nilpotent orbits in su(p,q) are indexed by the 
signed Young diagrams of signature (p,q). 

Example 5: Suppose that g=so2n() with n ≥ 4. Taking our faithful 
representation to be 2n, nilpotent orbits in so2n() are assigned 
partitions of 2n. The partitions realized in this way are those in which 
each even part appears with even multiplicity. One extends these 
partitions to an indexing set by replacing each λ having only even parts 
with the decorated partitions λ+ and λ−.

Example 6: Suppose that n ≥ 3 and consider g=so(p,q) with 
1≤q≤p and p+q=n. Note that so(p,q) is a real form of g=son(). As 
with Example 4, we will identify partitions of n with Young diagrams 
having n boxes. We begin with the signed Young diagrams of signature 
(p,q) such that each even-length row appears with even multiplicity 
and has its leftmost box marked with +. To obtain an indexing set for 
the nilpotent orbits in so(p,q), we decorate two classes of these signed 
Young diagrams Y. Accordingly, if Y has only even-length rows, then 
remove Y and add the four decorated diagrams Y+,+,Y+,−,Y−,+ and Y−,−. 
Secondly, suppose that Y has at least one odd-length row, and that each 
such row has an even number of boxes marked +, or that each such row 
has an even number of boxes marked −. In this case, we remove Y and 
add the decorated diagrams Y+ and Y. 

3. Nilpotent Orbit Complexification
3.1 The complexification map

There is a natural way in which a real nilpotent orbit determines a 
complex one. Indeed, the inclusion (g) ⊆ (g) gives rise to a map.

ϕ
g
:(g)/G→(g)/G

 .

Concretely,  is just the unique complex nilpotent orbit containing 
, and we shall call it the complexification of . Let us then call ϕ

g
 the 

complexification map for g.

It will be prudent to note that the process of nilpotent orbit 
complexification is well-behaved with respect to taking partitions. 
More explicitly, we have the following proposition.

http://dx.doi.org/10.4172/1736-4337.S2-012


Citation: Crooks P (2016) Properties of Nilpotent Orbit Complexification. J Generalized Lie Theory Appl S2: 012. doi:10.4172/1736-4337.S2-012

Page 3 of 6

J Generalized Lie Theory Appl
Recent Advances of Lie Theory in 
differential Geometry, in memory of 

John Nash
ISSN: 1736-4337 GLTA, an open access journal

Proposition 1: Suppose that g is endowed with a faithful 
representation g ⊆ gl(V). If  is a real nilpotent orbit, then λ()=λ().

Proof: Choose a point ξ∈ and include it in an sl2()-triple (ξ,h,η) 
as in Section 2.3. Note that (ξ,h,η) is then additionally an sl2()-triple 
in g. Hence, we will prove that the faithful representation V  of g 
decomposes into irreducible sl2()-representations according to the 
partition λ().

Let us write λ()=(λ1,…,λk), so that

=1
=

k

jj
V Vλ⊕ 					                      (2)

is the decomposition of V into irreducible sl2()-representations. If V 
is over , then =V V  and (2) is a decomposition of V  into irreducible 
sl2()-representations. If V is over , then =V V

  and

=1
= ( )

k

jj
V Vλ⊕ 

is the decomposition of V  into irreducible representations of sl2(). In 
each of these two cases, we have λ()=λ().

Proposition 1 allows us to describe ϕ
g
 in more combinatorial terms. 

To this end, fix a faithful representation g ⊆ gl(V). As in Examples 2-6, 
we obtain index sets I(g) and I(g) of decorated partitions for the real 
and complex nilpotent orbits, respectively. We may therefore regard ϕ

g
 

as a map

ϕ
g
: I(g) → I(g).

Now, let P(g) be the set of all partitions of the form λ(Q), with Q ⊆ 
g a complex nilpotent orbit. One has the map

I(g) → P(g),

sending a decorated partition to its underlying partition. Proposition 1 
is then the statement that the composite map

( ) ( ) ( )I I P
ϕ

→ →gg g g 

sends an index in I(g) to its underlying partition. Let us denote this 
composite map by  ψ

g
:I(g)→P(g).

We will later give a characterization of those semisimple real Lie 
algebras g for which ϕ

g
 is surjective. To help motivate this, we investigate 

the matter of surjectivity in some concrete examples.

Example 7: Recall the parametrizations of nilpotent orbits in 
g=sl2() and g=sl2() outlined in Examples 3 and 2, respectively. 
We see that I(g)=P(g) and ϕ

g
= ψ

g
. The surjectivity of ϕ

g
 then follows 

immediately from that of ψ
g
.

Example 8: Let the nilpotent orbits in g=su(n,n) be parametrized 
as in Example 4. We then have g=sl2n(), whose nilpotent orbits are 
indexed by the partitions of 2n. Given such a partition λ, let Y denote 
the corresponding Young diagram. Since Y has an even number of 
boxes, it has an even number, 2k, of odd-length rows. Label the leftmost 
box in  k of these rows with +, and label the leftmost box in each of 
the remaining k rows with −. Now, complete this labelling to obtain 
a signed Young diagram Y , noting that Y  then has signature (n,n). 
Hence, Y  corresponds to a nilpotent orbit in su(n,n) and ( ) =Yψ λ

g . 
It follows that ψ

g
 is surjective. Since I(g)=P(g) and ϕ

g
= ψ

g
, we have 

shown ϕ
g
 to be surjective. A similar argument establishes surjectivity 

when g=su(n+1,n).

Example 9: Let us consider g=so(2n+2,2n), with nilpotent orbits 
indexed as in Example 6. Noting Example 5, a partition λ of 4n+2 
represents a nilpotent orbit in g=so4n+2() if and only if each even part 

of λ occurs with even multiplicity. Since 4n+2 is even and not divisible 
by 4, it follows that any such λ has exactly 2k odd parts for some k ≥ 1 . 
Let Y be the Young diagram corresponding to λ, and label the leftmost 
box in k−1 of the odd-length rows with +. Next, label the leftmost box 
in each of k−1 different odd-length rows with −. Finally, use + to label 
the leftmost box in each of the two remaining odd-length rows. Let Y  
be any completion of our labelling to a signed Young diagram, such that 
the leftmost box in each even-length row is marked with +. Note that Y  
has signature (2n+2,2n). It follows that Y  represents a nilpotent orbit 
in so(2n+2,2n) and ( ) =Yψ λ

g . Furthermore, I(g)=P(g) and ϕ
g
= ψ

g
, 

so that ϕ
g
 is surjective. 

Example 10: Suppose that g=so(2n+2,2n−1), whose nilpotent 
orbits are parametrized in Example 6. Let the nilpotent orbits in 
g=so4n() be indexed as in Example 5. There exist partitions of 4n 
having only even parts, with each part appearing an even number of 
times. Let λ be one such partition, which by Example 6 represents a 
nilpotent orbit in so4n(). Note that every signed Young diagram with 
underlying partition λ must have signature (2n,2n). In particular, λ 
cannot be realized as the image under ψ

g
 of a signed Young diagram 

indexing a nilpotent orbit in so(2n+2,2n−1). It follows that ψ
g
 and ϕ

g 

are not surjective.

3.2 Surjectivity

 We now address the matter of classifying those semisimple real Lie 
algebras g for which ϕ

g
 is surjective. To proceed, we will require some 

additional machinery. Let p ⊆ g be the (−1)-eigenspace of a Cartan 
involution, and let a be a maximal abelian subspace of p. Also, let h be 
a Cartan subalgebra of g containing a, and choose a fundamental Weyl 
chamber C ⊆ h. Given a complex nilpotent orbit Q ⊆ g, there exists 
an sl2()-triple (ξ,h,η) in g with the property that ξ∈Q and h∈C. The 
element h∈C is uniquely determined by this property, and is called the 
characteristic of Q. 

Theorem 1 of [13] then states that Qg ≠∅ if and only if h∈a. If g is 
split, then a=h, and the following lemma is immediate.

Lemma 1: If g is split, then ϕ
g
 is surjective.

Let us now consider necessary conditions for surjectivity. To this 
end, recall that g is called quasi-split if there exists a subalgebra b 
⊆ g such that b is a Borel subalgebra of g. However, the following 
characterization of being quasi-split will be more suitable for our 
purposes.

Lemma 2: The Lie algebra g is quasi-split if and only if Qreg(g) 
is in the image of ϕ

g
. In particular, g being quasi-split is a necessary 

condition for ϕ
g
 to be surjective.

Proof: Proposition 5.1 of [14], states that g is quasi-split if and only 
if g contains a regular nilpotent element of g. Since Qreg(g) consists 
of all such elements, this is equivalent to having Qreg(g)∩g ≠∅ hold. 
This latter condition holds precisely when Qreg(g) is in the image of ϕ

g
.

Lemmas 1 and 2 establish that ϕ
g
 being surjective is a weaker 

condition than having g be split, but stronger than having g be quasi-
split. Furthermore, since su(n,n) is not a split real form of sl2n(), 
Example 8 establishes that surjectivity is strictly weaker than g being 
split. Yet, as so(2n+2,2n−1) is a quasi-split real form of so4n(), Example 
10 demonstrates that surjectivity is strictly stronger than having g be 
quasi-split. To obtain a more precise measure of the strength of the 
surjectivity condition, we will require the following proposition.

Proposition 2: Suppose that g decomposes as a Lie algebra into
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=1
= ,

k

j
j
⊕g g

Where g1,...,gk are simple real Lie algebras. Let G1,…,Gk denote the 
respective adjoint groups.

 (i) The map  ϕ
g
: (g)/G→(g)/G is surjective if and only each 

orbit complexification map : ( ) / (( ) ) / ( )j j j jj
G Gϕ →g g g     is 

surjective.

 (ii) The Lie algebra g is quasi-split if and only if each summand gj 
is quasi-split.

Proof: For each j∈{1,…,k}, let πj:g→gj be the projection map. Note 
that ξ ∈g is nilpotent if and only if πj(ξ) is nilpotent in gj for each j. It 
follows that

=1

: ( ) ( )
k

j
j

π → ∏g g 

=1( ( ))k
j jξ π ξ

defines an isomorphism of real varieties. Note that 
=1

= k
jj

G G∏ , with the 
former group acting on (g) and the latter group acting on the product 
of nilpotent cones.

One then sees that π is G-equivariant, so that it descends to a 
bijection

=1

: ( ) / ( ) / .
k

j j
j

G Gπ → ∏g g 

Analogous considerations give a second bijection

=1

: ( ) / (( ) ) / ( ) .
k

j j
j

G Gπ → ∏g g     

Furthermore, we have the commutative diagram

1

1

1

( ) / ( ) /

( ) / (( ) ) / ( )

j

k
j jj

k

j

k
j jj

G G

G G

π

π

ϕ ϕ

=

=

=

→

↓ ↓

→

∏
∏

∏


   

 

 

g
g

g g

g g

                             (3)

Hence, ϕ
g is surjective if and only if =1

k

j j
ϕ∏ g  is so, proving (i).

By Lemma 2, proving (ii) will be equivalent to proving that Qreg(g) 
is in the image of ϕ

g
 if and only if Qreg((gj)) is in the image of 

j
ϕg  for 

all j. Using the diagram (3), this will follow from our proving that the 
image of Qreg(g) under π   is the k-tuple of the regular nilpotent orbits 
in the (gj), namely that

reg reg =1( ( )) = ( (( ) )) .k
j jπ Q Qg g  

		                 (4)

To see this, note that reg=1
(( ) )k

jj
Q∏ g   is the 

=1
= ( )k

jj
G G∏  -orbit 

of maximal dimension in =1
(( ) )k

jj∏ g  . This orbit is therefore the 
image of Qreg(g) under the G-equivariant variety isomorphism 

=1
( ) (( ) )k

jj
≅ ∏g g   , implying that (4) holds.

In light of Proposition 2, we address ourselves to classifying 
the simple real Lie algebras g with surjective orbit complexification 
maps ϕ

g
. Noting Lemma 2, we may assume g to be quasi-split. Since 

g being split is a sufficient condition for surjectivity, we are further 
reduced to finding those quasi-split simple g which are non-split but 
have surjective ϕ

g
. It follows that g belongs to one of the four families 

su(n,n), su(n+1,n), so(2n+2,2n), and so(2n+1,2n−1), or that g=EII, 
the non-split, quasi-split real form of E6 [15]. Our examples establish 

that ϕ
g
 is surjective for g=su(n,n), g=su(n+1,n), and g=so(2n+2,2n), 

while Example 10 demonstrates that surjectivity does not hold for 
g=so(2n+1,2n−1). Also, a brief examination of the computations in 
[3] reveals that ϕ

g
 is surjective for g=EII. We then have the following 

characterization of the surjectivity condition.

Theorem 2: If g is a semisimple real Lie algebra, then ϕ
g
 is surjective 

if and only if g is quasi-split and has no simple summand of the form 
so(2n+1,2n−1).

Proof: If ϕ
g
 is surjective, then Lemma 2 implies that g is quasi-

split. Also, Proposition 2 implies that each simple summand of g has 
a surjective orbit complexification map, and the above discussion then 
establishes that g has no simple summand of the form so(2n+1,2n−1). 
Conversely, assume that g is quasi-split and has no simple summand of 
the form so(2n+1,2n−1). By Proposition 2 (ii), each simple summand 
of g is quasi-split. Furthermore, the above discussion implies that 
the only quasi-split simple real Lie algebras with non-surjective orbit 
complexification maps are those of the form so(2n+1,2n−1). Hence, 
each simple summand of g has a surjective orbit complexification map, 
and Proposition 2 (i) implies that ϕ

g
 is surjective.

3.3 The Image of φ
g

Having investigated the surjectivity of ϕ
g
, let us consider the more 

subtle matter of characterizing its image. Accordingly, let σ
g
:g→g 

denote complex conjugation with respect to the real form g ⊆ g. The 
following lemma will be useful.

Lemma 3: If Q ⊆ g is a complex nilpotent orbit, then so is σ
g
(Q).

Proof: Note that σ
g
 integrates to a real Lie group automorphism

τ:(G)SC→(G)SC,

where (G)SC is the connected, simply-connected Lie group with Lie 
algebra g. If g∈ (G)SC and ξ∈g, then

 σ
g
(Ad(g)(ξ )=Ad(τ(g))(σ

g
(ξ)).

Hence, σ
g
 sends the (G)SC -orbit of ξ to the (G)SC -orbit of σ

g
(ξ). To 

complete the proof, we need only observe that (G)SC -orbits coincide 
with G-orbits in g, and that σ

g
(ξ) is nilpotent whenever ξ is nilpotent.

We may now use σ
g
 to explicitly describe the image of ϕ

g
 when g is 

quasi-split.

Theorem 3: If Q is a complex nilpotent orbit, the condition 
σ

g
(Q)=Q is necessary for Q to be in the image of ϕ

g
. If g is quasi-split, 

then this condition is also sufficient.

Proof: Assume that Q belongs to the image of ϕ
g
, so that there exists 

ξ∈Q ∩g. Note that σ
g
(Q) is then the complex nilpotent orbit containing 

σ
g
(ξ)=ξ, meaning that σ

g
(Q)=Q. Conversely, assume that g is quasi-split 

and that σ
g
(Q)=Q. The latter means precisely that Q is defined over   

with respect to the real structure on g induced by the inclusion g ⊆ g. 
Theorem 4.2 of [9] then implies that Q∩g≠∅.

Using Theorem 3, we will give an interesting sufficient condition for 
a complex nilpotent orbit to be in the image of ϕ

g
 when g is quasi-split. 

In order to proceed, however, we will need a better understanding of 
the way in which σ

g
 permutes complex nilpotent orbits. To this end, we 

have the following lemma.

Lemma 4: Suppose that g comes with the faithful representation 
g ⊆ gl(V), where V is over . If Q is a complex nilpotent orbit, then  
λ(σ

g
(Q))=λ(Q).

http://dx.doi.org/10.4172/1736-4337.S2-012
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Proof: Choose an sl2()-triple (ξ,h,η) in g with ξ∈Q. Since σ
g
 

preserves Lie brackets, it follows that (σ
g
(ξ),σ

g
(h),σ

g
(η)) is also an 

sl2()-triple. The exercise is then to show that our two sl2()-triples 
give isomorphic representations of sl2() on =V V

 . For this, it will 
suffice to prove that h and σ

g
(h) act on V with the same eigenvalues, 

and that their respective eigenspaces for a given eigenvalue are equi-
dimensional. To this end, let σV:V→V be complex conjugation with 
respect to V ⊆ V. Note that

σ
g
(h).(σV(x))=σV(h.x)

for all x∈V, where . is used to denote the action of g on V. Hence, if x 
is an eigenvector of h with eigenvalue λ∈, then σV(x) is an eigenvector 
of σ

g
(h) with eigenvalue λ. We conclude that h and σ

g
(h) have the same 

eigenvalues. Furthermore, their respective eigenspaces for a fixed 
eigenvalue are related by σV, and so are equi-dimensional.

We now have the following

Proposition 3: Let g be a quasi-split semisimple real Lie algebra 
endowed with a faithful representation g ⊆ gl(V), where V is over . If 
Q is the unique complex nilpotent orbit with partition λ(Q), then Q is 
in the image of ϕ

g
.

Proof: By Lemma 4, σ
g
(Q) is a complex nilpotent orbit with 

partition λ(Q), and our hypothesis on Q gives σ
g
(Q)=Q. Theorem 3 

then implies that Q is in the image of ϕ
g
.

A few remarks are in order.

Remark 1: One can use Proposition 3 to investigate whether ϕ
g
 

is surjective without appealing to the partition-type description of ϕ
g
 

discussed in Section 3.1. For instance, suppose that g=so(2n+2,2n), a 
quasi-split real form of g=so4n+2(). We refer the reader to Example 5 
for the precise assignment of partitions to nilpotent orbits in so4n+2(). 
In particular, note that a complex nilpotent orbit is the unique one with 
its partition if and only if the partition does not have all even parts. 
Furthermore, as discussed in Example 9, there do not exist partitions 
of 4n+2 having only even parts such that each part appears with even 
multiplicity. Hence, each complex nilpotent orbit is specified by its 
partition, so Proposition 3 implies that ϕ

g
 is surjective.

Remark 2: The converse of Proposition 3 does not hold. Indeed, 
suppose that g=so(2n,2n), the split real form of g=so4n(). Recalling 
Example 5, every partition of 4n with only even parts, each appearing 
with even multiplicity, is the partition of two distinct complex nilpotent 
orbits. Yet, Lemma 1 implies that ϕ

g
 is surjective, so that these orbits are 

in the image of ϕ
g
.

3.4 Fibres

In this section, we investigate the fibres of the orbit complexification 
map ϕ

g
:(g)/G→(g)/G. In order to proceed, it will be necessary to 

recall some aspects of the Kostant-Sekiguchi Correspondence. To this 
end, fix a Cartan involution  θ:g→g. Letting k and p denote the 1 and 
(−1)-eigenspaces of θ, respectively, we obtain the internal direct sum 
decomposition

g=k ⊕p.

This gives a second decomposition

g=k⊕p,

where k and p are the complexifications of k and p, respectively. Let 
K ⊆ G and K ⊆ G be the connected closed subgroups with respective 
Lie algebras k and k. The Kostant-Sekiguchi Correspondence is one 

between the nilpotent orbits in g and the K-orbits in the (K-invariant) 
subvariety p∩(g) of g.

Theorem 4: (The Kostant-Sekiguchi Correspondence) There is a 
bijective correspondence
(g)/G→(p∩(g))/K

 Ú 

with the following properties. 

(i) It is an isomorphism of posets, where (p∩(g))/K is endowed 
with the closure order (??).

(ii) If   is a real nilpotent orbit, then  and Ú are K-equivariantly 
diffeomorphic.

The first property was established by Barbasch and Sepanski in 
[16], while the second was proved by Vergne in [17]. Each paper makes 
extensive use of Kronheimer’s desciption of nilpotent orbits from [18].

We now prove two preliminary results, the first of which is a direct 
consequence of the Kostant-Sekiguchi Correspondence.

Lemma 5: If  is a real nilpotent orbit, then  is the unique G-orbit 
of maximal dimension in  .

Proof: Suppose that ′≠ is another G -orbit lying in  . By 
Property (i) in Theorem 4, it follows that (′)Ú is an orbit in ( )∨  
different from Ú. However, Ú is an orbit of the complex algebraic 
group K under an algebraic action, and therefore is the unique orbit 
of maximal dimension in its closure. Hence, dim((′)Ú) <dim(Ú). 
Property (ii) of Theorem 4 implies that the Kostant-Sekiguchi 
Correspondence preserves real dimensions, so that dim(′) <dim().

We will also require some understanding of the relationship 
between the G-centralizer of ξ∈g and the G-centralizer of ξ, viewed 
as an element of g. Denoting these centralizers by Gξ and (G)ξ 
respectively, we have the following lemma.

Lemma 6: If ξ∈g, then Gξ is a real form of (G)ξ.

Proof: We are claiming that the Lie algebra of (G)ξ is the complexification 
of the Lie algebra of Gξ. The former is (g)ξ={η∈g:[η,ξ]=0}, while the Lie 
algebra of Gξ is gξ={η∈g:[η,ξ]=0}. If η=η1+iη2∈g with η1,η2∈g, then 
[η,ξ]=[η1, ξ]+i[η2, ξ]. So, η∈(g)ξ if and only if η1,η2∈gξ. This is equivalent to 
the condition that η∈(gξ) ⊆ g, so that (g)ξ=(gξ).

We may now prove the main result of this section.

Theorem 5: If 1 and 2 are real nilpotent orbits with the property 
that (1)=(2) , then either 1=2 or 1 and 2 are incomparable in 
the closure order. In other words, each fibre of ϕ

g
 consists of pairwise 

incomparable nilpotent orbits.

Proof: Assume that 1 and 2 are comparable. Without the loss 
of generality, 1 2⊆  . We will prove that 1=2, which by Lemma 
5 will amount to showing that the dimensions of 1 and 2 agree. 
To this end, choose points ξ1∈1 and ξ2∈2. Since (1)=(2), 
we have 

1 2
(( ) ) = (( ) )dim dimG Gξ ξ   . Using Lemma 6, this becomes 

1 2
( ) = ( )dim dimG Gξ ξ  . Hence, the (real) dimensions of 1 and 2 

coincide.

Proof: If is surjective, and then Lemma 2 implies that is quasi-split. 
Also, Proposition 2 implies that each simple summand of has a surjective 
orbit complexification map, and the above discussion then establishes 
that has no simple summand of the form. Conversely, assume that is 
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quasi-split and has no simple summand of the form. By Proposition 
2 (ii), each simple summand of is quasi-split. Furthermore, the above 
discussion implies that the only quasi-split simple real Lie algebras 
with non-surjective orbit complexification maps are those of the form. 
Hence, each simple summand of has a surjective orbit complexification 
map, and Proposition 2 (i) implies that is surjective.
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d’inscription, de transport et de séjour de certains 
participants. 
 
Date de dépôt  de candidature (CV et lettre de 
motivation) 
Avant le  20 Aout 2012  
 Les candidats sélectionnés seront avisés le vendredi 31 
aout  2012 pour l’inscription définitive avec le paiement 
des frais le 3 septembre 2012.  

  
  
 
 

mailto:emamada@gmail.com
mailto:frakoton@yahoo.fr




    

Centre international de rencontres 
mathématiques
163 avenue de Luminy, Case 916
F-13288 Marseille - Cedex 9
Tel : (33) (0)4 91 83 30 00 - Fax : (33) (0)4 91 83 30 05

Rencontres 2012 

 
Les couleurs indiquent le type de rencontre

Colloques et écoles Petits groupes Recherche en binôme

Session thématique

 
 

 du 18 juin au 22 juin 2012 

Les systèmes d'Anosov 

Organisateurs :

 Thierry BARBOT (Univ. Avignon) 
 Sergio FENLEY (Florida State, Princeton University) 
 Boris HASSELBLATT (Tufts University) 
 Carlos Alberto MAQUERA APAZA (University of Sao Paulo) 
 Abdelghani ZEGHIB (ENS-Lyon) 

 

Liste des participants à la rencontre 

 
 ASAOKA Masayuki, Kyoto University 

http://www.cirm-math.com/
http://www.cirm-math.com/
http://www.cirm-math.fr/spip.php?rubrique2&EX=info_rencontre&annee=2012&id_renc=695
http://www.cirm-math.com/


 BARBOT Thierry, Univ. Avignon 

 BARTHELME Thomas, Penn State University 

 BEGUIN François, Univ. Paris-Sud 

 BELRAOUTI Mehdi, Univ. Avignon 

 BENOIST Yves, Univ. Paris-Sud 

 BONATTI Christian, Univ. Bourgogne 

 BONTHONNEAU Yannick, ENS Paris 

 BRAVO VIDARTE José Humberto, University of Sao Paulo 
 CRAMPON Mickael, La Chambotte 
 DEHORNOY Pierre, Univ. Grenoble I 
 FENLEY Sergio, Florida State, Princeton University 
 FOULON Patrick, CIRM 
 GUERITAUD François, Univ. Lille 1 
 HASSELBLATT Boris, Tufts University 
 KANAI Masahiko, University of Tokyo 
 KASSEL Fanny, Univ. Lille 1 
 MAQUERA APAZA Carlos Alberto, University of Sao Paulo 
 MONCLAIR Daniel, ENS Lyon 
 MORENO Matthias, ENS - Lyon 
 PATERNAIN Miguel, University of Republica - Urugay 
 PINSKY Tali, Technion University 
 PONCE Gabriel, University of Sao Paulo 
 RANDRIAMBOLOLONDRANTOMALALA Princy, ENS - Lyon 
 RAVELONIRINA H. Sammy Grégoire, ENS - Lyon 
 RECHTMAN Ana, Univ. Strasbourg 
 RODRIGUEZ HERTZ Federico, The Pennsylvania State University 
 RODRIGUEZ HERTZ Jana, University of Republica - Urugay 
 ROSSI-SALVEMINI Clara, Univ. Avignon 
 SIMIC Slobodan, San Jose State University 
 TINTAYA MOLLO Renato Alejandro, University of Sao Paulo 
 TROUBETZKOY Serge, Aix-Marseille Univ. 
 VALDIVIA Aaron, Florida State University 
 VARAO FILHO Jose Regis, University of Sao Paulo 
 VERJOVSKY Alberto, University of Cuernavaca 
 WALLER Russell, Florida State University 
 YU Bin, Univ. Bourgogne 
 ZEGHIB Abdelghani, ENS Lyon 

38 participants
Mis à jour le 04/11/2014. 
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The Simons Foundation Africa Mathematics Project (AMP) 

Instructions to Finalists 

 

 

The Simons Foundation congratulates the participants in the project outlined in your 

Concept Paper. Your project has been selected as one of the 12 finalists in the 

competition for Foundation funding under its Africa Mathematics Project. From 

among the 12 finalists, AMP will award approximately five grants, each 80,000 USD 

per year for five years, to research groups in mathematics at five universities in 

diverse regions across sub-Saharan Africa. A similar second round of five-year 

grants, comprised of new awards and/or award renewals, will be considered for 

2017.  

 

AMP therefore invites you to submit a final proposal as the second and final step of 

the two-step grant application process. Deadline for submission of final proposals is 

June 1, 2012. The AMP Scientific Committee will once again, review these proposals. 

Announcement of awards is planned on or about September 1, 2012. 

 

Consultations: Professors Herb Clemens and Wandera Ogana of the African 

Mathematics Project Planning Committee have been asked to serve as your contacts 

during your preparation of your final proposal. You are encouraged to contact them 

with any questions you might have. They are not members of the AMP Scientific 

Committee and will not be privy to its deliberations. They are; therefore, free to give 

you guidance and advice without compromising objectivity of the final selection 

process. 

 

 Herb Clemens; clemens@math.ohio-state.edu 

 Wandera Ogana; wogana@uonbi.ac.ke 

mailto:clemens@math.ohio-state.edu
mailto:wogana@uonbi.ac.ke
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Final proposal contents and format: 15-page (maximum) concept narrative (single 

or double-spaced, 12-point font). The cover page should include the name of the 

proposed research project, as well as the Lead Researcher’s name, affiliation, mailing 

address, telephone and email address. The Lead Researcher shall serve as Academic 

Director of the project. If the project contact is other than the Academic Director, 

such as the Project Secretariat, include his or her name, mailing address, telephone 

and email address as well.  

 

Page 2 should state the overall research goal of the project, followed by a succinct 

and focused statement describing the research group’s two or three main objectives 

and a short description of its operation.  

 

Pages 3–15 should be a focused and crisp narrative containing the elements listed 

under “Required proposal elements” and “Strongly suggested proposal elements” 

listed below. This narrative should be more focused and detailed than the concept 

paper. If more than one research or training area is listed, the different areas should 

be prioritized and partners responsible for each area and aspect should be 

identified. Research areas in particular should be limited to those that directly relate 

to the overall research goal of the project.  Inclusion of several areas, especially 

areas only tenuously related to each other will lessen the chances that a proposal 

will be funded. 

 

In addition to the 15-page concept narrative, the following additional items should 

be submitted: 

1. A five-page budget, one page for each 6 months of the first 2.5 years of the 

grant, itemized for each of the 8 eligible categories of funding listed below. 

The final total of expenditures for the first two and a half years of operation 

should not exceed $200,000. Salary supplements should not exceed 40% of 

the annual grant total during any year of the grant and should be justified on 

the basis of an explicitly stated percentage of released time from other 
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professional duties.   

2. An additional one-page explanation of budget categories should also be 

submitted. This page should indicate additional sources of financial or in-kind 

support for the project. 

3. Curriculum vitae of researchers to be funded under the proposal. Individual 

CV’s should be no longer than 4 pages and should focus on education, 

positions, activities and publications relevant to the proposed research. 

4. List of academic institutions and principal collaborators participating in grant 

activities, together with any current or pending research support from other 

sources applicable to the research proposed. 

5. Official letter of support from the vice-chancellor of the applicant research 

group’s university. 

 

Required proposal elements: 

1. Identification of a single mathematical area that is to be the principal focus of 

proposed research and postgraduate training. Explanation of how any 

proposed research and training in other (related) areas serves the main 

research and training goals of the project. If more than one research group or 

mathematical area is listed, care must be taken to fully justify a close 

relationship with the common focus of the proposed research. The inclusion 

of researchers, however distinguished, whose work is not directly supportive 

of, and closely related to the central research focus, is discouraged. 

2. Individual, group and institutional capacity for carrying out the proposed 

research and training. (Group may include several universities in the region.) 

3. Detailed research and training plan to be carried out over a five-year period 

together with its rationale. Identification of the individual(s) primarily 

responsible for each aspect of the work. 

4. Program outline and projected timeline for studies of participating graduate 

students.  

5. Estimated outcomes: 

a. research deliverables (e.g. approximate number of publications in 
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international journals expected)  

b. training deliverables (e.g. approximate number of PhD and of master's 
degrees expected) 

6. A networking plan for contact with other centers or projects on the continent 

that have compatible mathematical interests and objectives. 

7. A plan for a regional workshop in the project’s research area around the end 

of the second year.  

8. Commitment of in-kind matching support from the applicant group’s 

university (e.g., classroom or office space, reliable internet connectivity, 

conference hosting and support). 

9. Detailed plan for an efficient and transparent system for budget 

administration, disbursement and reporting. 

 

Strongly suggested proposal elements: 

1. Identification of international research partner(s), including those from South 

Africa and Mediterranean African countries. 

2. Project participation in an existing mathematical research network with a 

compatible mathematical focus.  

3. Plan for sustainability of the project through an additional five-year period. 

4. Strategy for retaining at universities in the region both faculty members 

whose research is supported under this grant and postgraduate students 

whose advanced degree training is supported under this grant. 

5. Plan for incorporating women mathematicians in the project and/or 

identifying and nurturing female mathematical talent. 

 

Finally, proposers are invited to consider the preparation of a 5-10-minute video or 

other visual presentation introducing themselves and their proposal to the Scientific 

Committee and, if feasible, the physical locations where the research activities will be 

located.   

 

Categories eligible for funding: 

1. Graduate training (tuition, stipends, housing, etc.)  
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2. Salary supplements for faculty for research and for mentoring of Ph.D. and 

master’s degree students (total in this item is not to exceed 40% of annual 

grant amount) 

3. Travel and conferences  

4. Stipends and expenses for visiting faculty and students  

5. Equipment (including maintenance and servicing) and supplies  

6. Books, journals, databases, etc.  

7. Communications  

8. Secretariat office expenses (not to exceed 10% of annual grant amount)  

 

 

Duties of project personnel: 

 

Academic Director: Each project will designate an Academic Director, based at 

one of the participating universities, to provide overall guidance for, and 

coordination of, the project’s training and research activities. The Academic 

Director must be a leader and motivator, a practicing scientist with stature in the 

academic community and strong management skills. He or she will serve as 

Principal Investigator for the AMP proposal and will be responsible for preparing 

annual reports and assessments of the network’s operations.  

 

Secretariat: Each project will include a Secretariat responsible for all 

administrative details, including travel for faculty, students and visitors, 

workshop/conference planning, and financial management of the project. The 

Secretariat may be located in the same academic unit as the Academic Director, 

but this is not a requirement. Projects are encouraged to adopt whatever 

structure will best ensure that both academic and administrative leadership are 

effective 

 

Review criteria: Selection will be conducted through a peer-reviewed application 

process. The primary selection criteria will be scientific merit, training capacity and 
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the quality of research activities. Evidence of institutional support, networking, and 

potential for sustainability will also be very important.  

 

Reporting Requirements: A yearly progress report will be required, as well as the 

submission of the second half of the detailed budget after the first two years. 

 

Continued support after the first two and a half years will be contingent on the 

ongoing evaluation of the project. 

 

Final proposal submission: Proposals should be submitted electronically, as email 

attachments in PDF format, to: 

 

The Simons Foundation Africa Mathematics Project 

c/o Ms. Meghan Criswell 

E-mail address: mcriswell@simonsfoundation.org  

 

Submission deadline:  June 1, 2012 

 

mailto:mcriswell@simonsfoundation.org








 

Faculté des Sciences 
Département de Mathématique 

Géométrie et théorie des algorithmes 
Professeur Pierre Lecomte  

 

12 Grande Traverse, Bât. B37, parking 32 
Tél. +(32)-4- 366 93 83 Fax. +(32)-4- 366 95 47 E-mail : plecomte@ulg.ac.be 

 
 
 Liège, le 1er octobre 2014 
 
 
 
 Monsieur P. Randriambololondrantomalala 
 Département de Mathématique et Informatique 
 Faculté des Sciences 
 Université Antananarivo 
 P.B. 906 Ankasko, Madagascar 
 
 
 
 
 
 
Monsieur, 

Suite à votre message du 25 septembre dernier, et sous réserve que votre 
demande de financement soit honorée par l’Administration adhoc, j’aurais le plaisir 
de vous accueillir dans mon équipe pour un séjour d’un mois dans le cadre staff 
mobility du programme Erasmus-Mundus dream.up.pt afin de travailler avec vous 
sur les sujets de recherches que vous m’avez mentionnés. 

Idéalement, ce séjour pourrait prendre place au premier semestre d’une 
année académique, soit entre le 15 septembre et le 15 décembre, et par exemple en 
2015, car ma charge de cours est bien plus légère dans cette période de l’année que 
durant le second semestre. 

 
En espérant que vous pourrez venir, 
 
Cordialement, 
 
 

  
 
 
 
 Pierre Lecomte 
 Professeur 
 
 



 



 



 





 

Code : SMIM12H0CS8 Intitulé de l’UE : Homologie et cohomologie 

Type et statut de l’UE: Optionnel 

Responsable de l'UE  :  Randriambololondrantomalala Princy, Maitre de conférences d'ESR , spécialité : 

Géométrie différentielle, Contacts : 0331246249    princypcpc@yahoo.fr 

Charge totale du travail étudiant 150 

Nombre de crédits : 5 

Semestre d'études : 8 

Compétences visées et évaluation des compétences: Voir les Outils modernes de géométrie, d’analyse et 
d’algèbres à travers l’homologie et cohomologie. 

Contenu et objectif de l’UE : Familiariser avec les groupes d’homologie et de cohomologie, voir les applications 

dans les mathématiques modernes. 

Nombre minimal d’étudiants pour autoriser l’ouverture de l’UE : 5 

Conditions d'attribution des crédits : La participation régulière et active à tous les cours de l'UE ainsi que la 
réussite aux contrôles de connaissances. 

Evaluation de l'UE : Examen final écrit 

Une note inférieure ou égale à 05/20 (note éliminatoire) à une ECUE entraîne l'absence de note à l'UE 

Intitulé des éléments constitutifs/matières constituant l'UE : 

1 – Rappels généraux et introduction sur l’homologie et cohomologie 

2 – Quelques groupes d’homologies et de cohomologie 

  

1 Intitulé de l'EC : Rappels généraux et introduction sur l’homologie et cohomologie 

a Responsable de l'EC : Ravelonirina H. S. G., Maître de Conférences, spécialité : Géométrie différentielle 
Contacts : 0331121675    rhsammy@yahoo.fr 

b Taille de groupe :  

Cours : 300 étudiants 

TD : 25 par groupe 



c Pré-requis :   Algèbre associative ou non associative, un aperçu de la théorie des catégories. 

d Forme d'examen: Epreuve écrite sur table. 

e Compétences visées et évaluation des compétences : Les étudiants doivent savoir le but de l’étude de 

l’homologie et de la cohomologie en vue de ses applications. 

f Contrôle des connaissances :  

ET : Examen terminal  

 

g Fréquence de l'offre : Chaque semestre 

h Nature des activités pédagogiques en présentiel : C, TD. 

i 
Contenu du cours et documentation pour l'étudiant : 

1) Définitions et problèmes fondamentaux 

2) Les espaces d’homologie et de cohomologie en générales 

     

Documentation  

1° C.Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 

Cambridge 1994. 

2° Thierry MASSON, Introduction à l’homologie et la cohomologie avec exemples (webographie) 

3° Bourbaki : “Topologie Générale” 

4° Frédéric Paulin :  “Topologie algébrique élémentaire”FIMFA (Webographie) 

5° H. Cartan et S. Eilenberg: Homological Algebra” 

6° A. Wallace : “Algebraic Topology : homology and  cohomology” 

7° André Gramain :  “Topologie des surfaces”  

 

j Description du travail personnel de l'étudiant : 

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de ressources 

documentaires/ d'informations (dans une bibliothèque, par internet …), établissement de fiches de lecture. 

k Eléments de pédagogie (par EC) :  

I. Démarche déductive 

II. Méthode : démonstration 

III. Techniques pédagogiques : démonstration, enseignement magistral et dirigé 

IV. Cours en ligne 

Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet). 



2 
Intitulé de l'EC : Quelques groupes d’homologies et de cohomologie 

a Responsable de l'EC : Randriambololondrantomalala Princy, Maitre de conférences d'ESR , spécialité : 
Géométrie différentielle, Contacts : 0331246249    princypcpc@yahoo.fr 

b Taille de groupe :  

Cours : 300 étudiants 

TD : 25 par groupe 

c Pré-requis :   Un peu d’Algèbres de Lie, Géométrie différentielles,  topologie générales 

d Forme d'examen: Epreuve écrite sur table. 

e Compétences visées et évaluation des compétences : Voir les applications du groupe d’homologie ou de 
cohomologie de de Rham et Chevalley-Eilenberg et autres. 

f Contrôle des connaissances :  

ET : Examen terminal  

 

g Fréquence de l'offre : Chaque semestre 

h Nature des activités pédagogiques en présentiel : C, TD. 

i 
Contenu du cours et documentation pour l'étudiant : 

1) Groupe d’homologie et de cohomologie de de Rham et ses applications 

2) Groupe de cohomologie de Chevalley-Eilenberg et  ses applications 

3) Autres groupes d’homologie et de cohomologie , ses applications. 

Documentation  

1° C.Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 

Cambridge 1994. 

2° Thierry MASSON, Introduction à l’homologie et la cohomologie avec exemples (webographie) 

3° Bourbaki : “Topologie Générale” 

4° Frédéric Paulin :  “Topologie algébrique élémentaire”FIMFA (Webographie) 

5° H. Cartan et S. Eilenberg: Homological Algebra” 

6° A. Wallace : “Algebraic Topology : homology and  cohomology” 

7° André Gramain :  “Topologie des surfaces”  
 

 



j Description du travail personnel de l'étudiant : 

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de ressources 

documentaires/ d'informations (dans une bibliothèque, par internet …), établissement de fiches de lecture. 

k Eléments de pédagogie (par EC) :  

I. Démarche déductive 

II. Méthode : démonstration 

III. Techniques pédagogiques : démonstration, enseignement magistral et dirigé 

IV. Cours en ligne 

Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet). 

 

 

 

 

 

 

 

 

 

Intitulé de la MASTER: Mathématiques et Informatique  

Intitulé de l’UE : Analyse mathématique 1 

Type et statut de l’U.E. : Mathématiques appliquées 

Code et numéro de l'UE 

SMIM11AMAS7 

 

 

 

 

 

Charge de 

travail 

étudiant  

180 

Nombre de 

crédits 

6 

Semestre d'études 

7 

Durée 

1 

 



1 

 Intitulé des éléments  

constitutifs 
A). Compléments de topologie 

B). Calcul variationnel, forme 

différentielle 

C). Variétés et algèbre de Lie 

En présentiel 

VH 

hebdo.=4,28 

 VH  

semestriel=60 

 

Travail 

personnel 

de 

l’étudiant 

Exprimé en 

heures 

semestriell

es 

120 

Coefficient 

5 

Crédits 

Compter pour un crédit 

entre 20 à 25 heures de 

travail de  l’étudiant, 

jumelant le travail  

présentiel, le  travail 

personnel et les examens 

 

 

2 Formes d'enseignement : Cours, TD 

3 Taille de groupe :   25 étudiants par groupe 

4 Compétences visées et évaluation des compétences : 

5 Contenu et objectif de l’UE donner des thèmes mathématiques adaptés aux futurs  probabilistes et 

staticiens. 

6 Documentation  

- N. Bourbaki, Topologie générale, chap 1-4, Masson, 1990 

- N. Bourbaki, Topologie générale, chap 5-8, Herman, 1974 

- N. Bourbaki, Espaces vectoriels topologiques, chap 1-5, Masson, 1981 

- F. Paulin, Topologie, analyse et calcul différentiel, MAF 2008-2009 

- H. Cartan, Formes différentielles, Applications élémentaires au calcul des variations et à la théorie des courbes 

et des surfaces, Herman, Paris 1967 

- J. Dugundji, Topology, Allyn and Bacon Inc, Boston, Mars 1966 

- Y. Choquet-Bruhat, Géométrie différentielle et système extérieurs, Dunod, 1968 

- S. Lang, Introduction aux variétés différentiables 

- N. Bourbaki, groupes et algèbre de Lie, Herman 

- P. Malliavin, géométrie différentielle intrinsèque 

7 Eléments de pédagogie: Démarche déductive et méthode participative. 

8 
Pré-requis : Licence de mathématiques 



9 
Formes d'examen : Epreuve écrite sur table 

Contrôle des connaissances : examen final 

Notes de l'UE : (Moyenne des notes des différents contrôles de connaissances, pondérée selon le nombre de 

crédits des cours, note éliminatoire) 

10 Conditions d'attribution des crédits : Participation régulière et active à tous les cours de l'UE ainsi que 

réussite aux contrôles de connaissances. 

11  Fréquence de l'offre : chaque semestre / tous les deux semestres 

12 Responsable de l'UE et enseignant responsable des éléments constitutifs : 

RANDRIAMBOLOLONDRANTOMALALA Princy 

13 Autres informations : (éventuellement)  

 

Intitulé de la MASTER: Mathématiques et Informatique  

Intitulé de l’UE: Variétés riemanniennes  

Type et statut de l’U.E. fondamental 

Code et numéro de 
l'UE 

SMIM11VRS8 

Charge de 

travail 

étudiant  

150  

Nombre de 

crédits 

5 

Semestre d'études 

8 

Durée 

1 

1 Intitulé des éléments 
constitutifs 

A) Métriques riemannienne sur une 
variété 

B) Connexions sur une variété 

En présentiel 

 VH hebdo.=3,57 

 VH  semestriel=50 

Travail 

personnel 

de 

l’étudiant 

Exprimé en 

heures 

semestrielles 

100 

Coefficient 

5 

Crédits 

Compter pour un crédit entre 20 à 

25 heures de travail de  l’étudiant, 

jumelant le travail  présentiel, le  

travail personnel et les examens 

 

2 Formes d'enseignement : Cours, TD, TPE 

3 Taille de groupe : 25 étudiants par groupe 



4 Compétences visées et évaluation des compétences : Avoir une base profonde sur la théorie et 

applications de la géométrie riemannienne  

5 
objectif de l’UE et contenu de l’EC : Montrer la généralisation de la géométrie euclidienne par celle de 

Riemann, ses belles applications en mathématiques, en mécaniques et physique théorique. 

6 Documentation  
- Chris Peters : Geométrie differentielle I et Geometrie Differentielle  II (Webographie) 

- G. de Rham : Variétés différentiables 

- F. Paulin “ Géométrie Differentielle élémentaires” (Webographie) 

- Gilles Carron : “ cours de Géométrie différentielles de M1 : notes de cours et exercices” 

(webographie) 

- Auslander et MacKenzie : “ Introduction to Differentiable Manifolds” 

- F.W Warner : “Foundantions of Differentiable manifolds and Lie  groups” 

- S-S Chern, Z Shen, Riemann-Finsler Geometry 

- F. Paulin, Leçons de géométrie riemannienne,  

 

7 Eléments de pédagogie : 

D). Démarche déductive. 

E). Méthode : démonstration, magistrale. 

F). Techniques pédagogiques : démonstration, enseignement magistral. 

G). Outils : cours polycopiés, cours projetés, documentation (ouvrage et internet). 

8 
Pré-requis : Variétés différentielles, Calculs différentiels sur les variétés. 

 

9 
Formes d'examen : Epreuve écrite sur table 

Contrôle des connaissances : examen final 

Notes de l'UE : Moyenne des notes des différents contrôles de connaissances, pondérée selon le nombre de crédits des cours, 

note éliminatoire 

10 Conditions d'attribution des crédits : Participation régulière et active à tous les cours de l'UE ainsi que 

réussite aux contrôles de connaissances. 

11  Fréquence de l'offre : chaque semestre  

12 Responsable de l'UE et enseignant responsable des éléments constitutifs 

: RANDRIAMBIOLOLONDRANTOMALALA Princy, Géométrie différentielle, +261331246249, 

princypcpc@yahoo.fr 

13 Autres informations : (éventuellement)  

 



Code et intitulé UE : Géométrie et Equations différentielles. 

Type et statut de l’UE: Obligatoire 

Responsable de l'UE : Randriambololondrantomalala Princy, Maître de Conférences d’ESR en activité, 

Géométrie différentielle, princypcpc@yahoo.fr  , Tél.:+261331246249  

Charge totale du travail étudiant : 90h 

Nombre de crédits : 3 

Semestre d'études : 2 

Compétences visées et évaluation des compétences : Familiariser les étudiants avec l’approche 
géométrique dans la résolution des problèmes mathématiques. 

Objectif de l’UE : Donner aux étudiants les outils de base de la géométrie de niveau de 
l’enseignement supérieur et la capacité de résoudre les équations différentielles élémentaires avec 
les subtilités théoriques correspondantes. Familiariser les bases de démonstrations reposant sur la 
conception géométrique. 

Nombre minimal d’étudiants pour autoriser l’ouverture de l’UE : 5 

Conditions d'attribution des crédits : La participation régulière et active à tous les cours de l'UE ainsi 
que la réussite aux contrôles de connaissances. 

Evaluation de l'UE : Examen final écrit 

Une note inférieure ou égale à 05/20 (note éliminatoire) à une ECUE entraîne l'absence de note à l'UE 

Intitulé des éléments constitutifs/matières constituant l'UE : 

1 – Espaces affines et  analyse vectorielle 

2 – Intégrations et courbes paramétrées 

 

1 Intitulé de l'EC : Espaces affines et  analyse vectorielle  

a Responsable de l'EC : Randriambololondrantomalala Princy, Maître de Conférences d’ESR en 
activité, 0331246249, princypcpc@yahoo.fr 

 

 

b Taille de groupe :  

Cours : selon la capacité d’accueil 

TD : 25 par groupe 

 

c Pré-requis :  Algèbre linéaire et Analyse de base (Niveau S1), Géométrie niveau terminale S  

d Forme d'examen: Epreuve écrite sur table, test oral.  

mailto:princypcpc@yahoo.fr
mailto:princypcpc@yahoo.fr


e Compétences visées et évaluation des compétences : Les apprenants  comprennent la conception 

géométrique des espaces affines et des transformations affines correspondantes. Ils sont en mesure de reconnaître la 
continuité, la différentiabilité des fonctions de plusieurs variables et des fonctions vectorielles. Ils peuvent aussi assimiler 
l’utilisation des différents opérateurs utilisés en mécanique ou physique comme la divergence, le rotationnel, le gradient, le 
laplacien, …etc en utilisant les dérivées partielles. 

 

f Contrôle des connaissances :  

ET : Examen terminal  

 

 

g Fréquence de l'offre : Chaque semestre  

h Nature des activités pédagogiques en présentiel : C, TD.  

i Contenu du cours et documentation pour l'étudiant :   

- Espaces affines 

- Analyse vectorielle 

 

Documentation  

- P. Danko et A. Popov, Exercices et problèmes des mathématiques supérieures, partie II, Editions MIR, 
Moscou (1977) 

- Marie-Anne Maingueneau, 30 semaines de khôlles en mathématiques, première partie et deuxième 
partie, ellipses (1998) 

- www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf 

- www.math.jussieu.fr/~delabrie/PM2/PM2.pdf 

- stephane.gonnord.org/PCSI/Geom/AFFINES.PDF  

- www.math.u-psud.fr/~pansu/websm/courbes_parametrees.pdf  

- G.H. Rahaingoarivony, Exercices d’Analyse, Tranopirinty FOFIPA (1987)  

 

j Description du travail personnel de l'étudiant : 

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de 
ressources documentaires/ d'informations (dans une bibliothèque, par internet …), établissement 
de fiches de lecture. 

 

k Eléments de pédagogie (en classe) : 

Cours : Enseignement magistral 

ED : Démonstration, exercices, apprentissage par la comparaison, exposé, étude de cas, travail en 
groupe 

Moyens utilisés : Moyens individuels, audiovisuels,  polycopiés d’exercices 

 

2 Intitulé de l'EC : Intégrations et courbes paramétrées.  

a Responsable de l'EC : Ravelonirina Sammy, Maître de Conférences d’ESR en activité, Géométrie 
différentielle, 0331121675, rhsammy@yahoo.fr 

 

http://www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf
http://www.math.jussieu.fr/~delabrie/PM2/PM2.pdf
http://www.math.u-psud.fr/~pansu/websm/courbes_parametrees.pdf
mailto:rhsammy@yahoo.fr


 

b Taille de groupe :  

Cours : selon la capacité d’accueil 

TD : 25 par groupe 

 

 

c Pré-requis : Mathématiques enTerminal S, fonctions de plusieurs variables   

d Forme d'examen: Epreuve écrite sur table, test oral.  

e Compétences visées et évaluation des compétences : Les étudiants peuvent résoudre les équations 

différentielles élémentaires de tout ordre par des méthodes standard respectant les vertus théoriques. Ils peuvent calculer 
les intégrales doubles, curvilignes et triples en connaissant les significations géométriques et mécaniques correspondantes. 
Les étudiants sont capables de tracer les courbes planes dans R^2 sous forme paramétrée ou polaire. 

 

f Contrôle des connaissances :  

ET : Examen terminal  

 

 

g Fréquence de l'offre : Chaque semestre  

h Nature des activités pédagogiques en présentiel : C, TD.  

i Contenu du cours et documentation pour l'étudiant :  

 Intégrations 

 Courbes parametrées 
Documentation  

-  P. Danko et A. Popov, Exercices et problèmes des mathématiques supérieures, partie II, Editions MIR, 
Moscou (1977) 

- Marie-Anne Maingueneau, 30 semaines de khôlles en mathématiques, première partie et deuxième 
partie, ellipses (1998) 

- www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf 

- www.math.jussieu.fr/~delabrie/PM2/PM2.pdf 

- stephane.gonnord.org/PCSI/Geom/AFFINES.PDF  

- www.math.u-psud.fr/~pansu/websm/courbes_parametrees.pdf  

- G.H. Rahaingoarivony, Exercices d’Analyse, Tranopirinty FOFIPA (1987) 

 

j Description du travail personnel de l'étudiant : 

Préparation et approfondissement du cours, travail individuel et/ou en équipe, recherche de 
ressources documentaires/ d'informations (dans une bibliothèque, par internet …), établissement 
de fiches de lecture. 

 

k Eléments de pédagogie (en classe) : 

Cours : Enseignement magistral 

 

http://www.mines-ales.fr/~cmgd/MMS/Cours/optapp/opvect.pdf
http://www.math.jussieu.fr/~delabrie/PM2/PM2.pdf
http://www.math.u-psud.fr/~pansu/websm/courbes_parametrees.pdf


ED : Démonstration, exercices, apprentissage par la comparaison, exposé, étude de cas, travail en 
groupe 

Moyens utilisés : Moyens individuels, audiovisuels, matériels de travaux pratiques, protocoles 
expérimentaux, polycopiés d’exercices 
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Chapitre 1

Fonctions et équations différentielles

1.1 Généralités

Une fonction numérique d’une variable réelle f est une application qui à x ∈ R corres-
pond à un réel f(x) ∈ R. Si x varie dans R, alors f(x) varie avec x dans R. f(x) pour x
sans valeur déterminée est l’expression de la fonction f . Pourtant, il existe une partie de
R où f est bien définie, c’est le domaine de définition de f noté Df . C’est-à-dire que seuls
les x ∈ Df , ont des f(x) ∈ R. Remarquer que dans R =] − ∞,+∞[, seuls les −∞, +∞
ne sont pas des réels. Donc, quand on cherche le Df , on s’assure que f y est bien définie.
Des petits règles de calculs sont les suivants :

• Si dans l’epression de f figure un dénominateur h(x)
g(x)

, alors ce dénominateur doit être

différent de 0. Donc on cherche l’ensemble des réels x tels que g(x) soit non nul.

Exemple 1. Soit f(x) = 1
x+4

+ x−1
x2−3x+2

, alors il faut que x + 4 6= 0, x2 − 3x + 2 6= 0.
C’est-à-dire que x 6= −4, x 6= 1 et x 6= 2. Donc Df =]−∞,−4[∪]− 4, 1[∪]1, 2[∪]2,+∞[.

• Si dans l’epression de f figure une racine carrée
√

g(x), alors l’expression dans la
racine carrée doit être positive ou nulle. Donc on cherche l’ensemble des réels x tels que
g(x) ≥ 0.

Exemple 2. Soit f(x) =
√
x2 − 5x+ 6 + x2, alors il faut que x2 − 5x+ 6 ≥ 0. C’est-à-dire

que x ≤ 2 et x ≥ 3. Donc Df =]−∞, 2] ∪ [3,+∞[.

• Si dans l’epression de f figure un logarithme Neperien ln (g(x)), alors l’expression
dans le logarithme doit être strictement positif. Donc on cherche l’ensemble des réels x
tels que cette expression g(x) > 0.

Exemple 3. Soit f(x) = ln (−x2 + 5x− 6) − e−x, alors il faut que −x2 + 5x − 6 > 0.
C’est-à-dire que x > 2 et x < 3. Donc Df =]2, 3[.

Il se peut que ces cas se présentent simultanément dans l’expression d’une fonction,
alors on fait l’intersection des intervalles ainsi obtenus pour avoir le domaine de définition.
Si l’expression d’une fonction ne comporte pas l’un de ces trois types d’expressions, donc
son domaine de définition est R. Des opérations définies sur les fonctions f et g est définie
par ∀x, (f + g) (x) = f (x)+g(x), (f ×g)(x) = f(x)×g(x) et f

g
(x) = f(x)

g(x)
. 1 On dit qu’une

fonction est continue en un point x0, si

lim
x→(x0)−

f(x) = lim
x→(x0)+

f(x) = f(x0)
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CHAPITRE 1. FONCTIONS ET ÉQUATIONS DIFFÉRENTIELLES 2

Toute fonction usuelle est continue sur son domaine de définition.
On dit qu’une fonction est dérivable en un point x0, si

lim
x→(x0)+

f(x)− f(x0)

x− x0

= lim
x→(x0)−

f(x)− f(x0)

x− x0

= f ′(x0)

existe et fini (réel unique). Toute fonction usuelle est dérivable sur le plus grand ouvert
contenu dans son domaine de définition. En générale, les domaines de définitions sont des
reunions disjointes d’intervalles, alors pour avoir ce plus grand ouvert, il suffit de rendre
chaque intervalle fermé ou semi-fermé à un intervalle ouvert correspondant.

Exemple 4. Soit f(x) =
√
−x2 + 5x− 6− e−x. Donc Df = [2, 3], f est dérivable sur ]2, 3[.

Après avoir faire la dérivée f ′ d’une fonction numérique f , on cherche les points x où
f ′(x) = 0. Ce sont les points où f présente ses maximaux ou minimaux. On peut dresser
son tableau de variation. Maintenant, observons les branches infinies de la graphe C de f .
Si

lim
x→x0∈R

f(x) = ∞

alors x = x0 est un asymptote vertical de C au voisinage de y à ∞.
Si

lim
x→∞

f(x) = y0 ∈ R

alors y = y0 est un asymptote horizontal de C au voisinage de ∞.
Si

lim
x→∞

f(x) = ∞

alors on fera limx→∞

f(x)
x

= a :
Si a = ∞, alors l’axe des ordonnées x = 0 est une direction asymptotique de la branche
parabolique de C au voisinage de ∞.
Si a = 0, alors l’axe des abscisses y = 0 est une direction asymptotique de la branche
parabolique de C au voisinage de ∞.
Si a ∈ R

∗, alors on fait limx→∞ f(x)− ax = b, donc :
• pour b = ∞, alors y = ax est une direction asymptotique de la branche parabolique de
C au voisinage de ∞.
• pour b 6= ∞, alors y = ax+ b est un asymptote oblique de C au voisinage de ∞.
Maintenant, on peut dresser le graphe de f dans un repère orthonormé (0,~i,~j).

1.2 Développement limité

Soit f une fonction numérique d’une variable réelle, f est de classe Cn sur un voisinage
de x0, c’est-à-dire que la n-ième dérivée de f sur ce voisinage est continue. Une telle
fonction admet un développement limité d’ordre n au voisinage de x0, c’est-à-dire que f
peut s’écrire approximativement en un polynôme de degré n (Formule de Taylor) :

f(x) = f(x0) + f ′(x0)
(x− x0)

1!
+ f ′′(x0)

(x− x0)
2

2!
+ · · ·+ f (n)(x0)

(x− x0)
n

n!
+ o((x− x0)

n)

(1.1)
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où limx→x0
o((x− x0)

n) = 0.
Voici quelques développements limités usuels au voisinage de 0 et d’ordre n :

(1 + x)α =
n

∑

k=0

Ck
αx

k + o(xn), ex =
n

∑

k=0

xk

k!
+ o(xn), ln(1 + x) =

n
∑

k=0

(−1)kxk+1

k + 1
+ o(xn+1)

où Ck
α = α(α−1)...(α−k+1)

k!
.

sin(x) =
n

∑

k=0

(−1)k

(2k + 1)!
x2k+1 + o(x2n+1), cos(x) =

n
∑

k=0

(−1)k

(2k)!
x2k + o(x2n)

sinh(x) =
n

∑

k=0

1

(2k + 1)!
x2k+1 + o(x2n+1), cosh(x) =

n
∑

k=0

1

(2k)!
x2k + o(x2n)

arctan(x) =
n

∑

k=0

(−1)k

2k + 1
x2k+1 + o(x2n+1)

Le développement limité d’ordre n au v(x0) d’une somme de fonction est la somme de
leurs developpements limités respectifs. Le développement limité d’ordre n au v(x0) d’un
produit de 2 fonctions est le produit de leurs développements limités respectifs en ne
considérant que les puissances en (x − x0) inférieures ou égales à n. Le développement
limité d’une division de deux fonctions est obtenue en faisant la division d’ordre croissant
selon la puissance en (x − x0), en ne considérant que les termes dont la puissance en
(x − x0) est inférieure ou égale à n. Si une fonction f est définie sur un voisinage de x0,
alors

∫ x

x0
f(h)dh admet un développement limité d’ordre n+ 1 au v(x0) qui est l’intégrale

correspondant du développement de degré n de f au v(x0). Si f admet un D.L d’ordre n
au v(x0) et g en admet d’ordre n au v(f(x0)), alors g ◦ f admet un D.L d’ordre n au v(x0)
qui est la composition respective des développements limités correspondants.

1.3 Equations différentielles linéaires d’ordre n ≤ 2

1.3.1 Equations différentielles linéaires d’ordre 1

C’est une équation de la forme

y′ + P (x)y = Q(x) (1.2)

avec P et Q des fonctions réelles. Alors, on cherche y et son ensemble de définition. On
résoud d’abord y′ + P (x)y = 0 et a pour solution y0 = Ce−

∫
P (x)dx avec C ∈ R. Ensuite,

on fait varier C en C(x) et y = C(x)e−
∫
P (x)dx. En transportant cette dernière relation

dans (1.2), on obtient

C(x) =

∫

Q(x)e
∫
P (x)dxdx+ C0

et enfin

y = e−
∫
P (x)dx

[∫

Q(x)e
∫
P (x)dxdx+ C0

]
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1.3.2 Equations différentielles linéaires d’ordre 2 à coefficients

constants

C’est une équation de la forme

y′′ + ay′ + by = f(x) (1.3)

On résoud d’abord l’équation homogène

y′′ + ay′ + by = 0

Alors, on cherche les solutions de l’équation caractéristique suivante

r2 + ar + b = 0

∗ Si ∆ > 0, alors r1, r2 sont deux solutions distinctes.
Donc la solution de l’équation homogène est, y0 = C1e

r1x + C2e
r2x.

∗ Si ∆ = 0, alors r1 est une solution doubles.
Alors la solution de l’équation homogène est, y0 = (C1x+ C2) e

r1x.
∗ Si ∆ < 0, alors r1 = α + iβ, r2 = α − iβ sont deux solutions complexes distinctes et
conjuguées.
Alors la solution de l’équation homogène est, y0 = eαx (C1 cos(βx) + C2 sin(βx)).
Pour la solution particulière y1 de l’équation (1.3), on choisit la forme de

f(x) = eδx (Pk(x) cos(γx) +Qm(x) sin(γx))

où Pk(x) respectivement Qm(x) sont des polynômes de degré respectif k et m. On compte
le nombre de fois où δ+ iγ figure parmi les racines de l’équation caractéristique, on le note
par j. Alors,

y1 = xjeδx (Gl(x) cos(γx) +Hl(x) sin(γx))

avec l = max(k,m), Gl(x) et Hl(x) sont des polynômes de degré l. Les coefficients de ces
derniers polynômes sont obtenus à partir du remplacement de y dans (1.3) par ce y1.
D’où la solution finale y = y0 + y1.

1.3.3 Remarques

Les dernières constantes indéterminées de la solution finale d’une équation différentielle
peuvent être déterminées en attribuant cette solution des valeurs précises en des points. Par
exemple, pour l’équation différentielle de degré 1, y(0) = 1 ; pour l’équation différentielle
de degré 2, y(1) = 0, y′(0) = 3 ; selon les données sur l’équation différentielle.
Si le deuxième membre de (1.3) s’écrit sous-forme de somme de deux fonctions f(x) =
f1(x) + f2(x), alors on peut chercher séparément la solution particulière de :

y′′ + ay′ + by = f1(x) (1.4)

qui est y2 et,
y′′ + ay′ + by = f2(x) (1.5)

qui est y3. Donc, la solution particulière de (1.3) est y2 + y3. Ainsi, la solution finale est
y = y0 + y2 + y3.
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1.4 Quelques notions sur les fonctions à plusieures

variables

On se limitera à une fonction numérique à 2 variables. Une telle fonction f est définie
dans un domaine de R2, la manière de chercher le domaine de définition de f est la même
que celle d’une fonction numérique d’une variable réelle, sauf que le domaine de définition
est inclus dans R2.

Exemple 5. f(x, y) = ln(x+ y), alors Df = {(x, y)/x+ y > 0}.
Une fonction usuelle est toujours continue sur son domaine de définition, est toujours

différentiable (dérivable) sur le plus grand ouvert contenu dans son domaine de définition.
Alors, on peut faire une dérivée partielle par rapport à x notée ∂f

∂x
(on dérive f par rapport

à x où on considère y comme une constante) ou par rapport à y ∂f

∂y
(on dérive f par rapport

à y où on considère x comme une constante).

Exemple 6. f(x, y) = ln(xy2 + y) où Df = {(x, y)/xy2 + y > 0}, alors ∂f

∂x
= y2

xy2+y
et

∂f

∂y
= 2yx+1

xy2+y
.

Théorème 7. Toute fonction dont toutes dérivées partielles premières sont continues dans
un domaine de R

2 est différentiable (dérivable) dans ce domaine.



Chapitre 2

Système d’équations linéaires et

matrices

Une matrice réelle A du type (m,n) est contituée par un ensemble ordonné de n vecteurs
à m composantes réelles, c’est-à-dire

A = (aij) =























a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

am1 am2 . . . . . . amn























, elle représente une application R-linéaire de R
n vers R

m. Deux matrices sont égales
si chaque composantes des ces deux matrices sont égales. Si n = m, alors A est une
matrice carrée d’ordre n. La somme de deux matrices ne se fait que si ces deux matrices
sont de même type, cette somme se fait composante par composante. La multiplication
C = (cij) = AB de deux matrices A = (aij) et B = (bij) ne se fait que si le nombre de
colonnes de A est égal au nombre de ligne de B (par exemple p), où cij =

∑p

k=1 aikbkj.
Il existe une matrice carrée neutre d’ordre n, In telle que pour toute matrice carrée A
d’ordre n, InA = AIn = A. Une matrice carrée A d’ordre n est inversible s’il existe une
matrice A−1 inverse de A telle que A−1A = AA−1 = In.

2.1 Calcul du déterminant d’une matrice carrée

Soit A une matrice carrée d’ordre n, on calcul le det(A) :
Si A est d’ordre 1, alors det(A) = A. 1

Si A est d’ordre 2,

A =

(

a b
c d

)

, det(A) = ad− cd.

Si

A =





a b c
d e f
g h l




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det(A) se calcul par la méthode de Sarrus :
∣

∣

∣

∣

∣

∣

a+ b+ c+ a b
d e f d e
g− h− l− g h

∣

∣

∣

∣

∣

∣

det(A) = +(ael + bfg + cdh) − (gec + hfa + ldb). On peut aussi utiliser la méthode des
cofacteurs, on écrit

A =





a+ b− c+

d− e+ f−

g+ h− l+



 ,

les règles de signes sur chaque élément de cette matrice est (−1)i+j où l’élément en question
est à la i-ième ligne et j-ième colonne. On choisit alors une ligne ou une colonne pour le
développement du déterminant, par exemple par la première colonne. Ainsi, det(A) =
+a det(A11)− d det(A21) + g det(A31) où

A11 =

(

e f
h l

)

, A21 =

(

b c
h l

)

, A31 =

(

b c
e f

)

Le cofacteur de la i-ième ligne j-ième colonne est (−1)i+j det(Aij). En général, si A est
une matrice carrée d’ordre quelconque, la méthode des cofacteurs est toujours appliquable,
contrairement à la méthode de Sarrus qui est seulement appliquable pour une matrice
d’ordre 3.
Une matrice carrée est inversible si et seulement si elle admet un déterminant non nul.
Ainsi, pour une matrice d’ordre n inversible,

A−1 =
Ãt

det(A)

où Ã = ((−1)i+j det(Aij)) et l’opération
t (transposé) désigne le remplacement de chaque

i-ième colonne d’une matrice à la i-ième ligne. On a det(AB) = det(A) det(B) si A et B
sont des matrices carrées.

2.2 Système d’équations linéaires

un système d’équations


















a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm

(2.1)

où chaque bi sont des réels. On forme l’expression matricielle du système ci-dessus :

A×X = B ⇒























a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

am1 am2 . . . . . . amn













































x1

x2
...
...

xn−2

xn−1

xn























=























b1
b2
...
...

bm−2

bm−1

bm






















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où

A =























a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

am1 am2 . . . . . . amn























, X =























x1

x2
...
...

xn−2

xn−1

xn























, B =























b1
b2
...
...

bm−2

bm−1

bm























Le problème c’est de chercher x1, . . . , xn vérifiants à la fois chaque équation du système.
La méthode de pivot de Gauss consiste à rendre cette matrice A en une matrice réduite
échélonnée. On choisit une ligne appelée pivot 1, on choisit une variable à éliminer dans
les autres lignes par la variable correspondante dans le pivot. Cette élimination est une
suite de calcul : on peut additionner à une ligne (fois une constante) (dont la variable est
à éliminer) autre que le pivot par le pivot fois une constante, de façon que la variable en
question disparait dans le calcul. Lorsque cet étape est fait, on choisit un autre pivot 2 et on
choisit une autre variable à éliminer dans les autres lignes différentes de pivot 1, et on refait
le même processus de calcul. A la fin du processus (il n’y a plus de variable à éliminer), on
obtient cette nouvelle matrice réduite, et puis la valeur des variables restantes, on remonte
les valeurs de ces variables au pivot précédent et ainsi de suite. Alors on résoud le système
linéaire de départ.
Si n = m et que det(A) 6= 0, alors la méthode de Cramer est appliquable, chaque

xi =
∆xi

∆

où ∆ = det(A) et ∆xi
= det(Ai) avec Ai est la matrice A où on a seulement remplacé la

i-ième colonne par
b1
b2
...

bn−1

bn

Dans ce dernier cas, si n = m et det(A) 6= 0, on connait A−1 ; alors

X = A−1B

et les xi sont identifiés par cette égalité matricielle.
Ainsi, on résoud le système d’équations linéaires. 2

2. Princy RANDRIAMBOLOLONDRANTOMALALA, Maths pour SVT, Univ Antananarivo 2014
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4.2 Méthode des potentiels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Bibliographie 8

i



Introduction

Le problème de l’optimisation consiste à chercher la valeur maximale ou minimale
d’une fonction en présence de certaines contraintes. Dans ce cours, on s’intéresse sur le
cas d’une fonction linéaire sous des contraintes linéaires. Il a une petite distinction sur la
méthode à suivre dans cette étude. En ce qui concerne le cas de R ou R

2, il suffit de faire
une résolution par le dérivé d’une fonction réelle ou par la méthode graphique. Quant au
cas de R

n avec n ≥ 3, la méthode appropriée c’est une méthode analytique, la méthode
du simplexe. Bien sûre, cette dernière méthode est aussi valable pour la résolution de ces
premiers cas. 1

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Optimisation
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Chapitre 1

Programmation linéaire en deux

dimension

Le but c’est de chercher la valeur optimale de la fonction linéaire L = ax + by avec
a, b ∈ R, (x, y) le système de coordonnées dans R2 sous les contraintes



















a1x+ b1y ≥ C1

a2x+ b2y ≥ C2

. . .

anx+ bny ≥ Cn

Une méthode usité est la méthode par graphique, il s’agit de dessiner sur R2 rapporté à un
repère orthonormé (O,~i,~j) toutes les droites correspondantes à ces contraintes, hachurer
chaque partie qui ne contient pas la solution. Une droite de R2 a toujours deux cotés gauche
et droite. Alors si un point appartenant à sa gauche et n’appartenant pas à la droite ne
vérifie pas l’inéquation correspondante alors c’est la partie droite qui est la solution, et on
doit hachurer la partie gauche ; et vice versa. En effectuant ce processus sur toute n les
droites définies par les contraintes, on obtient une partie non hachurée de R

2 qui est le
domaine de solution de notre problème. On trace maintenant le vecteur partant de l’origine

O de composante ~u =

(

a
b

)

. Alors on fait glisser une perpendiculaire à la droite dans le

domaine de solution. Si on cherche le maximum de L, alors l’ensemble de points frontières
commune à cette normale glissée dans le sens du vecteur ~u avec le domaine de solution
constitue les points où L est maximale. Avec le même principe mais dans le sens contraire
de ~u, on obtiendra le minimum de L.

Remarque 1. On peut toujours ramener une inéquation comportant ≤ à ≥ dans les
contraintes ci-desssus en multipliant chaque membre par un −.

1

Remarque 2. Pour un domaine D de solution bornée, il suffit de trouver les valeurs de L
pour chaque sommet en nombre fini, et les comparer ensuite. Pour ce faire, chaque sommet
est la solution du système de deux équations à deux inconnues correspondants aux deux
droites définies par les contraintes deux à deux.

1. Princy RANDRIAMBOLOLONDRANTOMALALA, Optimisation

1



CHAPITRE 1. PROGRAMMATION LINÉAIRE EN DEUX DIMENSION 2

Exercice 3. Maximisation et minimisation de la forme linéaire L = x+y avec les contraintes











3x− 2y ≥ −6

−3x− y ≤ −3

x ≤ 4

Solution : Lmax = 13 au point (4, 9), Lmin = −5.00 au point (4,−8.999).

Exercice 4. Maximisation et minimisation de la forme linéaire L = x + 2y avec les
contraintes

{

2x− 3y ≤ 0

x+ y ≥ 1

Solution : Lmax = +∞, Lmin = 1.400 au point (0.599, 0.400).

Exercice 5. Maximisation de la forme linéaire L = 4x− y avec les contraintes































3x+ 4y ≥ 18

3x− y ≥ 3

y ≤ 6

2x+ y ≤ 18

4x− y ≤ 24

Solution : Lmax = 24, aux points situés dans le domaine de solutions de la droite y =
4x− 24.

Cependant, il est fort possible que la forme linéaire, les contraintes ne sont pas ex-
plicitées mais on les formule partant des données de l’exercice. Dans ce cas il faut bien
interpréter mathématiquement les données du problème. Il faut en premier placer les va-
riables en question, souvent indiquées par les données sur la fonction linéaire à optimiser.
Deuxiemement, écrire la fonction linéaire à optimiser et troisièmement les contraintes du
problème.

Exercice 6. Une entreprise fabrique des postes de télé et des ordinateurs. 140 ouvriers
travaillent à la fabrication. Le prix de revient, pièces et main d’oeuvre d’un ordinateur est
de 400 000 Ariary. Il n’est que de 300 000 Ariary pour un poste de TV.
On ne peut pas dépasser par semaine la somme de 240 000 000 Ariary, pièces et main
d’oeuvre et chaque ouvrier travaille 40 heures par semaine.
Les gérants de l’entreprise estiment qu’il faut 10 heures de main d’oeuvre pour fabriquer
un poste de TV et 5 heures seulement pour fabriquer un ordinateur. L’entreprise ne peut
vendre plus de 480 ordinateurs et 480 poste de TV par semaine. Les prix de ventes sont
tels que l’entreprise, tous frais payés, fait un bénéfice de 240 000 Ariary par ordinateur et
de 160 000 Ariary par postes de TV.
1) Ecrire le bénéfice.
2) Chercher les contraintes correspondantes à ce problème.
3) Déterminer la fabrication qui assure un bénéfice maximum.

Pour résoudre le problème, on sait que le bénéfice B est la fonction à maximiser. Or
le bénéfice dépend du nombre d’ordinateur et de TV vendus. Alors, les variables sont
x et y qui représentent respectivement le nombre d’ordinateurs et de TV vendus. Ainsi,
B = 240000 Ariary x+160000 Ariary y. Evidemment, ces nombres sont positifs ou nuls.
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Maintenant, on interprète les autres données pour former les autres contraintes. Il est
immédiat que x ≤ 480 et y ≤ 480 d’après les dernières données. Concernant les prix de
revient, on a 400000 Ariary x+ 300000 Ariary y ≤ 240000000Ariary. Pour les heures de
travail des ouvriers 10 h y + 5 h x ≤ 140 × 40 h. Maintenant, il faut choisir une echelle
appropriée pour la résolution graphique du problème. Par exemple, on prend une unité de
1 000 pour les axes des x et des y. Ainsi, Bmax = 140800000 Ariary.



Chapitre 2

Programmation linéaire en

dimension n ≥ 2

On essaie de chercher par la méthode de simplexe la valeur optimale d’une fonction
linéaire L = c1x1+· · ·+cnxn+c0 parmi les solutions positives ou nulles avec les contraintes
exprimées par un système d’équations



















a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm

(2.1)

où chaque bi sont positifs ou nuls. On forme l’expression matricielle des contraintes ci-
dessus :

A×X = B ⇒























a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

am1 am2 . . . . . . amn













































x1

x2

...

...
xn−2

xn−1

xn























=























b1
b2
...
...

bm−2

bm−1

bm























On cherche le rang de la matrice A, supposons que c’est r ≥ 1. Alors, pour simplifier
l’écriture, on assume que x1, . . . , xr sont les variables de base et xr+1, . . . , xn les variables
libres. On change l’expression de L en fonction des variables libres xi r + 1 ≤ i ≤ n et on
transforme les coefficients des xi 1 ≤ i ≤ r dans (2.1) en 1 chacun. Alors, on a



















x1 + · · ·+ c1r+1xr+1 + · · ·+ c1nxn = e1

x2 + · · ·+ c2r+1xr+1 + · · ·+ c2nxn = e2

. . . . . . . . . . . . . . . . . . . . . . . .

xr + · · ·+ crr+1xr+1 + · · ·+ crnxn = er

(2.2)

4
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où chaque bi sont positifs ou nuls. L + dr+1xr+1 + · · · + dnxn = d0 et on peut dresser le
tableau suivant :

V.B T.C x1 . . . . . . xi . . . xr xr+1 . . . xj . . . xn

x1 e1 1 0 . . . 0 . . . 0 c1r+1 . . . c1j . . . c1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi ei 0 0 . . . 1 . . . 0 cir+1 . . . cij . . . cin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xr er 0 0 . . . 0 . . . 1 crr+1 . . . crj . . . crn
L d0 0 0 . . . 0 . . . 0 dr+1 . . . dj . . . dn

où V.B désigne la colonne des variables de bases, T.C celle des termes constants. Les dj
sont appelés estimations des xj correspondants.
Le choix de la colonne résolvante p est de façon que dp < 0 et il existe cip > 0. La
ligne résolvante est obtenue par q où eq

cqp
minimum parmi les ei

cip
avec cip > 0. Après, on

calcul à nouveau la q-ième ligne résolvante par c′qk =
cqk

cqp
. Les autres lignes deviennent

c′ik = cik − c′qkcip où k 6= p et i 6= q.

2.1 Pour un problème non dégénéré

Théorème 7. Lors d’une itération, s’il existe une estimation négative stricte et un élément

de la colonne correspondante est positif strict, alors on peut améliorer la solution par

l’itération suivante. S’il existe une estimation négative dont la colonne correspondante n’a

pas d’élément positif, alors Lmax = ∞. Si toutes les estimations sont non négatives, alors

Lmax est obtenue.

Exemple 8. Trouver le maximum de L avec L = 5x1+7x2 où les xi ≥ 0 et 3x1+2x2+x3 =
19, x1 + 2x2 + x4 = 13, 3x1 + x5 = 15 et 3x2 + x6 = 18. Alors Lmax = 50.

2.2 Pour un problème dégénéré

C’est le cas où dans une itération, on trouve ei = 0. Dans ce cas, il faut choisir la
ligne résolvante dans laquelle le rapport minimal des éléments de la colonne suivante de la
colonne résolvante aux éléments correspondants à la colonne résolvante. Et ainsi de suite
jusqu’à avoir la détermination univoque de la ligne résolvante.

Exemple 9. Trouver le maximum de L = 2x6 + 4x5 où les xi ≥ 0 avec x1 + x6 + x5 = 12,
x2 − x6 + 5x5 = 30, x3 + x5 − 2x6 = 6, 2x4 + 3x5 − 2x6 = 18 ; alors Lmax = 38.



Chapitre 3

Méthode duale

Il s’agit de représenter le problème de départ appelé problème primal sous-forme d’un
autre problème équivalent appelé problème dual et vice versa. On suppose que toutes les
variables sont non négatives. Si on minimise L = c1x1 + · · ·+ cnxn où

a11 a12 . . . . . . a1n ≥ b1
a21 a22 . . . . . . a2n ≥ b2
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

am1 am2 . . . . . . amn ≥ bm

alors le problème dual équivalent est le suivant, on maximise L′ = b1y1 + · · ·+ bmym sous
les contraintes

a11 a21 . . . . . . am1 ≤ c1
a12 a22 . . . . . . am2 ≤ c2
...

...
. . .

...
...

...
. . . . . .
. . . . . .

...
...

...
...

. . .
...

a1n a2n . . . . . . amn ≤ cn

Dans ce cas Lmin = L′

max. On remarque que la matrice correspondante au problème dual
est la transposée de la matrice correspondante au problème primal et vice versa.

6



Chapitre 4

Problèmes de transport

Le problème de transport que nous allons traité ici c’est l’organisation la plus rationnelle
des transports des charges avec un minimum de coûts. Supposons qu’en p points dépôts,
il y ait respectivement a1, . . . , ap unités de charge homogène qui’il faut transporter à q
utilisateurs devant recevoir respectivement b1, . . . , bq unités. Les frais cik qu’il faut engager
pour le transport d’une charge unitaire du i-ième point d’expédition au k-ième utilisateur.
La variable xik désigne la quantité positive de nombre d’unités de charges du i-dépôt vers
k-utilisateur. Alors pour satisfaire les demandes, on doit avoir

q
∑

k=1

xik = ai,

p
∑

i=1

xik = bk, xik ≥ 0.

Les frais de transport est L = c11x11 + c12x12 + · · ·+ cpqxpq. Donc, on minimise L avec les
contraintes ci-dessus.
Pour ce faire, on passe par deux étapes, c’est 1) la détermination de la solution de base
initiale (méthode de coin ”Nord-west”) et 2) la construction des itérations successives pour
avoir le minimum de L (méthode des potentiels). On forme le tableau suivant :

ai/bk b1 . . . bk . . . bq
a1 x11

c11 . . . x1k
c1k . . . x1q

c1q

. . . . . . . . . . . . . . . . . .
ai xi1

ci1 . . . xik
cik . . . xiq

ciq

. . . . . . . . . . . . . . . . . .
ap xp1

cp1 . . . xpk
cpk . . . xpq

cpq

4.1 Solution de base initiale

On remplit le tableau ci-dessus en commencant par remplir le coin extrême gauche du
haut (Nord-West). C’est à dire satisfaire les besoins b1 par a1, alors on met dans cette case
min(a1, b1). Si b1 n’est pas satisfait (a1 < b1), alors on se déplace suivant cette colonne
dans la case de a2 pour satisfaire le reste qu’on a manqué dans a1, on place dans cette case
min(a2, b1 − a1) et ainsi de suite. Si b1 est satisfaite, alors on cherche à satisfaire b2 par le
reste de a1 utilisé par b1, c’est-à-dire qu’on place dans cette case (1,2) le min(a1 − b1, b2),
et ainsi de suite. A la fin, lorsque toutes les bk sont satisfaites, alors on a une solution de
base et on peut en déduire L dans à partir de cette solution. On la note γ0 =

∑

i,j cijxij.

7
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4.2 Méthode des potentiels

On reconnait les variables de base xkl qui correspondent à la case remplie de nombre
non nul, les autres variables xmn sont des variables libres. Alors, on met L sous la forme
L =

∑

m,n γmnxmn + γ0. On cherche γmn en assignant à chaque point dépôt ai une valeur
ui (potentiel) et l’utilisateur bj une valeur vj (potentiel) de façon que

uk + vl = ckl

en donnant à l’une de ces valeurs (potentiels) une valeur précise. On désigne par

c′mn = um + vn.

Alors,
γmn = cmn − c′mn.

Si toutes les γmn sont non négatives, la solution γ0 est le minimum. Mais s’il existe une
qui est négative, on passe à la base suivante en augmentant la variable à coefficient négatif
choisie et en laissant les autres variables libres à zéro.

Exemple 10. En deux dépôts A et B sont stockés respectivement 1500 et 900 t de carbu-
rants. Les demandeurs 1, 2, 3 ont besoin respectivement de 600, 700 et 1100 t. Les coûts
de transports d’une tonne de carburants de A vers 1, 2 et 3 sont respectivement de 60, 100
et 40 euros, mais de B vers 1, 2 et 3 sont respectivement de 120, 20 et 80 euros. Chercher
l’organisation du transport de manière à minimiser les frais. (Frais minimum=102 000
euros).



Bibliographie

[1] P. Danko, A. Popov Exercices et problèmes des mathématiques supérieures Partie
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            -RAHARIMALALA Laurence Eliane lauraharimalala@gmail.com 
        -Physique : RAKOTONIAINA Solofoarisoa solofoarisoa@gmail.com 

      -MI : -RABEHERIMANANA Toussaint rabeherimanana.toussaint@gmx.fr 
               -RASOANAIVO Andry r.andry.rasoanaivo@gmail.com 

 
III. ACTEURS ADMNISTRATIFS  (AA) 
 
-RAKOTOSON Albert Pierre Chef du Service Scolarité (Représentant AA)  
rakotoson.albertpierre@gmail.com 
-RAZAFINDRAMBOA Voniarisoa 
-RANDAFISON Jakoba Chef du Service Personnel jakoba.randafison@gmail.com 
 
IV. ACTEURS TECHNIQUES  (AT) 
 
 -RAZAFINDRAHOVA FY (Représentant AT) fy.razafindrahova@univ-antananarivo.mg 
- FIDANARIVO Fihery Tôma  
-RAJAONARISON Anjara Fatiana Miora anjarafatiana.rj@gmail.com 
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