

UNIVERSITE D'ANTANANARIVO ECOLE SUPERIEURE POLYTECHNIQUE

Département Bâtiment et Travaux Publics

Mémoire de fin d'étude en vue de l'obtention du diplôme d'Ingénieur en 'Bâtiment et Travaux Publics '

ETUDE DE LA RECONSTRUCTION DU PONT FERROVIAIRE AU P.K 140 + 180 DE LA LIGNE T.C.E

Présenté par : RANDRIANATOANDRO Tanteliniaina Nambinintsoa

Sous la Direction de : Monsieur RANDRIANTSOA Jonas

UNIVERSITE D'ANTANANARIVO ECOLE SUPERIEURE POLYTECHNIQUE

Département Bâtiment et Travaux Publics

Mémoire de fin d'étude en vue de l'obtention du diplôme d'Ingénieur en 'Bâtiment et Travaux Publics '

ETUDE DE LA RECONSTRUCTION DU PONT FERROVIAIRE AU P.K 140 + 180 DE LA LIGNE T.C.E

Présenté par : RANDRIANATOANDRO Tanteliniaina Nambinintsoa

Rapporteur: Monsieur RANDRIANTSOA Jonas

Président de jury : Monsieur RANDRIANTSIMBAZAFY Andrinirina

Membres de jury : Madame RAVAOHARISOA Lalatiana ;

Monsieur RAKOTOARIVELO Rivonirina;

Monsieur RAJOELINANTENAINA Solofo;

Date de soutenance : 08 Avril 2011

REMERCIEMENT

De prime d'abord, je rends grâce à l'Eternel, le Dieu du ciel qui m'a donné forces, esprit et courage pendant toutes mes études, et c'est seulement grâce à sa miséricorde et sa bénédiction divine que j'ai pu parvenir à ce stade de ma vie.

Ensuite, c'est avec reconnaissance et avec très grand plaisir que j'adresse mes vifs remerciements à tous ceux qui de près ou de loin ont contribué à la réalisation de ce mémoire, en particulier:

- Monsieur ANDRIANARY Philippe, Directeur de l'Ecole Supérieure
 Polytechnique d'Antananarivo qui n'a pas ménagé son temps pour promouvoir
 l'image de cette prestigieuse école d'ingénieur;
- Monsieur RANDRIANTSIMBAZAFY Andrinirina, chef de Département Bâtiment et Travaux Publics de l'Ecole Supérieure Polytechnique d'Antananarivo, qui n'a pas cessé de nous prodiguer des conseils visant à nous garantir une carrière professionnelle honorable;
- Monsieur RANDRIANTSOA Jonas, Enseignant du Département Bâtiment et Travaux Publics de l'Ecole Supérieure Polytechnique d'Antananarivo, Chef de Division Maintenance Voie à Madarail, qui en dépit de son emploi du temps très surchargé, a bien voulu accepter d'encadrer ce mémoire de fin d'études;
- Tous les enseignements du Département Bâtiment et Travaux Publics de l'Ecole Supérieure Polytechnique d'Antananarivo qui nous ont donné le meilleur d'euxmêmes tout au long de notre formation;
- Tous les membres de jury qui nous ont accepté de juger ce mémoire aussi que d'apporter des remarques et des suggestions visant à son amélioration;
- Tous les personnels du MADARAIL, pour l'accueil chaleureux qu'ils ont témoigné
 à notre égard, qui nous a beaucoup aidés dans l'accomplissement de ce mémoire;
 Et enfin toute ma famille et tous mes amis, qui m'a soutenus au cours de mes
 études et à la réalisation de ce mémoire.

Randrianatoandro Tanteliniaina Nambinintsoa.

SOMMATRE

LISTE DES ABREVIATIONS

LISTE DES TABLEAUX

LISTE DES FIGURES

LISTE DES PHOTOS

LISTE DES ANNEXES

PARTIE I : GENERALITE SUR LE TRANSPORT FERROVIAIRE

CHAPITRE I : HISTORIQUE DE LA VOIE FERREE

CHAPITRE II: NOTION DE LA VOIE FERREE

PARTIE II : ETUDE SOCIO-ECONOMIQUE ET ENVIRONNEMENT DU PROJET

CHAPITRE I : LOCALISATION ET DELIMITATION DE LA ZONE D'INFLUENCE

CHAPITRE II : POTENTIALITE SOCIO-ECONOMIQUE DE LA ZONE D'INFLUENCE

CHAPITRE III: ETUDE TRAFIC

CHAPITRE IV : DIAGNOSTIC DE L'INFRASTRUCTURE EXISTANTE

PARTIE III: ETUDE TECHNIQUE

CHAPITRE I: ETUDE PRELIMINAIRE

CHAPITRE II : ETUDE DE LA VARIANTE PRINCIPALE

CHAPITRE III: EXECUTIONS DES TRAVAUX DE RENOUVELLEMENT DE LA VOIE

CHAPITRE IV: TECHNOLOGIE DE CONSTRUCTION ET RECOMMANDATION

NECESSAIRE

PARTIE IV: EVALUATION FINANCIERE ET IMPACT ENVIRONNEMENTAL DU PROJET

CHAPITRE I: ETUDE FINANCIERE

CHAPITRE II: ETUDE D'IMPACT ENVIRONNEMENTAL

CONCLUSION

BIBLIOGRAPHIE

ANNEXES

TABLES DES MATIERES

LISTE DES ABREVIATIONS

BA: Béton Armé

BAEL: Béton Armé aux Etats Limites

BP: Béton Précontraint

BV: Bassin Versant

CMD: Coefficient de Majoration Dynamique

CRT : Coefficient de Répartition Transversale

CSP: Côte Sous Poutre

ELS: Etat Limite de Service

ELU: Etat Limite Ultime

FCE: Fianarantsoa Côte Est

HA: Haute Adhérence

INSTAT: Institut National de la Statistique

LI: Ligne d'influence

MLA: Moramanga Lac Alaotra

MO: Main d'œuvre

MTRL: Matériels

MTRO: Matériaux

PHEC: Plus Haute Eaux Connues

PK: Point Kilométrique

PU: Prix Unitaire

RN: Route National

RNCFM: Réseau National de Chemin de Fer Malagasy

SMOTIG : Service de la main d'œuvre pour les Travaux d'Intérêts Générales

TA: Tananarivo Antsirabe

TCE: Tananarivo Côte Est

TTC: Tout Taxe Compris

TVA: Taux sur la Valeur Ajoutée

T.R.I: Taux Interne de Rentabilité

T.K: Tonne-kilomètre

V.A.N: Valeur Actuelle Nette

LISTE DES TABLEAUX

Tableau 1: Récapitulation de l'évolution du transport ferroviaire dans le monde	3
Tableau 2:Récapitulation de la voie ferrée de Madagascar	5
Tableau 3:Types des rails suivants les lignes	9
Tableau 4: Ecartements de la voie dans le Monde	<i>26</i>
Tableau 5: Variation de l'écartement de la voie en fonction du rayon de courbure	<i>27</i>
Tableau 6: Variation du devers en fonction du rayon de courbure	<i>28</i>
Tableau 7: Répartition de population dans chaque région	<i>37</i>
Tableau 8: Prévision de la population dans les 25 ans à venir	38
Tableau 9 : Croissance démographique de la zone d'influence	38
Tableau 10: Superficie agricole	39
Tableau 11: Répartition des superficies cultivées par type de culture (Campagne 2001) -	39
Tableau 12: la répartition des produits par région	40
Tableau 13: Effectif du cheptel de chaque région	41
Tableau 14: Effectif des volailles par région	41
Tableau 15: Autres élevages	42
Tableau 16: Situation des projets Agréés dans la région Analamanga	43
Tableau 17:Situation des établissements économiques de la région Atsinanana [unité] -	44
Tableau 18: Train DIA SOA: Moramanga – Toamasina (TCE)	47
Tableau 19: Train DIA SOA: Moramanga – Vohidiala (MLA)	48
Tableau 20: Prévision du trafic marchandise dans 10 ans (en tonnes)	48
Tableau 21: Prévision du trafic marchandise dans 10 ans (en tonnes kilomètres)	49
Tableau 22:Calcul pour la loi de GUMBEL	<i>57</i>
Tableau 23 : Calcul des pluies de diverses fréquences (Loi de GUMBEL)	58
Tableau 24 : division de l'échantillon de n valeurs	58
Tableau 25: Valeur de Vi	59
Tableau 26: Calcul pour la loi de FRECHET	60
Tableau 27: Calcul des pluies de diverses fréquences (loi de FRECHET)	61
Tableau 28: Calcul de Vi nombre théorique des valeurs contenues dans la classe i	62
Tableau 29: Calcul intervalles de confiance (Loi de FRECHET)	63
Tableau 30:Calcul pour la loi de PEARSON III	64
Tableau 31: Calcul des pluies de diverses fréquences (loi de PEARSON III)	65
Tableau 32 : Calcul de Vi nombres théoriques des valeurs contenues dans la classe i	65

Tableau 33 : récapitulations des pluies journalières de période de retour P	67
Tableau 34 : Détermination de la hauteur d'eau h	69
Tableau 35: les variantes	<i>75</i>
Tableau 36: devis sommaire variante n°1	84
Tableau 37: devis sommaire variante n°2	85
Tableau 38 : comparaison des variantes	86
Tableau 39: Analyses multicritères	87
Tableau 40 : Caractéristique de la poutre principale	96
Tableau 41 : Valeur des CRT	- 100
Tableau 42: Valeur de traçage de la ligne d'influence des efforts tranchants	- 102
Tableau 43: efforts tranchants dus aux charges permanentes	- 104
Tableau 44: Efforts tranchants due aux surcharges	- 105
Tableau 45:Récapitulation des efforts tranchants	- 105
Tableau 46: Valeur de traçage de la ligne d'influence des moments fléchissants	- 105
Tableau 47: Moment fléchissant dus aux charges permanentes	- 106
Tableau 48: Moment fléchissant du aux surcharges d'exploitation	- 107
Tableau 49: Récapitulation des moments fléchissants de la poutre	- 107
Tableau 50: valeurs de paramètres de traçage des câbles	- 114
Tableau 51: Ordonnées des câbles	- 114
Tableau 52: fuseau limite	- 115
Tableau 53 : vérification du tracé de câble	- 115
Tableau 54: Tension probable en [MPa] après pertes de tension instantanée	- 118
Tableau 55: Perte de tension différée totale	- 120
Tableau 56: Tension finale après toutes les pertes	- 120
Tableau 57:Caractéristiques géométriques de la section nette de la poutre seule	- 124
Tableau 58:Caractéristiques géométriques de la section nette de la poutre + hourdis	- 124
Tableau 59: Contraintes normales dans le béton (fibre inférieure et supérieure) pour les	ï
différentes phases	- 124
Tableau 60:Calcul de Pi sin $lpha$	- 125
Tableau 61: Valeurs de $\sigma_{\!\scriptscriptstyle xmj}$ et $\sigma_{\!\scriptscriptstyle tej}$ en MPa	- 128
Tableau 62: Calcul de A _{cj}	- 129
Tableau 63: Récapitulation des sollicitations	- 137
Tableau 64: Caractéristiques de la section des entretoises	- 142

Tableau 65: coefficient de majoration dynamique	143
Tableau 66: Moment fléchissant due aux charges permanentes	147
Tableau 67: Moment fléchissant due aux surcharges	147
Tableau 68: Récapitulation des sollicitations appliquées aux entretoises d'about et	
intermédiaire	149
Tableau 69: Valeurs des sollicitations mur garde grève	161
Tableau 70: Valeurs sollicitation mur en retour	164
Tableau 71: Valeurs des sollicitations dues aux forces verticales sur le mur de front	166
Tableau 72: Sollicitation du mur de front	167
Tableau 73: Extrait du résultat de l'essai pressiométrique	170
Tableau 74: Classification des sols	170
Tableau 75: Valeurs du coefficient de portance K_p	171
Tableau 76: Termes de frottement	171
Tableau 77: Justification aux états limites des pieux	1 <i>7</i> 5
Tableau 78:Caractéristique du rail de 40 Kg/ml	180
Tableau 79: Valeur de Ai	188
Tableau 80: Sous détails de prix du béton dosé à 400 kg/m³	189
Tableau 81: Sous détail de prix du béton dosé à 350 kg/m³	189
Tableau 82: Sous détail de prix du béton dosé à 150 kg/m³	190
Tableau 83: Sous détail de prix de l'acier HA	190
Tableau 84: Sous détail de prix du coffrage	191
Tableau 85: Sous détail de prix du ballast	191
Tableau 86: Sous détail de prix de la pose rail de 40 kg/ml	192
Tableau 87: Sous détail de prix de la pose des traverses en B.A	192
Tableau 89: Sous détail de prix pour forage des pieux	193
Tableau 88: Sous détail de prix de la dépose voie	193
Tableau 90: Devis quantitatif	195
Tableau 91: Bordereaux détail estimatif	197
Tableau 92: Récapitulation du coût du projet	197
Tableau 93: Valeur de la recette nette	199
Tableau 94: Valeurs des paramètres pour la détermination de la V.A.N	200
Tableau 95: Impacts positifs pendant travaux	203
Tableau 96: Impacts positifs après travaux	204

LISTE DES FIGURES

Figure 1: Schéma représentative d'un Rail	8
Figure 2 : Joint appuyé	14
Figure 3 : Joint suspendu ou en porte-à-faux	14
Figure 4: Plan de pose des rails	14
Figure 5: Fixation par éclisse	15
Figure 6:Vue en Long d'une éclisse	16
Figure 7:Les éléments de fixation des rails sur traverse en bois	17
Figure 8: Fixation du rail sur une traverse en bois	17
Figure 9: Fixation d'un rail sur une traverse métallique	17
Figure 10: Fixation d'un rail sur une traverse en Béton Armé	18
Figure 11: Traverse en Bois	19
Figure 12: Traverse métallique	20
Figure 13: Traverse en Béton Armé	21
Figure 14: Variation contrainte	23
Figure 15: Le branchement	24
Figure 16: Détails d'un essieu	25
Figure 17: Devers dans la courbe	28
Figure 18: Courbe de raccordement	29
Figure 19 : tracé déclivité	31
Figure 20:Schéma de calcul pour la détermination de h	68
Figure 21: Courbe de tarage	69
Figure 22: variante n°1	76
Figure 23: variante n°2	81
Figure 24: allure de l'âme de la poutre principale (vue en plan)	82
Figure 25: Coupe transversale du dalot en gabion	88
Figure 26: Détail A (dalot en gabion)	89
Figure 27: Vue longitudinale du dalot en gabion	89
Figure 25: Coupe transversale de la superstructure	94
Figure 26: Dimensions transversales de la poutre principale	95
Figure 27: Détermination de l _o	98
Figure 28: ligne d'influence de la CRT des poutres	100
Figure 29: Ligne d'influence des efforts tranchants	103

Figure 30: Diagramme des efforts tranchants dus aux entretoises	104
Figure 31: Ligne d'influence des moments fléchissants	106
Figure 32:Ferraillage d'éclatement de la zone d'about	127
Figure 33: Frettage pour les câbles arrêtés en travée	129
Figure 34: Dimension de la poutre surchargée de la dalle	134
Figure 35: Section de calcul des sollicitations de l'encorbellement	136
Figure 36: Garde Ballast	140
Figure 37: Répartition des charges sur l'entretoise d'about	142
Figure 38: Répartition des charges sur l'entretoise intermédiaire	142
Figure 39: LI du moment M_A à l'appui gauche de l'entretoise d'about	145
Figure 40: LI du moment Mo à mi-travée de l'entretoise d'about	145
Figure 41: LI du moment M_B à l'appui droit de l'entretoise d'about	145
Figure 42: LI du moment MA à l'appui gauche de l'entretoise intermédiaire	145
Figure 43: LI du moment Mo à mi-travée de l'entretoise intermédiaire	145
Figure 44: LI du moment MB à l'appui droit de l'entretoise intermédiaire	146
Figure 45: LI des efforts tranchants de l'entretoise d'about	148
Figure 46: LI des efforts tranchants de l'entretoise intermédiaire	148
Figure 47: Appareil d'appui en élastomère	155
Figure 48: Culée	159
Figure 49: Section de calcul mur garde grève	161
Figure 50: Schéma de calcul	162
Figure 51: Semelle	172

LISTE DES PHOTOS

Photo 1: Trace de patinage	-50
Photo 2: Dégradation de la couche de Ballast	51
Photo 3:Déversement de la file de rails	-51
Photo 4: Corrosion au niveau de la membrure supérieur	-53
Photo 5: Corrosion au niveau de la membrure inférieure	-53
Photo 6: Corrosion au niveau du longeron	54

LISTE DES ANNEXES

ANNEXE I-1 : Table de distribution χ^2 de PEARSON

ANNEXE I-2: Estimation des crues. Seuil de 90 %

ANNEXE I-3 : Valeurs de $\varphi(\gamma)$

ANNEXE I-4: Loi de PEARSON III F (x)

ANNEXE I-5 : Valeurs de l'intégrale de GAUSS F (u)

ANNEXE I-6 : Tableau donnant les valeurs de $\delta \left(\pm 2\,\sigma.a\,/\,\gamma\right)$ pour la détermination des intervalles de confiance dans la loi de PEARSON III

ANNEXE II-1 : Perte de tension instantanée

ANNEXE II-2 : Perte de tension différée

ANNEXE III : Divers plan de ferraillage

ANNEXE IV : Déterminations du frottement latéral unitaire qs pour un élément de fondation

ANNEXE V : Carte du réseau nord (Madarail)

ANNEXE VI: Convoi type

ANNEXE VII : Fixation du rail sur la traverse en Béton Armé

ANNEXE VIII: Profil type

INTRODUCTION

Après l'indépendance de Madagascar, le chemin de fer est devenu un important soutien au développement socio-économique du pays. Il a contribué au désenclavement des régions forestières traversées. En outre, avant le bitumage de la RN2, la grande majorité du fret et des hydrocarbures passe par le train. De nombreux villages sont devenus des villes avec la gare comme édifice principal avant tout autre bâtiment administratif. Dans le cadre du désengagement de l'Etat du secteur productif, la gestion et l'exploitation du Réseau ferroviaire Nord sont effectivement privatisées depuis Juillet 2003, tandis que celle du réseau Sud est en vue.

Actuellement, la société MADARAIL, en considération de la politique de l'état et pour les besoins même de la société, projette de revaloriser la voie ferrée du réseau Nord de Madagascar. Malgré les efforts effectués, l'entretien des infrastructures ferroviaires est encore insuffisant. Beaucoup d'ouvrages, en effet, sont dans des états tels qu'ils nécessitent des réhabilitations voire des reconstructions.

Cependant, les dégradations des ouvrages ne sont pas les seuls motifs justifiant leur remplacement. Leur ancienneté ainsi que leur niveau de service non adaptable à l'évolution croissante du trafic ne devront pas être négligés.

Face à ces problèmes touchant l'économie, la société et l'Etat, le présent mémoire de fin d'Etudes intitulé: « ETUDE DE LA RECONSTRUCTION DU PONT FERROVIAIRE au PK 140 + 180 de la ligne T.C.E» aura l'objet d'apporter les éléments d'appréciation et des solutions plus rationnelles.

Pour l'élaboration de l'étude, un plan précis a été conçu :

- La première partie nous montre la généralité sur le transport ferroviaire ;
- Ensuite, la deuxième partie se concentre sur l'étude socio-économique et environnementale de la zone d'influence ;
- La troisième partie traite l'étude technique ;
- Et enfin, la dernière partie aborde l'évaluation financière et les études d'impacts environnementaux du projet.

Les pages qui suivent apportent des explications plus amples sur ces différents titres selon les parties appropriées.

GENERALITE SUR LE TRANSPORT FERROVIAIRE

CHAPITRE I HISTORIQUE DE LA VOIE FERREE

CHAPITRE II NOTION DE LA VOIE

Chapitre I: Historique de la voie ferrée

1.1. Histoire du transport ferroviaire dans le monde

C'est dans le transport des mines, au milieu du XVI ^{éme} siècle, que se situe la première forme du guidage des véhicules : les roues des chariots roulant au-dessus des rails en bois, pour transporter des charges lourdes.

Le premier chemin de fer public du monde a été créé en 1802, tracté par des chevaux en Angleterre après l'apparition, à la moitié du XVII ^{éme} siècle des rails métalliques et de la machine à vapeur.

Voici des dates marquant l'histoire du réseau ferroviaire dans le monde :

Dates	Evénements	
1770	Construction de la première voiture à vapeur par l'ingénieur français Joseph	
	Cugnot	
1803	Réalisation de la première locomotive de l'histoire, conçue par l'ingénieur	
	britannique Richard Trevithick. Elle fut testée avec succès dans le sud du pays	
	de Galles.	
1825	Mise en service de la première voie ferrée, en Angleterre, près de Newcastle.	
	Cette ligne était destinée exclusivement au transport du charbon.	
1827	Essor de la traction à vapeur grâce à l'invention de la chaudière tubulaire par	
	l'ingénieur français Marc Seguin.	
1830	Installation de la première ligne de chemin de fer assurant le transport de	
	voyageurs, entre Liverpool et Manchester.	
1830	Invention par l'Américain Stevens du rail à patin, connu en France sous le nom	
	de rail Vignoles.	
1831	Invention de bogie (Articulation du châssis du wagon) par John Tarvis.	
1832	Première ligne régulière de transports de voyageurs en France entre Saint-	
	Etienne et Andrézieux ; et apparition premier réseau ferroviaire en Amérique.	
1842	Construction de la première Locomotive électrique par l'écossais Davidson.	
1879	Mise au point de la traction par locomotive électrique par l'ingénieur allemand	
	Werner Von Siemens.	
1901	Fonctionnement du premier train monorail en Allemagne.	
1908	Construction par l'Italien Belluzo de la première locomotive à turbine à vapeur.	
1911	Réalisation de la première locomotive turboélectrique.	

1912	Fabrication en Allemagne de la première locomotive à moteur Diesel.
1924	Construction d'une locomotive électrique Diesel par l'Américain Hermann
	Lemp.
1931	Inauguration des autorails Renault et des «Micheline » sur pneumatique.
1941	Mise au point en suisse d'une locomotive à turbine à gaz et à transmission
	électrique.
1964	Mise en service au Japon du premier train à grand vitesse. Le Shinkansen
	pouvait rouler jusqu'à 210 km/h.
1981	Inauguration du premier TGV Français, le TGV Sud-est, entre Paris et Lyon,
	atteignant une vitesse commerciale de 270 km/h.
1990	Record de vitesse d'une rame TGV à 515,3 km/h.
2001	Mise en service du TGV méditerranée, reliant Paris à Marseille en 3 heures.

<u>Tableau 1</u>: Récapitulation de l'évolution du transport ferroviaire dans le monde

I.2. Histoire du transport ferroviaire à Madagascar

C'est en 1901, que commencèrent les travaux de construction des voies ferrée à Madagascar. Avant même 1869, il y avait déjà des projets de construction de chemin de fer, pourtant ça n'a pu se réaliser qu'au début de XX ^{éme} siècle. A cette époque, le but recherché dans la construction du réseau était à la fois commercial et stratégique d'où il y avait alors quatre propositions de variante pour l'amélioration des communications entre Antananarivo et la côte de la grande île .Ce qui préoccupa le gouverneur général GALLIENI dès son arrivée à Madagascar.

I.2.1 Choix de la variante

Le but du choix et de rechercher la variante le plus rationnelle. Pour cela, Ils ont primordiaux les critères suivantes:

- Les caractéristiques géographiques du trajet : distance et itinéraire de la ligne,
 qui permettent de savoir le coût du projet ;
- Les analyses de l'environnement socio-économique de chaque région, ce qui amènent à la réalisation du tracée.

La première proposition était de relier Antananarivo avec Diégo Suarez qui est le plus proche de l'Europe. Mais on a remarqué que ce n'était pas très économique à cause de sa distance par rapport à l'Imerina, l'absence de débouchés naturels. Donc elle était à annuler.

Le deuxième choix était de relier Mananjary avec Antananarivo. Celui-ci a été refusé à cause de l'existence de nombreux récifs à fleur de l'eau ce qui empêchent les navires d'accoster et de la distance relativement assez grande.

La troisième proposition était de relier Antananarivo à Mahajanga qui est la ville plus proche de l'Afrique. Si Mahajanga a été abandonné c'est parce qu'il faut 600 [Km] de voie au moins, donc le problème de distance se pose. Ainsi, sur le fait que cette partie de l'île était très peu peuplée en ce temps, de plus, il y avait trop d'érosion, trop de fleuve et la portée des ouvrages d'arts est très longue.

Le choix de Tamatave semble donc le meilleur. La distance n'était pas trop grande, la région était déjà plus ou moins peuplée en ce temps, de plus Tamatave possède le plus grand port de l'île. De par sa position géographique, il remplit le mieux les conditions nécessaires au développement du pays.

Les travaux durèrent douze ans de 1901 à 1913, qui se divisent en deux parties. La construction a été réalisée par l'Entreprise **SMOTIG** et les mains d'œuvres sont des ouvriers Chinois et Indiens, car les Malagasy ne voulaient pas contribuer à la construction.

On inaugurait cette ligne Tananarive Côte Est abrégée TCE.

La ligne TCE fut terminée, les colons espéraient alors revenir à l'une des propositions précédentes, celle d'Antanarivo – Mahajanga. Mais ils doutaient des conditions climatiques des côtes de Madagascar après tout ce qu'ils ont vu lors de la construction à Tamatave. Même, le coût de projet pourrait s'élever.

Le projet ne resta pas là puisque ce même tracé est rallongé par une ligne vers Antsirabe, centre urbain de première importance, qui dura dix ans entre 1913 et 1923 nommé Tananarivo – Antsirabe ou simplement **TA**. Il y a quelques années, cette ligne a été prolongée de 12 Km jusqu'à la gare de Vinaninkarena.

Les colons désiraient revenir à leur première proposition, celle de relier Antananarivo vers Diego Suarez. Mais ils voulaient s'aventurer à Lac Alaotra et favorisent ainsi le développement de cette region. Les travaux durèrent neuf ans de 1914 à 1923, baptisée Moramanga Lac- Alaotra ou **MLA**. Un embranchement de 20 Km a été construit en 1969 au départ de la gare de Vohidiala vers Morarano Chrome où se fait le chargement du minerai et concentré de chrome qui est exploité dans une mine située dans un site montagneux. Toutes ces lignes constituent le Réseau Nord du Chemin de Fer Malagasy.

En 1927, ils décidaient de construire la ligne relie la ville de Fianarantsoa et le port de Manakara. Finie en 1936, on l'appelle Fianarantsoa Côte- Est ou simplement **FCE**. C'est le Réseau Sud du Chemin de Fer Malagasy.

En définitive, le réseau ferroviaire Malagasy comprend 928 Km de voies réparties en deux réseaux non liées entre eux dont le classement est le suivant :

Classement	Année de construction	Longueur en Km
Antananarivo-Tamatave [TCE]	1901-1913	376
Antananarivo-Antsirabe [TA]	1913-1919	158
Moramanga –Lac Alaotra [MLA]	1913-1923	186
Fianarantsoa – Manakara [FCE]	1927-1936	163
Morarano Chrome – Vohidiala	En 1936	20
Antsirabe-Vinaninkarena	=	20
Antananarivo-Alarobia	-	5
TOTAL		928

<u>Tableau 2</u>:Récapitulation de la voie ferrée de Madagascar

1.2.2 Mise en concession du réseau de chemin de Fer Nord

Après l'Indépendance, la RNCFM a pris en charge de la gestion du chemin de Fer Malagasy. Une convention de concession a été signée le 10 Octobre 2002 entre Madagascar et COMAZAR une société Sud –Africain, et ce, pour un délai de 25 ans à partir de sa mise en concession le 1 Juillet 2003. La société COMAZAR est dirigée par deux groupes actionnaires : l'un est BOLLORE (société Française) et l'autre SHELTAM (société sud-africain).

En tant que concessionnaire, la société privée de droit malagasy **MADARAIL** remplace la **RNCFM**, société d'état, dans la gestion et l'exploitation commerciale des lignes ferroviaires Antananarivo-Antsirabe (TA), Antananarivo-Toamasina (TCE) et Moramanga Lac Alaotra (MLA).

Le principe retenu est de confier à un opérateur privé la responsabilité de la gestion, de l'entretien, voire de l'amélioration des infrastructures ferroviaires ainsi que de l'ensemble de l'exploitation commerciale du matériel roulant. Comment il s'agit non pas d'une cession, mais d'un contrat de concession, l'Etat malagasy reste propriétaire de toutes les infrastructures. La société MADARAIL, quant à elle, exploite les services de transports.

Chapitre II: Notion de la voie ferrée

II.1. Généralité

Il est bien nécessaire de comprendre ce que désigne la voie. De ce fait, la notion de voie ferrée est l'objet de ce chapitre.

La caractéristique essentielle du chemin de fer réside dans la continuité du guidage des essieux avec un contact acier sur acier et qui ne peut aborder de forte pente, en raison de la limite d'adhérence.

Quatre groupes sont à considérer :

- La superstructure de la voie ;
- Les appareils de voie;
- La plate forme de la voie;
- Les caractéristiques géométriques de la voie.

II.1.1 <u>La superstructure de la voie ferrée</u>

La superstructure de la voie est constituée par :

- Les deux files de rail en acier;
- Les organes de liaison entre barres élémentaires des rails ;
- Les organes de fixation des rails sur la traverse ;
- Les traverses ;
- Le ballast.

a. Les rails

Le rail est la partie de l'armement de la voie, qui ont pour rôles de :

- Recevoir la forces dynamique venant des roues des matériels roulants ;
- Transmettre les forces dynamiques vers la partie sous-jacente de la superstructure de la voie;
- Guider les bogies des matériels roulants sur les alignements droits et dans les courbes.

a.1 Historique du rail

Au début du XVII ^{éme} siècle, les rails étaient en bois de section carrée. Une lame métallique posée sur la surface de contact empêchait l'usure du rail.

Vers la moitié du XVII ^{éme} siècle, on a substitué les rails en bois revêtu de lame d'acier par des rails en fonte puis de cornière en fonte et en acier .Ces types de rails étaient utilisés pour le transport de matériaux et de marchandises de faible masse (chariots tirés par des chevaux) .

En 1832, l'ingénieur Américain Robert STEVENS et l'ingénieur Anglais Charles VIGNOLES ont inventé le rail simple champignon ou rail type Vignoles. Ce rail est considéré comme une poutre de longueur infinie reposant sur une infinité d'appuis qui sont les traverses. Les caractéristiques mécaniques de ces forces appliquées aux rails ont montré que la meilleure section d'un rail est la section en I, cette section possède un moment maximal par rapport à l'axe vertical passant par son centre de gravité, donc, la contrainte de flexion du rail est minimale.

En 1835 l'ingénieur Anglais Lock a inventé le type du rail à double champignon qui est employé par l'Ingénieur Anglais Georges STEPHENSON. On a appelé ce type de rail : rail type STEPHENSON

Dans tous les réseaux ferroviaires du monde le rail de type VIGNOLES est le plus utilisé.

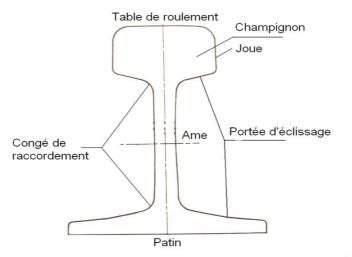


Figure 1: Schéma représentative d'un Rail

a.2 Caractéristique des rails

a.2.1. Acier du rail

Les principales qualités exigées du rail sont les suivants :

- Résistance à l'abrasion ;
- Absence de fragilité;
- Soudabilité en vue de la confection des barres longues ;
- Adaptation facile à la production nationale pour obtenir un prix de revient acceptable.

a.2.2 Poids du rail

La caractéristique essentielle d'un rail, en dehors de sa forme, est son poids au mètre linéaire. Ce qui compte dans la résistance est évidement l'inertie verticale.

On cherche à utiliser l'augmentation de poids pour augmenter cette inertie, et en général ceci se traduit par des profils, non pas géométriquement semblables, mais plus élancés ; il s'ensuit que I/P augmente plus rapidement, I étant l'inertie verticale et P le poids métrique. D'après l'expérience des pays avancés, on a montré que plus le rail est puissant, moins il y a de dépense d'entretien.

Les rails utilisés à Madagascar évoluent selon l'accroissement du trafic, voici quelques types de rail utilisé dans les réseaux ferroviaire Malagasy :

LIGNES	POIDS DE RAILS (Kg)
Tananarivo- Côte Est [TCE]	25 à 40
Tananarivo- Antsirabe [TA]	25
Moramanga –Lac Alaotra [MLA]	25 à 36
Fianarantsoa-Côte Est [FCE]	25 à 30

<u>Tableau 3</u>:Types des rails suivants les lignes

Quelques types de rail utilisé dans les autres pays que Madagascar :

- En Angleterre : rail de 30 à 70 Kg/ml ;
- En Allemagne : rail de 30 à 64 Kg/ml ;
- Aux Etats-Unis : rail de 38 à 75 Kg/ml ;
- En France et Belgique : rail de 30 à 60 Kg/ml. Le rail de 64 Kg/ml est réservé pour la ligne des trains à grandes vitesses (TGV);
- En Russie : rail de 33 à 75 kg/ml.

a.2.3 Longueur du rail

Les longueurs du rail sont en fonction du lieu où ils sont installés. Elles varient entre 8 [m] et [18]. Ces types de rails normaux sont posés dans les alignements droits, dans les files extérieures des courbes .Pour les rails courts, ils sont destinés aux files intérieures des courbes dont le but est l'équerrage des joints à la tolérance admis (\pm 5) par rapport à l'axe de la voie.

Ils existent aussi les rails à barre longue ou LRS

a.3 Long rail soudé ou LRS

Les **longs rails soudés** ou **LRS**, appelés aussi « barres longues », constituent une méthode moderne de pose des voies ferrées qui présente l'intérêt de supprimer la plupart des joints de rails sur des longueurs importantes, souvent de plusieurs kilomètres. Dans ce cas la longueur des rails est de : 120 m à 800 m et peuvent même atteindre 1000 m.

Ces barres longues, sont posées et soudées entre elles sur place par soudure aluminothermique. Elles sont fixées aux traverses par l'intermédiaire d'attaches élastiques.

C'est la méthode de pose adoptée pour toutes les lignes à fort trafic, et notamment les lignes à grande vitesse.

a.3.1 Historique

Depuis les origines du chemin de fer, la dilatation des rails a été source de désagrément pour les exploitants ferroviaires.

Comme, de toute façon, la technologie alors disponible ne permettait pas d'avoir de longs rails, ce problème fut résolu en laissant, aux joints entre les rails, un espace suffisant à leur libre dilatation. Une voie posée selon cette méthode est dite en « **barres normales** ».

Cependant, les joints, du fait de cette discontinuité du roulement, entraînent des chocs au passage des roues. Outre l'inconfort ressenti par les passagers, ces chocs entraînent une usure des constituants du joint ainsi que du ballast sous les traverses supportant le joint et nécessitent un entretien très régulier.

Les exploitants ont donc toujours cherché une solution pour supprimer les joints. C'est ainsi que, dès les années 1930, fut théorisé le fonctionnement des LRS. Mais les matériaux de l'époque, en particulier les attaches rigides, n'assuraient pas un maintien suffisant et ne permettaient donc pas une mise en œuvre aisée de cette nouvelle

Les Eléments de la voie ferrée

technologie. Il fallut attendre la mise au point des attaches élastiques pour reprendre l'expérimentation puis passer à la généralisation du procédé.

a.3.2 Avantages et inconvénients

Les LRS présentent deux principaux avantages, qui sont la conséquence de la suppression des joints éclissés :

- une réduction des coûts d'entretien de la voie ;
- une meilleure qualité de roulement et plus grand confort pour les voyageurs.

Les inconvénients, largement compensés par les avantages, sont :

- une technicité plus grande pour la mise en œuvre et leur entretien, nécessitant un personnel bien formé;
- un risque de déformation par flambement de la voie sous les contraintes de compression excessive lors de période de très fortes chaleurs (mais ce risque existe aussi en barres normales);
- cette compression sous températures élevées entraîne également des risques de déformations lors de travaux effectués sur les rails, le ballast ou les attaches durant la saison chaude. Pour cette raison, sauf à prendre des précautions particulières comme par exemple une limitation de la vitesse, on n'entreprend pas de travaux de nivellement en Eté sur des voies en LRS;
- un risque accru par rapport aux barres normales de rupture de rail lors des périodes de grand froid du fait de la tension régnant dans les barres;
- une utilisation de quantité de ballast plus importante afin de mieux ancrer les traverses.

Pour minimiser le risque de déformations de voie, les LRS ne sont en général pas utilisées sur les voies sinueuses ou sur les terrains de mauvaise stabilité.

a.4 <u>La libération des contraintes</u>

Pour limiter les contraintes, la pose des barres longues devrait idéalement se faire à une température moyenne entre les extrêmes attendus appelée « température de référence ».

Pour ce faire, la pose de rails est suivie d'une opération appelée « libération des contraintes » visant à homogénéiser les contraintes à l'intérieur du rail et à le fixer ensuite conformément à la température de référence souhaitée.

L'homogénéisation des contraintes est obtenue de la façon suivante :

- on détache le rail des traverses,
- on insère des rouleaux sous le rail afin qu'il puisse librement se déplacer dans le sens longitudinal,
- on le met en vibration en le frappant à l'aide de masses caoutchoutées prévues à cet effet.

Ensuite, en fonction de la température réelle du rail :

- si elle est proche de la température de référence idéale, on refixe les rails tels quel et
 l'on soude (Libération à température naturelle);
- si elle est inférieure (cas le plus fréquent car on évite ce type de travaux par temps chaud), les rails sont mis en traction à l'aide de vérins hydrauliques afin de compenser la différence avec la température de référence puis on refixe les rails et l'on soude (*Libération* à l'aide de vérins hydrauliques);
- si enfin elle est trop élevée, on effectue une *libération à température naturelle*. Ce type de pose entraîne l'inconvénient de devoir revenir, lorsque les conditions de température réelle le permettent, effectuer une nouvelle *libération* afin d'être conforme à la température de référence idéale. Si cette nouvelle *libération* n'est pas effectuée à temps, on risque, lors des premiers grands froids suivants, des ruptures du rail dues à de trop fortes contraintes de traction.

a.5 <u>Notion de température</u>

La température dont il est question dans ce manuel n'est pas la température ambiante, mais celle du métal constituant le rail proprement dit. Celle-ci peut être très différente de la température ambiante.

On mesure cette température soit :

- en plaquant un thermomètre sur l'âme du rail.
- en utilisant un thermomètre introduit dans un trou percé dans un coupon de rail de mêmes caractéristiques que le rail constituant le LRS et soumis aux mêmes conditions extérieures.

a.6 Soudure aluminothermique

La soudure aluminothermique découverte en 1894 est applicable aux aciers et au cuivre. Elle consiste à obtenir un métal d'apport très chaud (plus de 2000 °C) en faisant

Les Eléments de la voie ferrée

réagir de l'aluminium en grenaille sur de l'oxyde de fer ou de cuivre, qui sont des oxydes faciles à réduire.

Les parties d'éléments à assembler ou des pièces à réparer ou à recharger par soudage sont enserrées, en position convenable dans un moule en sable hautement réfractaire comportant pour empreinte l'emplacement de la soudure ou du rechargement, le jet de coulée en source ainsi qu'un évent à la partie supérieure. Un chenal, bouché ensuite, est généralement ménagé. Il sert au préchauffage de l'ensemble par un brûleur.

Le mélange réactif, dénommé thermite ou calorite, auquel est ajouté dans le cas de l'acier, de la mitraille pour tempérer la réaction et des ferro-alliages pour améliorer le produit, est placé dans un creuset disposé au-dessus du bassin de coulée.

Une poudre d'amorçage portant à 1300°C le point du mélange, amorce la réaction, très rapide par la suite. Par un trou de coulée à la base du creuset, le métal engendré est versé dans l'empreinte et le soudage a lieu. L'alumine résiduelle qui surnage en excès est recueilli dans le bassin de coulée appelé bac à corindon.

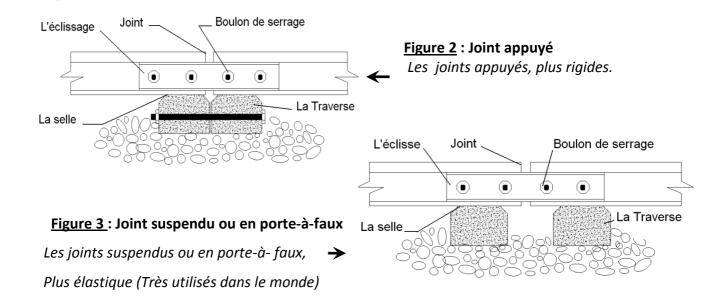
b. Les organes de liaison entre barres élémentaires des rails

Elles ont pour rôle de relier les barres élémentaires des rails entre elles au niveau des joints.

La liaison entre barres élémentaires des rails est assurée :

- par des éclisses en acier, qui sont dites plates ou cornières, suivant leur forme ;
- par soudure.

b.1 Les joints


Il doit être disposé entre deux rails consécutifs, pour éviter les déformations de la voie à des températures très élevées. Son ouverture varie en fonction des facteurs suivants :

- La longueur des rails ;
- La température maximale observée dans la région ;
- Le coefficient de dilatation linéaire de l'acier.

Les traverses de joints sont rapprochées pour donner une meilleure assise et on aperçoit deux types d'emplacement des joints :

- Joints suspendus ou en porte à faux ;
- Joint appuyé.

Les joints suspendus sont plus élastiques que les joints en porte à faux et dans ce cas l'usure des abouts de rail est moins considérable. C'est pour cela que les joints suspendus sont les plus répandus dans le monde.

Le plan de pose des joints se distingue de deux façons :

- Les joints en équerres ou joints concordants, quand les joints des deux rails parallèles sont situés perpendiculairement à l'axe de la voie;
- Les chevauchés ou alternés dans le cas contraire, mais avec des risques de ballotements.

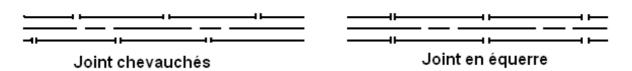


Figure 4: Plan de pose des rails

b.2 Les éclisses

L'éclissage permet d'assembler deux rails consécutifs. Il doit satisfaire aux conditions suivantes :

- Relier les barres de façon qu'ils se comportent comme une poutre continue, aussi bien en alignement qu'en courbe;
- Avoir une résistance à la déformation, qui approche plus près que possible, celle des rails qu'elles assemblent;
- Empêcher les mouvements verticaux et latéraux des extrêmes des rails l'une par rapport à l'autre tout en permettant leur dilatation;
- Etre aussi simple que possible et comporte de minimum d'élément.

Lorsque l'essieu arrive au voisinage du joint, l'extrémité du rail amont tend à fléchir comme une poutre en console ; d'où les portées d'éclissage du rail ont pour rôle à la fois un serrage efficace et le rattrapage du jeu, pour donner au rail une précontrainte opposée aux chocs des roues.

Pour jouer son rôle, il faut donc que l'éclisse soit coincée entre la portée supérieure et inférieure du rail.

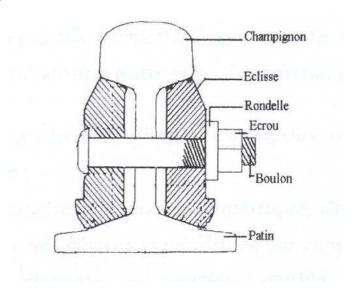


Figure 5: Fixation par éclisse

Le raccordement de deux rails de type différents est effectué par un éclissage spécial, de telles sortes que les surfaces de roulement des rails se trouvent dans le même plan. Toutefois, ces éclisses peuvent être utilisées normalement sur les voies de service.

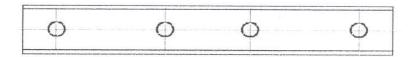


Figure 6: Vue en Long d'une éclisse

c. Les organes de fixation des rails sur les traverses

Les organes de fixation des rails dépendent du type de traverse où ils s'attachent :

- Traverse en Bois ;
- Traverse Métallique;
- Traverse en Béton Armé

c.1 Fixation sur les traverses en Bois

Les rails sont fixés sur les traverses par :

- Le tire-fond (vis à bois);
- Les crampons (gros clous à section carrée);
- Les crampons élastiques.

Le tire-fond doit être fixé perpendiculairement aux tables de sabotage des traverses et s'appliquer sur le patin des rails. Par rapport au crampon le tire-fond est moins résistant et s'étendent facilement mais on obtient une adhérence parfaite du rail sur le traverse, mais il s'aboutisse un vide entre la traverse et le ballast. Si on ne restitue pas ce vide par le bourrage, il pourrait s'accroître brusquement, donc la traverse danse.

Le crampon a une forte résistance latérale ; il maintient bien l'écartement de la voie, facile à poser, dès que le rail est déchargé, il se redresse, et comme la tête du crampon ne bloque pas les rails sur la traverse, il finit par se produire un jeu qui entraine un battement entre le rail et la traverse et cette dernière reste appuyée sur le ballast.

Les crampons élastiques n'offrent aucune possibilité de serrage du rail sur les traverses et conduisent très rapidement à un battement dans l'entaille, préjudiciable au nivellement du rail et à la bonne conservation de la traverse.

Figure 7:Les éléments de fixation des rails sur traverse en bois

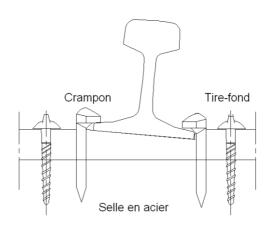


Figure 8: Fixation du rail sur une traverse en bois

c.2 Fixation sur les traverses métalliques

Les rails sont butés et fixés par des crapauds, ces derniers sont fixés sur la traverse métallique par des boulons. Des rondelles Grower sont intercalées entre l'écrou et le crapaud, afin de conserver le serrage de l'écrou.

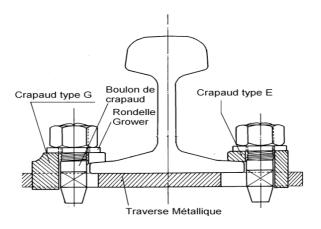


Figure 9: Fixation d'un rail sur une traverse métallique

c.3 Fixation sur les traverses en Béton Armé

Les rails sont fixés sur les traverses en béton armé par des boulons spéciaux ou des boulons tirefonds. Ces organes de fixation doivent être élastiques pour amortir les vibrations verticales et assurent une protection efficace des traverses. Une semelle ou un coussinet en caoutchouc intercalée entre le rail et la traverse sont nécessaires pour absorber les efforts dirigés vers le bas, afin d'éviter l'usure de la table de sabotage de ce dernier.

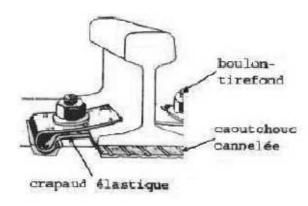


Figure 10: Fixation d'un rail sur une traverse en Béton Armé

d. Les traverses

Les traverses sont disposées perpendiculairement aux files des rails ou normalement à l'axe de la voie, dans les courbes et dans les alignements.

d.1 Rôles des traverses

Les traverses ont pour rôle de :

- Recevoir, amortir les efforts dynamiques venant verticaux et horizontaux des rails et les transmets vers la couche de ballast;
- Maintenir l'écartement de la voie ;
- Donner l'inclinaison des rails $\left(\frac{1}{18}ou \, \frac{1}{20}\right)$ vers le milieu.

d.2 Types de traverses

Les traverses sont spécifiées par la nature de leur matériau caractéristique :

- ⊯ Les traverses en Bois ;
- Les traverses en Béton Armé.

d.2.1 Traverses en Bois

i. Avantages

- Très élastiques, flexibles c'est-à-dire résistants aux efforts altérés auxquels sont soumises les traverses;

ii. Inconvénients

- Pose de danger pour l'environnement (pour 1 Km de voie if faut avoir 80 m³);
- Avec une durée de service faible de l'ordre de 15 ans.

iii. <u>Condition d'exploitation et traitement du bois pour traverse</u>

Le travail de coupure des bois destinés à la fabrication des traverses se fait dans la période d'hiver, ces bois doivent être droits, saines, sans pourriture ni nœuds ni des défauts d'autre sorte.

Les bois utilisés à la traverse doivent être traités avec des antiseptiques (chlorure de Zinc **ZnCL₂** ou le Fluore de sodium **NaF**. Ce traitement est réalisé sous une pression de 8 à 12 atmosphères pendant 45 à 60 minutes avec une température de 80 à 100°C. D'après MADARAIL, la dimension des traverses en bois de Madagascar est le suivant :

b 150 mm

B: 200 mm

H: 150 mm

L: 1800 mm

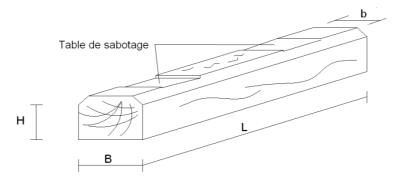


Figure 11: Traverse en Bois

On appelle table de sabotage ou table d'appui la partie en contact avec les rails, et les deux parties gauche et droite des files d'épaulement.

d.2.2 Les traverses métalliques

Les traverses métalliques doivent être en acier, nuance 70, qui sont des produits de fabrication industrielle obtenus par laminage et matriçage dont la forme peuvent être plates ou pincées, renversées terminées aux extrémités par des bêches.

La bêche a pour rôle de tenir le ballast sous la traverse, de fixer le bourrage et de créer un effort antagoniste qui fixe les rails et qui a tendance à se translater à gauche ou à droite.

Il y a deux trous qu'on appelle lumière servant à l'emplacement des attaches.

i. Avantages

- Moins d'entretien que la traverse en bois ;
- Durée de vie d'une quarantaine d'années ou plus ;
- Elastiques et dures.

ii. Inconvénient

- Elles admettent les corrosions ;
- Difficile d'introduire les gravillons dans la partie évidée de la traverse;
- -Coût élevé.

Les dimensions sont fixées comme suit :

- 1800 mm x 233 mm x 75 mm
- L'épaisseur est de 8 mm.

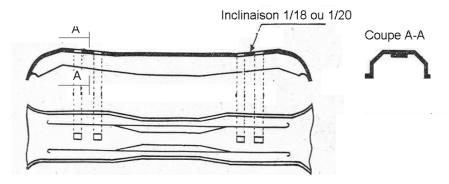


Figure 12: Traverse métallique

Elles sont conçues pour donner directement l'inclinaison du rail $\binom{1}{18}ou \binom{1}{20}$

d.2.3 Les traverses en Béton Armé

Les traverses en Béton Armé sont des produits de fabrication industrielle qui utilisent du béton et de l'acier, soit monobloc ou bi bloc. Actuellement MADARAIL a lancé ce type de traverse à Madagascar.

Elles peuvent être exécutées en béton ordinaire ou en béton précontraint suivant divers types

i. Avantages

- Peuvent supporter des grandes charges ;
- Peuvent résister aux grands efforts et déplacements à cause de leur poids propre ;
- Elles permettent de contribuer à la conservation de la nature ;
- Leur durée de vie est très importante (de l'ordre de 40 à 60 ans).

ii. Inconvénients

- Plus lourdes à manipuler (environ 150 Kg);
- Pas de résistance aux efforts localisés superficiellement et aux fatigues alternées;
- Plus fragiles;

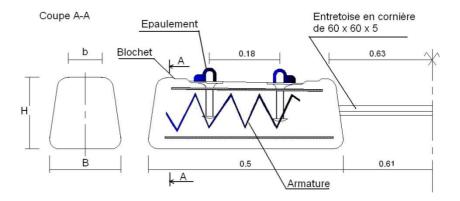


Figure 13: Traverse en Béton Armé

iii. <u>Caractéristiques</u>

L = 1600 -2400 à 2600 [mm]

B = 300 [mm]

H = 175 à 210 [mm]

b= 150 [mm]

Les Eléments de la voie ferrée

Ces traverses en béton Armé nécessitent l'emploi de dispositifs spéciaux en matière plastique pour amortir les charges venant du rail vers le béton. Le système de fixation des rails sur ce type de traverse est l'application des attaches doublement élastiques, le clip.

e. <u>Travelage</u>

C'est la manière d'ajuster les traverses perpendiculaires aux files des rails dans l'alignement et surtout normalement à l'axe de la voie dans les courbes, indique aussi le nombre de traverse au kilomètre de la voie.

A Madagascar, 1500 traverses au kilomètre de voie dans l'alignement droit pour une espace de 66 cm et 1600 traverses dans la courbe avec un espacement de 62 cm.

f. Ballast

Le ballast est le lit de pierres ou de graviers sur lequel repose une voie de chemin de fer.

f.1 Historique

En 1844 en France, une Encyclopédie des chemins de fer présente le terme ballast, utilisé dans les chemins de fer, comme un anglicisme inutile du fait de l'utilisation courante d'ensablement pour désigner le mélange de cailloux et sable répandu sur le sol sous la voie ferrée.

f.2 Rôle

Son rôle est de transmettre les efforts engendrés par le passage des trains au sol, sans que celui-ci ne se déforme par tassement. Le rôle du ballast est aussi d'enchâsser les traverses afin d'assurer une résistance aux déformations longitudinales, particulièrement importante pour la technique des longs rails soudés. Ils ont essentiellement une propriété d'amortir les vibrations provenant des matériels roulant, qui contribuent à la stabilité latérale et longitudinale.

En plus de ces fonctions mécaniques qui furent à l'origine de l'emploi du ballast, l'expérience a montré son rôle fondamental pour la protection de la plate forme contre l'humidité. Grâce à sa perméabilité, il assure l'évacuation des eaux de pluie et permet, en outre, l'évaporation de l'eau remontant à la surface de la plate forme.

f.3 <u>Matériaux</u>

On utilise généralement de la pierre concassée, de granulométrie variant entre 20 mm et 60 mm, de type plutonique : granite, diorite, etc...

Les carrières où l'on extrait et transforme ces matériaux sont les ballastières. Les éléments du ballast doivent s'imbriquer, de façon à former une masse compacte, mais perméable.

f.4 Contrainte

Le ballast subit deux types d'usure :

- contamination par des matériaux parasites, par exemple de la terre. On procède à des désherbages, mais il est nécessaire d'épurer le ballast régulièrement et enlevant les détritus inférieur à 20mm;
- tassement du ballast sous les traverses, ce qui provoque une déformation verticale de la voie. Il est alors nécessaire de bourrer du ballast sous les traverses. L'ensemble de la superstructure transforme la contrainte sur la surface de contact pour avoir une contrainte minimum à la plate forme.

Le schéma suivant illustre la variation de contrainte :

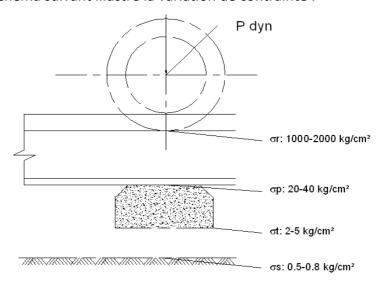


Figure 14: Variation contrainte

II.1.2 Les appareils de voie

L'appareil de voie est un dispositif permettant aux véhicules de passer d'une voie sur l'autre ou de traverser d'autres voies. Ces appareils peuvent être classés en trois groupes :

- Branchements simples (une voie directe, une voie déviée);
- Branchements doubles symétriques (une voie directe, deux voies déviées, symétriques par rapport à la voie directe);
- Traversées jonctions doubles (appareils permettant la traversée d'une voie par une autre voie et donnant la possibilité, à partir de l'une quelconque des quatre extrémités, d'ouvrir deux itinéraires différents).

Les caractéristiques d'un appareil de voie sont engendrés par :

- Sa longueur;
- Type de rail ;
- Son branchement;
- Son angle de déviation tel que tangente varie de 0,13 à 0,15.

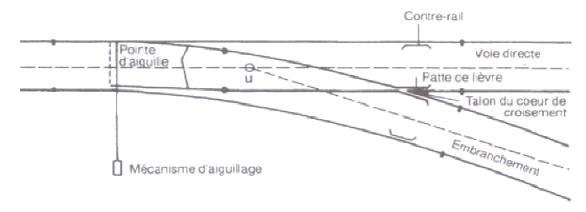


Figure 15: Le branchement

II.1.3 La plate forme

Elle est la dernière couche qui reçoit les charges transmises aux éléments de la superstructure. Elle est aménagée pour avoir un profil en toit dans les alignements et une pente unique dirigée vers le centre des rayons dans les courbes de façon à obtenir une pente transversale de 4% au minimum pour que les eaux soient recueillies dans les fossés ou des buses qui les rejettent ensuite dans le réseau hydrographique.

Le sol de la plateforme est constitué par le sol naturel. Sa caractéristique géotechnique est identique à celle de la route : 95 % OPM sous le ballast avec une hauteur de 50cm et 90 % pour la partie adjacente.

Les contraintes admissibles du sol selon leur nature sont :

≥ 01 kg/cm² pour les terrains médiocres ;

p 02 kg/cm² pour le sable ;

≥ 03 et 04 kg/cm² pour le bon sol.

II.1.4 Caractéristiques géométriques d'une voie ferrée

Les caractéristiques géométriques de la voie ferrée à tenir en compte sont :

- Le système de bogie ou empattement contenant des essieux du matériel roulant ;
- La géométrie de la voie dans les alignements droits ;
- La géométrie de la voie dans les courbes.

a. Système de bogie

Un bogie, c'est un système composé de plusieurs essieux pour faciliter l'inscription du train dans une courbe de la voie. En générale, un wagon comporte à chaque extrémité avant et arrière, un bogie à deux essieux et la locomotive un bogie à trois essieux.

L'axe des essieux d'un bogie doit être parallèle, rigide et homogène, sinon il y a risque de déraillement du matériel roulant.

Le boudin est une sailli sur la roue d'un matériel roulant qui assure le maintien sur les rails : c'est le guidage.

Le bandage : il est de forme conique et incliné d'un angle de tan . La table de roulement supporte le poids du matériel et procure l'adhérence avec le rail.

L'emmanchement **T** pour une voie, à Madagascar, est de l'ordre de 925 mm pour une voie de 1000 mm d'écartement. Il s'agit d'une valeur constante.

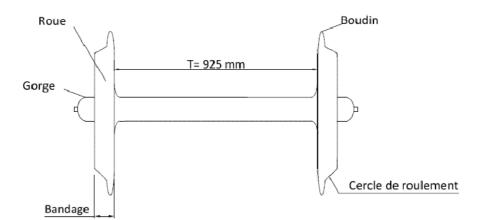


Figure 16: Détails d'un essieu

b. Géométrie de la voie dans les alignements droits

La distance parallèle au plan de roulement et entre les deux files limité par les champignons est appelé " écartement ". Ces écartements de la voie a une valeur constante qui diffère selon le pays.

Son expression est:

$$S_o = C^{te} \pm \Delta$$

Avec

S_o: écartement normal de la voie en alignement (en mm)

 Δ : Variation selon les pays (en mm)

Exemple d'écartement de la voie dans le monde :

Pays	S _o (mm)
Afrique Francophone	1067 ± 4
Europe	1435 ± 6
Russie	1520 ± 6
Japon	1200 ± 4
Madagascar	1000 ± 4

Tableau 4: Ecartements de la voie dans le Monde

Les rails sont disposés avec une inclinaison vers l'intérieur d'un angle dont la tangente est égale .

L'extrémité intérieure du champignon des rails et le boudin est espacé d'une valeur δ , qui est nécessaire pour :

- Faciliter le mouvement des matériels roulant ;
- Diminuer la résistance au mouvement qui peut provoquer l'usure des champignons des rails et de la roue des véhicules.

c. Géométrie de la voie dans les courbes

On distingue quatre (4) particularités de la voie dans la courbe :

- Le sur écartement de la voie ;
- L'existence de devers dans les courbes ;
- Pose des rails dans la file intérieure ;
- Le raccordement des courbes.

c.1 Le sur écartement de la voie

Dans la courbe, l'écartement de la voie varie en fonction du rayon de courbure de façon à faciliter l'inscription du matériel roulant.

Le tableau ci-dessus représente la variation de l'écartement de Madagascar.

Rayon (m)	Ecartement de la voie (mm)	Sur écartement (mm)
R > 100	1000	0
95 < R <100	1005	5
85 < R < 95	1007	7
75 <r 85<="" <="" td=""><td>1009</td><td>9</td></r>	1009	9
65 < R < 75	1011	11
55 < R <65	1015	15
50 < R <55	1020	20

Tableau 5: Variation de l'écartement de la voie en fonction du rayon de courbure

D'après ce tableau on a constaté que la valeur minimale du rayon de courbure à Madagascar est de : R_{min} : 50 m

c.2 Les devers

Le véhicule roulant à une vitesse uniforme V est soumis, à part son poids propre, à une force centrifuge tel que :

$$F = \frac{mV^2}{R}$$

La résultante de ces deux forces par rapport à l'angle α , tel que :

$$\tan \alpha = \frac{V^2}{gR}$$

Afin d'assurer la stabilité de la voie et des véhicules et en même temps d'améliorer le confort des voyageurs, on incline la voie d'un angle sur l'horizontal. On appelle "dévers" la différence de niveau entre les deux files des rails, son expression est le suivant:

$$d = \frac{EV^2}{gR}$$

Avec E: écartement de la voie;

R: rayon de courbure;

V : vitesse d'inscription du véhicule dans la courbe ;

g: égale à 10 m/s

Comme Madagascar, l'écartement de la voie est de 1000 mm, alors cette expression devient :

$$d = \frac{8V^2}{R}$$

Où -d en mm;

- V en Km/h;

-R en m

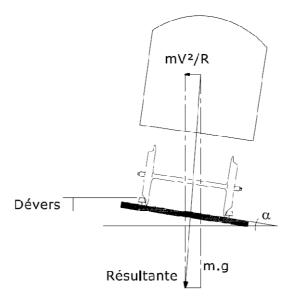


Figure 17: Devers dans la courbe

Le tableau suivant donne la valeur de dévers en fonction du rayon de courbure de rail dans la pleine courbe à Madagascar.

Rayon	Vitesse V	Dévers
(mm)	(km/h)	(mm)
50 -65	25	90
70-180	35-55	80
180-210	55	70
210-250	55-60	65
250-300	60-65	60
300-450	65-75	55
450-550	75	45
550-650	75	40
650-850	75	35
850-1000	75	30
1500	75	18
>5000	75	0

Tableau 6: Variation du devers en fonction du rayon de courbure

Les valeurs appliquées à Madagascar sont les suivantes :

- Le devers maximal $d_{max} = 90 \text{ mm pour une courbe de rayon } 50 < R < 65;$
- La vitesse maximale $V_{max} = 75 \text{ Km/h}$.

c.3 Pose des rails dans la file intérieure

Dans une courbe, la longueur des deux files de rails n'est pas le même. Ainsi de préférences, les joints doivent être à équerre ou en concordant.

Pour cela, il faut poser des rails courts dans les files intérieures pour assurer cette concordance des joints dans les courbes. Les rails posés sur la file extérieure sont des rails normaux de longueur standard.

c.4 Le raccordement des courbes

Dans le plan d'une voie ferrée figurant les alignements droits et les courbes. Pour le raccordement d'un alignement à une courbe, une courbe parabolique est utilisée pour adoucir l'inscription brusque du convoi dans la courbe provoquant la plupart des accidents ferroviaires. L'expression de la courbe parabolique est :

$$y = \frac{x^3}{6RL}$$

y : ordonnée de la courbe au point d'abscisse x (en m) ;

R : rayon de courbure ;

L: longueur de raccordement.

On calcule y à chaque point d'intervalle $\frac{l}{4}$ à partir de x = 0

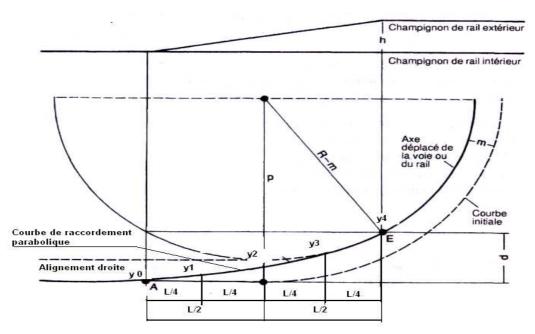


Figure 18: Courbe de raccordement

$$m = \frac{L^2}{24R}$$

La longueur de L, nécessaire pour l'exécution du raccordement du devers est donnée par la formule suivante :

$$L = \frac{d}{\omega}$$

d: devers en mm;

ω: Variation du devers par mètre de longueur de voie en mm

A Madagascar, cette variation w est de 2 ‰.

La longueur minimale d'un alignement entre deux courbes de sens contraire est de 70 m. L'écartement de la voie dans l'alignement est constante δ_0 avec une marge Δ , tel que :

$$\delta = \delta_0 \pm \Delta$$

En prenant δ_c l'écartement des voies dans les courbes, on a :

$$\delta_c = \delta \pm \lambda$$

 λ : Sur écartement dans les courbes ;

 δ : Écartement standard;

 δ_c : écartement dans les courbes.

d. <u>Déclivités dans les voies ferrées</u>

Une déclivité est une pente de la voie ferrée dans son itinéraire. La pente admissible sur la voie ferrée est de $12^{\circ}/_{00}$.

La déclivité fictive est déterminée à partir de la formule suivante :

$$\eta_f = \frac{500\delta}{R}$$

n_f: la déclivité fictive [mm/m];

 δ : Écartement standard de la voie ;

R: rayon de courbure.

Les déclivités sont raccordées entre elles ou avec des paliers par des courbes circulaires de rayon R=2000 m.

La distance E du milieu de la courbe de raccordement au point d'intersection des tangentes est donnée par la formule :

$$E = R\sqrt{1 + \frac{\xi^2}{4}} - L$$

Avec ξ : différence de pente de déclivité [m];

L : longueur de raccordement.

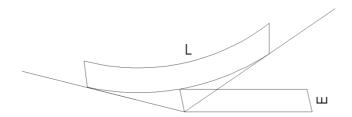


Figure 19: tracé déclivité

A Madagascar, il existe des déclivités assez élevées dans leur tracé comme celles du Manakara [Réseaux Sud : FCE], respectivement de 35‰.

II.2 Dimensionnement de la voie

Le dimensionnement de la voie ferrée consiste à déterminer :

- Le type des rails selon leur poids ;
- L'épaisseur du ballast.

II.2.1 Determination du poids des rails

La détermination du poids du rail dépend des facteurs suivants :

- Les charges par essieux ;
- La vitesse du convoi ;
- L'intensité du trafic ;
- Le type de traverses et leurs écartements.

Il existe des formules empiriques permettant de dimensionner les rails suivant les différents facteurs du trafic :

• Conférence de Caire q= 2,5 P;

• Yershov $q = \frac{V_{\text{max}}}{2.2}$

• Shulga $q = 31,046T^{0.203}$;

• Jean Allias q= 2P + 2;

• Shajunianz $q = A(1 + T^{0.25})(1+0.012V)^{2/3}P^{2/3}$.

Telles que:

q: poids par mètre linéaire du rail [Kg/ml];

A: coefficient égale à 1.2;

T: tonnage annuel du trafic ferroviaire;

P: charge par essieu;

 V_{max} : vitesse maximale admissible sur la voie.

II.2.2 Dimensionnement du Ballast

L'épaisseur de la couche de ballast est déterminée de façon à ce que la contrainte transmise au niveau de la plate forme soit compatible à sa portance.

On a deux (2) méthodes pour la détermination de la couche de ballast :

• La méthode Américaine avec un angle de répartition de 30°

$$P_{1} = \frac{16,8}{h} P_{0}$$

P₁: pression d'un point situé à une profondeur h (m) en dessous de la traverse ;

P₀: pression unitaire par cm² sous la surface inférieure de la traverse.

 La méthode Européenne qui admet que la transmission de charge sous traverse se fait avec un angle de 45°

$$P_1 = \frac{b}{2h+b} P_o$$

P₁: pression d'un point situé à une profondeur h (m) en dessous de la traverse ;

P₀: pression unitaire par cm² sous la surface inférieure de la traverse ;

b: largeur de la traverse;

h : hauteur de la couche de ballast.

La formule de DRIESSEN exige la détermination de la pression maximale P_m appliquée sur les rails et la pression P_0 sur la surface inférieure de la traverse pour connaître les contraintes à la profondeur h:

$$P_m = \frac{P}{n}C_V$$
 avec $n = \frac{d}{\alpha}$ et $C_V = 1 + \frac{V^2}{30000}$

P_m: pression maximale appliquée sur les rails;

P: charge par essieu;

d : entre axe des essieux d'un même bogie ;

C_v : coefficient dépendant de la vitesse ;

V: vitesse d'inscription égale à 80 [km/h] pour Madagascar.

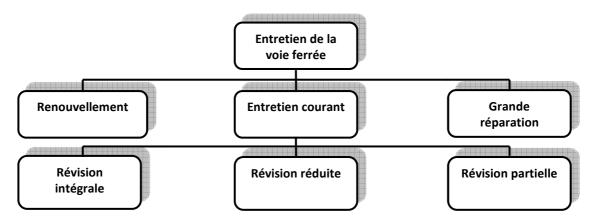
La contrainte Po immédiatement à la surface inférieure de la traverse est :

$$P_0 = \frac{P_m}{2Bb}$$

B : longueur bourrée sous la traverse ; b : largeur des traverses.

II .3. Généralité sur l'entretien des voies

II.3.1 But de l'entretien de voie :

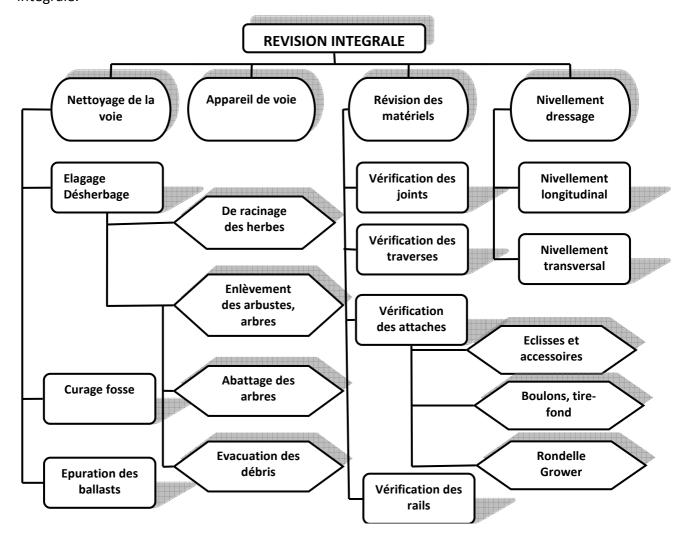

Les travaux d'entretien des voies ferrées ont pour but de conserver dans toute la mesure du possible et améliorer les caractéristiques techniques de la voie en ce qui concerne l'infrastructure que la superstructure, malgré les vieillissements de matériels et les dégradations.

Afin d'assurer la sécurité et le confort des passagers tout en supprimant le ralentissement des trains qui retarde le déplacement.

Elle comprend 3 rubriques principales :

- L'entretien courant;
- Le renouvellement des voies ;
- Les grandes réparations.

a. L'entretien des voies :



Organigramme 1: l'entretien de la voie

La révision intégrale de l'entretien courant fait apparaître la notion fondamentale de cycle d'entretien en chemin de fer.

Décrivons sous forme de diagramme les tâches respectivement de la révision intégrale.

Organigramme 2:La révision intégrale

b. Renouvellement de la voie :

Cette opération consiste à remplacer tous les éléments de la voie sur le tracé par apports de nouveaux éléments ou matériaux afin d'augmenter la potentialité de la voie (technique applicable pour les voies présentant des dégradations des divers éléments très grandes). En général, on n'y procède que tous les 40 ans.

c. la grande réparation de voie :

Cette technique consiste à remplacer partiellement certains éléments de la voie (rails ou traverses) avec un apport de ballast (0,40 m³/ml). Elle a pour but d'améliorer la voie.

d. <u>Entretien courant</u>:

C'est l'opération fondamentale de l'entretien de la voie ferrée, cyclique qui consiste à remettre en état le tronçon considéré.

d.1. Révision partielle :

Réparer une partie de la voie présentant des petites défectuosités pour éviter la perturbation de l'exploitation.

d.2. Révision réduite :

Réparer les petites défectuosités qui ne peuvent pas attendre le cycle de révision intégrale.

d.3 Révision intégrale :

i. Nettovage de la voie :

- Elagage et désherbage : déracinage des herbes, enlèvement des herbes arbustes et arbres, abattage des arbres, évacuation des débris et nettoyage ;
- Curage des fossés;
- Epuration du ballast (pour améliorer les qualités mécaniques).

ii. Révision des matériels des voies :

- Vérification des rails : par calcul et par descente sur terrain (détection des cassures, fissuration diverses, rupture, avarie)
- Vérification des attaches : éclisses et accessoires, boulon ou tirefond ou crampon, rondelle Grower) ;
- Vérification des traverses ;
- Vérification des joints.

iii. Nivellement et dressage de la voie :

C'est l'une des opérations la plus courante dans la révision intégrale de la voie, la technique de nivellement était exécutée autre fois par bourrage manuel, elle est exécute aussi le technique par soufflage ou par bourrage mécanique.

On peut distinguer le nivellement longitudinal et le nivellement transversal, le nivellement se fait à l'aide d'un appareil topographique.

ETUDE SOCIO-ECONOMIQUE ET ENVIRONNEMENT DU PROJET

CHAPITRE I LOCALISATION ET DELIMITATION DE LA ZONE D'INFLUENCE

CHAPITRE II

POTENTIALITE SOCIO-ECONOMIQUE DE LA ZONE
D'INFLUENCE

CHAPITRE III
ETUDE DU TRAFIC

CHAPITRE IV
DIAGNOSTIC DES INFRASTRUCTURES EXISTANTS

Chapitre I: Localisation et délimitation de la zone d'influence

Dans un projet ferroviaire, la connaissance de près de toutes les activités physiques, économiques et sociales de la région est un élément indispensable.

Le but de ce chapitre est d'étudier de près les potentialités des zones d'influence afin d'en déduire la rentabilité du projet.

I.1. Localisation

L'ouvrage actuel lequel est l'objet d'étude se situe au PK 140 +180. Elle est encadrée par la gare d'Ampasimpotsy et la gare d'Andasibe de l'altitude 919 mètres et 918 mètres par rapport au niveau de la mer.

I.2. Zone d'influence

I.1.1 Définition

La zone d'influence se définit comme les zones ou les régions qui bénéficient de la reconstruction du présent pont. Ces zones peuvent être les bénéficiaires directs ou indirects des avantages qu'on peut avoir sur le passage au niveau de ce pont après sa reconstruction. Ainsi on peut classer la zone d'influence en deux zones distinctes

Zone d'influence directe;

Zone d'influence indirecte.

I.1.2 Zone d'influence directe

Ces sont les zones se définissant comme les zones à proximités directes de l'axe TCE et qui utilise directement ces voies. En effet, la reconstruction du pont influe favorablement et directement sur leur développement économique et social.

On peut citer pour la zone d'influence directe :

- Région Atsinanana;
- Région Alaotra-Mangoro;
- Région Analamanga.

I.1.3 Zone d'influence indirecte

Ces sont les zones qui bénéficient indirectement de l'exploitation du pont après sa reconstruction. On peut les citer :

- Région Analanjirofo;
- Région Vakinakaratra.

Dans la suite de notre étude, on va s'intéresser de plus près à la zone d'influence directe.

Chapitre II: Potentialité socio-économique de la zone d'influence

Le but de la reconstruction de la ligne est de désenclaver les zones productives et d'exploiter les ressources économiques mais aussi assurer la circulation des hommes et de ses biens.

Voici les potentialités de la région :

II.1 Population et Démographie :

C'est une étude statistique des populations humaines, de leur mouvement et de leur évolution .Dans notre zone d'influence, nous remarquons que les régions sont habitées essentiellement par l'ethnie Betsimisaraka, Sihanaka, Bezanozano, Merina mais des populations venant de toutes les régions de l'Ile y cohabitent aussi bien temporaire ou permanente.

II.1.1 Effectif de la population

Région	Population	Superficie	Densité
		[Km²]	Démographique
			[hab. /Km²]
Alaotra-Mangoro	1 003 944	45 048	22,29
Atsinanana	1 321 583	32 768	40,33
Analamanga	2 391 170	25 647	93
Total	4 716 697		

Source: RGPH 93

Tableau 7: Répartition de population dans chaque région

D'après le Ministère de la population, le taux d'accroissement naturel de la population Malagasy est évalué à 3%.

L'estimation de l'évolution de la population suit la loi exponentielle suivante :

$$P(t) = (1+\alpha)^{n} P_{0}$$

P(t): effectif de la population à l'année t

P₀: effectif de la population à l'année de référence

 α : Taux d'accroissement de la population : 0,03

n : nombre d'année entre l'année de référence et l'année t

Le tableau suivant résume l'évolution de la population dans la zone d'influence

Région	2010	2015	2020	2025	2030	2035
Alaotra-Mangoro	1 234 724	1 431 384	1 659 366	1 923 661	2 230 050	2 230 050
Atsinanana	1 625 380	1 884 261	2 184 375	2 532 290	2 935 618	2 935 618
Analamanga	2 940 837	3 409 237	3 952 240	4 581 730	5 311 480	5 311 480
Total	5 800 941	6 724 882	7 795 981	9 037 681	10 477 148	10 477 148

Tableau 8: Prévision de la population dans les 25 ans à venir

L'accroissement démographique est considérable. Cet accroissement va entraîner l'augmentation des besoins de la région en termes de circulation et échanges.

II.1.2 Croissance démographique

Le taux moyen de natalité pour Madagascar étant de 43,3‰ selon l'enquête nationale démographique et sanitaire en 1992, le taux de natalité dans l'ensemble de la Région est relativement faible par rapport à cette moyenne nationale. Cette faiblesse du taux de natalité peut s'expliquer par le temps assez long pris par les femmes notamment dans la capitale pour avoir leur premier enfant.

Le taux de mortalité de l'ensemble de la région est très inférieur au taux moyen national en 1992 qui est de 1,53%.

Région	Naissance 12 Dernières	Taux de fécondité	Taux de natalité	Décès 12 Dernière	Taux de mortalité	Taux d'accroissement
	mois			mois		naturel
Alaotra-Mangoro	81 552	136.60	34.10	12 988	5.40	28.70
Atsinanana	397 36	17.00	3.96	7 877	0.50	0.53
Analamanga	39 294	16.90	3.00	4 997	0.53	2.47

Source: RGPH 93

Tableau 9 : Croissance démographique de la zone d'influence

II.2 Potentialité économique de la zone d'influence

Les activités économiques de la population dans cette zone sont très variées.

On peut trouver tous les secteurs d'activités.

En général, on peut classer les activités de la population en 5 catégories :

L'agriculture;

L'élevage;

La pêche;

L'industrie et artisanat;

Le tourisme.

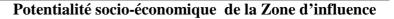
II.2.1 L'agriculture

L'agriculture, comme dans tout Madagascar, constitue l'activité principale de l'ensemble de la région. En effet, les conditions agro-climatiques et humaines permettent une vaste gamme de cultures.

Région	Superficie (Ha)	Superficies cultivables (Ha)	Superficies cultivées (Ha)	Pourcentage superficies cultivées
Alaotra-Mangoro	4 504 800	375 328	296 055	79
Atsinanana	3 248 900		298 230	12
Analamanga	2 564 700	700 317	266 521	38

Source: Annuaire Statistique Agricole, 2001, Min Agri/DPEE

Tableau 10: Superficie agricole


Région	Surface Total Cultivée (ha)	Cultures vivrières (ha)	Cultures de rente (ha)	Culture industrielles (ha)
Alaotra-Mangoro	296 055	261 965	26 490	7 600
Atsinanana	298 230	138 050	143 545	16 640
Analamanga	266 521	253 834	560	12 127

Source: Annuaire statistique agricole 2001

Tableau 11: Répartition des superficies cultivées par type de culture (Campagne 2001)

Les types de cultures adoptés par les paysans sont classés selon la nature des produits :

- Les céréales (riz, maïs...)
- Les racines et tubercules (patates, manioc, pomme de terre...)
- Les cultures commerciales (café, vanille...)
- Les cultures industrielles (cannes à sucre...)

Nature de la	Région concernée	Rendement	Superficie cultivée
production		moyenne	[ha]
		[T/ha]	
Banane	Alaotra-Mangoro	2 116	2 941
	Atsinanana	4 571	3 330
Café	Alaotra-Mangoro	2 000	160
	Atsinanana	1 113	4 100
Haricot	Alaotra-Mangoro	1 025	520
Letchis	Atsinanana	1 100	100
Maïs	Alaotra-Mangoro	1 200	300
Manioc	Analamanga	12 333	1 250
	Alaotra-Mangoro	7 250	650
Oignon	Analamanga	2 990	244
Orange	Analamanga	20 000	3 000
Pomme de terre	Analamanga	4 500	93
Riz* (3 %)	Analamanga	3 085	112 460
	Alaotra-Mangoro	2 501	148 296
	Atsinanana	2 710	168 707
Tomate	Analamanga	4 000	200
Autre-légume	Analamanga	1 987	26
	Alaotra-Mangoro	7 500	5

Source : INSTAT/Recensement au niveau des communes en 2003

Tableau 12: la répartition des produits par région

En termes de surfaces, l'agriculture dans les régions est essentiellement consacrée à l'agriculture vivrière ; la culture du riz occupe plus de 200 000 hectares soit environ la moitié des terres cultivées dans la région Alaotra-Mangoro, qui constituent la base de l'alimentation de la population Malgache.

II.2.2 L'élevage

a. Elevage bovin, porcin, ovin, caprin

Dans toute la partie Est, Nord-est et haut plateau de Madagascar, l'élevage constitue une source de revenu important pour la population. L'économie rurale est basée traditionnellement sur l'association agro -pastorale autour de la riziculture et l'élevage bovin. Les méthodes d'élevage des bovins varient selon les races des animaux et des zones d'élevage ; mais il s'agit surtout d'un système d'élevage extensif, les animaux étant laissés en pâturage

Les revenus monétaires d'appoint proviennent d'activités connexes comme l'artisanat féminin (vannerie, tissage) et le petit élevage (porcin, ovin-caprin).

^{*}Taux d'accroissement annuel de production analysé par l'INSTAT

Région	Bovin	Porcin	Ovin	Caprin
Alaotra-Mangoro	319 703	28 453	1 982	193
Atsinanana	113 455	22 648	321	24
Analamanga	491 967	48 026	2 963	423

Source : Annuaire de Statistiques Agricoles 2001

Tableau 13: Effectif du cheptel de chaque région

b. L'aviculture

L'aviculture est très répandue. Elle est de type familial et traditionnel. Presque chaque famille possède au moins quelques poules, oies ou canards, dindons dans chaque région.

L'élevage de poules et poulets est pratiqué par plus de 8 exploitants sur 10 (88 % des exploitations). Il s'agit généralement d'animaux destinés à l'autoconsommation des ménages (œufs et chair).

Bien que moins répandus (3 à 4 exploitations sur 10) les canards sont également élevés pour la consommation familiale.

L'élevage de dindes est en revanche essentiellement orienté vers la commercialisation. Une exploitation sur 30 s'adonne à ce type de spéculation.

Les oies sont également destinées à la vente. Une exploitation sur 4 le pratique.

Région	Poulet	Canard	Oie	Dindon	Lapin	Total
Alaotra-Mangoro	128 162	28 577	26 968	5 529	893	190 129
Atsinanana	133 917	40 773	8 010	4 431	337	187 468
Analamanga	-	-	-	-	-	157 195

<u>Source</u>: Enquête Agricole de base Campagne 1998-1999, D.P.E.E Mars 1999 **Tableau 14: Effectif des volailles par région**

L'élevage aviaire étant relativement facile en extensif, il est évident que beaucoup s'y adonnent.

L'activité constitue une source de revenu très appréciable, surtout les veilles de fête où les commandes affluent. Certains éleveurs commencent par ailleurs à se spécialiser Antananarivo et Toamasina constituent les deux grands marchés de consommation.

c. Autres élevages

Il s'agit de l'apiculture (Ruche), sériciculture et de la pisciculture. Elles se développent bien mais du fait de leur exploitation saisonnière, il pose de grands problèmes par la discontinuité de l'exploitation donc discontinuité de revenu qui décourage les opérateurs.

Région	Apiculture	Sériciculture	Pisciculture
Alaotra-Mangoro	6 121	0	779
Atsinanana	1 593	0	977
Analamanga	406	-	_

Tableau 15: Autres élevages

L'apiculture et la pisciculture se développent bien tandis que la sériciculture n'existe pas, sans doute à cause de la grande humidité. Certains projets appuient aussi ces élevages ce qui explique l'introduction d'innovations. Du fait de nombreuses essences mellifères dans la région, le miel peut se présenter sous différents aspects, saveurs et arômes.

II.2.3 Pêche

Puisque la zone d'influence ayant une vaste mer favorable à la pêche maritime et de lac naturel, les 3 types de pêche peuvent se rencontrer : pêche industrielle et pêche artisanale en mer, et pêche traditionnelle en mer, dans les estuaires ou en eau douce.

II.2.4 <u>L'Industrie et artisanat</u>

Premier marché de consommation de l'île, place financière et commerciale et nœud de communications, Antananarivo et ses environs ont attiré les industriels, depuis plus de cinquante ans.

Sous la colonisation, de véritables unités industrielles sont implantées, fondées sur l'agro alimentaire, le bâtiment, en rapport avec l'extension urbaine, la mise en place d'un réseau de communication, la fourniture d'énergie et l'accroissement démographique.

En effet, plus de la moitié des unités industrielles de Madagascar sont concentrées dans cette ville.

Secteurs	Nombre	Emplois	Investissements
		prévus	prévus *
Agro alimentaire	31	2 346	61 052
Textile et confection	133	40 175	346 700
Cuirs et Peaux	6	761	12 089
Bois	22	1 589	43 048
Informatique et services	28	2 243	20 854
Chimie	9	577	17 797
Mécanique Electrique	4	129	4 952
Transformation minière	6	424	32 459
Artisanat	16	2 876	13 559
Horlogerie Bijouterie Joaillerie	12	519	11 802
Industries manufacturières	3	142	12 531
diverses			
Sous total	270	51 751	576 803
E.P.E	1	66	111 660
Total	271	51 817	688

^{*} Investissement en million de FMG

E.P.E: Entreprise de promotion et d'exploitation

Source : Ministère de l'Industrie et de l'Artisanat- Service de la promotion des projets et Agréments -30/06/00

Tableau 16: Situation des projets Agréés dans la région Analamanga

La région Atsinanana bénéficie des infrastructures industrielles grâce au rapprochement du port et à la présence des matières premières en abondance.

Les services font aussi l'objet de nombreuses exploitations ces derniers temps : il s'agit de filière de communication, transport, banque.

	Forme juridique				TOTAL
Branche d'activité	EI	SA	SARL	AUTRES	
Agriculture	79	2	18	14	113
Elevage-pèche-chasse	13	3	12	4	32
Sylviculture-vannerie	19	2	4	1	26
Energie	2	3	1	1	7
Industrie alimentaire	155	3	17	1	176
Industrie de boissons	147	2	13	1	163
Industrie chimique et pharmaceutique	31	2	6	1	40
Ind.textile, filature, corde, confection	117	3	14	2	136
Industrie de bois	130	1	24	2	157
Télécommunication	4	-	-	-	4
banques	2	2	-	8	12
Hôtels-restaurants	1346	-	53	6	1405

EI : Entreprise Individuelle

SA: Société Anonyme

SARL : Société A Responsabilité Limitée

Autres: Autres que EI, SA, SARL

Source : INSTAT/DES/Direction Interrégionale de la Statistique en 2003

Tableau 17: Situation des établissements économiques de la région Atsinanana [unité]

Au niveau de la région Alaotra-Mangoro il s'agit surtout de rizeries-décortiqueries, l'industrie du bois et des dérivés et d'anciennes huileries.

II.2.5 Tourisme

La région d'Analamanga regorge de potentialités touristiques liées à sa géographie et à son histoire. A l'intérieur même de la capitale, il y a les curiosités de la ville comme le lac Anosy où se trouve la statue d'une victoire brandissant une couronne de laurier, les vestiges touristiques : palais de la Reine, palais du premier Ministre, le mausolée de la famille Rainiharo, le parc zoologique et botanique de Tsimbazaza etc.... A la périphérie, à soixantaine de kilomètres de la capitale vers l'Est se trouve Mantasoa avec son lac et le tombeau de Jean LABORDE.

La Région de Toamasina, du fait de sa richesse sur le plan touristique, est une destination des vacanciers et des touristes par leur situation à la rive de l'Océan Indien d'une capacité d'accueil satisfaisante, de la multitude des sites à jouir ou à découvrir, Toamasina est incontestablement une des destinations touristiques principales. Auparavant, quand le chemin de fer fonctionnait encore correctement, les voyageurs affluaient surtout en période de vacances et les touristes affrétaient souvent la « Micheline » pour pouvoir apprécier le pittoresque du paysage. Toamasina est autant connu par les nationaux que par les étrangers

et certaines localités sont même très populaires : Ambila-Lemaitso, Akanin'ny Nofy, Foulpointe, Mahambo, Nosy Mangabe, etc... Sans oublier l'Ile Sainte-Marie qui ne manque ni de charme ni d'intérêt (baleines).

Pour la région d'Alaotra-Mangoro le Parc National d'Andasibe Mantadia (PNAM) constitue une destination touristique très connue (38,87% des touristes <u>source</u>: Min. Tourisme 2001). Il s'étend sur 20,8 km de long du Nord au Sud et 12,7 km de large d'Est en Ouest. Il est composé de deux aires protégées :

- La Réserve Spéciale d'Indri d'Analamazaotra, 810 ha ;
- Le Parc National de Mantadia, 10 000 ha.

Selon le RGPH 93, 11 450 personnes vivent dans les zones périphériques du PNAM. Le tourisme génère du travail pour les jeunes en tant que guides. Les lémuriens, les crocodiles, les orchidées, bref la faune, la flore, les sites sont des attractions principales. Les statistiques dénotent un accroissement constant des visiteurs dont surtout des étrangers (nationaux estimés à 33%).

D'autres lieux historiques peuvent aussi êtres visités : Musée de la Gendarmerie à Moramanga, Stèle commémorative de l'insurrection de 1947 à Antsampazana.

Synthèse

L'analyse de la situation actuelle de l'environnement du projet nous permet de dire que le tronçon proprement dit possède une potentialité socio-économique, la maîtrise de ce dernier peut être considérée comme solution et pilote du développement.

Mais le problème majeur de la région est l'inexistence et le mauvais état des voies de communication qui est la base de tous les problèmes (Impossibilité d'évacuation des produits, impossibilité pour les personnes de santé ou de l'éducation de rejoindre leurs postes...).

Alors la réhabilitation ou l'entretien des voies ferrées et des ouvrages de franchissement est jugée comme clé de tout processus de réduction de la pauvreté.

Chapitre III: Etude trafic

III.1 Généralité

En 1979 la Société d'Etat Réseau National des Chemins de Fer Malgache (SE/RNCFM) a pu transporter 850 000 tonnes qui sont le record chiffré par la Direction commerciale. De 1980 jusqu'à l'année 1995, la quantité des marchandises transportées était en moyenne de 550 000 tonnes. En 1988, les transports ferroviaires assurent 60% de transports du port principal concurrent de 40% des transports routier ⁽¹⁾.

Depuis 1er juillet 2003, la mise en concession du réseau nord était effective. Madarail reprend l'activité, et peut transporter des containers et produits pétroliers par voie ferrée.

Actuellement, Madarail occupe déjà 15% du marché des transports entre port principal et Antananarivo ⁽²⁾.

III.2 Analyse des données statistiques

L'étude de trafic est basée essentiellement sur :

- La prévision de disponibilité en matériel roulant ;
- La portance de l'infrastructure ;
- La potentialité des marchandises transportables.

III.2.1 <u>L'infrastructure</u>

Le trajet Tananarivo-Tamatave est composé de deux grands tronçons :

- Tananarivo-Anivorano, où le train ne peut tracter que 530 tonnes à cause de la déclivité qui atteint jusqu'à 35‰.
- Anivorano-Tamatave, où le profil est meilleur, il peut supporter une charge jusqu'à 980 t.

III.2.2 Disponibilité en matériels roulants

Pour assurer le trafic actuel, MADARAIL dispose de 12 engins de tractions de 1200 CV dont la disponibilité moyenne et de l'ordre de 90% et prévoit pour l'année 2007 l'acquisition de 5 nouvelles locomotives de puissance de 2200 CV.

A titre d'information, MADARAIL dispose des types de wagons suivants avec leur nombre respectif :

^{(1):} United Nations conference on Trade and development (24 – 26 September 2003, Geneva)

⁽²⁾: Enquête Madarail

- 🛪 76 wagons à minerais pouvant emporter jusqu'à 2 229 Tonnes nettes dont :
 - 39 wagons auto déchargeurs pouvant supporter une charge de 18 Tonnes chacun.
 - 12 wagons basculants automatiques pouvant supporter une charge de
 33,5 Tonnes chacun.
 - 25 Tombereaux Vraquiers (wagons à minerais) pouvant supporter une charge de 45 Tonnes chacun.
- 8 65 wagons couverts pouvant supporter une charge entre 13 et 35 Tonnes;
- 3 wagons voyageurs de 72 places chacun, accompagnés de deux wagons fourgons pour les bagages.

Il y a aussi les véhicules à moteurs pour le chantier à savoir : les draisines et moto lorries. Les locotracteurs pour les manœuvres en gare et l'auto rail type ZE 812 caractérisé par sa forme qui est à la fois locomotive et wagon voyageur. Tous les wagons citernes sont conformes aux normes internationales en vigueur. Pour protéger davantage son contenu, chacun des wagons citernes est équipé d'un système antivol.

III.2.3 <u>La potentialité des marchandises transportables</u>

a. Trafic voyageurs.

Le train « Dia Soa » a spécialement été mis en place pour desservir les zones enclavées entre Moramanga et Tamatave. Le « Dia Soa » fonctionne 6/7jours, deux allers-retours hebdomadaires, et son parcours comprend 26 points d'arrêts qui lui permet de prendre des voyageurs en chemin.

Par conséquent, les riverains situés dans ces zones enclavées peuvent désormais acheminer leurs marchandises et les revendre ailleurs.

Jour	Jour Départ		Arrêt dans les	
			gares et PK	
			intermédiaires	
Lundi	Moramanga à 7h00	Toamasina à 17h	2 minutes	
Mardi	Toamasina à 8h20	Moramanga à 18h55	2 minutes	
Jeudi	Moramanga à 14h00	Brickaville à 21h	2 minutes	
vendredi	Brickaville à 5h10	Moramanga à 11h40	2 minutes	

Arrêt dans toutes les gares sauf celles de Vohiteza, An'Ala, Ambalahoraka

Tableau 18: Train DIA SOA: Moramanga – Toamasina (TCE)

Jour	Départ	Arrivée	Arrêt dans les
			gares et PK
			intermédiaires
Mercredi	Moramanga à 12h30	Vohidiala à 17h	2 minutes
Jeudi	Vohidiala à 7h00	Moramanga à 11h30	2 minutes
Vendredi	Moramanga à 12h30	Vohidiala à 17h	2 minutes
Samedi	Vohidiala à 7h00	Moramanga à 11h	2 minutes

Arrêts intermédiaires : Amboasary, Andaingo, Andilanatoby

<u>Tableau 19</u>: Train DIA SOA : Moramanga – Vohidiala (MLA)

b. Trafic marchandise:

Le système de trafic de MADARAIL est actuellement base sur la réalisation de transport par marchandise spécifique, le type de convoi est homogène (convoi de transport de containers, convoi de marchandises divers transportées dans les couverts…). Chaque type de marchandise a sa propre fréquence de parcours, en fonction de la destination.

Tableau 20: Prévision du trafic marchandise dans 10 ans (en tonnes)

	2010	2011	2012	2013	2014
tonnes					
chromite	135 000	135 000	135 000	135 000	135 000
Hydrocarbures	129 983	132 583	135 234	137 939	140 698
Containers	118 986	122 556	126 232	130 019	133 920
Riz importé	44 148	44 369	44 590	44 813	45 037
Blé importé	41 584	42 000	42 240	42 844	43 272
Bois	93 750	93 750	93 750	93 750	93 750
Ciment local	90 000	90 000	90 000	90 000	90 000
Ciment importé	28 974	29 409	29 850	30 297	30 752
Engrais	8 285	8 368	8 451	8 536	8 621
Divers	37 713	37 969	38 229	38 491	38 757
Total tonnes	728 423	736 004	743 576	751 689	759 807

Source : Madarail

	2015	2016	2017	2018	2019
tonnes					
chromite	135 000	135 000	135 000	135 000	135 000
Hydrocarbures	143 512	146 382	149 310	152 296	155 342
Containers	137 937	142 076	146 338	150 728	155 250
Riz importé	45 263	45 489	45 716	45 945	46 175
Blé importé	43 705	44 142	44 583	45 029	45 480
Bois	93 750	93 750	93 750	93 750	93 750
Ciment local	90 000	90 000	90 000	90 000	90 000
Ciment importé	31 213	31 681	32 157	32 639	33 129
Engrais	8 707	87 794	8 882	8 971	9 061
Divers	39 026	39 299	39 575	39 855	40 138
Total tonnes	768 113	855 613	785 311	794 213	803 325

Tableau 21: Prévision du trafic marchandise dans 10 ans (en tonnes kilomètres)

	2010	2011	2012	2013	2014
TK (000)					
chromite	52 723	52 723	52 723	52 723	52 723
Hydrocarbures	52 329	53 375	54 443	55 532	56 642
Containers	43 431	44 734	46 076	47 458	48 882
Riz importé	16 321	16 403	16 485	16 568	16 650
Blé importé	20 996	21 206	21 418	21 632	21 848
Bois	24 412	24 412	24 412	24 412	24 412
Ciment local	15 546	15 546	15 546	15 546	15 546
Ciment importé	10 837	11 000	11 165	11 332	11 502
Engrais	3 063	3 093	3 124	3 156	3 187
Divers	10 411	10 495	10 580	10 666	10 753
Total tonnes	250 069	252 987	255 972	259 025	262 145

	2015	2016	2017	2018	2019
TK (000)					
chromite	52 723	52 723	52 723	52 723	52 723
Hydrocarbures	57 775	58 931	60 109	61 311	62 538
Containers	50 349	51 859	53 415	55 017	56 668
Riz importé	16 734	16 817	16 901	16 986	17 071
Blé importé	22 067	22 287	22 510	22 735	22 963
Bois	24 412	24 412	24 412	24 412	24 412
Ciment local	15 546	15 546	15 546	15 546	15 546
Ciment importé	11 675	11 850	12 028	12 208	12 391
Engrais	3 219	3 251	3 284	3 317	3 350
Divers	10 843	10 933	11 025	11 119	11 214
Total tonnes	265 343	268 609	271 953	275 374	278 876

Source : Madarail

Chapitre IV: Diagnostic de la zone

Il est nécessaire d'effectuer l'analyse du tronçon existant afin de décider sur les travaux à entreprendre.

Ainsi les descentes sur terrains nous ont permis de décrire l'environnement et d'identifier les différents problèmes sur l'ensemble du tronçon. Ces visites aussi nous ont permis de classer les dégradations en deux catégories différentes : la détérioration figurant à la superstructure de la voie, les dégradations des certains éléments porteurs de la structure du pont.

Par défaut d'entretiens périodiques réguliers, l'ancienneté de l'ouvrage, l'usure et la fatigue ont rongé progressivement les éléments de la superstructure de la voie et la structure du pont. Cela entraîne la continuité de l'évolution des dégâts et explique la raison principale de l'état du tronçon, tel qu'il est actuellement.

Il est pourtant nécessaire de signaler que ce tronçon a été victime du passage du cyclone Geralda en 1994.

IV.1. <u>Description des Problèmes de la voie</u>

<u>LES RAILS</u>: défigures, atteignent leur limite d'usure : dénivellation au niveau des joints, about mate et surtout une déformation permanente des rails appelées trace de patinage due à l'instabilité de la plateforme (gauchissement de la voie) ; ceci implique un dressage de la voie très accentué.

Ces rails sont plus de 50 ans d'exploitation.

Photo 1: Trace de patinage

Diagnostic des Infrastructures existants

<u>LES TRAVERSES</u>: Elles sont cassées aussi et amincies ou matées. Les actions des agents atmosphériques, bourrage mal fait, action répétée des véhicules et les mauvais fonctionnements des attaches ont provoqué les dégâts.

LE BALLAST: Les ballasts sont aussi recouverts des herbes, les épaisseurs sont très réduites et même il y a contact direct des traverses avec la plate forme, souille par la plateforme due à la remontée des boues. Par conséquent, les traverses s'appuient sur une surface humide et terreuse qui entraîne la pourriture rapide ou corrosion.

Photo 2: Dégradation de la couche de Ballast

<u>GEOMETRIE DE LA VOIE</u>: Le tracé en plan présente un déversement de la file de rails ainsi que la plate forme a besoin d'assainissement sur tout le long du tronçon.

Photo 3: Déversement de la file de rails

IV.2 Le Pont de Sahatandra

IV.2.1 <u>Description technique</u>

Le pont du PK 140 + 180 sur la ligne T.C.E fut réalisé vers 1901, pendant la période de colonisation.

C'est un pont métallique de type CAIL D d'une seule travée de 30 m de long qui reposant sur deux culées en maçonnerie de moellons. Sa structure principale est constituée de deux treillis latéraux rivés à hauteur constante de type en N (système Pratt). Les membrures inférieures et supérieures sont reliées entre elles par des diagonales et montants. L'entraxe des entretoises et la portée des longerons est environs de 3,00 m. Les diagonales, les montants sont constitués de plats et de cornières.

IV.2.2 Analyse de dégradation

Visiblement, le pont en question est arrivé à un stade de corrosion critique, pouvant mettre en danger la stabilité même des ouvrages. En plus les actions conjuguées du climat (forte pluviométrie) et le défaut d'entretien régulier ont entraîné un état de dégradation très avancé de certaine partie de l'ouvrage.

En effet, la corrosion intéresse surtout les parties difficiles d'accès des ouvrages (goussets horizontaux, semelles et âmes des longerons). L'agressivité de l'embrun a rongé considérablement les sections des éléments (montants, diagonales...) composant la superstructure du pont.

Ainsi, une réduction d'épaisseur des éléments porteurs peut désolidariser à court terme les deux membrures et affectant en conséquence considérablement sur la capacité portante de l'ouvrage. Certaines pièces d'assemblage sont détachées et prises de jeu, ces desserrages des éléments d'attaches pouvant permettre librement tout mouvement, à savoir : le déplacement relatif entre pièces assemblées ou entre ces pièces et les éléments d'assemblages. Quelques éléments d'attaches sont disparus.

Les deux culées sont en bon états mais on a constaté qu'elles ont été submergées par des eaux écoulées et endommagées par des débits solides. La dégradation des sols ⁽¹⁾ durant ces années d'exploitation en est la cause principale (calage de pont insuffisante qui ne permet pas aisément le passage de l'eau).

.

^{(1):} Ce phénomène peut conduire à la formation de croûtes de battance, qui imperméabilisent la surface, freinent l'infiltration de l'eau dans le sol et augmentent les risques de ruissellement et d'érosion hydrique

Diagnostic des Infrastructures existants

L'état des dégradations est illustré sur les photos ci-après :

Photo 4: Corrosion au niveau de la membrure supérieur



Photo 5: Corrosion au niveau de la membrure inférieure

Photo 6: Corrosion au niveau du longeron

RECAPITULATION

En résumé, le tronçon définit par PK 139 + 930 et le PK 140 + 430 se figure dans les tronçons de mauvais état où les éléments de la voie et l'ouvrage de franchissement se trouvent dans des stades critiques.

Ce parcours est impossible sans la réhabilitation des infrastructures, la voie, et les autres ouvrages connexes. Mais pour notre cas, la justification du projet sera orientée vers les objectifs de trafic de MADARAIL dans les années a venir pour obtenir son seuil de rentabilité qui implique pour la société la réalisation d'un certain tonnage annuel à exécuter suivant les moyens en disposition (matériels de traction, matériels roulant et les infrastructures ferroviaires).

Pour cela, il faut à tout pris augmenter la capacité portante du futur ouvrage, rendre facile et moins coûteux l'entretien et assurer une durée de vie beaucoup plus longtemps que possible d'où le renouvellement de la voie, la construction du nouveau pont au PK 140 + 180 semble être la solution la plus adapter à tous ces problèmes.

ETUDES TECHNIQUES

CHAPITRE I ETUDE PRELIMINAIRE

CHAPITRE II ETUDE DE LA VARIANTE PRINCIPALE

CHAPITRE III EXECUTIONS DES TRAVAUX DE RENOUVELLEMENT DE LA VOIE

CHAPITRE IV
TECHNOLOGIE DE CONSTRUCTION ET
RECOMMANDATION NECESSAIRE

Chapitre I: ETUDE PRELIMINAIRE

I.1. BASSIN VERSANT

I.1.1 Définition Bassin versant

Un bassin versant, relatif à un exutoire d'un cours d'eau est la totalité de la surface topographique drainée par ce cours d'eau et les affluents en amont de l'exutoire.

Un bassin versant est caractérisée par sa surface S, périmètre P, sa pente I, son coefficient de ruissellement C, sa forme caractérisée par un indice qui est le coefficient de GRAVELIUS K et sa longueur de thalweg principal.

I.1.2 Caractéristique du bassin versant

a. Surface

La surface du bassin versant a été mesurée et calculée à partir d'une carte à l'échelle de 1/100 000 de la FTM à l'aide d'un planimètre.

Pour le bassin versant de Sahatandra, on a la surface suivante :

 $S = 146 \text{ Km}^2$

b. Périmètre

Sur la même carte mais à l'aide d'un curvimètre, on a un périmètre approché :

P = 82.89 Km

c. Forme

Le coefficient de forme du bassin versant est donné par l'expression :

$$K = 0.28 \frac{P}{\sqrt{S}}$$

Avec P: le périmètre du bassin versant en [Km]

S: sa surface en [Km²]

Après calcul on a, K =1,919. Comme K > 1 La forme du bassin versant est allongée

d. Longueur du rectangle équivalent

Elle est donnée par :

$$L = \frac{K\sqrt{S}}{1,1^2} \left[1 + \sqrt{1 - \left(\frac{1,12}{K}\right)^2} \right]$$

Avec K: le coefficient de forme

S: surface en [Km²]

Alors on a: L= 34.718 Km

e. Dénivelée du bassin versant (ΔH)

La dénivelée est obtenue en considérant seulement les altitudes ayant approximativement 5% de la surface du bassin versant en dessous et au dessus d'elle. Après analyse sur carte, on obtient :

$$\Delta H = 150 \text{ m}$$

f. Pente moyenne

Elle est donnée par l'expression :

$$I = \frac{\Delta H}{L}$$

Où ΛH: Dénivelée du bassin versant

L : longueur du rectangle équivalent.

Après calcul, on obtient :

I.2. HYDROLOGIQUE STATISTIQUE

I.2.1 Lois statistiques principales

Les caractéristiques d'une crue de fréquence donnée peuvent se déterminer par les méthodes statistiques si on dispose de données hydrométriques s'étendant sur une période suffisamment longue, une vingtaine d'années d'affilée au minimum.

Les principales lois, les plus communiquent employées sont les suivantes :

- ℵ Loi de PEARSON III;
- እ Loi de GUMBEL;
- ℵ Loi de FRECHET;
- እ Loi de GIBRAT-DALTON;
- እ Loi de GOODRICH.

On ne retient que celle qui font intervenir peu de paramètres et sont donc facilement utilisés. Seules les trois premières lois qui conviennent à notre cas.

a. Loi de GUMBEL

a.1 Hauteur de pluie H_T:

Le tableau ci-après donne les valeurs des pluies journalières maximales annuelles, par ordre décroissant.

Rang	Année	H (mm)	Hi-`H	(Hi-`H) ²
1	1986	292,7	164,779	27152,174
2	1980	288,0	160,079	25625,340
3	1972	285,7	157,779	24894,265
4	1988	247,5	119,579	14299,177
5	1970	227,0	99,079	9816,681
6	1969	218,8	90,879	8259,023
7	1985	202,6	74,679	5576,978
8	1963	127,8	-0,121	0,015
9	1973	122,40	-5,521	30,480
10	1963	117,60	-10,321	106,520
11	1970	115,6	-12,321	151,803
12	1966	112,5	-15,421	237,802
13	1974	96,0	-31,921	1018,940
14	1979	75,2	-52,721	2779,486
15	1981	75,2	-52,721	2779,486
16	1965	71,2	-56,721	3217,253
17	1989	66,9	-61,021	3723,542
18	1967	63,0	-64,921	4214,715
19	1962	58,0	-69,921	4888,923
20	1964	49	-78,921	6228,498
21	1982	47,8	-80,121	6419,348
22	1988	40,3	-87,621	7677,410
23	1975	38,6	-89,321	7978,211
24	1983	30,7	-97,221	9451,890

Tableau 22: Calcul pour la loi de GUMBEL

• Détermination des paramètres d'ajustement de GUMBEL α et H0 : La fonction de non-dépassement s'écrit, sous la forme :

$$F(H) = e^{-e^{-u}}$$
 avec $u = \alpha(H - H_0)$

Or
$$\overline{H} = \frac{\sum H_i}{N} = 127,92 \, mm$$

$$\sigma = \sqrt{\frac{\sum (H_i - \overline{H})^2}{N - 1}} = \sqrt{\frac{176527,960}{24 - 1}} = 87,607 \text{ mm}$$

H0 et α sont déterminés d'après les expressions : $\frac{1}{\alpha}$ = 0,708 σ et $H_0 = \overline{H}$ - 0,45 σ

Ceux qui donnent:

$$\alpha = \frac{1}{0.708\sigma} = \frac{1}{0.708 \times 87,607} = 0.016$$

$$H_0 = 127,92 - 0,45 \times 87,607 = 88,497$$

Alors
$$\begin{cases} u = 0.016(H - 88,497) \\ F(H) = e^{-e^{-u}} \end{cases}$$

Calcul des pluies de diverses fréquences

T(ans)	F=1-(1/T)	u	H (mm)
25	0,96	3,199	286,891
50	0,98	3,902	330,520
100	0,99	4,600	373,828

Tableau 23 : Calcul des pluies de diverses fréquences (Loi de GUMBEL)

Avec T: période de retour;

$$u = -\ln(-\ln F)$$
 ; $H = -\sigma \left\{ \left[0.708 \ln \left(-\ln \left(1 - \frac{1}{5} \right) \right) \right] + 0.45 \right\} + \overline{H}$

$$o\grave{u} \quad H = \frac{u}{0.016} + 88,497$$

Vérification de la fonction de répartition :

F = 0.98

$$F = e^{-e^{-u}} = e^{-e^{-0.016(330.520-88.497)}} = 0.98$$

a.2 Test de validité de l'ajustement :

Division de l'échantillon de N valeurs :

N° classes	Borne	Nombres expérimentales ni
1	> 220	5
2	100-220	7
3	50 - 100	7
4	< 50	5

Tableau 24 : division de l'échantillon de n valeurs

Calcul de Vi nombre théorique des valeurs contenues dans la classe i :

Classe	Н	F(H)	F(Hi)-F(Hi-1)	Vi
1	+ 220	1 0,868	0,132	3,157
2	100	0,436	0,433	10,386
3	50	0,156	0,280	6,722
4	0	0,016	0,140	3,363

Tableau 25: Valeur de Vi

 $F(H) = e^{-e^{-u}} = e^{-e^{-0.016(H-88.497)}}$ Avec:

$$V_{i} = N[F(Hi) - F(Hi - 1)]$$

Calcule du nombre de degré de liberté λ : $\lambda = k - 1 - p$

K : nombre de classes de l'échantillon ; Avec:

P: nombre de paramètres dont dépend la fonction de répartition F;

Pour la loi de GUMBEL : p = 2;

Donc $\lambda = 4 - 1 - 2 = 1$

Calcul de χ^2 :

$$\chi^2 = \sum_{i=1}^{n} \frac{(ni - Vi)^2}{Vi} = \frac{(5 - 3,157)^2}{3,157} + \frac{(7 - 10,386)^2}{10,386} + \frac{(7 - 6,722)^2}{6,722} + \frac{(5 - 3,363)^2}{3,363} = 2,989$$

D'où $\chi^2 = 2,989$

Détermination sur la table de PEARSON III (ANNEXE I-1) de la probabilité correspondant au nombre de degré de liberté :

Pour
$$\lambda = 1$$
 et $\chi^2 = 2,989$

On obtient $P(\chi^2) = 0.0878$

Vérification de la validité de l'ajustement

 $P(\chi^2) = 0.0878 > 0.05$ l'ajustement est satisfait.

Ce qui indique que la loi de GUMBEL est acceptable pour l'échantillon étudié.

a.3 Les intervalles de confiance

Pour la loi de GUMBEL : $H - k_2 \sigma < H_c < H + k_1 \sigma$

 σ Étant l'écart quadratique moyen, k_1 et k_2 étant fournis par les graphiques données en Annexe I-2, dépendent du seuil de confiance et de la taille de l'échantillon.

Ainsi pour un seuil de confiance de 70%, H_c est donnée par :

- Crue
$$H_{25}$$
 (k_1 = 0,49 et $k2$ = 0,38 pour \sqrt{N} = 4,89):
$$286,891\text{-}44,680 < H_{25} < 286,891 + 58,697$$

$$242,211 < H_{25} < 345,588$$

$$-~$$
 crue cinquantennale $\rm H_{50}$ (k₁= 0,78 $~$ et k₂= 0,60 pour $\sqrt{N}=4,\!89$)

- Crue centennale H ₁₀₀ (k₁= 0,8 et k₂= 0,71 pour
$$\sqrt{N}$$
 = 4,89)

b. Loi de FRECHET:

b.1 Hauteur de pluie H_T

Rang	Année	H (mm)	log Hi	log Hi - log`H	(log Hi - log`H)²
1	1986	292,7	2,466	0,459	0,211
2	1980	288,0	2,459	0,452	0,204
3	1972	285,7	2,456	0,448	0,201
4	1988	247,5	2,394	0,386	0,149
5	1970	227,0	2,356	0,348	0,121
6	1969	218,8	2,340	0,333	0,111
7	1985	202,6	2,307	0,299	0,089
8	1963	127,8	2,107	0,099	0,010
9	1973	122,40	2,088	0,080	0,006
10	1963	117,60	2,070	0,063	0,004
11	1970	115,6	2,063	0,055	0,003
12	1966	112,5	2,051	0,044	0,002
13	1974	96,0	1,982	-0,025	0,001
14	1979	75,2	1,876	-0,131	0,017
15	1981	75,2	1,876	-0,131	0,017
16	1965	71,2	1,852	-0,155	0,024
17	1989	66,9	1,825	-0,182	0,033
18	1967	63,0	1,799	-0,208	0,043
19	1962	58,0	1,763	-0,244	0,060
20	1964	49	1,690	-0,317	0,101
21	1982	47,8	1,679	-0,328	0,108
22	1988	40,3	1,605	-0,402	0,162
23	1975	38,6	1,587	-0,421	0,177
24	1983	30,7	1,487	-0,520	0,271

Tableau 26: Calcul pour la loi de FRECHET

• Détermination des paramètres d'ajustement de FRECHET : α et (log H)₀

La fonction de répartition s'écrit :

$$F(H) = e^{-e^{-u}} \quad avec \quad u = \alpha \left[\log H - \left(\log H \right)_0 \right]$$

$$\frac{1}{\log H} = \frac{\sum_{i=1}^{N} \log H_i}{N} = 2.01$$

$$\sigma = \sqrt{\frac{\sum (\log Hi - \overline{\log H})^2}{N - 1}} = \sqrt{\frac{2,125}{24 - 1}} = 0,30$$

 α et $(log)_0$ sont détermines d'après les expressions

$$\frac{1}{\alpha} = 0.708\sigma$$
 et $(\log H)_0 = \overline{\log H} - 0.45\sigma$

Ce qui donne:

$$\alpha = \frac{1}{0,708\sigma} = \frac{1}{0,708 \times 0,304} = 4,274$$

$$(\log H)_0 = 2,008 - 0,45 \times 0,304 = 1,865$$

Alors
$$\begin{cases} u = 4,274(\log H - 1,865) \\ F(H) = e^{-e^{-u}} \end{cases}$$

Calcul des pluies de diverses fréquences :

T(ans)	F=1-(1/T)	u	log HT	HT (mm)
25	0,96	3,199	2,613	410.636
50	0,98	3,902	2,778	599.865
100	0,99	4,600	2,901	796.159

Tableau 27: Calcul des pluies de diverses fréquences (loi de FRECHET)

Avec T: période de retour;

$$u = -\ln(-\ln F)$$

Vérification de la fonction de répartition :

$$F(H_{50}) = 0.98$$

$$F(H_{50}) = e^{-e^{-u}} = e^{-e^{-4.21\%(\log H - 1.871)}} = 0.98$$

b.2 Test de validité de l'ajustement :

Division de l'échantillon de N valeurs : idem loi de GUMBEL

Tableau 28: Calcul de Vi nombre théorique des valeurs contenues dans la classe i

Classe	Н	F(H)	F(Hi)-F(Hi-1)	Vi
1	+	1	0.120	2 060
1	220	0,872	0,128	3,068
2			0.212	7 401
2	100	0,560	0,312	7,491
3			0,433	10,394
3	50	0,127	0,433	10,394
4			0.127	2 047
4	0	0	0,127	3,047

Avec:
$$F(H) = e^{-e^{-u}} = e^{-e^{-4.218(\log H - 1.871)}}$$

$$Vi = N[F(Hi) - F(Hi - 1)]$$

Calcul du nombre de degré de liberté λ :

$$\lambda = k - 1 - p$$

Avec:

K : nombre de classes de l'échantillon ;

P: nombre de paramètres dont dépend la fonction de répartition F;

Pour la loi de FRECHET : p = 2;

Donc $\lambda = 4 - 1 - 2 = 1$

Calcul de χ^2 :

$$\chi^2 = \sum_{i=1}^n \frac{(ni - Vi)^2}{Vi}$$

D'où $\chi^2 = 3.608$

 Détermination sur la table de PERSON III (Annexe I-1) de la probabilité correspondant au nombre de degré de liberté λ:

Pour
$$\lambda = 1$$
 et $\chi^2 = 3,608$

D'où
$$P(\chi^2) = 0.0602$$

Vérification de la validité de l'ajustement :

 $P(\chi^2) = 0.0602 > 0.05$: l'ajustement est satisfait.

La loi de FRECHET est donc acceptable pour représenter la distribution des pluies journalières maximales annuelles de rivière SAHATANDRA.

b.3 Les intervalles de confiance pour le degré de confiance de 70% :

Pour la loi de FRECHET:

 $log H_T - k_2 \sigma < log H < log H_T + k_1 \sigma$

Crue	k1	k2	k2σ	k1σ	logH
25	0,67	0,51	0,155	0,204	2,613
50	0,78	0,6	0,182	0,237	2,778
100	0,92	0,71	0,216	0,280	2,901

Tableau 29: Calcul intervalles de confiance (Loi de FRECHET)

Avec T: période de retour;

K₁ et k₂ sont déterminés à l'aide des abaques (Annexe I-2) ;

Pour une pluie de 25 ans H₂₅:

$$2,613-0,155 < log H_{25} < 2,613 + 0,204$$

$$2,458 < log H_{25} < 2,817$$

- Pour une pluie de 50 ans H₅₀:

$$2,778 - 0,182 < log H_{50} < 2,778 + 0,237$$

$$2,596 < log H_{50} < 3,015$$

Pour une pluie centennale H₁₀₀:

$$2,901 - 0,216 < log H_{100} < 2,901 + 0,280$$

$$2,685 < \log H_{100} < 3,181$$

D' où on a:

c. Loi de PEARSON III

c.1 Hauteur de pluie H_T :

Rang	Année	H (mm)	log Hi
1	1986	292,7	2,466
2	1980	288,0	2,459
3	1972	285,7	2,456
4	1988	247,5	2,394
5	1970	227,0	2,356
6	1969	218,8	2,340
7	1985	202,6	2,307
8	1963	127,8	2,107
9	1973	122,40	2,088
10	1963	117,60	2,070
11	1970	115,6	2,063
12	1966	112,5	2,051
13	1974	96,0	1,982
14	1979	75,2	1,876
15	1981	75,2	1,876
16	1965	71,2	1,852
17	1989	66,9	1,825
18	1967	63,0	1,799
19	1962	58,0	1,763
20	1964	49	1,690
21	1982	47,8	1,679
22	1988	40,3	1,605
23	1975	38,6	1,587
24	1983	30,7	1,487

Tableau 30: Calcul pour la loi de PEARSON III

 $\begin{tabular}{ll} \hline & Détermination des paramètres d'ajustement de PEARSON III : γ et a \\ Sa fonction de répartition s'écrit : \\ \hline \end{tabular}$

$$F(H) = \frac{a^{\gamma}}{\Gamma(\gamma)} \int_0^H e^{-aH} H^{\gamma - 1} dH$$

Avec $\lceil (\gamma) :$ fonction d'EULER

Par la méthode du maximum de vraisemblance, γ est relié à l'échantillon Hi par la relation suivante :

$$\varphi(\gamma) = \log \overline{H} - \frac{\sum \log Hi}{N} = \log \overline{H} - \overline{\log H}$$

 $\varphi(\gamma)$: étant une fonction complexe dont les valeurs sont données par le tableau (voir ANNEXE I-3) les paramètres caractéristiques sont :

$$\overline{H} = \frac{\sum Hi}{N}$$

Avec H = 127,92 mm $\log H = 2,107$

$$\log \frac{-}{H} = 2,107$$

D'où $\varphi(\gamma)$ = 0,099 ; ce qui permet d'obtenir :

$$\gamma = 2,448$$

Le paramètre a est donnée par :

$$a = \frac{\gamma}{H} = \frac{2,448}{127.92} = 0,019$$

Le paramètre de répartition se présente alors sous forme :

$$F(H) = \frac{0.019^{2.448}}{\Gamma(2.448)} \int_{0}^{H} e^{-0.019H} H^{1.448} dH$$

Calcul des pluies des diverses fréquences :

On utilise la table de PEARSON III (ANNEXE I-4) qui donne F(X), fonction de non dépassement, en fonction de la variable réduite u = aH =0,019H et du paramètre γ =2,448

T(ans)	F=1-(1/T)	u	Н
25	0,96	5,480	288,421
50	0,98	6,610	347,895
100	0,99	7,454	392,316

Tableau 31: Calcul des pluies de diverses fréquences (loi de PEARSON III)

c.2 Test de validité de l'ajustement

Tableau 32 : Calcul de Vi nombres théoriques des valeurs contenues dans la classe i

Classe	Н	X= aH	F(H)	F(Hi)-F (Hi-1)	Vi
1	+	+	1	0,140	3,360
_	220	4,210	0,860	0,140	3,300
2	100	1,914	0,390	0,470	11,280
3	50	0,957	0,194	0,196	4,704
4	0	0	0	0,194	4,656

Avec:

$$Vi = N[F(Hi) - F(Hi - 1)]$$

Calcul du nombre de degré de liberté λ :

$$\lambda = k - 1 - p$$

Avec:

K: nombre de classes de l'échantillon;

P: nombre de paramètres dont dépend la fonction de répartition F;

Pour la loi de FRECHET : p = 2;

Donc
$$\lambda = 4 - 1 - 2 = 1$$

Calcul de χ^2 :

$$\chi^2 = \sum_{i=1}^n \frac{(ni - Vi)^2}{Vi}$$

D'où $\chi^2 = 3.57$

Vérification de la validité de l'ajustement :

 $P(\chi^2) = 0.0535$: ce qui montre que la loi de PEARSON III est également valable pour présenter la distribution des pluies journalières maximales annuelles.

c.2 <u>Intervalle de confiance</u>

La détermination exacte des intervalles de confiance pour la loi gamma complète PEARSON III est d'une extrême complexité.

Une méthode approchée a été développé, reposant sur une distribution normale gaussienne : elle permet d'obtenir les intervalles de confiance correspondant à la loi de PEARSON III avec une approximation suffisante en hydrologie.

L'intervalle de confiance à p% sur la variable H_T , calculée par la loi de PEARSON III est donnée par :

$$\mp u_{1-p}.\delta.\frac{\sigma}{\sqrt{N}}$$

Avec u_{1-p} : la variable de GAUSS correspond à intervalle de confiance p%.

Elle est donnée par la table de GAUSS (ANNEXE 1-5)

Ainsi pour p=70%, u = 1,04 avec F(u) = 0,15.

Pour T= 50 ans, on a vue que H_{50} =347,895 mm

D'autre part :
$$\mp 2a. \frac{\sigma}{\gamma} = \mp 2 \times 0.019 \times \frac{\sigma}{2.448}$$

Avec
$$\sigma = \sqrt{\frac{\sum (Hi - \overline{H})^2}{N - 1}} = \sqrt{\frac{176527,960}{24 - 1}} = 87,607mm$$

$$\Rightarrow \qquad \mp 2a. \frac{\sigma}{\gamma} = \mp 1.36$$

Ce qui donnera (ANNEXE I-6) δ_{+} = 3,645 et δ_{-} = 1,128

Pour les intervalles de confiance à 90 %, on a :

$$\begin{cases} + u_{1-p}.\delta_{+}.\frac{\sigma}{\sqrt{N}} = 67,790 \\ -u_{1-p}.\delta_{-}.\frac{\sigma}{\sqrt{N}} = 20,978 \end{cases}$$

On peut écrire :

$$347,895 - 20,978 < H_{50} < 347,895 + 67,790$$

Soit 326,917 < H₅₀ < 415,685

Par analogie, on a pour T= 100 ans : d'après l'annexe I-6

$$\delta$$
+= 4,245 et δ -= 1,153

Pour les intervalles de confiance à 70%, on aura :

$$\begin{cases} +u_{1-p}.\delta_{+}.\frac{\sigma}{\sqrt{N}} = 78,948 \\ -u_{1-p}.\delta_{-}.\frac{\sigma}{\sqrt{N}} = 21,443 \end{cases}$$

H₁₀₀ est donc, en définitive, donnée par :

$$392,316-21,443 < H_{100} < 392,316+78,948$$

Soit 370,873 < H₁₀₀ < 471,264

I.2.2 CONCLUSION

Les résultats sont récapitulés dans le tableau ci-dessous :

Lois	H ₂₅	H ₅₀	H ₁₀₀	Ρ(χ²)
GUMBEL	286,891	330,520	373,828	0,0878
FRECHET	410,636	599,865	796,159	0,0602
PEARSON III	288,421	415,685	471,264	0,0534

Tableau 33 : récapitulations des pluies journalières de période de retour P

Les lois qui exigent plus de deux paramètres sont exclues car elles donnent de degré de liberté nul pour les 4 classes, telles que la loi de GIBRAT-DALTON, la loi de GOODRICH

En comparant les résultats, on constante que les valeurs par la loi de FRECHET sont les plus importantes. Elles sont plus d'autant plus significatives qu'elles satisfont au test de χ^2 .

Donc, les pluies maximales journalières de période de retour P à retenir sont :

$$H(24,100) = 796,159 \text{ mm}$$

1.3. ESTIMATION DES DEBITS DE CRUES

Louis Duret, dans son ouvrage « Estimation des débits de crue à Madagascar » a établit la formule suivante, qui donne la valeur du débit Q de fréquence de retour P :

$$Q_P = K \times S^{\alpha} \times I^{0.32} \times [H(24, P)] \times \left[1 - \frac{36}{H(24, P)}\right]^2$$

Avec Q_p: le débit maximal de fréquence P en [m³/s]

S: surface du bassin versant en [Km²]

I : pente moyenne du bassin versant en [m/km]

H (24,P): hauteur maximale de l'averse de durée 24h et de fréquence P, en [mm]

K et α sont des facteurs dépendants de S et de H (24, P). Pour notre cas :

K = 0.025 et $\alpha = 0.8$

Après calcul, on obtient :

 $Q_{50} = 1140,49 \text{ m}^3/\text{s}$

 $Q_{100}=1561,72 \text{ m}^3/\text{s}$

I.3.1 <u>Détermination de la hauteur d'eau naturelle</u>

La hauteur d'eau naturelle est déterminée par la relation de MANNING-STRICKLER, en assimilant la rivière à une section trapézoïdale dont les caractéristiques sont les suivantes :

K: Coefficient de rugosité (K= 20)

R: Rayon hydraulique [m]

S: Section mouillée [m²]

P: Périmètre mouillé [m]

I : Pente du lit de la rivière au droit de l'ouvrage, l= 0,00368.

B: Largeur de fond de la rivière (B = 21m)

m: Pente de la paroi de la section trapézoïdale (m = 2)

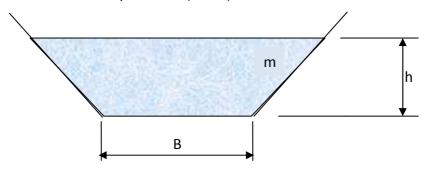


Figure 20: Schéma de calcul pour la détermination de h

D' après MANNING-STRICKLER, on a

$$Q = k \times S \times R^{\frac{2}{3}} \times I^{\frac{1}{2}}$$

Ainsi on a:

$$S = (B + mh)h$$

$$P = B + 2h\sqrt{1 + m^2}$$

$$R = \frac{S}{P}$$

En variant la valeur de la hauteur d'eau h jusqu'à ce qu'on arrive à trouver la valeur voulue de la hauteur d'eau correspondant à Q_{50} =1140,49 m³/s, la relation de MANNING-STRICKLER donne les valeurs résumées dans le tableau suivant :

H (m)	P(m)	S(m²)	R(m)	Q (m ³ /s)
6	47,83	198	4,14	681,25
6,5	50,07	221	4,41	793,64
7	52,30	245	4,68	915,37
7,5	54,54	270	4,95	1046,66
7,8	55,88	285,48	5,11	1130,11
7,84	56,06	287,57	5,13	1141,51
7,85	56,11	288,095	5,13	1144,37
8	56,78	296	5,21	1187,73

Tableau 34 : Détermination de la hauteur d'eau h

En se référant à ce tableau, pour un débit Q_{50} =1140,49m3/s, la hauteur de l'eau correspondante est h =7,84 m.

On prend h = 7,84 m.

Figure 21: Courbe de tarage

I.3.2 Détermination de la surélévation de l'eau

En générale, la présence de l'ouvrage notamment les piles, les culées et les remblais d'accès entraînent un étranglement de la section d'écoulement du cours d'eau. Ceci résulte des pertes de charges suscitant certaine surélévation pour assurer le bon calage et la pérennité de l'ouvrage.

Tirée du théorème de BERNOULLI ($H_1 = H_2 + J$ où H est la charge hydraulique et J la somme des pertes des charges) entre deux sections droites (1) et (2) en amont et en aval de l'ouvrage, la surélévation du niveau de l'eau s'exprime comme suit :

$$\Delta Z = \frac{Q^2}{2gC^2S_0^2} - \alpha \frac{V_{AM}^2}{2g} + \Delta h_f$$

Dans cette expression:

 ΔZ : surélévation de la ligne d'eau entre l'amont et l'aval de l'ouvrage

 $rac{Q^2}{2gC^2S_0^2}$: est la perte de charge due aux caractéristiques hydrauliques du pont ;

 $lpha rac{V_{AM}^2}{2g}$: est $\,$ la hauteur d'eau correspondant à la pression dynamique en amont ;

 Δh_f : est la perte de charges par frottement.

d. Perte de charge due aux caractéristiques hydrauliques du pont

Elle s'obtient par la formule : $\frac{Q^2}{2gC^2S_0^2}$

Avec Q: le débit de crue en m³;

So : Section mouillée correspondant au débit trouvé, So =287,57 m^2 ;

g : accélération de la pesanteur égale à 9,81 m/s 2 ;

C : Coefficient de débit dépendant de plusieurs facteurs liés au cours d'eau :

$$C = C_c \times C_E \times C_\theta \times C_p \times C_F \times C_\gamma \times C_x \times C_S$$

O Coefficient de contraction CC : Il dépend de la valeur de $\frac{b}{B_0}$ et du coefficient de contraction définie par la relation $m=1-\frac{T_0}{T_{AM}}$; dans cette expression, b est la largeur moyenne des remblais d'accès talutés à 1/1, B_0 est le débouché linéaire efficace du pont et T_0 et T_{AM} : Coefficient de transfert respectivement au droit et à l'amont de l'ouvrage.

Pour notre projet, la morphologie du cours d'eau change très peu dans toute la zone de franchissement $T_o=T_{AM}=K_oS_oR^{2/3}$

Ainsi
$$m=1-\frac{T_0}{T_{AM}}=0$$

Ce qui permet de donner la valeur de C_c=1

- Le coefficient dû aux conditions d'entrée C_E: comme l'ouvrage ne présente pas des murs en aile, alors C_E=1.
- O Le coefficient dû au biais C_{θ} : l'angle que forme le pont avec la perpendiculaire aux lignes d'écoulement est θ =0°, c'est-à-dire que le pont est perpendiculaire aux lignes d'écoulement, donc, on a : C_{θ} = 1.
- Le coefficient dû à la présence des piles Cp : Pour notre cas, Cp n'interviennent pas car il n'y a pas de pile, d'où Cp = 1
- o Le coefficient dû à l'influence du nombre de Froude C_F:

$$F_r = \frac{Q_{50}}{S_{AV} \times \sqrt{g \times y_{AV}}}$$

Où S_{AV} est la section d'écoulement à l'aval du pont. D'après l'hypothèse précédente, la morphologie du cours d'eau change très peu dans toute la zone de franchissement, on a S_{AV} égale à So. Donc, on a : S_{AV} = 287,57 m². Par la même hypothèse, la profondeur moyenne en aval y_{AV} est égale à $\frac{S_{AV}}{B_{AV}} = \frac{287,57}{30} = 9,58 \, m$. Q₅₀ = 1140,49 m³/s.

Ce qui donne F_r = 0,40 et C_F = 0,99 d'après l'abaque d'influence du nombre de FROUDE (Voir annexe)

- \circ Le coefficient dû à l'influence de profondeur relative d'eau au droit de l'ouvrage C_Y : ce coefficient dépend aussi du coefficient de contraction m=0 qui donne $C_Y=1$.
- \circ Le coefficient dû à l'excentrement du pont par rapport au champ d'écoulement majeur C_X :

Ce coefficient est en fonction de $\frac{T_a}{T_b}$ où T_a et T_b sont les distances entre les rives et les culées avec $T_a \leq T_b$.

Pour notre cas pont, on a $T_a = T_b$ qui correspond à $C_X = 1$.

 \circ Le coefficient de submersion éventuelle du pont C_S : en général, la submersion du pont est à éviter et on admet C_S =1

Ainsi le coefficient de débit est $C = C_c \times C_E \times C_\theta \times C_\phi \times C_\phi \times C_\phi \times C_x \times C_x \times C_\phi = 0.98$

Finalement, la perte de charge due aux caractéristiques hydrauliques du pont est :

$$\frac{Q^2}{2gC^2S_0^2} = 0.817$$

e. Calcul de la hauteur d'eau correspond à la pression dynamique à l'amont

Cette hauteur est donnée par la formule : $lpha \frac{V_{AM}^2}{2g}$ où lpha est le coefficient de

CORRIOLIS qui est égal au rapport de l'énergie cinétique réelle à l'énergie cinétique fictive d'une masse m. Il représente la distribution de vitesse dans une section droite de la rivière.

On admet α=1 pour avoir une vitesse d'écoulement homogène en amont de l'ouvrage

$$V_{AM} = \frac{Q_{50}}{S_{AM}} = \frac{Q_{50}}{S_0} = 3,96 \ m/s$$

Ce qui donne :
$$\alpha \frac{V_{AM}^2}{2 g} = 0.79 m$$

f. Perte de charge par frottement

Elle est donnée par $\Delta h_f = L_{AM} \left(\frac{Q}{T_{AM}} \right)^2 + b \left(\frac{Q}{T_0} \right)^2$ dans laquelle :

b : largeur moyenne des culées, b = 16 m ;

 L_{AM} : distance entre l'ouvrage et une section amont suffisamment loin des perturbations provoquées par l'ouvrage. On prend en général L_{AM} = B $_0$ = 30 m.

Après calcul, on trouve : $\Delta h_f = 0.091 \text{ m}$

Finalement, la surélévation du niveau de l'eau est :

$$\Delta Z = \frac{Q^2}{2gC^2S_0^2} - \alpha \frac{V_{AM}^2}{2g} + \Delta h_f = 0.11 \, m = 11 \, cm$$

g. Côte des plus hautes eaux cycloniques

$$PHEC = h + \Delta Z = 7,48 + 0,11$$

PHEC = 7,95 m

I.3.3 Le tirant d'air :

Un cours d'eau charrie très souvent détritus, corps flottants, branchages, souches, etc.... qui peuvent, au passage sous un pont, s'accrocher et boucher peu à peu la section d'écoulement, mettant ainsi l'ouvrage en danger d'être en charge.

Le tirant d'air est nécessaire alors pour diminuer ces risques d'obstruction du pont.

Il dépend d'une part l'importance de l'ouvrage concerné et d'autre part des risques de charriages de surface. La longueur du pont est inférieure à 50 m et on est en zone de savane.

En effet pour cet ouvrage, on adopte T = 1,50 m.

I.3.4 Cote minimum de l'intrados

La côte minimum de l'intrados ou sous poutre est la somme de la côte des plus hautes eaux cycloniques, du tirant d'air.

On aura: HPS = PHEC + tirant d'air = 9,45 m.

Analyse de résultat

D'après la descente sur le terrain, et les analyses faites, l'insuffisance de l'ouverture de pont est la première cause de ces dégradations importantes.

En conclure, la cote (hauteur) de 8 m du pont existant devra être surélevé et deviendra 9,45 m \approx 9,50 m pour le futur ouvrage pour qu'on puisse débiter les eaux écoulées sur la rivière et puis pour pallier aux problèmes fréquents.

La recommandation à adopter sur les caractéristiques de dimension de l'ouvrage, compte tenu de l'environnement du projet et les quelques aspects techniques de base est comme suit :

Rehaussement de la hauteur du pont de 1,50 m par rapport à l'ancien (remblayage progressif);

Chapitre II: Etude de la variante principal

II.1 Choix de la variante principale

II.1.1 <u>Caractéristiques générales</u>

Compte tenu de toutes les données énumérées jusqu'ici, nous avons conçu le futur ouvrage dans le cadre défini comme suit :

- Nous devons concevoir un dalot en gabion pour jouera le rôle d'ouvrage provisoire durant la phase de construction. L'axe du dalot sera à 6m, du côté du pont rail et parallèle à l'ancien.
- La condition climatique de cette région nous amène à limiter notre choix entre le ouvrages en béton armé ou béton précontraint;
- Il est nécessaire de protéger, par des gabions, les parties des remblais au contact direct avec l'eau, susceptible à l'érosion.

a. Critère de comparaison

La comparaison des variantes sera effectuée suivant les critères ci - après :

- Quantité de matériaux à utiliser : béton et acier ;
- La simplicité ou la difficulté de l'exécution des travaux ;
- Coût de la construction ;
- Coût de la main d'œuvre ;
- Architecture;
- Technique et durée d'exécution ;
- Durabilité de l'ouvrage ;
- Condition d'entretien.

b. **Proposition des variantes**

Les études statistiques effectuées par le service central technique du ministère de travaux publics montrent d'une part que l'entretien des ponts métalliques dans cette région s'évalue à 10 fois plus cher que celui de type béton (armé ou précontraint). C'est la raison pour laquelle nous ne considèrerons pas par la suite la variante en structure métallique.

Ainsi nous allons proposer les deux variantes ci-après :

N° Variante	Désignation		
1	pont en Béton armé: 2 travées indépendantes de		
II	pont en Béton précontraint: une travée de		

Tableau 35: les variantes

II.1.2 <u>Comparaison des variantes</u>

a. Hypothèses et données de base

Prix unitaire

Pour l'estimation du cout de construction de chaque variante, les prix unitaires de références pour le calcul sont les suivants.

•	Acier d'armature passive HA	7 500 Ar/kg
•	Câble d'armature précontrainte	14 000 Ar/kg
•	Béton Q350	350 000 Ar/m ³
•	Béton Q400	504 445 Ar/m ³
•	Pose voie	187 040 Ar/ml
•	Forage des pieux	400 000 Ar/ml
•	Engazonnement	3 000 Ar/ml
•	Maçonnerie de moellon	90 000 Ar/m ³
•	Enrochement	9 000 Ar/ml.

Ratios d'armature

Pour un dosage approximatif en aciers d'armature :

•	Superstructure en BA	250 Kg/m ³
•	Acier de précontrainte	90kg/m³
•	Semelle (culées et piles)	65kg/m ³
•	Pile-culée	65kg/m ³
•	Acier passif pour la superstructure en BP	95kg/m³
•	Pour les piles	150kg/m^3
•	Pieux D _f = 1000	80kg/m ³

Poids volumique des matériaux

Les poids volumiques des matériaux sont :

•	Béton ordinaire	2,4T/m ³
•	BA ou BP	2,5T/m ³
٠	Acier	7,85T/m ³

Parapet 0,06T/m³
 Ballast 1,6 T/m³
 Rails 0,036 T/m³
 Traverse en bois 0,045 T/m³.

b. Etude des variantes et comparaisons

b.1 <u>Variante n°1</u> (Pont en béton armé à deux travées indépendantes)

Calculons la longueur de la travée de calcul :

La longueur nominale du pont est de 30 m. Soit la longueur totale chaque poutre :

 $L_1 = 1.07 \times L_0 + 0.065$ [m], Lo: portée des poutres principales

Pour L₁=15 m, nous trouvons $L_0 = 13,96m$.

: Étant la longueur de travée de calcul $L = 1,05 \times L_0 + 0,60$ [m]

D'où le résultat L=15,25 m.

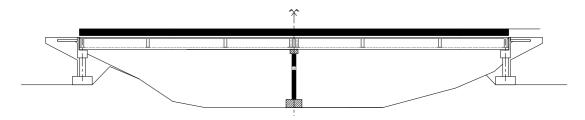


Figure 22: variante n°1

Les caractéristiques fonctionnelles du pont sont :

Longueur totale de chaque poutre
Portée libre des poutres principales
Longueur de la travée de calcul
Hauteur du garde corps métallique
Trottoirs (2x largeurs/ épaisseur)
Traverse en bois (entre axe)
Epaisseur du ballast
15,00m;
15,25m;
1,00m;
2x 0,70 m / 0,20 m;
0,60m;
0,25m.

b.1.1 Pré dimensionnement de la superstructure

i. Poutres principales

On peut dimensionner la poutre principale comme suit :

Hauteur de la poutre

Elle est définie selon la valeur de l'élancement

$$élancement = \frac{h}{l}$$

- hauteur totale du tablier

- portée principale

Pour un pont isostatique en BA, on a : $\frac{L}{14} < h_{t} < \frac{l}{10}$, on prend h_t = 1,50m.

Epaisseur de l'âme

Notée b_o, on a :

$$b_o = \psi d$$
 tel que : $0.08 \le \psi \le 0.21$; $d = 0.9h = 1.35m$

En choisissant ψ = 0.18, on obtient b_o =0,25m.

Largeur de la table de compression

Elle est définie par la formule suivante :

$$b = b_o + 2c$$
 et $b \le \frac{L}{10}$

$$c=3h_d$$
 et $b_0=0.25$ m, on a $b=1.45 \le \frac{l}{10}$, la condition est vérifiée.

Son épaisseur est prise égale à 20 cm.

<u>Talon</u>

Largeur: 70 cm

Hauteur: 20 cm

Volume en béton par mètre linéaire d'une poutre :

Table: $1,45 \times 0,2 = 0,29$

Ame: $0.25 \times (1.50 - (0.2+0.25)) = 0.2625$

Talon: 0.7×0.2 = 0.14

Total (pour une poutre) =0,6925m³/ml

ii. <u>Dalle en BA</u>

La condition de non poinçonnement s'écrit $15 \le h_d \le 25 \ cm$, nous prenons $h_d = 20 \ cm.$

Volume du béton par mètre linéaire de la dalle : $0,20 \times (4,65-2,9) = 0,35 \text{ m}^3/\text{ml}$.

iii. Entretoise

Les entretoises ont pour rôle de répartir les charges au niveau des appuis et de solidariser les poutres pour bien répartir les charges.

$$0.03h_t < d_e < 0.05h_t$$
 soit $4.5 < d_e < 7.5 [m]$

On prend $d_e = 5,08$ m et on obtient 4 entretoise par travée indépendante de $l_t = 15,25$ m.

Hauteur: 1,30m

Entre axe: 5,08 m

Epaisseur: 0,30 m

Longueur: 2,25 m

Volume du béton pour 4 entretoises : $4 \times 2,25 \times 1,30 \times 0,3 = 3,51 \text{ m}^3$

iv. Garde ballast

La dimension est fonction de l'épaisseur de la couche de ballast. Pour un ballast d'épaisseur 40 cm, prenons la dimension 0,15 x 0,50 [m²] pour la section du garde ballast.

Volume du béton garde ballast : $2x + 0.15 \times 0.5 \times 15 = 2.25 \text{ m}^3$

b.1.2 Descentes des charges :

Charges permanentes:

Rail: $0,036 \times 2 = 0,072 \text{ t/ml}$

Traverse: 0,045 x2 = 0,090 t/ml

Ballast: $0,40 \times 2,75 \times 1,6 = 1,76 \text{ t/ml}$

Garde ballast (au nombre de deux) : $2 \times 0,15 \times 0,5 \times 2,5 = 0,375 \text{ t/ml}$

Revêtement (étanchéité ép :3 cm) : 0,03 x 2,75 x 2,4 = 0,198 t/ml

Parapet: = 0.050 t/ml

Poids métriques de la superstrusture de la voie $g_1 = 2,545 \text{ t/ml}$

Voie: 15 x 2,545 = 38,175 t

Poutre + dalle + entretoise : $59,07 \times 2,5 = 147,68 \text{ t}$

Charges permanentes totales G: = 185,86 t

Surcharges:

Piéton: 0,45 x 2 x 0,70 x 15 = 9,45t

Train: 20×7 = 105t

Surcharges totales Q = 114,45t

N = G + Q = 300,3 t

b.1.3 Etude de l'infrastructure

i. Pile

Chevêtre:

Volume de béton = I x L x h

I : largeur du chevêtre : 1,00 m

L_c:longueur du chevêtre : 4,65 m

h: hauteur du chevêtre: 0,60 m

Volume du béton : $1,00 \times 4,65 \times 0,60 = 2,79 \text{ m}^3$

Colonne:

Nous adoptons un pilier à deux colonnes de diamètre D chacun :

$$D \ge N / 16$$

N: effort maximal venant de la superstructure en MN

Et $D \ge h_f / 12$

Où h_f = hauteur maximal de l'élément à considerer égale à 8,50 m (d'après l'étude

hydraulique)

On a : $D \ge 0.71$, prenons D= 1.00 m

Volume du béton = $(3,14 \times 1,00^2)/4 \times 8,50 \times 2 = 13,35 \text{ m}^3$

Semelle sous pile:

 $e_s \ge 1,00 \text{ m}$ (condition de non poinçonnement du béton)

On prend $e_s = 1,50 \text{ m}$

La distance entre axes des pieux b' est telle que :

$$\left(0.83e_s + \frac{0.70D}{2}\right)/0.70 \le b' \le \left(0.83e_s + \frac{0.50D}{2}\right)/0.50$$

 $2,28 \le b' \le 2,99$

On prend b'=2,50 m

Le diamètre de pieux D =1,00 m

La sur largeur de la semelle est de 0,25 m

$$B = b' + D + 2 \times 0.25 = 2.50 + 1.00 + 0.50 = 4.00 \text{ m}$$

La longueur de la semelle est $L_s = L_c + D$

Avec L_c= longueur du chevêtre

D = diamètre de pile

 $L_s = 4,65 + 1,00 = 5,65 \text{ m}$

Volume du béton = $L_s \times B \times e_s = 5,65 \times 4,00 \times 1,50 = 33,9 \text{ m}^3$

ii. Culée

La culée en question est de type pile-culée

Mur Garde grève :

Epaisseur: e_g : 20 cm < e_s < 30 cm. Prenons e_g = 30 cm.

Hauteur : $h_g = h_t + e_{app}$ avec e_{app} est l'épaisseur de l'appareil d'appui. Supposons que e_{app} =15 cm, $h_g = 1,65$ m.

Longueur : elle est égale à la largeur du tablier, l= 4,65 m.

Volume du béton : 1,65 x 0,3 x 4,65 = 2,31 m³

Mur en retour:

La longueur réelle I_r est définie par : $I_d \le I_r \le 6$ m.Avec $I_d = 3$ m pour la longueur courant de la dalle de transition ; Alors $3m \le I_r \le 6m \implies$ prenons une longueur $I_r = 4$ m.

L'épaisseur du mur en retour notée $e_r = \frac{l_r + 2}{20} = 30cm$

On prend une épaisseur $e_r = 30cm$.

Hauteur $h_r \ge \frac{2}{3}l_r = 2.7m$. Prenons $h_r = 3.5$ m.

Volume du béton : $4 \times 0.3 \times 3.5 \times 2 = 4.2 \text{ m}^3$

Mur de front:

Epaisseur $e_f = 1,50m$.

Largeur prise égale à la largeur du tablier ; $I_f = 4,65 \text{ m}$.

Hauteur: $h_f = 4,50 \text{ m}$

Volume du béton 1,50 x 4,50 x 4,65 = 31,39 m³

Semelle sous culée :

Longueur $L_s = I_f + 0.6 = 5.25 \text{ m}.$

Largueur $l_s = 4.5 \text{m}$.

Epaisseur $e_s = 1,4 \text{ m}$.

Volume du béton : $5,25 \times 4,5 \times 1,4 = 33,075 \text{m}^3$

iii. Pieux:

On suppose que l'ancrage est à 18 m. Diamètre d'un pieu $\phi = 0.80 \ m.$

Pieux sous pilier:

Poids total du pilier, chevêtre et semelle : (2,79 + 13,35 + 33,9) x 2,5 = 125,1t.

La charge totale transmise au niveau de la semelle est :

$$N_u = 1,35 \times (125,1+185,86) + 1,5 \times 114,45 = 591,47 t$$

Nombre de pieux sous pilier

$$n_{pieux} = \frac{N_u}{\overline{Q}} \delta_p$$

 $\gamma_p = 1,4$ (coefficient de sécurité)

 $\overline{Q} = 269,87 t$: Capacité portante d'un pieu (cf. Page 172)

$$n_{pp} = 1.4 \times 591.47 / 269.87 = 3.06$$
; soit $n_{pp} = 4$

volume du béton pour 4 pieux : $4 \times 3,14 \times 0,8^2 \times 18 / 4 = 36,17 \text{ m}^3$

Pieux sous culées :

Poids culée + semelle

$$(2,31+4,2+31,39+33,075) \times 2,5 = 177,43 t.$$

D'où la charge au niveau de la semelle :

$$N_u = 1,35 \times (177,43 + 92,93) + 1,5 \times 114,45 = 536,66 t$$

Nombre de pieux sous culées

$$n_{pp} = 1.4 \times 536,66 / 269,87 = 2,78$$
; soit $n_{pp} = 3$

volume du béton pour 4 pieux : $6 \times 3,14 \times 0,8^2 \times 18 / 4 = 54,26 \text{ m}^3$

b.2 <u>Variante n°2</u> (Pont en béton précontraint, une seule travée de 30 m reposant sur deux culées en béton armé.)

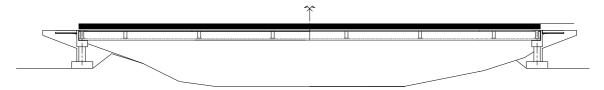


Figure 23: variante n°2

b.2.1 Pré dimensionnement de la superstructure

On procède la même méthode de prédimensionnement que dans la première vasriante.

i. Poutres principales:

Hauteur h de la poutre principale

$$\frac{l}{17} < h < \frac{l}{15}$$

1,76 < h < 2,00, on prend h = 1,80 m

Epaisseur de l'âme $b_0 = 0,25 \text{ m}$

Table de compression b = 1,45 m

Hauteur $h_0 = 0.2 \text{ m}$

Talon: largeur $b_r = 0.70 \text{ m}$

Hauteur $h_r = 0.30 \text{ m}$

Dans la zone d'about, il est nécessaire d'élargir progressivement jusqu'à 0,40 m l'épaisseur de l'âme de la poutre pour mieux résister aux efforts tranchants.

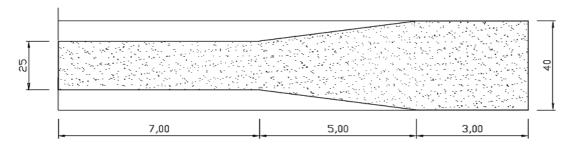


Figure 24: allure de l'âme de la poutre principale (vue en plan)

volume métrique en béton d'une poutre :

$$(0.7 \times 0.3) + (0.2 \times 1.45) + [(1.8 - (0.2 + 0.4)) \times 0.25] = 0.80 \text{ m}^3/\text{ml}$$

ii. Dalle:

On prend $h_d = 0.20 \text{ m}$

volume métrique en béton : $0,2 \times (4,65-2,9) = 0,35 \text{ m}^3/\text{ml}$

iii. Entretoise:

On prend $d_e = 7,35$ m et on obtient 5 entretoise.

Entre axe : = 7.5 m

Hauteur = 1,40 m

Epaisseur = 0,30 m

Longueur de l'entretoise = 2,25 m

Volume de béton = 1,40 x 0,30 x 2,25 x 5 = 4,725 m^3

iv. Garde ballast

La dimension est fonction de l'épaisseur de la couche de ballast. Pour un ballast d'épaisseur 40 cm, prenons la dimension 0.15 x 0.50 [m²] pour la section du garde ballast.

Volume du béton garde ballast : $2x + 0.15 \times 0.5 \times 30 = 4.5 \text{ m}^3$

b.2.2 Descentes des charges :

Charges permanentes:

Rail :	0,036 x2	=0,072 t/ml
Traverse :	0,045 x2	= 0,090 t/ml
Ballast :	0,40 x 2,75 x 1,6	= 1,76 t/ml
Garde ballast (au nombre de deux	κ): 2 x 0,15x0,5 x 2,5	= 0,375 t/ml

Revêtement (étanchéité ép :3 cm) : $0.03 \times 2.75 \times 2.4$ = 0.198 t/ml

Parapet : = 0,050 t/ml

Poids métriques de la superstrusture de la voie $g_1 = 2,545 \text{ t/ml}$

Voie: 30 x 2,545 = 76,35 t

Poutre + dalle + entretoise 63,225 x 2,5 = 158,06 t

Charges permanentes totales G: = 234,4T

Surcharges:

Piéton: 0,45 x 2 x 0,70 x 30 =18,9t

Train: 20×7 = 105t

Surcharges totales Q = 123,9t

N = G + Q = 358,3t

b.2.3 Etude de l'infrastructure

i. <u>Culée</u>

Même type que celle de la première variante sauf le diamètre des fûts.

Mur Garde grève:

Epaisseur: e_g : 20 cm < e_s < 30 cm. Prenons e_g = 30 cm.

Hauteur: $h_g = h_t + e_{app}$ avec e_{app} est l'épaisseur de l'appareil d'appui.

Supposons que e_{app} =15 cm, h_g = 1,95m.

Longueur_: elle est égale à la largeur du tablier, l= 4,65 m.

Volume du béton : $1,95 \times 0,3 \times 4,65 = 2,72 \text{ m}^3$

Mur en retour:

Longueur $I_r = 4 \text{ m}$.

L'épaisseur e_g = 30 cm.

Hauteur $h_r = 3.5 \text{ m}$.

Volume du béton : $4 \times 0.3 \times 3.5 \times 2 = 8.4 \text{ m}^3$

Mur de front:

Epaisseur $e_f = 1,50m$.

Largeur prise égale à la largeur du tablier ; l_f = 4,65 m.

Hauteur: $h_f = 4,50 \text{ m}$

Volume du béton 1,50 x 4,50 x 4,65 = 31,39 m³

Semelle sous culée

_Même type que celle de la première variante.

Volume du béton : $= 33,075 \text{ m}^3$

ii. Pieux sous culées :

Poids culée + semelle

 $(2,72+8,4+31,39+33,075) \times 2,5 = 188,96 t.$

D'où la charge au niveau de la semelle :

$$N_u = 1,35 \times (188,96 + 117,2) + 1,5 \times 123,9 = 599,17 t$$

Nombre de pieux:

 $n_{pc} = 1.4 \times 599.17 / 269.87 = 3.10 \text{ soit } n_{pc} = 4;$

volume du béton pour 8 pieux : $8 \times 3,14 \times 0,8^2 \times 18 /4 = 72,34 \text{ m}^3$.

c. Estimation du coût de la variante

DESIGNATION		U	Qte	PRIX	MONTANT
				UNITAIRE (Ar)	(Ar)
<u>Infrastructure</u>					
<u>Piles</u> :	Béton Q 350	m ³	50,04	350 000	17 514 000
	Acier	kg	7506	7 500	56 295 000
<u>Culée</u> :	Béton Q350	m ³	141,95	350 000	49 682 500
	Acier	kg	9226,75	7 500	69 200 625
<u>Pieux</u> :	Béton	m ³	90,43	350 000	31 650 500
	Acier	kg	7234,4	7 500	54 258 000
	Forages	ml	90	400 000	36 000 000
<u>Protection</u> :	Remblai	m ³	1550	36 000	55 800 000
	Maçonnerie de moellons	m ³	38,5	90 000	3 465 000
	Enrochement	m ²	52,8	9 000	475 200
	Engazonement	m ²	659	3 000	1 977 000
Total Infrastru	cture				376 317 825
Superstructure	1				
Poutre principa	<u>ıl</u> : Béton Q400	m ³	63,57	504 445	32 067 569
	Acier	kg	15892,5	7 500	119 193 750
	Lancement de la poutre	Fft	1	37 449 300	37 449 300
<u>La voie</u> :		ml	124	187 040	23 192 960
Total superstru	ıcture				211 903 579
Total					588 221 404

Tableau 36: devis sommaire variante n°1

	DESIGNATION	U	Qte	PRIX UNITAIRE	MONTANT
				(Ar)	(Ar)
<u>Infrastructure</u>	!				
<u>Culée</u> :	Béton Q350	m^3	151,17	350 000	52 909 500
	Acier	kg	9826,0	7 500	73 695 375
<u>Pieux</u> :	Béton	m^3	5	350 000	25 319 000
	Acier	kg	72,34	7 500	43 404 000
	Forages	ml	5787,2	400 000	36 000 000
<u>Protection</u> :	Remblai	m^3	90	36 000	55 800 000
	Maçonnerie de moellons	m^3	1550	90 000	3 465 000
	Enrochement	m ²	38,5	9 000	475 200
	Engazonement	m ²	52,8	3 000	1 977 000
			659		
Total Infrastru	ıcture				293 045 075
Superstructur	<u>e</u>				
Poutre princip	ale :Béton Q400	m^3	67,75	504 445	34 176 149
	Armature de précontrainte	kg	6257,7	14 000	87 607 800
	Armature passive	kg	6605,35	7 500	49 540 125
	Lancement de la poutre	Fft	1	57 791 290	57 791 290
<u>La voie</u> :		ml	124	187 040	23 192 960
Total superstr	ucture				248 797 274
Total		-			541 842 349

Tableau 37: devis sommaire variante n°2

Critère d'évaluation des variantes

Il consiste à évaluer logiquement les variantes en se basant sur les avantages et les inconvénients de chacune d'elles. Pour cela, plusieurs critères sont à prendre en compte. Dans un premier temps, nous comparerons les variantes et, dans un second temps, nous évaluerons ces dernières suivant une analyse multicritère.

Délai d'exécution :

Son importance est basée sur son influence au niveau du coût du projet ;

Portée économique :

C'est la justification de la longueur de travée la mieux adaptée pour le type de pont en question ;

Disponibilité en matériaux de construction :

C'est critère ayant une importance d'ordre économique ;

Technicité des entreprises locales :

Elle définit si la réalisation de ce pont est courant ou nouveau pour les entreprises de construction sise à Madagascar ;

Entretien:

Il spécifie le niveau d'entretien pour la variante ;

Esthétique de l'ouvrage :

C'est l'image apportée par le nouvel ouvrage, son architecture ;

Caractéristique de l'ouvrage :

Ce sont les qualités et mouvements du pont ;

Coût de la construction :

Il sera défini par l'étude faite auparavant ;

Pérennité de l'ouvrage :

C'est la durabilité de l'ouvrage pendant son exploitation.

Les critères	variante 01 BA	Variante 02 BP	
Délai d'exécution	Assez long	Assez court (indépendance de la préfabrication des poutres au reste du chantier)	
Portée économique	limitée (<25 m)	30-50 m (précontrainte par post-tension)	
Disponibilité des matériaux de construction	Facile	importation des câbles de précontrainte	
Technicité des entreprises locales	Avantageux (technique courante)	Moins avantageux (technique et technologie plus avancée)	
Entretien	Pas fréquent	Minimum	
Esthétique de l'ouvrage	Tablier d'aspect relativement lourd	Structure élancée et effet de légèreté appréciable	
Caractéristique de l'ouvrage	Poids propre important, bonne résistance	Structure plus élancée et assez léger, bonne résistance à la fissuration et offre une sécurité optimum	
Coût de la construction	Elevé	Moyen	
Pérennité de l'ouvrage	Assez durable	Durable	

Tableau 38: comparaison des variantes

Les critères	variante 01	Variante 02
Délai d'exécution	1	2
Portée économique	1	2
Disponibilité des matériaux de construction	3	2
Technicité des entreprises locales	3	2
Entretien	2	3
Esthétique de l'ouvrage	2	3
Caractéristique de l'ouvrage	2	3
Coût de la construction	1	2
Pérennité de l'ouvrage	2	3
Totaux	17	22

Tableau 39: Analyses multicritères

II.1.3 Conclusion

On constate que la différence entre le coût des deux variantes est faible. Le coût de la variante en béton armé est un peu plus élevé que celui de la variante en béton précontraint. Du point de vue mise en œuvre, le béton armé, construction plus courant que le béton précontraint, présente une facilité de construction. Par contre, les constructions en béton précontraint ont l'avantage d'une durée de vie largement supérieure à la construction en béton armé. En plus, la variante en béton armé nécessite un emplacement de pile intermédiaire qu'on remarque parfois que ce dernier produit des perturbations importantes d'écoulements des eaux de la rivière. Ce phénomène augmente les risques d'affouillement et la déstabilisation de l'ouvrage.

Etant donné que c'est la variante n°2 (pont en béton précontraint d'une travée de 30 m) qui a obtenu le maximum de points d'après les analyses multicritères, nous allons prendre celle-ci comme variante principale de notre projet.

II. 2 Ouvrage provisoire

A la suite des études faites le long de la zone concernée, il est à noter qu'on a évité la déviation afin d'obtenir un rendement plus adéquat et justifiant. La solution la plus simple et moins couteux pour assurer l'évacuation des eaux venant du bassin versant est la construction d'un dalot provisoire en gabion.

Le dalot en gabion est conçu pour une solution temporaire durant la phase de construction du nouveau pont-rail dont les caractéristiques suivantes :

- L'axe du dalot sera décalé de 6 m en amont par rapport à celui du pont-rail;
- Le radier est en gabion;
- Les pieds droits sont en gabion;
- La dalle est en rails de récupération disposés suivant le détail A
 Les figures ci-dessous donnent une illustration :

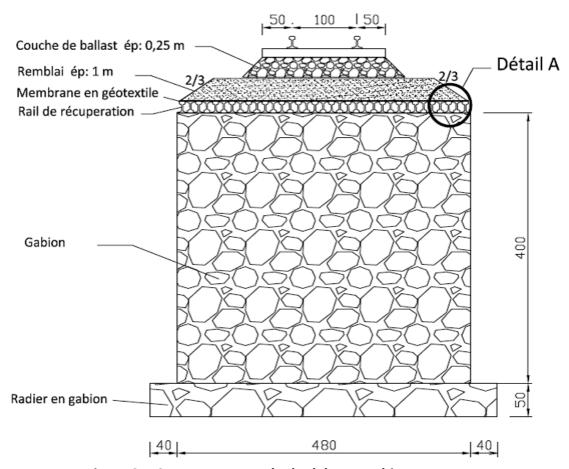


Figure 25: Coupe transversale du dalot en gabion

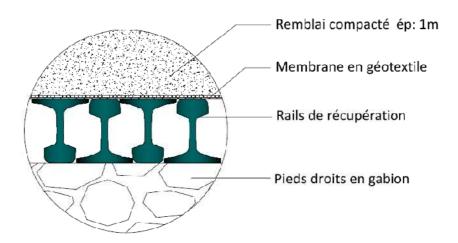


Figure 26: Détail A (dalot en gabion)

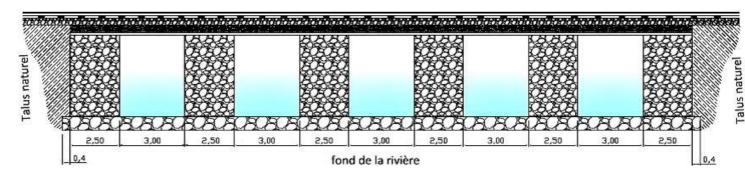


Figure 27: Vue longitudinale du dalot en gabion

II.2.1 Gabion:

Le gabion est une cage en grillage galvanisé ayant la forme d'un parallélépipède rectangle que l'on remplie de cailloux. Il se comporte comme un caisson métallique, qui se caractérise par son élasticité bonifiant vis-à-vis de son poids propre.

On a adopté une superposition de deux types de gabions :

- Semelles: ayant 0,50 m de hauteur, 2,00 m de largeur et une longueur de 4,00 m;
- Pied droit: (gabions standards) ayant 1,00 m de et 1,00 m de largeur et 2,00 m de longueur.

i. Spécification technique :

- Le fil de fer utilisé pour la fabrication des gabions sera d'acier doux selon la norme
 SABS 675 (1993) dont la résistance à la traction sera 35 ≤ R.T ≤ 57,5 N/mm²;
- Le fil de fer sera de diamètre 3,4 mm \pm 0,1 mm pour la confection du cadre et 2,7 mm \pm 0,08 mm pour la confection des mailles ;

- Le fil de fer sera enrobé par galvanisation à chaud de zinc classe A (275 g/ m²) selon
 la norme EN 102244-2 ou SABS 1580 :2001;
- Les mailles hexagonales des filets auront une ouverture de centre à centre de la « double torsade » de 80 mm.

Ces filets seront alors assemblés pour former des cages.

Le lien entre les cages se fera soit par du fil de fer de diamètre 2,2 mm \pm 0,08 mm traité de la même manière que décrite ci-dessus, soit par des agrafes adaptées en acier inoxydable dont la résistance à la traction sera $156 \le R.T \le 178 \text{ kg/mm}^2$.

ii. <u>Caractéristique d'un gabion</u>

Le gabion présente quelque avantage du point de vu technique comme :

- La déformabilité : caractéristique essentielle du gabion, elle permet son utilisation dans les terrains particulièrement affouillables. Il suit la déformation du terrain son compromettre la stabilité de l'ouvrage ;
- L'homogénéité: milieux aquatiques, pluviales, le gabion devient monolithe;
- La perméabilité : le gabion est essentiellement perméable. Il n'intervient que comme dispositif protecteur ;
- La simplicité : la conception des ouvrages en gabion est toujours simple.

II.2.2 Mise en œuvre

Les gabions vide (grille) sont mise en place et ligature de côte avant remplissage. Pour le remplissage des gabions, la granulométrie minimum ne devra pas être inférieure à la plus grande dimension de la maille et la granulométrie maximale inférieure ou égale à 2,5 fois cette dimension. Les pierres de plus grande dimension ne doivent pas dépasser en volume 5% (cinq pourcent) du volume que l'on doit remplir. De plus, il est recommandé que les pierres ne soient pas friables. Il est important de positionner des pierres de forme de

celui-ci, les pierres doivent être posées de façon à réduire au maximum les vides.

 NB: Selon l'expérience 85% des matériaux de l'ouvrage provisoire de tel type sont récupérables, ainsi, on n'a pas inséré son coût dans le bordereau de détails estimatifs du pont.

La réalisation de l'ouvrage provisoire se fait pendant la période du printemps.

II.3 Etude de la variante principale

II.3.1 Base de calcul

a. Hypothèses et règlements

« Les règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites » connues sous le nom de « règle B.A.E.L 91 » seront la base de calcul pour la détermination des armatures des ouvrages en béton armé. Pour les ouvrages en béton précontraint, nous avons utilisé « les règles techniques de conception et de calcul des ouvrages en béton précontraint suivant la méthode des états limites », ou règles B.P.E.L 91.

Le système de surcharges appliquées est définit suivant les règlements de « *l'Union* Internationale de Chemin de fer » (U.I.C) applicable à Madagascar.

- Le convoi type utilisée est le poids par essieu de 20 T (annexe VI).
- Les surcharges de trottoir sont uniformément reparties de 150kg/m².

b. Combinaisons des actions :

Sollicitation de calcul vis-à-vis des états limites ultimes de résistance (E.L.U)

$$S = \left\{ \gamma_P P_m + 1.35 G_{\text{max}} + G_{\text{min}} + \gamma_{q1} Q_{1k} + \sum_{i=1}^{n} 1.3 \psi_{0i} Q_{ik} \right\}$$

Sollicitation de calcul vis-à-vis des états limites de service (E.L.S)

$$S = \left\{ P_d + G_{\text{max}} + G_{\text{min}} + Q_{1k} + \sum_{i=1}^{n} 1,3 \psi_{oi} Q_{ik} \right\}$$

Où:

- P_m: valeur probable de la précontrainte pour les justifications vis-à-vis des états limites ultimes;
- γ_p =1 dans la plupart des cas ;
- G_{max}: représente l'ensemble des actions permanentes défavorables ;
- G_{min}: représente l'ensemble des actions permanentes favorables;
- γ_{q1} = 1.5 dans le cas général ;
- Q_{1k}: représente la valeur caractéristique de l'action de base ;
- Ψ_{0i}Q_{ik}: représente la valeur de combinaison d'une action d'accompagnement;
- P_d : max $\{P_1; P2\}$: valeur de la précontrainte vis-à-vis des états limites de service $P_1(x,t) = 1.02P_0 0.80\Delta P(x,t)$

$$P_2(x,t) = 0.98P_0 - 1.20\Delta P(x,t)$$

$$P_m(x,t) = P_0 - \Delta P(x,t)$$

- P_o : représente la précontrainte à l'origine correspondant à la tension $\sigma_{po}(x)$ de l'armature précontrainte ;
- ΔP(x, t): la perte de précontrainte au point d'abscisse x, à l'instant t en fonction des caractéristiques des matériaux.

Pratiquement pour les ouvrages en superstructures, les combinaisons appliquées sont :

- * A l'ELU: 1,35 G + 1,5 Q
- * A l'ELS : G + Q

c. Caractéristiques mécaniques des matériaux :

Caractères du béton à prendre en compte pour le calcul :

Béton pour B.A

- Résistance à la compression du béton à 28 jours : f_{c28} = 25 MPa ;
- Module de déformation longitudinal (longue durée) : $E_{vj} = 3700 (f_{cj})^{1/3}$ [MPa];
- Module de déformation longitudinale (courte durée) : $E_{ij} = 11000 (f_{ci})^{1/3}$ [MPa] ;
- Résistance à la traction $f_{ti} = 0.6 + 0.06 f_{ci}$

$$f_{t28} = 2.1MPa$$

- Coefficient de poisson v=0,20;
- Coefficient de dilatation thermique : 10⁻⁵/°C;
- Résistance limite à la compression relative à l'E.L.S : $\overline{\sigma_{bc}}$ = 0,6 f_{c28} [MPa]

$$\overline{\sigma_{bc}} = 15 MPa$$

- Résistance limite à la compression relative à l'E.L.U : $f_{bu} = \frac{0.85}{\gamma_b} f_{c28}$ [MPa]

$$f_{bu} = 18,47 \quad [MPa]$$

Béton pour B.P

- Résistance à la compression du béton : f_{c28} = 40 MPa;
- Résistance à la traction : $f_{tj} = 0.6 + 0.06 f_{cj}$

$$f_{t28} = 3MPa$$

- Module de déformation longitudinale instantanée : $E_{ij} = 11000 (f_{cj})^{\frac{1}{3}}$ [MPa]

Etudes de la variante Principale

Pour
$$f_{c28}$$
 =40 MPa

$$E_{ii} = 37619 \quad [MPa]$$

- Module de déformation longitudinale du béton à long terme :

$$E_{vj} = \frac{11000}{1 + \varphi} \sqrt[3]{f_{cj}}$$

avec
$$\varphi = 2$$
 cas courant

$$E_{vi} = 12539,82MPa$$

- Coefficient de poisson v=0,20;
- Coefficient de dilatation thermique : 10 ⁻⁵/°C;
- Résistance limite à la compression relative à l'E.L.S:

$$\overline{\sigma_{bc}} = \begin{cases} 0,50 \ f_{c28} \ phase \ de \ construction \\ 0,60 \ f_{c28} \ phase \ de \ service \end{cases} \qquad \overline{\sigma_{bc}} = 20MPa$$

Résistance limite à la compression relative à l'E.L.U :

$$f_{bu} = \frac{0.85}{\gamma_b} f_{c28} = 22,67 [MPa]$$

Avec
$$\gamma_b = 1.5$$

Caractères des aciers à prendre en compte pour le calcul :

Armatures passives et armatures pour B.A

- Fe E 400
- Module de déformation longitudinale E = 2.10^5 MPa

E.L.S:

La fissuration est très préjudiciable :

$$\overline{\sigma_s} = \min \begin{cases} \frac{2}{3} f_e \\ \max(0.5 f_e; 1.10 \sqrt{\eta f_{ij}}) \end{cases}$$

$$\overline{\sigma_s}$$
 = 201,63*MPa*

E.L.U:

$$f_{ed} = \frac{f_e}{\gamma_s}$$

Avec γ_s : coefficient de sécurité = 1,15

$$f_{ed} = 348 \ MPa$$

Procédé de précontrainte

Nous avons adopté le procédé S.T.U.P (Société Technique pour l'Utilisation de la Précontrainte) fut conçu par M. Freyssinet. Les câbles utilisées pour les armatures de précontrainte est le 12T13 dont voici les caractéristiques :

✓	Câble	12T13;
✓	Module d'ancrage	199 ;
✓	Section	1130 mm²;
✓	Poids	9,1 Kg/ml;
✓	\varnothing d'encombrement des gaines	71mm ;
✓	Contrainte de rupture garantie f _{prg}	1867MPa;
✓	Contrainte limite élastique f _{peg}	1656Mpa.
✓	ρ_{1000} pour relaxation normale (% de la tension finale)	8;
✓	Module de déformation longitudinale E_p	190 000 ;
✓	Frottement de câble f	0,18 rd ⁻¹
	φ	0,002 m ⁻¹ ;
✓	Nombre maximal de paquets de câbles	2.

d. Pré dimensionnement de l'ouvrage

Nous avons un pont rail à poutre en béton précontraint.

Les dimensions de l'ouvrage définit seront celles déterminés durant le prédimensionnement pendant la phase d'étude de variantes.

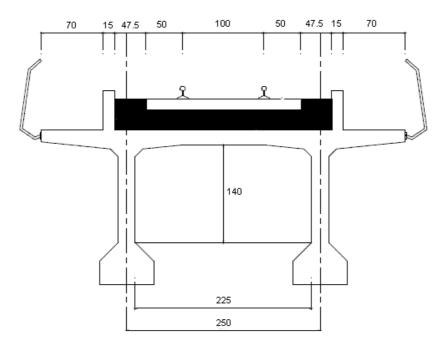


Figure 28: Coupe transversale de la superstructure

II.3.2 ETUDE DE LA SUPERSTRUCTURE

a. Poutres principales

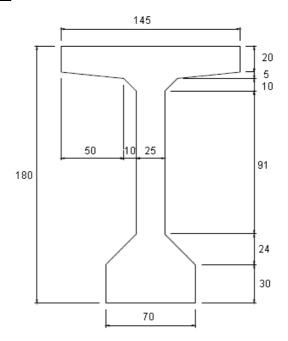


Figure 29: Dimensions transversales de la poutre principale

On peut calculer la longueur de calcule à partir des relations suivantes :

(1)
$$\begin{cases} L_1 = 1,07L_0 + 0,65 \\ L = 1,05L_0 + 0,60 \end{cases}$$

Où L_1 est la longueur totale de la poutre principale.

Lo est la portée libre.

L la longueur de calcule.

La longueur totale est L₁=30 m

Les relations (1) nous donnent L = 29,40 m et $L_0 = 27,43$ m

a.1 Vérification des caractéristiques dimensionnelles des poutres principales :

(le rendement géométrique de la poutre)

Les deux poutres principales sont identiques.

La section prise en compte dans le calcul est la section brute enlevée des parties occupées par les sections des câbles longitudinaux.

Le rendement géométrique de la section est déterminé à partir de la formule suivante :

$$\rho = \frac{i^2}{v \ v'}$$

Avec i²: rayon de giration de section nette.

v : position du centre de gravité de la section nette par rapport au bord supérieur de la table de compression.

v' : position du centre de gravité de la section nette par rapport au bord inférieur de l'âme de la poutre.

En général:

Si $\rho \le 0.45$ la section est massive ;

Si ρ = 0,5 la section est normal e ;

Si $\rho \ge 0.5$ la section est élancée.

Dans notre cas, le tableau suivant permet de calculer le rendement géométrique de la section, en considérant les hypothèses suivantes :

- la section nette A_n est égale à la section brute A_B déduis de celle des câbles A_c , en considérant que A_c est 5% de A_B , ou A_n = 0,95 B_B ;
- l'inertie de la section nette $I_{n/\Delta}$ est égale à l'inertie de la section brute $_{IB/\Delta}$ déduit de celle des câbles qui est pris 10% de $I_{B/\Delta}$, soit $I_{n/\Delta}$ = 0,90 $I_{B/\Delta}$.
- Le moment statique $S_{n/\Delta}$ de la section nette est égale au moment statique $S_{B/\Delta}$ de la section brute déduit de celle des câbles $S_{C/\Delta}$, soit $S_{n/\Delta} = S_{B/\Delta} S_{C/\Delta}$.

	Dimer	nsion équiv	alente	۸	C d a 7	Moment		Moment
Section partielle	Nombre	Largeur	Hauteur	A (m²)	C.d.g Z (m)	Statique S∆ (m³)	lo (m ⁴)	d'inertie I∆ (m⁴)
Table supérieur	1	1,45	0,20	0,2900	0,100	0,0290	0,000967	0,00387
Gousset sup 1	2	0,50	0,05	0,0500	0,216	0,0108	5,208 10 ⁻⁶	0,00234
Gousset sup 2	2	0,10	0,10	0,0200	0,283	0,0057	8,333 10 ⁻⁶	0,00161
Ame	1	0,25	1,30	0,3250	0,850	0,2763	0,045771	0,28058
Gousset inf	2	0,24	0,24	0,1152	1,420	0,1636	0,000276	0,23257
Talon	1	0,70	0,30	0,2100	1,650	0,3465	0,001575	0,57330
Section brute				1,0102		0,8318		1,09426
Section câble				0,0505	1,9	0,0960		0,10942
Section nette				0,9597		0,7358		0,98484

Tableau 40 : Caractéristique de la poutre principale

Avec
$$S_{\Delta} = A.Z$$
; $I_{\Delta} = I_{0} + S_{\Delta}.Z$

$$v = \frac{S_n}{A_n}$$
; $v' = h_t - v$; $I_n = I_\Delta - S_\Delta v$; $i^2 = \frac{I_n}{A_n}$

On trouve : v = 0.768 m; v' = 1.033 m; $i^2 = 0.438$

D'où ρ = 0,553 \geq 0.5 : la section est élancée, ce qui correspond à un rendement maximale du béton.

Etudes de la variante Principale

a.2 Calculs des sollicitations :

Les hypothèses suivant sont adoptées pour la détermination des sollicitations dans les sections de la poutre :

- Les efforts tranchants sont maximaux au niveau des appuis.
- Les moments fléchissants sont maximaux à mi travée.
- Les sollicitations sont déterminées à l'aide des lignes d'influence de chaque effort.

a.2.1 Charges permanentes:

Notons par g_1 et g_2 les valeurs respectives des charges de la superstructure de voie et les ossatures résistantes (dalle+poutre).

Superstructure de la voie : g₁ =2,545 t/ml

Ossature résistante : g₂ =5,268 t/ml

Finalement, $g = g_1 + g_2 = 7,813$ t par mètre linéaire de la longueur du pont.

a.2.2 Charges d'exploitation :

i. Calcul de la charge sous ballast

Pour les calculs des sollicitations de la poutre principale, on considère la charge sous ballast du à l'essieu de 20 t du convoi type. La répartition des charges sous traverse se fait avec un angle de 45°.

Charge maximale P_{m.}

D'après la formule de DRIESSEN : $P_m = \frac{P}{N}C_V [kg]$

Où P: charge d'un essieu; P=20t

$$N = \frac{entraxe\ des\ essieux}{entraxe\ des\ traverses} = \frac{120}{50} = 2,4$$

 C_v : coefficient d'influence de la vitesse ; $C_V = 1 + \frac{V^2}{30000}$

Avec V: vitesse maximale admissible (km/h).

A Madagascar, V = 80 km/h.

D'où $P_m = 10111,11 \text{ kg}$

Pression unitaire P_o

C'est la pression sous la surface inférieure de la traverse donnée par la formule ci-après :

$$P_0 = \frac{P_m}{b_t l_0}$$

Avec P_m : pression maximale supportée [en Kg];

b_t: largeur des traverses utilisées [en cm];

l_o: longueur bourrée sous chaque fil de rail [en cm] ;

P_o: pression unitaire [en kg/cm²].

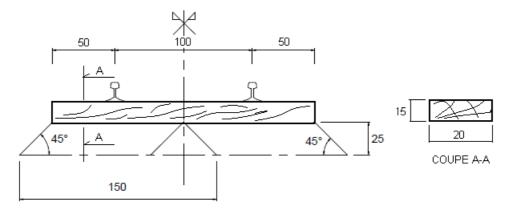


Figure 30: Détermination de Io

 I_0 = 1,50 m et b_t = 20 cm, on a P_0 = 3,37 kg/cm².

Pression due à la surcharge au niveau du tablier
 Cette pression dépend absolument à l'épaisseur de la couche de ballast au niveau du tablier.

$$P_T = \frac{b_t}{2h_t + b_t} P_0$$

Avec b_t: largeur des traverses utilisées b_t= 20 cm;

h_t: épaisseur du ballast h_t=25 cm;

P_o: pression unitaire (en Kg/cm²);

Pt: pression des charges au niveau du tablier.

D'après calcul, on a $P_t = 0.9629 \text{ kg/cm}^2 = 9.629 \text{ t/m}^2$.

Ainsi, la surcharge sous ballast par mètre linéaire de la largeur du pont.

 $q_{tb} = 24,073 \text{ T/ml}.$

ii. <u>Détermination des coefficients de répartition transversale [CRT]</u>

– Méthode à envisager :

$$\frac{b}{l} = 0,094 < 0,5$$

b= 2,75 m : largeur entre les parements extrêmes des poutres extérieures ;

l= 29,40 m : travée de calcul.

Nombre de diaphragmes est égal à 5 > 3.

D'après la vérification, on utilise la répartition spatiale suivant la méthode de la compression excentrée (MCE)

- Hypothèse de résistance :
 - Les sections de deux poutres principales est véritablement égales, alors leurs moments d'inertie sont évidement les mêmes.
 - Les sections transversales ne se déforment pas, c'est-à-dire elles sont de haute rigidité. Alors toutes les charges réparties de façon symétrique, par rapport à l'axe longitudinal du pont se divise équitablement entre les 2 poutres principales.
- Répartition des charges permanentes :

$$g_m = \frac{\sum g}{n_p}$$

Avec g_m : somme des charges permanentes sur chaque mètre linéaire de la superstructure ; $\Sigma g = 7,813$ T/ml.

 $n_{\mathfrak{p}}$: nombre de poutre égale 2.

$$g_m = 3,9065 T/mI$$

Répartition des charges d'exploitation :

Pour déterminer les CRT de chaque section concernée, il faut rechercher tout d'abord la ligne d'influence de la réaction Ri de la poutre i.

Les ordonnées de la ligne d'influence des poutres extérieures se calculent comme suit :

$$y_1 = \frac{1}{n} + \frac{ai^2}{2\sum ai^2}$$
; $y_1 = \frac{1}{n} - \frac{ai^2}{2\sum ai^2}$

Ainsi, le CRT est égal à :

 $\eta = \Omega$ où Ω = aire de la partie de la ligne d'influence de la réaction Ri située sous la charge répartie.

 η = 0,5 Σ yi pour les charges ponctuelles.

D'où la représentation des ordonnées de ligne d'influence :

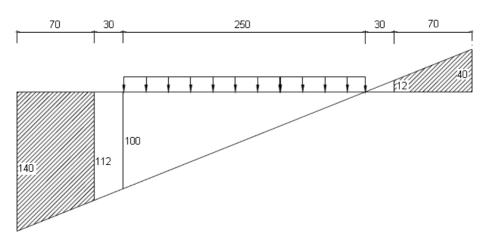


Figure 31: ligne d'influence de la CRT des poutres

Tableau 41: Valeur des CRT

	Trottoir	Surcharge B
η	0,882	0,5

iii. Coefficient de majoration dynamique δ

Cette formule empirique donne ce coefficient :

$$\delta_d = 1 + \frac{0.4}{1 + 0.2L} + \frac{0.6}{1 + 4\frac{P}{S}}$$

P : charge permanente du tablier d'une travée de calcul L=29,40 m.

$$P = L.g = 29,40 \times 7,813 = 229,70 T$$

S : surcharge maximale engendrée par les essieux de la surcharge ferroviaire

B sur une travée S=280 T

D'où les valeurs du coefficient de majoration :

$$\delta = 1.20$$

iv. Surcharge due à l'essieu

La surcharge dynamique reliée à l'essieu est donnée par la formule suivante :

$$q_B = q_{tb} \times \delta_d \times \eta_c^B$$

Avec q_{tb}: surcharge repartie sous ballast;

 δ_{d} : coefficient de majoration dynamique ;

 η_c^B : coefficient de répartition transversale.

Après calcul, on trouve:

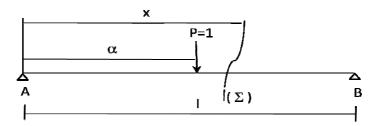
$$q_{\rm B} = 14,55 \, T \, / \, ml$$

v. Surcharge de trottoir

En général, pour avoir le meilleur calcul de dimensionnement, il faut travailler les éléments dans le cas plus défavorable. Pour le trottoir, la densité maximale de surcharge appliquée est de 450 kg/m².

D'où
$$q_t = 0.45 \, \eta_p$$

Avec q_t: la surcharge répartie due au trottoir


 η_p : coefficient de répartition transversal du trottoir.

D'après calcul,
$$q_t = 0.397 T / ml$$

a.2.3 Construction des lignes d'influences

Pour le calcul des efforts tranchants T et des moments fléchissant M, adoptons la méthode de la ligne d'influence.

La fonction d'influence $F(\alpha,x)=[T(\alpha,x) \ ou \ M(\alpha,x)]$ est l'action d'une force unitaire d'abscisse α variable dans une section (Σ) d'abscisse X.

En appui les réactions R_A et R_B respectivement réaction à gauche et à droite de la travée est donnée par :

$$R_A = P\left(1 - \frac{\alpha}{l}\right)$$

$$R_{\scriptscriptstyle B} = P \frac{\alpha}{l}$$

Ligne d'influence en travée :

La ligne d'influence est en fonction des paramètres X et α :

$\circ \alpha \leq X$

C'est-à-dire la charge ponctuelle unitaire se trouve à gauche de la section (Σ) :

$$T_{g}(\alpha, x) = -R_{B} = -\frac{\alpha}{l}$$
 avec $T(x, x) = -\frac{x}{l}$

$$M(\alpha, x) = R_B(l - x) = \frac{\alpha}{l}(l - x)$$
 avec $M(x, x) = x - \frac{x^2}{l}$

\circ $\alpha \geq X$

C'est-à-dire une charge ponctuelle unitaire se trouve à droite de la section (Σ) :

$$T_d(\alpha, x) = R_A = 1 - \frac{\alpha}{l}$$
 avec $T(x, x) = 1 - \frac{x}{l}$

$$M(\alpha, x) = R_A x = \frac{x}{l}(l - \alpha)$$
 avec $M(x, x) = x - \frac{x^2}{l}$

La surface de la ligne d'influence Si à la section Xi d'abscisse X est :

Effort tranchant:

La surface négative est : $Si^- = -\frac{x^2}{2L}$

La surface positive est : $Si^+ = \frac{(L-x^2)}{2L}$

Moment fléchissant :

La surface de la ligne d'influence de la section d'abscisse x est $Si = \frac{l}{2} \left[x - \frac{x^2}{l} \right]$

i. <u>Détermination des efforts tranchants</u>

Nous étudions six(6) sections d'abscisses respectives : 3,675 m $\,$ - 7,35 m - 11,025 m - 14,7 m.

– Ligne d'influence :

Section	X ₀	X ₂	X ₃	X ₅	x ₆
Abscisse x de Xi (m)	0	3,675	7,35	11,025	14,7
Tg(x;x)	0	-0,125	-0,250	-0,375	-0,500
Td(x;x)	1	0,875	0,750	0,625	0,500
Si-	0	0,230	0,919	2,067	3,675
Si+	14,7	11,255	8,269	5,742	3,675

Tableau 42: Valeur de traçage de la ligne d'influence des efforts tranchants

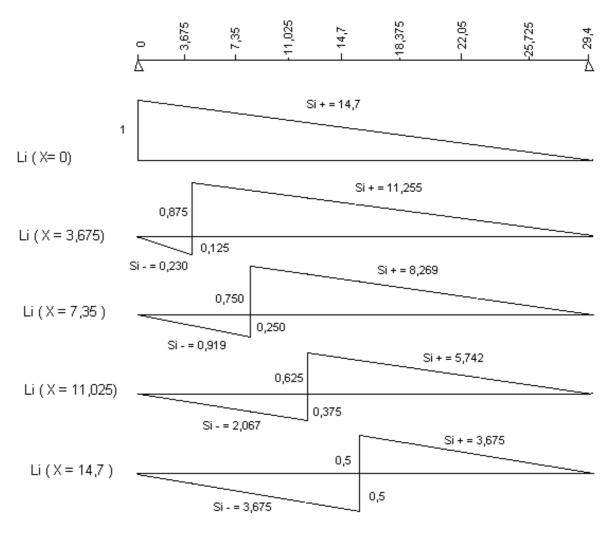


Figure 32: Ligne d'influence des efforts tranchants

Efforts tranchants due aux charges permanentes :

Les efforts tranchants dus au tablier sans entretoise sont donnés par la formule :

$$T_g = g_1 \sum S_{Li}$$

Où g_1 : la charge permanente répartie linéairement due par la poutre principale, l'hourdi et les autres superstructures.

Pour une poutre : $g_1 = g_{pp} + g_h + g_s = 3,71T/mI$

 ΣS_{Li} : la surface totale de la ligne d'influence relative aux sections considérées.

Les efforts tranchants T_e dus aux entretoises sont obtenus à l'aide de modélisation au RDM. On considère les entretoises comme des charges ponctuelles sur une poutre à appui simple. Le diagramme des efforts tranchants dus aux entretoises se présente comme suit :

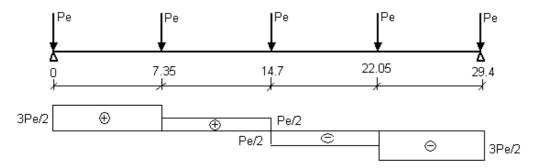


Figure 33: Diagramme des efforts tranchants dus aux entretoises

En remarquant que près de l'appui, l'effort tranchant arrive au maximum.

On a: $T^+ = R_A$ et puis $T^- = -R_B$

- Si x = 0 T⁺ = 3,545 T
- Si x = 29,4 T = -3,545 T

Avec $P_e = 2,363 \text{ T}$, répartition du charge dû au poids de l'entretoise.

Les efforts tranchants dus aux charges permanentes :

$$T_G = T_g + T_e$$

D'où les résultats des calculs de T_G dans une poutre :

Section	X ₀	X ₂	X ₃	X 5	X 6
Abscisse x de Xi (m)	0	3,675	7,35	11,025	14,7
T _g [T]	54,537	40,903	27,269	13,634	0
T _e [T]	3,545	3,545	2,363	2,363	0
T _G [T]	58,082	44,447	29,632	15,997	0

Tableau 43: efforts tranchants dus aux charges permanentes

Efforts tranchants dus aux surcharges d'exploitation :

D'une manière générale, il faut déterminer les efforts tranchants minimaux T^- et maximaux T^+ .

Dus à la surcharge B :

Rappelons que qB est égal à 14,44 T/ml. L'effort tranchant se calcule par :

$$T^- = q_B S_{Li}^-$$

$$T^+ = q_B S_{Li}^{}$$

Avec S_{LI}^+ : surface de la ligne d'influence correspondant à la partie positive.

S_{Li}: surface de la ligne d'influence correspondant à la partie négative.

Dus à la surcharge de trottoir :

Les efforts tranchants dus par la surcharge de trottoir sont obtenus par la formule :

$$T_t = q_t S_T$$

Avec q_t: densité de charge considérée q_t = 0,397 T/ml

S_{Li}: surface de la ligne d'influence composante des SLi^{*} ou SLi^{*}.

D'où les résultats :

	Section	x ₀	X ₂	Х3	X 5	x ₆
Abscis	sse x de Xi (m)	0	3,675	7,35	11,025	14,7
Surcharge	T ⁺	106,134	81,259	59,700	41,459	26,534
В	T ⁻	0	1,658	6,633	14,925	26,534
Surcharge	T ⁺	5,836	4,468	3,283	2,280	1,459
de trottoir		0	0,091	0,365	0,821	1,459
Résultant	T ⁺	111,970	85,727	62,983	43,738	27,992
Resultant	T ⁻	0	1,750	6,998	15,746	27,992

Tableau 44: Efforts tranchants due aux surcharges

Récapitulation des efforts tranchants

	Section			Х2	х3	X 5	x ₆
Abscisse x de Xi (m)		0,0	3,675	7,35	11,025	14,7	
	FLC	T ⁺	170,051	130,174	92,615	59,735	27,992
Effort transhant	ELS	T ⁻	58,082	46,197	36,630	31,743	27,992
Effort tranchant	F111	T ⁺	246,365	188,594	134,477	87,204	41,989
	ELU	T	78,410	62,628	50,500	45,215	41,989

Tableau 45: Récapitulation des efforts tranchants

ii. Détermination des moments fléchissant

Nous calculerons les lignes d'influence aux sections d'abscisses : 3,675 m $\,$ - 7,35 m $\,$ - 11,025 m $\,$ - 14,7 m.

Lignes d'influence

Section	X ₀	X_1	X ₂	X ₃	X_4
Abscisse x de Xi (m)	0	3,675	7,35	11,025	14,7
M(x;x)	0	3,22	5,51	6,89	7,35
Si	0	47,27	81,03	101,29	108,05

Tableau 46: Valeur de traçage de la ligne d'influence des moments fléchissants

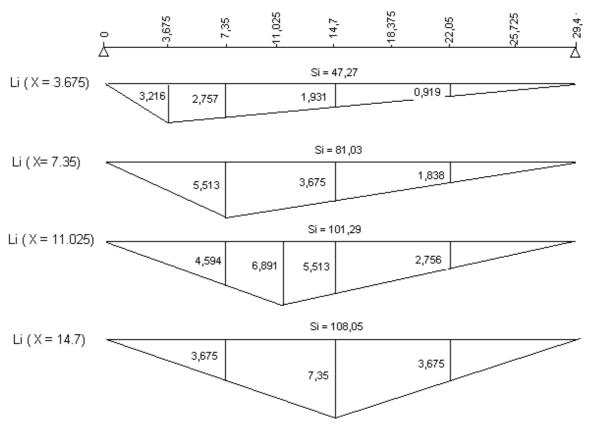


Figure 34: Ligne d'influence des moments fléchissants

Moments fléchissants dus aux charges permanentes :

$$M_{cp} = M_g + M_p$$

$$Où M_g = gS_{Li}$$

$$M_p = \sum P_{ei} y_i$$

Avec M_g: est le moment du aux charges uniformément réparties ;

M_p: est le moment fléchissant du aux entretoises ;

g : densité linéique de la charge permanente g= 3,71 T/ml ;

S_{Li}: surface de la ligne d'influence du moment fléchissant de la section considérée ;

Pei: charge ponctuelle de l'entretoise Pe = 2,363 T;

y_i : ordonnée de la ligne d'influence du moment fléchissant dans la section d'abscisse considérée correspondant à l'entretoise avec une distance précise.

Ce qui donne les résultats suivants :

Section	x ₀	X ₁	X ₂	X ₃	X ₄
Abscisse x de Xi (m)	0	3,675	7,35	11,025	14,7
Mg [Tm]	0	175,37	300,64	375,79	400,85
Mp[Tm]	0	14,78	29,06	33,91	38,75
M résultant [Tm]	0	190,15	329,70	409,70	439,60

Tableau 47: Moment fléchissant dus aux charges permanentes

Moment fléchissant du aux surcharges d'exploitation

$$M_{CE} = M_{\text{max}} (surch \arg e B) + M_{\text{max}} (trottoir)$$

Dû à la surcharge B

$$M_R = q_R S_{II}$$

Avec $q_B = 14,44 \text{ T/ml}$

S_{Li} : surface de la ligne d'influence du moment dans la section considérée.

Dû au trottoir

$$M_{t} = q_{t} S_{Ii}$$

Avec $q_t = 0.397 \text{ T/ml}$

S_{Li} : surface de la ligne d'influence du moment dans la section considérée.

On a les résultats après calcul:

Section	x ₀	X ₁	X ₂	X 3	X ₄
Abscisse x de Xi (m)	0	3,675	7,35	11,025	14,7
M _B [Tm]	0	341,29	585,065	731,335	780,09
M _t [Tm]	0	9,38	16,09	20,11	21,45
M résultant [Tm]	0	350,67	601,15	751,44	801,53

Tableau 48: Moment fléchissant du aux surcharges d'exploitation

Récapitulation des moments fléchissants

Secti	on	х0	x2	х3	х5	х6
Abscisse x de >	(i (m)	0	3,675	7,35	11,025	14,7
Moment	ELS	0	540,821	930,849	1161,137	1241,128
fléchissant	ELU	0	782,709	1346,818	1680,250	1795,753

Tableau 49: Récapitulation des moments fléchissants de la poutre

a.3 Calcul de la précontrainte

a.3.1 Vérification de la section

La vérification de la section du béton est nécessaire pour le calcul de la précontrainte.

$$Sup\left|\frac{I}{v'};\frac{I}{v}\right| \ge \left|\frac{\Delta M}{\Delta \sigma}\right|$$

Avec $\frac{I}{v'}$; $\frac{I}{v}$: module d'inertie de la section

$$\Delta M = \left(M_{GP} + M_{\sup}\right) - M_Q$$

M_{GP}: moment dû aux charges permanentes de la poutre ;

M_{sup}: moment dû aux charges de la superstructure ;

M_Q: moment dû aux surcharges d'exploitation.

$$\Delta \sigma = \sigma_{\text{max}} + \sigma_{\text{min}}$$

$$\sigma_{\text{max}} = 0.6 f_{c28} = 24 \text{ MPa} \quad pour \ f_{c28} = 40 \text{ MPa}$$

$$\sigma_{\text{min}} = f_{t28} = 3 \text{ MPa}$$

$$Sup \left| \frac{I}{v'}; \frac{I}{v} \right| = 0.548 \text{ m}^3$$

$$\left| \frac{\Delta M}{\Delta \sigma} \right| = 0.134 \text{ m}^3$$

0,548 > 0,134

Donc, pour la suite de calcul on retient les dimensions données aux poutres.

a.3.2 Calcul de la force de précontrainte minimale :

Précontrainte sous critique :

$$P_1 = \frac{\Delta M}{c + c'}$$

• Précontrainte sur critique :

$$P_2 = \frac{M_G + M_Q}{c + v' - c_p}$$

Avec $c = \rho v$: limite supérieur du noyau central c = 0.424

c'= ρ v': limite inférieur du noyau central c'= 0,571

$$c_p = 0.05 h_t = 0.05 x 180 = 9 cm$$

$$\Delta M = M_{\text{max}} - M_{\text{min}} = M_{q} = 801,53 \, Tm$$

$$M_G = 439,60 \text{ Tm}$$
; $M_Q = 801,53 \text{ Tm}$

P : valeur de la précontrainte minimale

$$P = \max\{P_1, P_2\}$$

Après calcul, on trouve :

$$P_1 = 804,85 T$$

$$P_2 = 907,60 T$$

D'où
$$P=P_2 = 907,60 \text{ T}$$

a.3.4 Calcul de l'armature de précontrainte :

Avant de faire tous les calculs détaillés de la poutre suivants les états limites. Il faut tracer la position des câbles précontraints le long de la poutre, donc de

connaître la section totale des câbles utiles. Pour cela, on estime la valeur des pertes et chutes des tensions totales à 25 % de la tension à l'origine.

• Tension à l'origine des câbles σ_{sp}^{o} :

Nous utiliserons les câbles de 12T13 qui ont les caractéristiques suivantes :

Contrainte de rupture garantie

Contrainte limite élastique.

$$\sigma_{sp}^{0} = \min\{0.80f_{prg}; 0.90f_{peg}\} = \min\{1493.6; 1490.4\} = 1490.4 MPa$$

Valeur de la précontrainte des câbles après chutes et pertes de tensions totales :

$$\sigma_{sp} = \sigma_{sp}^o - \Delta \sigma_{sp}$$

$$\Delta \sigma_{sp} = 0.25 \sigma_{sp}^{o}$$
 d'où $\sigma_{sp} = 0.75 \sigma_{sp}^{o}$, $\sigma_{sp} = 1117.8 MPa$

Pour un câble 12T13 : A_{cp} = 11,3 cm²

$$A_{cp}^{t} = \frac{P}{\sigma_{sp}} = \frac{907,60.10^{2}}{1117,8} = 81,195 \text{ cm}^{2}$$

D'où la section d'armature nécessaire :

On prendra 8 câbles de 12T13 dont la force portante totale est 1010,49 T.

Dans la pratique, la précontrainte de la poutre se fait en deux phases dont la première phase consiste à une mise en tension des câbles destinés à reprendre l'effet des charges permanentes ; la seconde mise en tension consiste à reprendre les actions supplémentaires.

Nombre de câbles de la première famille :

Après durcissement du béton, à 14 jours d'âge, on fera la mise en tension des câbles de la première famille. Dans cette phase, la fibre inférieure de la poutre va subir des efforts de compression et il se peut qu'il y ait des efforts de traction au niveau de la fibre supérieure.

Rappelons les caractéristiques de la section :

M _G [Tm]	M _Q [Tm]	A [m²]	I[m⁴]	I ² [m ²]	V[m]	V'[m]	ρ
439,60	801,53	0,9597	0,420	0,438	0,767	1,033	0,533

Contrainte de compression admissible :

$$f_{c14} = \frac{14}{4.76 + 0.83.14} 40 = 34,19 MPa$$

$$\overline{\sigma_c} = 0.6 f_{c14} = 20.514 \, MPa$$

Contrainte de traction :

$$\overline{\sigma_t} = -0.7 f_{t_{14}} = -1.85 MPa$$

Les contraintes dans la fibre supérieure :

- Contrainte due aux charges permanentes : $\sigma_G^s = \frac{M_G}{I}V = 8{,}03~MPa$
- Contrainte due aux charges d'exploitation : $\sigma_{\mathcal{Q}}^{\mathcal{S}} = \frac{M_{\mathcal{Q}}}{I}V$ = 14,63 MPa

Les contraintes dans la fibre inférieure :

- Contrainte due aux charges permanentes : $\sigma_G^i = -\frac{M_G}{I}V' = -10,81 \; MPa$
- Contrainte due aux charges d'exploitation : $\sigma_Q^i = -\frac{M_Q}{I}V' = -19,71 \, MPa$

Et la contrainte due à la précontrainte au niveau de la fibre inférieure :

$$\sigma_p = n_1 S \sigma_{sp}^1 \frac{1}{A} \left(1 - \frac{e v'}{i^2} \right)$$

$$e=-(v'-d)=-(v'-0.05h_t)=-(1.033-0.05 \times 1.8)=-0.943 \text{ m}$$

S: section d'un câble 12T13

A : aire de la section de la poutre seule

 n_1 : nombre de câbles de la 1^{ere} famille

 σ^{1}_{sp} : contrainte de compression obtenue avec un seul câble.

Les pertes instantanées d'un câble à la première famille sont estimées à 10%. Ce qui donne $\Delta\sigma_{sp}$ = 149.04 MPa. Ainsi afin d'avoir plus de compression dans la fibre inférieure de la poutre, on doit prendre une valeur maximale de la précontrainte.

Soit
$$\sigma_{sp}^1 = 1.02 \sigma_{sp}^o - 0.8 \Delta \sigma_{sp} = 1400.97 MPa$$

Le nombre de câbles n_1 est obtenue en vérifiant la contrainte au niveau de fibre inférieure durant la phase 1 ; il est obtenu à partir de l'inégalité suivante :

$$\sigma_{\text{inf}} = \sigma_G^i + \sigma_D \leq \overline{\sigma}_C$$

Donc
$$n_1 \le \frac{\overline{\sigma_c} - \sigma_G^i}{S\sigma_{sp}^1 \frac{1}{A} \left[1 - \frac{ev'}{i^2} \right]} = 5,89$$

Dans le cas général, le nombre des câbles de la deuxième famille est de 30% à 40% du nombre total des câbles précontraintes. En combinant ces deux conditions, on a :

$$\begin{cases} n_1 \le 5,89 \\ 2,4 \le n_2 \le 3,2 \end{cases}$$

On en déduit, n_1 = 5 câbles pour la première famille.

 n_2 = 3 câbles à tendre pour la deuxième famille après coulage de bétons des entretoises et de la dalle.

a.3.5 Trace des câbles

i. Dispositions constructives

Afin d'avoir une bonne disposition des câbles, on doit respecter les conditions suivantes :

- Rayons de courbure :
 - gaines enroulables R ≥ 3 m.
 - gaines rigides cintrables à la main $R \ge 100 \, \varnothing$ i avec \varnothing i diamètre intérieur.
- Groupement d'armature doit satisfaire les conditions suivantes :

• Sens horizontale :
$$\begin{cases} 3 & si & \phi \le 5 \ cm \\ 2 & si & 5 \ cm \le \phi \le 10 \ cm \\ 1 & si & \phi \ge 10 \ cm \end{cases}$$

• Sens verticale :
$$\begin{cases} 3 & si \quad \phi \le 5 \ cm \\ 2 & si \quad 5 \ cm \le \phi \le 10 \ cm \\ 1 & si \quad \phi \ge 10 \ cm \end{cases}$$

Dans notre cas \emptyset = 7,1 cm; on est autorisé à mettre 2 groupements dans le sens vertical et un seul groupement autorisé dans le sens horizontale.

- Espacement des armatures de précontrainte (Art. 10.2 BPEL 91)
 - e_h: espacement horizontal
 - e_v: espacement vertical

$$e_h \ge \begin{cases} 1.5\phi & si \ p = 3 \\ \phi & si \ p \le 2 \\ 1.5\phi & si \ q = 2 \end{cases} \qquad \text{et} \qquad e_v = \begin{cases} \phi & si \ q = 1 \\ 1.2\phi & si \ p = 2 \\ 4 \ cm \end{cases}$$

Nous allons retenir : $e_h = 7.1$ cm et $e_v = 8$ cm.

Distance des armatures de précontrainte aux parements :
 La distance minimale c entre un conduit et un parement doit satisfaire aux conditions ci-après :

$$c \ge \begin{cases} 3\frac{a}{4} \\ \phi \\ 4 \ cm \end{cases}$$

ii. Tracé des câbles de la première famille :

Théoriquement, le tracé des câbles équivalent est une parabole pour compenser les efforts dus aux charges d'exploitation et aux charges permanentes.

Pour avoir une meilleure résistance à l'effort tranchant, les tracés des câbles relevés doivent respecter les deux inégalités suivantes.

$$V_{M} - \overline{V} \le \sum P \sin \alpha \le V_{m} + \overline{V}$$

 α : Valeur optimale de l'angle de relevage.

V_m: effort tranchant minimal aux appuis.

V_M: effort tranchant maximal aux appuis.

effort tranchant maximal respectant la condition d'intégrité du béton de l'âme :

$$\overline{V} = \overline{\tau} b_o Z$$

Où
$$\overline{\tau^2} = 0.4 f_{ti} (f_{ti} + \sigma_x)$$

 $\sigma_{x} = \sum P_{A}$ Contrainte au niveau de la fibre moyenne

 f_{t28} = 3 MPa ; b_o : épaisseur de l'âme de la poutre aux appuis.

Z : bras de levier ; $Z = 0.8h_t = 1.44$

D'où = 3,391 MPa; soit = 195,605 MPa.

 $\Sigma P = 5 \times 126,311 = 631,555 \text{ T (pour les 5 câbles)}.$

 σ_{x} = 6,581 MPa.

D'après les résultats précédentes : V_{max} = 246,635 T et V_{min} = 78,410 T.

On a alors l'inégalité : $51,059 < 631,555 \sin \alpha < 273,716$

 $0.0808 < \sin \alpha < 0.433$

 $4,634^{\circ} < \alpha < 25,658^{\circ}$.

La valeur optimale de l'angle de relevage est donnée par l'expression suivante :

$$\alpha = Arc\sin\left(\frac{V_{\text{max}} + V_{\text{min}}}{2\sum P}\right)$$

D'où $\alpha = 14,83^{\circ}$

Etudes de la variante Principale

Pour avoir un moment nul au droit de la section d'appui ; il faut que l'excentricité du câble équivalent est nulle c'est-à-dire relever les câbles au niveau des sections d'about.

La disposition des câbles aux abouts est aussi fonction de la distance entraxe minimale que doit avoir deux plaques d'ancrage successives.

Par conséquent, on va relever le câble équivalent de la première famille dans la section d'about à 0,9627 m de la fibre inférieure.

Le point de tangente à l'horizontale est donnée par :

$$x_k = \frac{2|e_p|}{tg\alpha} = \frac{2.0,9627}{tg14.83} = 7,27 m$$

$$y = k(x_k - x)^2$$

Pour x = 0; y = 0.9627m

$$k = \frac{y}{x_h^2} = \frac{0.9627}{7.27^2} = 0.018214705$$

On définit les paramètres suivants pour le traçage point par point du câble.

La courbure des câbles est définie par une relation en géométrie analytique suivante :

$$\frac{1}{R} = \frac{y''}{(1+y'^2)^{\frac{3}{2}}}$$

Or y'2 << 1 d'où :
$$R = \frac{1}{2 \times k}$$

L'angle α est défini par la formule suivante : tg α = y'

$$\alpha = Arctg(y') = Arctg\{-2(x_k - x)k\}$$

D'où
$$k = \frac{1}{2R}$$

$$\alpha = Arctg\left(\frac{x_k - x}{R}\right)$$

$$y_i = k(x_i - x)^2 + 0.107$$

iii. Tracé des câbles de la deuxième famille :

Le relevage des câbles de la deuxième famille se fait en travée. En général, l'angle de sortie en extrados de ces câbles est de 24°15. Les parties horizontales des câbles arrêtés en travée sont identiques et sont prises égales à la moitié de celle de la première famille.

$$p_h = \frac{14,7-7,27}{2} = 3,715 \ m$$

$$d = \frac{2h}{tg\alpha}$$

$$d = 7,71 m$$

$$L_r = 14.7 - (d + p_h)$$

$$L_r = 14.7 - (7.71 + 3.715) = 3.275 m$$

Pour le relevage en travée, les sections d'arrêt respectives des câbles 6, 7,8 de la $2^{\text{ème}}$ famille se trouvent à x=0,60m, x= 1,80 m et x=3,30m.

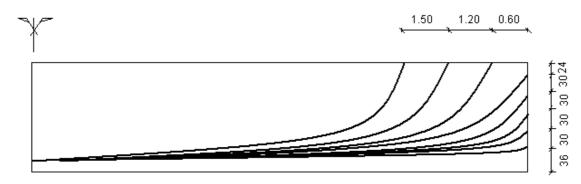


Tableau 50: valeurs de paramètres de traçage des câbles

Câbles	у	X _k	k	R [m]
Câbles n°1	0,253	7,27	0,00479	104,45
Câbles n°2	0,553	7,27	0,01046	47,787
Câbles n°3	0,853	7,27	0,01614	30,981
Câbles n°4	1,153	7,27	0,02182	22,920
Câbles n°5	1,453	7,27	0,02749	18,188
Câbles n°6	1,693	7,27	0,03203	15,609
Câbles n°7	1,693	7,21	0,03257	15,353
Câbles n°8	1,693	7,15	0,03312	15,098

Tableau 51: Ordonnées des câbles

Abscisse x de Xi (m)	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
y ₁	0,3600	0,2664	0,1750	0,1437	0,1147	0,1073	0,1070	0,1070	0,1070
y ₂	0,6600	0,4553	0,2557	0,1873	0,1239	0,1076	0,1070	0,1070	0,1070
У 3	0,9600	0,6443	0,3364	0,2308	0,1330	0,1079	0,1070	0,1070	0,1070
У4	1,2600	0,8333	0,4171	0,2744	0,1422	0,1082	0,1070	0,1070	0,1070
y 5	1,5600	1,0223	0,4977	0,3179	0,1513	0,1085	0,1070	0,1070	0,1070
У6	-	1,5488	0,8607	0,6128	0,3610	0,2534	0,2490	0,2490	0,2490
y 7	-	-	1,0535	0,7623	0,4477	0,2796	0,2581	0,2490	0,2490
У8	-	-	1,1687	0,8528	0,5031	0,3024	0,2583	0,2490	0,2490

a.3.6 Trace des fuseaux limites.

i. Premier fuseau limite:

Bord inférieur du noyau limite :

$$e_i = -c' - \frac{M_g}{P}$$

c': bord inférieur du noyau central

Bord supérieur du noyau limite :

$$e_s = c - \frac{M_{g+q}}{P}$$

c : bord supérieur du noyau central.

c et c' sont déterminés par les formules

$$c = \frac{i^2}{v}$$
 ; $c' = \frac{-i^2}{v}$

ii. Deuxième fuseau limite :

$$\left(1 - \frac{\overline{\sigma_b}}{P}A\right)c - \frac{M_p}{P} \le e \le \left(\frac{\overline{\sigma_b}}{P}A - 1\right)c' - \frac{M_{g+q}}{P}$$

 $\overline{\sigma_{\scriptscriptstyle b}}$ = 0,6 $f_{\scriptscriptstyle c28}$: Contrainte maximale de compression

Les éléments des fuseaux limites sont donnés par le tableau suivant :

Tableau 52: fuseau limite

Abscisse x	1 ^{ère} fuse	au limite	2 ^{ème} fuseau limite		
[m]	Bord inf.	Bord sup	Bord inf.	Bord sup	
0	-0,571	0,424	-0,652	0,879	
3,675	-0,781	0.038	-1,038	0,493	
7,35	-0,935	-0,238	-1,315	0,217	
11,025	-1,023	-0,404	-1,480	0,051	
14,7	-1,056	-0,459	-1,535	-0,004	

Tableau 53 : vérification du tracé de câble

Section d'abscisse	y de CDG du câble	Excentricité du câble	Bord de fuseau de passage			
x [m]	équivalent [m]	équivalent % au CDG de la section [m]	inférieure	supérieure		
0	0,96	-0,073	-0,5717	0,4242		
3,675	0,5715	-0,462	-0,7812	0,0378		
7,35	0,1756	-0,857	-0,9349	-0,2381		
11,025	0,1603	-0,873	-1,0231	-0,40317		
14,7	0,1603	-0,873	-1,056	-0,4589		

Conclusion:

Nous voyons dans le tableau ci-dessus que le câble équivalent passe entre les fuseaux de passage ou zone commune aux deux fuseaux.

a.4 Calcul des pertes de tension :

a.4.1 Pertes de tension instantanées :

Perte de tension par frottement de l'armature :

Lors de la mise en tension du câble, l'existence de frottement entre câble ; gaine et béton provoque inévitablement une diminution de la capacité de force de précontrainte du câble dans une section donnée. La valeur de tension en tout point est donnée par l'expression :

$$\sigma_{po}(x) = \sigma_{po}e^{-f\alpha-\varphi x}$$

Où x: distance de la section considérée à celle des sorties des organes de mise en tension;

 α : Déviation angulaire totale du câble sur la distance x;

f= 0,18 rd⁻¹ coefficient de frottement de la courbe ;

 φ = 0,002 m⁻¹ coefficient de perte de tension par unité de longueur ;

 σ_{po} : tension du câble à l'origine σ_{po} = 1431 MPa

La valeur de la perte par frottement de câble est : $\Delta \sigma_{\omega}(x) = \sigma_{spo} - \sigma_{spo}(x)$

$$\Delta \sigma_{\varphi}(x) = \sigma_{spo}(1 - e^{-f \alpha - \varphi x})$$

• Perte de tension à l'ancrage :

C'est la perte de tension à l'enfoncement ou à la rentrée du cône d'ancrage c'est-àdire perte due au glissement de l'armature par rapport à son ancrage.

Cette perte s'exprime par :

$$\Delta \sigma_{anc} = \frac{\Delta l_1 + \Delta l_2}{I} E_p$$

Avec $E_p = 190\,000$ MPa : module d'élasticité longitudinale de l'armature de précontrainte ;

 Δl_1 =1 mm : déplacement de la rondelle situé entre l'ancre et le béton ;

 $\Delta l_2=1$ mm : déformation propre de l'ancre ;

l_i : longueur de l'armature de précontrainte considérée.

Perte de tension par déformation instantanée du béton

Etudes de la variante Principale

Les valeurs des pertes de tension par déformation instantanée du béton dues à l'action des actions extérieures et celles des aciers de précontrainte sont obtenues par la formule :

$$\Delta \sigma_{pi}(x) = E_p \frac{K \Delta \sigma_{bj}(x)}{E_{ii}}$$

Avec k: coefficient multiplicateur égale à 1;

 $E_{ij} = 11000 \sqrt[3]{f_{cj}}$: Module d'élasticité du béton ;

- Après 14 jours de durcissement de la poutre $E_{i14} = 35705 \ MPa$;
- Après 28 jours, mise en place de la superstructure et mise en tension des câbles restants $E_{i28}=37619\;MPa$.

 $\Delta \sigma_{bi}(x)$: Variation de contrainte au niveau du béton qui enrobe le câble considéré.

Cette variation de contrainte est déterminée à l'aide des formules suivantes :

 Pour la variation due à une action extérieure après la mise en tension du câble considéré :

$$\Delta \sigma_{bj}(x) = \frac{M \ y}{I}$$

Avec M: moment fléchissant engendré par l'action extérieure;

Y : excentricité du câble considéré par rapport au centre de gravité de la section résistante de l'action extérieure ;

I : moment d'inertie de la section résistante par rapport à son centre de gravité.

 Pour la variation de contrainte provenant de la mise en tension des câbles de la deuxième famille

$$\Delta \sigma_{bj}(x) = \sum \sigma_{p2}(x) A_{cp} \left[\frac{1}{S} + \frac{e_2 y}{I} \right]$$

Avec $\sum \sigma_{p2}(x)$: tension avec les câbles de la deuxième famille après les pertes de tensions dues au frottement et l'ancrage ;

: Section d'un câble 12T13;

S: aire de la section brute;

: Excentricité du câble fictif équivalent aux câbles de la deuxième famille.

Les différents types de pertes seront mentionnés dans l'Annexe II-1

Tension probable dans un câble :

Après pertes instantanées, la tension initiale probable dans un câble est déterminée par la formule suivante :

$$\sigma_{pi}(x) = \sigma_{po} - \left[\Delta \sigma_{anc} + \Delta \sigma_{\varphi}(x) + \Delta \sigma_{pi}(x) \right]$$

Avec σ_{po} = 1431 MPa

x[m] Câble	0	1,5	3,5	4,5	7,5	9	11,5	14,7
1	1400,553	1379,600	1355,698	1327,724	1284,549	1275,278	1263,378	1252,734
2	1379,994	1369,283	1336,825	1309,154	1264,320	1255,086	1243,287	1232,771
3	1360,231	1346,479	1318,745	1291,374	1244,875	1235,676	1223,974	1213,582
4	1341,454	1321,266	1301,649	1274,571	1226,402	1217,235	1205,625	1195,350
5	1323,799	1297,172	1285,671	1258,880	1209,034	1199,895	1188,372	1178,208
6	-	1417,985	1336,552	1322,978	1305,367	1300,946	1294,133	1285,693
7		-	1416,453	1411,390	1304,253	1299,824	1293,008	1284,568
8		-	1414,503	1409,888	1302,588	1298,151	1291,332	1282,892

Tableau 54: Tension probable en [MPa] après pertes de tension instantanée

a.4.2 Pertes de tension différées :

• Perte de tension due au retrait du béton :

$$\Delta \sigma_r = \varepsilon_r [r(t) - r(t_o)] E_p$$

Avec ε_r : retrait total du béton égal à 3. 10^{-4}

r(t) : loi de variation du retrait du béton à l'instant t telle que :

$$r(t) = \frac{t}{t + 9m}$$
 ; $r_m = \frac{A}{P}$

r_m: rayon moyen de la poutre ;

A =10102 cm² section de la poutre;

P = 907,36 cm, périmètre extérieur de la section ;

t_o: âge du béton à la mise en tension des câbles.

- t= 14 jours : $r(t_0) = 0.138$

- t=28 jours : $r(t_0)=0,218$

- t= , r(t) = 1

On en déduit les valeurs des pertes de tension dans un câble :

perte de tension dans un câble de la première famille :

$$\Delta \sigma_r(t) = 3.10^{-4} (1 - 0.138) \cdot 190000 = 49.12 MPa$$

$$\Delta \sigma_r(t) = 3.10^{-4} (1 - 0.218) \cdot 190000 = 44.55 MPa$$

• perte de tension due à la relaxation des armatures :

$$\Delta \sigma_p(x) = \frac{6}{100} \rho_{1000}(\mu - \mu_o) \sigma_{pi}(x)$$
 où $\mu = \frac{\sigma_{pi}(x)}{f_{prg}}$

 μ_0 = 0,30 pour les aciers à relaxation normale ;

 $\rho_{1000} = 0.08$

 f_{prg} = 1867 MPa : valeur garantie de la charge maximale à rupture rapportée à l'unité de section nominale

 $\sigma_{pi}(x)$: tension au point d'abscisse x après perte de tension à la mise en œuvre.

• Perte de tension due au fluage du béton :

Selon les règles BPEL 91, la perte de tension due au fluage est déterminée à l'aide de la formule suivante :

$$\Delta \sigma_{fl} = (\sigma_b + \sigma_M) \frac{E_p}{E_{ij}}$$

 σ_M : contrainte maximale du béton au niveau du câble moyen définie par :

$$\sigma_{M} = \frac{\sum \sigma_{pi} A_{cp}}{A} + \frac{\sum \sigma_{pi} A_{cp} e_{p}^{2}}{I} + \frac{\left(M_{g} + M_{h}\right) e_{p}}{I}$$

 M_g et M_h : respectivement moment fléchissant dû à la poutre et à l'hourdis ;

e_p: excentricité du câble moyen par rapport au centre de gravité de la section brute

 σ_{b} : contrainte finale dans le béton au niveau du câble moyen lorsque toutes les pertes différées sont produites ;

Généralement, on a $\sigma_M = 1.5 \sigma_b$

Les différents types de pertes seront mentionnés dans l'Annexe II-2

Evaluation des pertes de tension différées en fonction du temps :

La perte différée finale est prise égale à :

$$\Delta \sigma_d = \Delta \sigma_r + \Delta \sigma_{fl} + \frac{5}{6} \Delta \sigma_p$$

x[m] Câble	0	1,5	3,5	4,5	7,5	9	11,5	14,7
1	64,746	65,087	67,990	71,665	77,840	77,182	76,107	75,388
2	64,645	65,037	67,900	71,579	77,750	77,094	76,020	75,302
3	64,549	64,928	67,816	71,498	77,666	77,010	75,937	75,222
4	64,460	64,809	67,737	71,423	77,587	76,933	75,861	75,147
5	64,377	64,699	67,665	71,354	77,515	76,861	75,791	75,077
6	1	60,714	63,335	67,079	73,370	72,734	71,679	70,969
7		-	63,725	67,506	73,365	72,728	71,674	70,964
8	_	-	63,715	67,499	73,357	72,721	71,667	70,957

Tableau 55: Perte de tension différée totale

Tension finale probable après toutes les pertes

$$\Delta \sigma_{ni}(x) = \sigma_{ni}(x) - \Delta \sigma_{d}$$

x[m] Câble	0	1,5	3,5	4,5	7,5	9	11,5	14,7
1	1335,807	1314,513	1287,708	1256,059	1206,709	1198,096	1187,272	1177,346
2	1315,349	1304,246	1268,924	1237,575	1186,569	1177,992	1167,267	1157,469
3	1295,682	1281,552	1250,929	1219,876	1167,209	1158,666	1148,036	1138,360
4	1276,994	1256,457	1233,912	1203,148	1148,815	1140,302	1129,764	1120,203
5	1259,422	1232,473	1218,006	1187,525	1131,519	1123,035	1112,582	1103,130
6	-	1357,271	1273,217	1255,899	1231,997	1228,212	1222,453	1214,724
7		-	1352,728	1343,883	1230,888	1227,096	1221,334	1213,604
8		-	1350,788	1342,389	1229,230	1225,431	1219,665	1211,936

Tableau 56: Tension finale après toutes les pertes

a.5 <u>Justification des sections vis-à-vis des contraintes normales à l'E.L.S :</u>

L'objectif de cette justification, c'est de vérifier l'état de contraintes dans les sections de la poutre pour que le béton ne soit ni trop comprimée ni trop tendue. Par suite, on doit déterminer les contraintes au niveau des fibres inférieures et supérieures de la section résistante au cours des diverses phases de la précontrainte.

Dans le cas où ; les sections ne sont pas justifiables aux contraintes de compression qu'aux tractions, on va renforcer la section par des armatures passives ou de changer la section de la poutre.

a.5.1 <u>Définition des phases de justification :</u>

A l'état limite de service, nous avons cinq phases de vérification des contraintes à savoir :

Phase I

Mise en tension des câbles de la première famille après 14 jours de durcissement de la poutre. Dans ce cas nous avons les paramètres suivants :

- Section résistante : section nette de la poutre seule ;
- Action à prendre en compte : poids propre de la poutre, forces de précontrainte dues aux câbles de la première famille après pertes instantanées.

Phase II

Juste après coulage du hourdis et des entretoises après 28 jours d'âges du béton des poutres :

- Section résistante : section nette de la poutre seule ;
- Actions à prendre en compte : poids propre de la poutre et du hourdis, forces de précontrainte dues aux câbles de la première famille après pertes instantanées et différées.

Phase III

Après mise en tension de la deuxième famille

- Section résistante : section nette de la poutre + dalle ;
- Actions à prendre en compte : poids propre du tablier, précontrainte dues aux câbles de la première et deuxième famille après les pertes citées ci après :

Phase IV

Juste après la mise en place de la superstructure

- Section résistante : section nette de la poutre+ dalle ;
- Les actions en prendre en compte sont les mêmes que dans la phase III en considérant la déformation instantanée du béton.

Phase V

C'est la phase d'exploitation de l'ouvrage

- Section résistante : section totale du tablier ;
- Les actions à prendre en compte : actions des câbles de précontrainte après pertes instantanées et différées, poids propre de l'ouvrage et surcharge d'exploitation.

a.5.2 Section de référence pour le calcul des contraintes normales :

- Section nette : c'est la surface propre du béton en enlevant l'air de trou de gaine de précontrainte.
 - Aire de la section nette :

$$A_n = A - n \frac{\pi \phi^2}{4}$$

Où A: aire de la section brute;

n : nombre de câble de précontrainte au niveau de la section considérée ;

 \emptyset : Diamètre d'une gaine.

• Centre de gravité par rapport à la fibre inférieure de la poutre :

$$V_{n} = \frac{A \times V' - n \frac{\pi \phi^{2}}{4} \times V_{c}'}{A - n \frac{\pi \phi^{2}}{4}}$$

V' : position du centre de gravité de la section brute par rapport à la fibre inférieure de la poutre ;

V'_c: position du centre de gravité des câbles par rapport à la fibre inférieure de la poutre.

• Moment d'inertie de la section par rapport à son centre de gravité :

$$I_n = I + A \times [V' - V_n']^2 - [V_n' - V_c']^2 \times n \frac{\pi \phi^2}{4}$$

- Section homogénéisée : c'est la section nette ajoutée de l'aire de section des armatures longitudinales de précontraintes multipliée par un coefficient d'équivalence (k = 5 pour le béton -acier de précontrainte)
 - Aire de la section homogène :

$$A_H = A_n + k.n.A_{cn}$$

A_{cp}: section d'un câble 12T13.

• Centre de gravité par rapport à la fibre inférieure de la poutre :

$$V_{H} = \frac{V_{n}A_{n} + k.n.V_{n}}{A + k.n.A_{cp}}$$

 Moment d'inertie de la section homogène par rapport à son centre de gravité :

$$I_{H} = I_{n} + A_{n} \times [V_{H}^{'} - V_{n}^{'}]^{2} + k \times n \times [V_{H}^{'} - V_{p}^{'}]^{2} \times A_{cp}$$

a.5.3 Calcul des contraintes limites :

- Contrainte normale limite :
 - Phase I et II :

$$f_{c28} = 40 \ MPa$$
, $f_{c14} = \frac{14}{4,76 + 0,83 \times 14} 40 = 34 \ MPa$

$$f_{c14} = 0.6 + 0.06 f_{c14} = 2.64 MPa$$

Contrainte admissible en compression : $\overline{\sigma_{bc}} = 0.6f_{c14} = 0.6 \times 34 = 20.4MPa$

Contrainte admissible en traction:

$$\overline{\sigma_{bt}} = -0.7 f_{t14} = -1.848 MPa \text{ dans la section d'enrobage ;}$$

$$\overline{\sigma_{bt}} = -1.5 f_{t14} = -3.96 \, MPa \text{ ailleurs}$$

Phases III, IV et V

 f_{c28} = 40 MPa, f_{t28} = 3 MPa, les contraintes limites de compression et de traction sont respectivement en cours d'exécution :

$$\overline{\sigma_{bc}} = 0.6 f_{c28} = 0.6 \times 40 = 24 MPa$$

$$\overline{\sigma_{bt}} = -0.7 f_{t28} = -2.1 MPa$$
 dans la section d'enrobage ;

$$\overline{\sigma_{bt}} = -1.5 f_{t14} = -3.15 \, MPa$$
 ailleurs.

- Contraintes normales de compression dans le béton :
 - Contraintes normales dans le béton dues aux forces de précontrainte :
 - Dans la fibre supérieure de la section résistante :

$$\sigma_b(x) = \frac{P}{A_n} + \frac{P \times e_p}{In} V_n$$

Dans la fibre inférieure de la section résistante :

$$\sigma_b(x) = \frac{P}{A_n} - \frac{P \times e_p}{In} V_n$$

Où e_p : excentricité du câble moyen par rapport au centre de gravité de la section nette ;

P : force de précontrainte avec les câbles.

- Contraintes normales dans le béton dues aux effets des actions extérieures :
 - Dans la fibre supérieure de la poutre :

$$\sigma_b(x) = \frac{M_{CP,Q}}{In} V_n$$

Dans la fibre inférieure de la section résistante :

$$\sigma_b(x) = -\frac{M_{CP,Q}}{\ln V_n}$$

Les résultats sont dans les tableaux suivants :

<u>Tableau 57</u>:Caractéristiques géométriques de la section nette de la poutre seule

Abscisses [m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
A _n [m ²)	0,990	0,986	0,979	0,979	0,979	0,979	0,979	0,979	0,979
V' _n [m]	1,042	1,043	1,047	1,053	1,059	1,061	1,061	1,062	1,062
V _n [m]	0,758	0,757	0,753	0,747	0,741	0,739	0,739	0,738	0,738
I _n [m ⁴]	0,421	0,421	0,421	0,421	0,421	0,421	0,421	0,421	0,421

<u>Tableau 58</u>:Caractéristiques géométriques de la section nette de la poutre + hourdis

Abscisses [m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
An [m²)	1,455	1,451	1,444	1,444	1,444	1,444	1,444	1,444	1,444
V' _n [m]	1,039	1,040	1,043	1,047	1,050	1,052	1,052	1,052	1,052
V _n [m]	0,761	0,760	0,757	0,753	0,750	0,748	0,748	0,748	0,748
In [m4]	0,421	0,421	0,421	0,421	0,421	0,421	0,421	0,421	0,421

<u>Tableau 59</u>: Contraintes normales dans le béton (fibre inférieure et supérieure) pour les différentes phases

Phases	Fibre					abscisse	:S			
Filases Fibre	rible	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
	Supérieure	1,761	3,561	4,920	3,335	2,051	1,910	2,461	3,177	3,539
'	Inférieure	16,017	13,382	11,375	13,276	14,784	14,781	13,865	12,673	12,005
п	Supérieure	1,695	3,643	5,089	3,643	2,465	2,559	3,129	3,894	4,339
11	Inférieure	15,410	12,574	10,456	12,173	13,548	13,222	12,291	11,041	10,261
l III	Supérieure	0,714	0,377	0,909	4,474	7,898	9,256	9,370	9,366	9,295
	Inférieure	1,695	0,373	1,511	6,171	11,006	13,826	14,887	16,024	16,580
IV	Supérieure	0,714	1,191	2,360	0,456	2,937	3,313	2,774	1,986	1,493
IV	Inférieure	13,003	12,807	16,067	19,770	22,896	23,122	22,272	21,031	20,198
V	Supérieure	0,714	3,977	8,355	6,885	6,171	7,294	9,077	11,298	12,452
V	Inférieure	13,003	8,970	7,736	9,437	9,905	7,902	5,257	1,953	0,170

En comparant, les valeurs de contraintes normale dans le béton données par le tableau précédent avec celles des contraintes admissibles, on peut conclure que les conditions sont toutes vérifiées.

a.6 <u>Justification des contraintes tangentielles à l'E.L.S :</u>

Cette justification s'agit de vérifier la sécurité de l'ouvrage sous les effets d'un effort tranchant cumulés aux effets du moment fléchissant et de l'effort normal.

On considère les sections d'about et d'arrêt des câbles où les contraintes tangentielles sont les plus défavorables.

Pour cela, on doit vérifier les deux conditions suivantes :

$$\tau^2 \leq 0.4 f_{ij} \left(f_{ij} + \frac{2}{3} \sigma_x \right) = \overline{\tau_1}^2$$

$$\tau^{2} \leq 2 \frac{f_{tj}}{f_{cj}} \left(0.6_{cj} - \sigma_{x} \right) \left(f_{tj} + \frac{2}{3} \sigma_{x} \right) = \overline{\tau_{2}}^{2}$$

Où $\sigma_x = \frac{\sum P_i}{A}$ la contrainte normale due aux actions extérieures et à la précontrainte

longitudinale A la section nette du béton et Pi la force de précontrainte d'un câble.

 τ : Contrainte tangentielle donnée par la formule :

$$\tau = \frac{V_{red}.S}{I_n b_n}$$

b_n: largeur nette de l'âme de la section au niveau du centre de gravité ;

S: moment statique de la poutre à la section située au dessus du centre de gravité;

I : moment d'inertie de la section nette par rapport à l'axe horizontale passant par

V_{red}: effort tranchant réduit tel que

$$V_{red} = \left| T - \sum P_i \sin \alpha_i \right|$$

a.6.1 Vérification de la section d'about

Caractéristiques géométriques de la section d'about :

A _n [m²]	V' [m]	V [m]	I _n [m4]	S_{Δ} [m3]	b _n [m]
0,9597	1,033	0,767	0,43065	0,7358	0,329

$$b_n = 0.4 - 0.071 = 0.329 \text{ m}.$$

- force de précontrainte dans la section d'about :

A la section d'about :

$$\sigma_{p \text{ max}} = 1.02 \sigma_{po} - 0.8 \left(\Delta \sigma_{pi} + \Delta \sigma_{pd} \right)$$

$$P = \sigma_{p \max} \times A_{CP}$$

N° de câble	σp max [MPa]	Pi [T]	Pi sinα
1	1393,839	157,504	10,936
2	1377,473	155,654	23,500
3	1361,739	153,877	35,467
4	1346,790	152,187	46,745
5	1332,732	150,599	57,268
To	otal	769,821	173,916

Tableau 60:Calcul de Pi sinα

L'effort tranchant maximal à la section d'about, V = 170,051 T

$$V_{red} = |T^- - \sum P_i \sin \alpha_i| = |170,051 - 173,916| = 3,865T$$

Par suite:

$$\tau = \frac{3,865 \times 0,7358}{0,43065 \times 0,329} = 20,071T / m^2$$
 soit $\tau = 0,201MPa$

$$\sigma_x = \frac{769,821}{0,9597} = 802,147T/m^2$$
 soit $\sigma_x = 8,021MPa$

A 28 jours d'âge f_{c28}=40 MPa et f_{t28}=3MPa

$$\bar{\tau}_1^2 = 0.4.3 \cdot \left(3 + \frac{2}{3} \cdot 8.021\right) = 10.017$$
 soit $\bar{\tau}_1 = 3.165 MPa$

$$\frac{-2}{\tau_2} = 2\frac{3}{40}(0.6.40 - 8.021)(3 + \frac{2}{3}.8.021) = 20.007$$
 soit $\frac{-2}{\tau_2} = 4.473MPa$

Finalement, on obtient $\ \tau < \overline{\tau}_1 < \overline{\tau}_2$, d'où les conditions sont donc vérifiées.

a.6.2 Armatures passives

i. <u>Armature de peau :</u>

Etant donné que notre ouvrage a une hauteur plus grande; la section totale des armatures de peau est définie par la formule suivante :

$$A \ge \sup \begin{cases} 0.10\% \ de \ la \ section \ brute \ de \ la \ poutre \\ 5cm^2/ml \ de \ parement \end{cases}$$

Soit A \geq 10,10 cm². Prenons 9T12 =10,18 cm².

ii. Armature tendue:

Comme, il n'y a pas de traction sur les fibres extrêmes de la poutre durant les phases citées ci-dessus, on adoptera les armatures tendues minimales inférieures :

A_s = 0,20 % de la section brute du béton

Soit $A_s = 20,20 \text{ cm}^2$. Prenons $A_s = 20,17 \text{ cm}^2$ ou 10T16.

iii. Armature transversale :

Les sections d'armatures minimales transversales est donnée par la relation suivante :

$$\frac{A_t}{S_t} \ge 0.6b_n \frac{\gamma_s}{f_e}$$

Avec At: armature transversale minimale;

S_t: espacement;

b_n: épaisseur de l'âme.

Zones centrales :

Dans cette zone, les moments fléchissants ont des intensités élevées tandis que les efforts tranchants sont faibles

$$S_t \le Min\{80cm; 0.8h; 3b_0\} = 60 cm$$

 b_n : largeur nette de la poutre. b_n = 25 -7,1 = 17,9 cm.

$$\frac{A_{t \min}}{S_t} \ge 0.6.0,179.10^4 \frac{1.15}{400} = 3.075 cm^2 / m$$

Pour s_t = 40 cm, A_{tmin} = 1,23 cm²/m. Prenons 2T12 = 1,57 cm² de section réelle.

Zone d'about :

Dans ces zones, l'effort tranchant est maximal. Donc, on prévoit des armatures transversales suffisantes pour absorber les contraintes dues à ces efforts. Prenons alors $A_t = 4T12$ de section réelle 4,52 cm² d'espacement $S_t = 40$ cm.

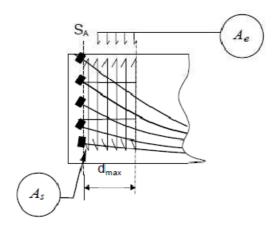


Figure 35: Ferraillage d'éclatement de la zone d'about

iv. Armature de frettage :

L'armature de frettage est disposé au voisinage des abouts et repartir sur toute la hauteur de section en question.

iv.1 Effet de surface :

La section d'armature est donnée par la formule empirique suivante :

$$A_{\rm S}=0.04(P_{oi}/\sigma_{\rm s\,lim})$$

Avec $\sigma_{\text{slim}} = 2 f_e/3 = 266,67 \text{ MPa}$

$$P_{oi} = 1431 \times 0,113 = 161,703T.$$

 $A_s = 2,42$. Soit 2T12

iv.2 Effet d'éclatement :

Vérification des contraintes du béton :

Il y a lieu de vérifier que :

$$\sigma_{tej} \leq 1,25 f_{tj}$$
 et que $\sigma_{xmj} \leq \frac{2}{3} f_{cj}$

 σ_{tej} : la contrainte maximale d'éclatement, sur la ligne d'action de la force de précontrainte P_j ;

 σ_{Xmj} : la contrainte moyenne de compression longitudinale.

$$\sigma_{tej} = 0.5 \left[1 - \frac{a_j}{d_j} \right] \frac{P_{jo}}{b.d_j} \quad ; \quad \sigma_{xmj} = \frac{P_{jo}}{b.d_j}$$

ai: dimension moyenne dans le plan d'étalement des organes d'ancrage placés à ce niveau;

d_i: étant la hauteur du prisme symétrique associé au niveau i ;

P_{io}: force de précontrainte à l'origine de l'ensemble des câbles ancrés au niveau i ;

b : épaisseur du panneau considéré.

Câble n°	P _{jo} [T]	a _j [cm]	d _j [cm]	σ _{xmj} [MPa]	σtej [MPa]
1	152,411484	22,5	72	5,292	1,819
2	150,099772	22,5	30	12,508	1,564
3	147,877373	22,5	30	12,323	1,54
4	145,765721	22,5	30	12,148	1,518
5	143,780022	22,5	48	7,489	1,989

<u>Tableau 61</u>: Valeurs de σ_{xmj} et σ_{tej} en MPa

D'après le tableau ci-dessus, on a :

$$\sigma_{xmj,\text{max}} = 12,508MPa \le \frac{2}{3} f_{c28} = 26,667MPa$$

$$\sigma_{tei,max} = 1,989MPa \le 1,25 f_{ti} = 3,75MPa$$

Les conditions nécessaires pour qu'ils n'y a pas de risques d'écrasement sont vérifiées. Mais il faut prévoir quand même des armatures dites « *armatures d'éclatement* » pour équilibrer les contraintes.

Armatures d'éclatement :

La résultante des contraintes d'éclatement est donnée par :

$$R_j = 0.25 \left(1 - \frac{a_j}{d_j} \right) P_{jo}$$

Pour chaque niveau d'ancrage j, on calcule, une section d'aciers d'éclatement :

$$A_{cj} = \frac{R_j}{K_j \sigma_{s \, \text{lim}}}$$

Coefficient
$$k_j \begin{cases} k_j = 1 & si \ j & est \ un \ niveau \ extrême \\ k_j = 1,5 \ si \ j & est \ un \ niveau \ intermédiaire \end{cases}$$

En définitive, on dispose une section d'aciers transversaux telle que:

$$A_e = \sup \begin{cases} \max(A_{cj}) \\ 0.15 \frac{\max(P_{oj})}{\sigma_{s \text{ lim}}} \end{cases}$$

Câble n°	Pjo [T]	aj [cm]	dj [cm]	R _j [T]	\mathbf{A}_{cj}	0,15 (P _{oj} / σ_{slim})
1	152,411	22,5	72	26,196	9,823	8,573
2	150,100	22,5	30	9,381	2,345	8,443
3	147,877	22,5	30	9,242	2,311	8,318
4	145,766	22,5	30	9,110	2,278	8,199
5	143,780	22,5	48	19,096	7,161	8,089

Tableau 62: Calcul de Acj

D'où $A_e = 9,823$ cm², soit 7T14 à repartir sur 40 cm à partir d'about.

iv.3 Câble arrêté en travée :

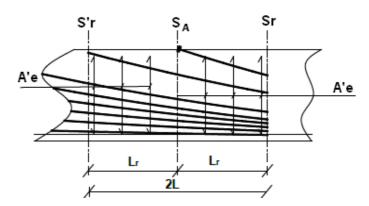


Figure 36: Frettage pour les câbles arrêtés en travée

– Armature transversale :

La zone d'ancrage n'est pas d'about :

Alors : $A'_e = \lambda A_e$

Entre S_A et $Sr: \lambda = 1$

Entre S_A et $S'_r:\lambda=0.6$

 S'_r : section distante de L_r à partir de S_A (à droite) $\rightarrow A_e^{'} = 9.823 cm^2$

 S_r : section distante de L_r à partir de S_A (à gauche) $\rightarrow A_e^{'} = 5,894cm^2$

Longueur de répartition : $I = I_r / 2 + I_s$

 I_s : longueur de scellement droit ; I_s = 40 \varnothing pour les aciers fe E 400.

$$I_r = h_t = 1,80 \text{ m} \implies I = 1,30 \text{ m}.$$

a.7 Vérifications de section à l'état ultime de résistance :

a.7.1 Calcul de résistance de la section médiane soumise à la flexion :

hypothèses :

Le diagramme de contrainte de calcul pour le béton est rectangulaire et la contrainte uniformément répartie sur une hauteur 0,8 y est égale à $\overline{\sigma_b}$.

Les contraintes de compression dans les armatures passives comprimées et des câbles de précontraintes situés dans la zone de béton comprimé sont négligeables.

Les contraintes admissibles de calcul (de traction) des armatures passives et câbles précontraintes sont respectivement égales à :

$$\overline{\sigma_{S,U}} = 0.87 f_e = 348 MPa$$

$$\overline{\sigma_{sp,u}} = \frac{f_{peg}}{\gamma} = 1383 MPa$$

Détermination de la position de l'axe neutre :

Cette position dépend de la vérification de l'inégalité ci-après si l'axe neutre tombe dans la table :

$$\overline{\sigma}_{sp,u}A_{CP}^T + \overline{\sigma}_{s,u}A \leq \overline{\sigma}_bbh_o + \overline{\sigma}_sA' + \overline{\sigma}_{sp}A_{cp}^T$$

$$\overline{\sigma_b} = \frac{0.85}{\theta \gamma_b} f_{c28} = 26,67 MPa$$

$$A_{cp}^{T} = n \times A_{cp} = 8 \times 11,30 = 90,4cm^{2}; \quad A = 20,17cm^{2}; \quad A' = 0; \quad A_{cp}^{T} = 0$$

b= 145 cm

 $h_0 = 20 \text{ cm}$

Après calcul, nous trouvons :

$$\overline{\sigma_{SD,u}}A_{CP}^T + \overline{\sigma_{S,u}}A = 1320,42 \text{ T} > \overline{\sigma_b}bh_o = 773,43 \text{ T}$$

D'après le résultat, nous en déduisons que l'axe neutre tombe dans la nervure.

 La hauteur de la zone du béton comprimé est déterminée par l'équilibre statique suivant :

$$\sum F = 0 \Rightarrow \overline{\sigma_{sp,u}}.A_{cp}^{T} + \overline{\sigma_{s,u}}.A = \overline{\sigma_{b}}.0,8yb_{0} + \overline{\sigma_{b}}(b - b_{0})h_{0}$$

$$y = \frac{\overline{\sigma_{sp,u}}.A_{cp}^{T} + \overline{\sigma_{s,u}}.A - \overline{\sigma_{b}}(b - b_{0})h_{0}}{\overline{\sigma_{b}}.0,8b_{0}}$$

Après calcul, on trouve y = 1,275 m. α = y/d = 0,787.

Capacité portante de la section

$$M_{cp} = \overline{\sigma_b} b_0.0.8y(d-0.4y) + \overline{\sigma_b}(b-b_0)h_0(d-0.5h_0)$$

 $M_{cp} = 1828,98Tm \ge M_u = 1795,573Tm$, la résistance à la flexion est assurée.

a.7.2 Justification des armatures transversales :

On doit vérifier la condition suivante :

$$\tau_{r\acute{e}d,u} \leq \overline{\tau_u} = \left(\frac{A_t}{S_t b_n} \times \frac{f_e}{\gamma s}\right) \cot g\beta + \frac{f_{tj}}{3}$$

$$\tau_{red,u} = \frac{V_{red,u}.S}{I_n b_n} = 3,852MPa$$

 β : Angle d'inclinaison des bielles du béton donné par la relation :

$$tg2\beta = \frac{2 \times \tau_{r\acute{e}d,u}}{\sigma_x} = 0.960$$

Alors β = 21,9 ce qui nous donne cotg β = 2,486

$$\tau_{red,u} = 3.852MPa < \overline{\tau_u} = 3.97 MPa$$
 condition vérifiée.

a.7.3 Justification du béton de l'âme :

Pour cela, il faut vérifier l'inégalité suivante :

$$\sigma_b = \frac{2\tau_{red,u}}{\sin 2\beta} \le \frac{2}{3} \frac{0.85f_{c28}}{\gamma_s} \quad \Rightarrow \quad \tau_{red,u} \le \frac{0.85f_{c28}}{3\gamma_s} \sin 2\beta$$

Finalement, $\tau_{red, u}$ = 3,852 MPa < 6,819 MPa condition vérifiée.

a.8 Etat limite de service vis-à-vis des déformations :

i. Données de calcul:

L= 29,4 m, travée de calcul des poutres ;

g= 3,71 T/ml, charge permanente;

q= 14,44 T/ml;

 $E_{ii} = 37619,5 \text{ MPa} = 3761950 \text{ T/m}$;

 $I_{red} = 0,4565 \text{ m}^4$, moment d'inertie réduit par rapport au centre de gravité du béton ;

 $P_c = 1084,92 T$

ii. Flèche et contre flèche:

Généralement, la flèche est comptée positivement vers le bas et négativement vers le haut.

On doit vérifier : $f_1 = f_g + f_p + f_q < f_{adm}^L$ où f_{adm}^L est la flèche admissible.

- Flèche dues aux charges permanentes :

$$f_g = \frac{5}{384} \frac{gL^4}{0,85E_{ii}I_{red}} = 2,47cm$$

Cotre flèche de précontrainte :

$$f_p = -\frac{P_c e_{op} L^2}{8.0, 8.E_{ii} I_{rad}} = -8,21cm$$

Flèche due aux charges d'exploitation :

$$f_q = \frac{5}{384} \frac{qL^4}{0.85E_{ij}I_{red}} = 9.62cm$$

Flèche résultante :

Flèche en service à vide :

$$f_0 = f_p + f_g = -5,74cm$$

– Flèche en service en charge :

$$f_1 = f_g + f_p + f_q = 3,88cm$$

- Flèche maximale admissible :

$$f_{\rm lim} = \frac{l}{400} = 7,35cm$$

On a $f_1 = 3,88cm$ et $f_{\rm lim} = 7,35cm$, alors $f_1 < f_{\it adm}^{\it L}$. La condition est donc vérifiée

iii. Calcul et vérification des rotations :

Rotation due à la charge permanente :

$$\beta_g = \frac{1}{24} \frac{gL^3}{0.85E_{ii}I_{red}} = 0.00269 \, rd$$

Rotation instantanée due à la surcharge d'exploitation :

$$\beta_q = \frac{1}{24} \frac{qL^3}{0.85 E_{ij} I_{red}} = 0.0104 rd$$

Etudes de la variante Principale

Rotation due aux forces de précontrainte :

$$\beta_p = -\frac{1}{2} \frac{P_c e_{op} L}{0.8 E_b I_{red}} = -0.0111 rd$$

Vérification de rotation :

– Rotation en service à vide :

$$\beta_0 = \beta_g + \beta_p = -0.00848 \ rd$$

Rotation en service à charge :

$$\beta_1 = \beta_g + \beta_p + \beta_q = 0.002 \, rd$$

– Rotation admissible :

$$\overline{\beta} = 0.024 \, rd$$

Comme la rotation admissible $\overline{\beta}=0.024~rd>\beta_{\scriptscriptstyle 1}=0.002~rd$. La condition est vérifiée.

b. Calcul de la dalle :

La dalle s'appuie sur ses 4 cotés et leurs dimensions en plan sont :

 L_v : distance entre les nus de deux entretoises successives. $L_v = 7,35 \text{ m}$

 L_x : distance entre deux parements intérieurs de 2 poutres principales. L_x = 2,25 m

$$\alpha = \frac{l_x}{l_y} = 0.306 < 0.4$$

La dalle étant partiellement encastrée sur les deux côtés suivant la longueur du pont, on prendra pour le calcul des moments l'hypothèse d'une dalle continue.

b.1 Principe de répartition de la charge appliquée à la dalle

La dalle reçoit directement la charge provenant de la superstructure de la voie ferrée et la surcharge d'exploitation.

Les charges concentrées provenant des essieux du train se repartissent à travers la superstructure de la voie à 45°.

La longueur de répartition suivant le sens transversal au niveau du plan moyen de la dalle est : $I_1 = 1,00 + 2 \times 0,50 + 2 \times 0,40 + 2 \times 0,2 /2 = 3$ m

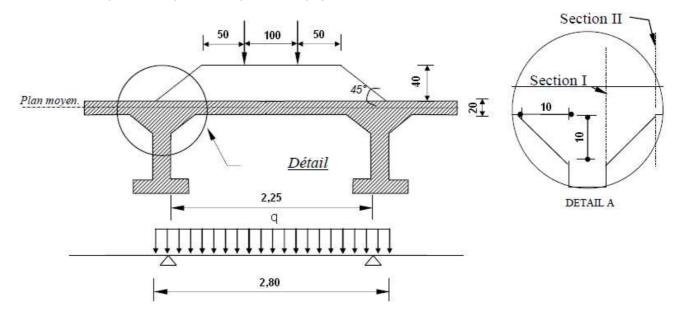


Figure 37: Dimension de la poutre surchargée de la dalle

Suivant le sens longitudinal : $l_2 = 0.25 + 2 \times 0.40 + 2 \times 0.2 / 2 = 1.25 \text{ m}$

Intensité de la charge par mètre linéaire de l_y :

$$p = \frac{P}{l_1} = 6,667t / ml$$

P: charge d'un essieu.

b.2 Calcul des sollicitations :

b.2.1 Charge permanente

Notons g la charge appliquée

 Rails :
 0,036 T/ml

 Traverse
 0,045 T/ml

 Ballast
 0,640 T/ml

 Revêtement de la dalle
 0,072 T/ml

 Dalle
 0,500 T/ml

 g=
 1,293 T/ml

b.2.2 <u>Détermination de coefficient de majoration dynamique</u>

$$\delta = 1 + \frac{0.4}{1 + 0.2l} + \frac{0.6}{1 + 4\frac{P}{S}}$$

L: distance entre plan moyen des axes des poutres principales

P: charge permanente P= 20,64 T

S : surcharge maximale du système qui pourra se placer sur la longueur l du tablier. S= 40 T

Ainsi on aura : $\delta = 1,472$

b.2.3 Moments fléchissants

• Dalle centrale:

Charge permanente

$$M_{og} = g \frac{l^2}{8} = 0.818Tm$$

Surcharge

Le moment au centre de la dalle dû aux surcharges est le suivant (le système est considéré comme une poutre simplement appuyée sur deux appuis) :

$$M_{oq} = \delta p \frac{l^2}{8} = 6,209Tm$$

Afin de tenir compte les encastrements partiels aux extrémités, les moments de flexion se calcule comme une poutre isostatique. Ces moments seront multipliés par des coefficients forfaitaires :

- Au centre : $M_t = 0.8 M_o$

Aux appuis : M_a=- 0,5 M_o

• <u>Encorbellement du trottoir</u>:

Charge permanente

Garde-corps 0,050 T

Dalle+revêtement 0,572 T/m

 $M_{og} = 0.05 \times 0.70 + 0.572 \times 0.70^{2}/2 = 0.175 \text{ T/m}$

Surcharge de trottoir

La surcharge maximale de façon concentrée est de 10 T dans les cas de déraillement de locomotive ou le wagon sur le pont (en bordure du trottoir) ; dont la surface d'impact est en carré de 3,6 cm x 3,6 cm.

Le modèle imposé à la distribution de la charge est anguleux, faisant un angle de 45°

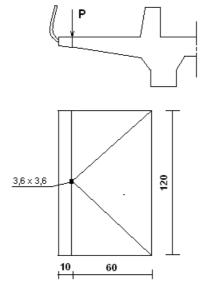


Figure 38: Section de calcul des sollicitations de l'encorbellement

$$M_t = 10 \times 1,472 \times 0,70^2 / (2 \times 1,20) = 3,005 \text{ Tm}$$

b.2.4 Efforts tranchants

Pour calculer les efforts tranchants dans les sections qui limitent la position du gousset, on considère la dalle comme une poutre indépendante.

Dalle centrale :

Charge permanente

Section I, II:

$$V_I = g \frac{l}{2} = 1,454T$$
 ; $V_{II} = g \frac{(l - 0,10)}{2} = 1,389T$

Surcharge

Section I, II:

$$V_I = \delta p \frac{l}{2} = 11,038T$$
 ; $V_{II} = \delta p \frac{(l-0,10)}{2} = 10,547T$

• Encorbellement du trottoir :

Charge permanente

Section I, II:

$$V_{I} = 0.05 + 0.572 \times 0.70 = 0.45T \qquad ; \qquad V_{II} = 0.05 + 0.572 \times \big(0.70 - 0.10\big) = 0.393T$$
 Surcharge

Section I, II:

$$V_I = 10 \times 1,471 \times 0,70/1,20 = 8,584T$$

$$V_{II} = 1,471 \times (0,70 - 0,10) \times 10/1,20 = 7,358T$$

Sollicitations		Moments fléchissant Tm	Section	Effort tranchant T	
	Sur appui	E.L.U	-5,209	1	18,521
Dalle centrale	Sur appui	E.L.S	-3,514		12,493
Dalle Centrale	En travée	E.L.U	8,334	П	17,698
	Entravee	E.L.S	5,622	-	11,938
Encorbellement du trottoir	Cur appui	E.L.U	4,743		13,485
	Sur appui	E.L.S	3,180	•	9,035
	En travée E.L.U E.L.S	0,000	11	11,569	
		E.L.S	0,000	II	7,752

Tableau 63: Récapitulation des sollicitations

b.3 Calcul des armatures

Hypothèse de calcul

Les sections droites restent planes après déformation (Navier Bernoulli)

Le Béton et l'acier sont des matériaux linéairement élastiques, c'est-à-dire la contrainte est proportionnelle à la déformation.

La fissuration est très préjudiciable.

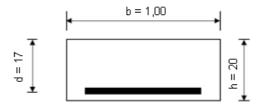
Les caractéristiques mécaniques des matériaux sont :

- Béton dosé à 350 Kg, CEM I 42,5
- Résistance à la compression du béton à 28 jours f_{c28}= 25 MPa
- Résistance limite à la compression relative à l'E.L.S : $\overline{\sigma_{bc}} = 0.6 f_{c28} [MPa]$

$$\overline{\sigma_{bc}} = 15MPa$$

Résistance limite à la compression relative à l'E.L.U :

$$f_{bu} = \frac{0.85}{\gamma_b} f_{c28} = 18,47 [MPa]$$


- Acier nuance Fe E 400 HA
- Module d'élasticité longitudinale E = 2 10⁵ MPa
- Contrainte admissible à la traction de l'acier à l'E.L.S : $\overline{\sigma_s} = 201,63MPa$
- Valeur de calcul de la limite d'élasticité garantie à l'E.L.U : $f_{ed} = 348MPa$

En principe, la section des armatures longitudinales est : $A = max (A_{ser}, A_u)$ où A_{ser} et A_u les sections calculées suivant l'E.L.S et l'E.LU.

Pour le type de fissuration très préjudiciable, le choix de dimensionnement de la section d'acier est l'E.L.S.

Détermination suivant l'E.L.S

b= 100 cm; h= 20 cm; d = 17 cm; enrobage c'= 3 cm.

Armatures principales

Armatures inférieures en travée :

$$M_{ser} = 5,622 \text{ Tm}$$

$$\overline{\alpha_1} = \frac{15\overline{\sigma_{bc}}}{\overline{\sigma_s} + 15\overline{\sigma_{bc}}} = 0,527$$

$$M_{rb} = \frac{1}{2} \overline{\alpha_1} \left(1 - \frac{\overline{\alpha_1}}{3} \right) b d^2 \overline{\sigma_{bc}} = 9,681 Tm$$

Puisque M_{rb} > M_{ser}, l'armature comprimée n'est pas nécessaire

$$Z_b = d \left(1 - \frac{\overline{\alpha_1}}{3} \right) = 13,906cm$$

$$A_{ser} = \frac{M_{ser}}{Z_b \overline{\sigma}_s} = 21,61cm^2$$

Vérification du pourcentage d'armatures minimale

$$A_{\min} = \max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{128}}{f_e} \right\}$$

$$A_{\min} = 2,05cm^2$$

On a A = 21,61 cm² > 2,05 cm². Le pourcentage minimal d'armatures est respecté.

Prenons A = $21,99 \text{ cm}^2$, 7T20 avec espacement 14,3 cm.

Armatures supérieures en appui :

$$M_{ser} = 3,514 \text{ Tm}$$

Après calculs, on trouve A_{ser} = 13,51 cm²

Prenons A =14,07 soit 7 T 16 avec espacement 14,3 cm.

Armatures de répartition

– En travée :

Prenons $A_r = 7.85$ soit 10T10 avec espacement 10 cm.

Aux appuis

Prenons $A_r = 4,71 \text{ cm}^2 \text{ soit } 6T10 \text{ espacé de } 16,5 \text{ cm}.$

Vérification de la contrainte tangentielle :

La contrainte tangentielle doit vérifier la relation suivante :

$$\tau_u = \frac{V_u}{bd} < \overline{\tau_u} = 0.07 \frac{f_{c28}}{\gamma_b}$$

Section I:

 $\tau_{uI} = 1,089 \text{ MPa} < 1,167 \text{ MPa}$

Section II:

 $\tau_{\rm UII}$ = 1,041 MPa < 1,167 MPa

Les armatures transversales ne sont pas nécessaires.

Vérification des sections d'armature principale aux appuis en encorbellement

En comparant les deux moments :

M_{appuis} (dalle) =3,514 Tm [E.L.S]

M_{encorbellement} (trottoir) = 3,180 Tm [E.L.S]

On trouve $M_{appuis} > M_{encorbellement}$

Donc, il suffit de prolonger les armatures aux appuis dans la partie de l'encorbellement.

Arrêt des barres :

Les aciers de la nappe inférieure sont prolongés jusqu'aux appuis et ancrés au-delà du contour.

La longueur de l'armature supérieure est : $Max\{l_x;0,2l_x\}=80cm$.

c. Garde Ballast

La garde Ballast est une voile encastrée dans la dalle de dimension : 0,15 x 0,50 x 30 m.

c.1 Hypothèse de calcul

- Fissuration préjudiciable
- Béton dosé à 350 Kg/m³; CEM I 42,5; fc28= 25 MPa
- Acier Fe E400

c.2 Calcul de la sollicitation

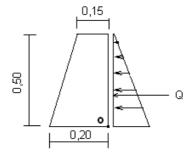


Figure 39: Garde Ballast

Q : poussé du ballast, pour une tranche horizontale de 1m.

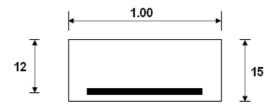
$$Q = \frac{1}{2}k.\gamma.h^2$$

K : coefficient de poussée tel que : $k = \tan^2(\pi/4 - \varphi/2)$

Etudes de la variante Principale

 φ : Angle du talus naturel du ballast φ = 45 °;

 γ = 1,6 T/m³ : poids spécifique du ballast ;


Q = 31,719 Kg; effort résultante appliqué à d = 0,50 / 3 = 0,167m.

$$M_0^Q = 5,286 \, Kg.m / ml$$

c.3 Calcul des armatures

Soit la section de calcul:

b = 1,00 m; h = 15 cm; d = 12 cm; enrobage c' = 3 cm.

Calcul à l'E.L.U

$$M_{II} = 7,929 \times 10^{-3} \text{ Tm}$$

$$\mu = \frac{M_u}{bd^2 f_{bc}} = 0,000387 < \mu_{lim} = 0,391$$

La valeur de μ_{lim} est indiquée dans les règles BAEL 91 modifié 99.

$$\alpha = 1,25(1 - \sqrt{(1 - 2\mu)}) = 4.8 \times 10^{-4}$$

$$z = d(1 - 0.4\alpha) = 11.99cm$$

 $A_u = M_u / z f_{ed} = 0,000189 \ cm^2$. La section d'armature est négligeable.

Donc, on prend la section d'armature minimale :

$$A_{\min} = \max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{f_e} \right\} = 1,449 \text{ cm}^2$$

Prenons A = 1,50 cm² soit 3T8 espacé de 33 cm.

Pour l'armature de répartition $A_r = A/3 = 0.483 \text{ cm}^2$

Prenons A = 0,565 soit 2T6.

d. Calcul des entretoises

Les entretoises assurent la répartition des charges entre les poutres dans le sens transversal c'est-à-dire elles assurent la rigidité des poutres contre la torsion sous charges.

d.1 Caractéristiques de la section considérée

Désignation	Entretoise d'about	Entretoise intermédiaire
Epaisseur [m]	0,30	0,30
Hauteur [m]	1,40	1,40
Longueur des diaphragmes l _e [m]	2,10	2,25
Entraxe des entretoises d _e [m]	7,50	7,50
Nombre	2	3

Tableau 64: Caractéristiques de la section des entretoises

d.2 <u>Méthode de distribution des charges appliquées et détermination de ces</u> <u>valeurs :</u>

La répartition triangulaire des charges appliquées aux entretoises (modèle de structure) :

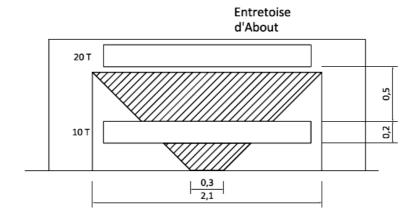


Figure 40: Répartition des charges sur l'entretoise d'about

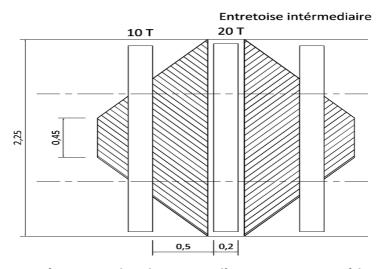


Figure 41: Répartition des charges sur l'entretoise intermédiaire

Charges permanentes

Les charges permanentes prises en compte dans le calcul sont :

- Poids propre de l'entretoise ;
- Distribution triangulaire des charges provenant de la dalle et de la superstructure de la voie ferrée.

$$g_t = 2,450 \, T/ml$$

$$g_t = 3,016 \text{ T/ml}$$

Surcharges d'exploitation

Coefficient de majoration dynamique

$$\delta = 1 + \frac{0.4}{1 + 0.2l} + \frac{0.6}{1 + 4\frac{P_e}{S}}$$

		Entretoise d'about	Entretoise intermédiaire
$Pe = g_t \times I_e$	[T]	5,146	6,788
Se	[T]	30	40
coefficient de m	najoration dynamique δ	1,638	1,633

Tableau 65: coefficient de majoration dynamique

- Détermination de la pression due à la surcharge

La surcharge B appliquée sur la traverse dans le centre de la zone de charge est de 20 T. d'où la pression sous ballast est : $P_{ce}=9,629T/m^2$

Pour la surcharge B à l'extrémité de la zone de charge, la charge appliquée est l'essieu de 10T, d'où la pression sous ballast : $P_{ex}=4.814T/m^2$.

La force créée par la surcharge est donnée par la formule suivante :

$$P_B = S_1 P_{ex} + S_2 P_{ce}$$

Avec S_1 : surface d'impact de la surcharge P_{ex} sur l'entretoise S_1 =1,082 m²

S₂: surface d'impact de la surcharge P_{ce} sur l'entretoise S₂=0,792 m²

Après calcul, on trouve $P_B = 12,828T$

Soit
$$P_{Rt} = \delta . P_{R} = 21,012T$$

Ainsi
$$q_{Rt} = 10,01T / ml$$

Les pressions sous ballast $P_{ce}\,$ et $P_{ex}\,$ sont les même que pour les entretoise d'about :

$$P_{ce} = 9,629T/m^2$$
 ; $P_{ex} = 4,814T/m^2$.

D'où la force crée par la surcharge B:

$$P_B = S_1 P_{ex} + S_2 P_{ce}$$

Avec S_1 : surface d'impact de la surcharge P_{ex} sur l'entretoise $S_1 = 1,618 \, m^2$

 S_2 : surface d'impact de la surcharge P_{ce} sur l'entretoise $S_2=1,788\,m^2$

Après calcul, on trouve $P_B = 25,010T$

Soit
$$P_{Bt} = \delta . P_{B} = 40,845 T$$

Ainsi
$$q_{Bt} = 18,154T / ml$$

d.3 Détermination des sollicitations

Les sollicitations sont déterminées à l'aide de la ligne d'influence des entretoises.

• Moment fléchissant :

Pour trouver l'effet le plus défavorable, nous déterminons la fonction d'influence du moment fléchissant dans une section quelconque $\Sigma(x)$ afin qu'on puisse tracer la LI.

Pour
$$x \le \alpha : M(x, \alpha) = \left(1 - \frac{\alpha}{l}\right)^2 \left[x\left(1 + \frac{2\alpha}{l}\right) - \alpha\right]$$

 $x = \frac{l}{2} : M\left(\frac{l}{2}, \alpha\right) = \frac{l}{2}\left(1 - \frac{\alpha}{l}\right)^2$
Pour $x \ge M(x, \alpha) = \left(\frac{\alpha}{l}\right)^2 \left[x\left(\frac{2\alpha}{l} - 3\right) + 2l - \alpha\right]$
 $x = \frac{l}{2} : M\left(\frac{l}{2}, \alpha\right) = \frac{l}{2}\left(\frac{\alpha}{l}\right)^2$

Représentation des Lignes d'influence du moment fléchissant :

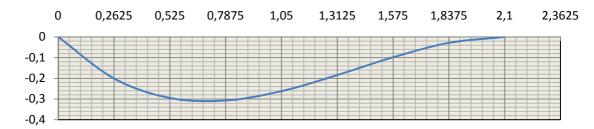


Figure 42: LI du moment MA à l'appui gauche de l'entretoise d'about

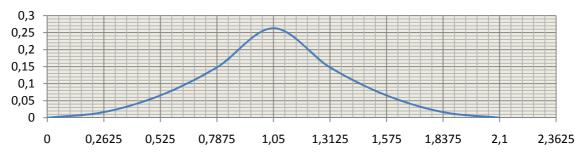


Figure 43: LI du moment Mo à mi-travée de l'entretoise d'about

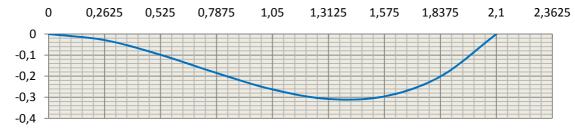


Figure 44: LI du moment M_B à l'appui droit de l'entretoise d'about

Entretoise intermédiaire :

Figure 45: LI du moment MA à l'appui gauche de l'entretoise intermédiaire

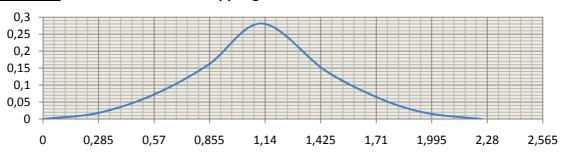



Figure 46: LI du moment Mo à mi-travée de l'entretoise intermédiaire

Figure 47: LI du moment MB à l'appui droit de l'entretoise intermédiaire

La valeur maximale pour les moments aux appuis est définie par l'équation :

$$\frac{dM(x,\alpha)}{d\alpha} = 0$$

Puisque
$$M_A = -\alpha \left(1 - \frac{\alpha}{l}\right)^2$$
, $alors -3\alpha^2 + 4l\alpha - l^2 = 0$

Après calcul, on trouve:

 $\alpha = 0.7$ Correspond à la valeur de $M_{A(max)} = 0.311 \, Tm$

Par raison de symétrie, on a aussi :

$$\alpha = 1.4$$
 Correspond à la valeur $M_{R(max)} = 0.311 \, Tm$

Entretoise intermédiaire :

 $\alpha = 0.749$ Correspond à la valeur de $M_{A(max)} = 0.333 \ Tm$

Par raison de symétrie, on a aussi :

$$\alpha = 1,501$$
 Correspond à la valeur $M_{R(max)} = 0,333 \, Tm$

De plus, la surface délimitée par la ligne d'influence est obtenue à l'aide de l'intégrale suivante :

$$S_{LI}(A) = \int_{0}^{l} M_{A}(\alpha) d\alpha \quad ; S_{LI}(B) = \int_{0}^{l} M_{B}(\alpha) d\alpha \quad ; S_{LI}\left(\frac{l}{2}\right) = \int_{0}^{l} M_{\frac{1}{2}}(\alpha) d\alpha$$

Après la résolution de ces intégrales, on trouve :

$$S_{LI}(A) = S_{LI}(B) = 0.368 m^2 ; S_{LI}(\frac{l}{2}) = 0.184 m^2$$

Pour l'entretoise intermédiaire :

$$S_{LI}(A) = S_{LI}(B) = 0.422 \, m^2 \, ; S_{LI}\left(\frac{l}{2}\right) = 0.211 \, m^2$$

Moment fléchissant du aux charges permanentes :

 $M_A=g_t \times S_{LI}(A)$

 $M_B=g_t \times S_{LI}(B)$

 $M_{0.5I}=g_t \times S_{LI}(0.5I)$

	Section	Α	0,51	В
Entretoise d'about	S _{LI} [m ²]	0,368	0,184	0,368
	Moments [Tm]	0,901	0,450	0,901
Entretoise intermédiaire	Section	Α	0,51	В
	S _{LI} [m²]	0,422	0,211	0,422
	Moments [Tm]	1,274	0,636	1,274

Tableau 66: Moment fléchissant due aux charges permanentes

■ Moment fléchissant du à la surcharge B :

La surcharge due par le système B se transforme en charge linéairement répartie suivant le long de la poutre transversale. Par conséquence les méthodes de calcul précédent restent absolument valables.

 $M_A=g_{Bt} \times S_{LI}(A)$

 $M_B=g_{Bt} \times S_{LI}(B)$

 $M_{0.5I}=g_{Bt} \times S_{LI} (0.5I)$

	Section	Α	0,51	В
Entretoise d'about	S _{LI} [m²]	0,368	0,184	0,368
	Moments [Tm]	3,679	1,838	3,679
Entretoise intermédiaire	Section	Α	0,51	В
	S _{LI} [m²]	0,422	0,211	0,422
	Moments [Tm]	7,665	3,830	7,665

Tableau 67: Moment fléchissant due aux surcharges

• Effort tranchant:

L'expression de la fonction d'influence de l'effort tranchant dans la section $\Sigma(x)$ est obtenue en dérivant celle du moment fléchissant par rapport à x et nous avons :

Appuis A :
$$T_A(x=0) = \left(1 - \frac{\alpha}{l}\right)^2 \left(1 + 2\frac{\alpha}{l}\right)$$

Appuis B:
$$T_B(x=l) = \left(\frac{\alpha}{l}\right)^2 \left(\frac{2\alpha}{l} - 3\right)$$

Représentation des Lignes d'influence des efforts tranchants:

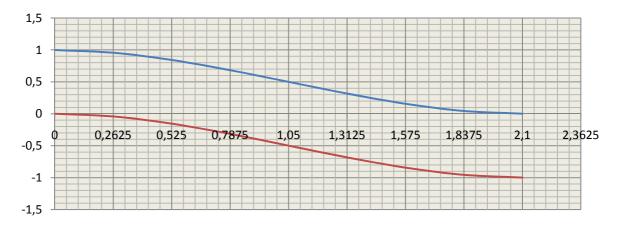


Figure 48: LI des efforts tranchants de l'entretoise d'about

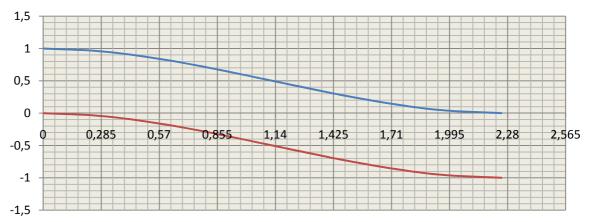


Figure 49: LI des efforts tranchants de l'entretoise intermédiaire

Détermination des surfaces délimitées par l'allure des lignes d'influence :

$$S_{LI}(A) = \int_{0}^{1} T_{A}(\alpha) d\alpha \quad ; S_{LI}(B) = \int_{0}^{1} T_{B}(\alpha) d\alpha$$

On obtient, d'après calcul:

$$S_{II}(A) = S_{II}(B) = 0.5l = 1.05 m. unité$$

$$S_{II}(A) = S_{II}(B) = 0.5l = 1.125m. unité$$

■ Effort tranchant due aux charges permanentes

$$T_A = T_B = g_t.S_{IJ}$$

Entretoise d'about	Section	A (x=0)	B (x=I)
Entretoise à about	Effort tranchant [T]	2,573	2,573
Entrotoico intormádioiro	Section	A (x=0)	B (x=I)
Entretoise intermédiaire	Effort tranchant [T]	3,394	3,394

Effort tranchant due aux surcharges

$$T_A = T_B = g_{Bt}.S_{LI}$$

Entretoise d'about	Section	A (x=0)	B (x=I)
Entretoise à about	Effort tranchant	10,503	19,062
Futuataisa internaédiaira	Section	A (x=0)	B (x=I)
Entretoise intermédiaire	Effort tranchant	20,424	20,424

• Récapitulation des sollicitations :

	Charges			Surcharge	ELS:	ELU:
Citalges		permanente	Surcharge	$S_G + S_Q$	1,35S _G + 1,5 S _Q	
	Moment	M _A max	-0,901	-3,679	-4,580	-6,735
Futuataisa	fléchissant	M _{0,5l} max	0,450	1,838	2,289	3,366
Entretoise d'about	[Tm]	M _B max	-0,901	-3,679	-4,580	-6,735
d about	Effort	T _A max	2,573	10,503	13,076	19,228
	tranchant [T]	T _B max	-2,573	-10,503	-13,076	-19,228
	Moment	M _A max	-1,274	-7,665	-8,939	-13,217
Futuataisa	fléchissant	M _{0,5l} max	0,636	3,830	4,467	6,605
Entretoise intermédiaire	[Tm]	M _B max	-1,274	-7,665	-8,939	-13,217
intermediaire	Effort	T _A max	3,394	20,424	23,818	35,217
	tranchant [T]	T _B max	-3,394	-20,424	-23,818	-35,217

<u>Tableau 68</u>: Récapitulation des sollicitations appliquées aux entretoises d'about et intermédiaire

d.4 Détermination des armatures et vérification

Entretoises d'about :

• Armature longitudinale

– aux appuis :

b = 30 cm; d = 0.9h = 1.26 m.

A I'E.L.S: M_{ser} =4,580 Tm

 $A_{ser} = 2,18 \text{ cm}^2$

La section d'armature minimale est :

$$A_{\min} = \max \left\{ \frac{bh}{1000}; 0.23bd \frac{f_{t28}}{f_e} \right\} = 4.96 \text{ cm}^2$$

La section d'armature à prendre est $A = 5,65 \text{ cm}^2 \text{ soit } 5T12.$

– En travée :

$$A_{ser} = 1,09 \text{ cm}^2$$

On se ramènera au résultat des armatures minimales trouvées pour les sections d'appui. Nous allons prendre $A = 5,65 \text{ cm}^2 \text{ soit } 5T12$.

Vérification de l'effort tranchant

La contrainte tangente dans le béton est donnée par la formule suivante :

$$\tau_u = \frac{V_u}{bd} = 0,509 MPa$$

 $\tau_{_{u}} < \tau_{_{u\, \rm max}} = 2,5\, MPa \;\; . \mbox{La contrainte de cisaillement est vérifiée, donc l'armature}$ d'âme droite est suffisante.

Armatures d'âme :

Le diamètre maximal d'armature d'âme doit être :

$$\phi_t \le \min\left(\phi; \frac{h}{35}; \frac{b}{10}\right) = \min(1,2;4;3)$$

Prenons $\phi_t = 8mm$

Alors, prenons $A_t = 1.5 \text{ cm}^2 \text{ soit } 3T8.$

L'espacement des armatures est donné par la relation :

$$\frac{A_{t}}{b_{o}s_{t}} \ge \frac{\gamma_{s}(\tau_{u} - 0.3f_{tj}k)}{0.9f_{e}(\cos\alpha + \sin\alpha)} \quad \text{Avec} \quad \alpha = 90^{\circ} \text{ et k= 0 (fissuration préjudiciable)}.$$

Donc
$$s_t \le \frac{0.9 A_t}{b \tau_u} \frac{fe}{\gamma_s} = 30,78 cm$$

La série de Caquot la plus proche est de 25. Donc prenons s_t=25 cm.

Pourcentage minimal d'armature d'âmes :

$$\frac{A_t f_e}{b_o s_t} \ge 0.4 MPa$$
 . Ce qui donne $s_t \le 50$ cm.

– Espacement maximal :

$$s_t \le \min\{0.9d ; 40cm\} = 40cm$$

L'espacement s_t = 25 cm est largement dépassé, donc la condition est vérifiée.

• Armature de peau :

Puisque la hauteur de parement des entretoises est supérieure à 80 cm, alors on prévoit une armature dite armature de peau.

Pour notre cas dans une zone où la fissuration est très préjudiciable, l'armature nécessaire est de 5 cm² par mètre de parement.

Soit 7 cm² par parement; prenons $9T10 = 7,09 \text{ cm}^2$.

Entretoises intermédiaires :

• Armature longitudinale :

- Aux appuis:

A
$$l'E.L.S : M_{ser} = 8,939 \text{ Tm}$$

$$A_{ser} = 4,26 \text{ cm}^2$$

On utilisera la section d'armature minimale déjà utilisée pour les entretoises d'about.

Soit $A = 5,65 \text{ cm}^2 \text{ soit } 5T12$

– En travée :

A l'E.L.S:
$$M_{ser} = 8,939 \text{ Tm}$$

$$A_{ser} = 4,26 \text{ cm}^2$$

On se ramènera aux calculs résultats antérieures pour les armatures minimales.

Soit $A = 5.65 \text{ cm}^2 \text{ soit } 5T12$

• Vérification de la contrainte tangentielle dans le béton :

Aux appuis, nous avons $V_u = 35,217 \text{ T}$

$$\tau_u = \frac{V_u}{bd} = 0.931 \, MPa < \tau_{u \text{ max}} = 2.5 MPa$$

La condition est vérifiée, donc l'armature d'âme droite est suffisante.

• Armature d'âme :

Le diamètre maximal d'armature d'âme doit être :

$$\phi_t \le \min\left(\phi; \frac{h}{35}; \frac{b}{10}\right) = \min(1,2;4;3)$$

Prenons $\phi_t = 8mm$

Alors, prenons $A_t = 1.5 \text{ cm}^2 \text{ soit } 3T8.$

L'espacement des armatures est donné par la relation :

Etudes de la variante Principale

Donc
$$s_t \le \frac{0.9 A_t}{b \tau_u} \frac{fe}{\gamma_s} = 16.81 cm$$

La série de Caquot la plus proche est de 16. Donc prenons s_t=16 cm.

Pourcentage minimal d'armature d'âmes :

$$\frac{A_t f_e}{b_o s_t} \ge 0.4 MPa$$
 . Ce qui donne $s_t \le 50$ cm.

– Espacement maximal :

$$s_t \le \min\{0.9d ; 40cm\} = 40cm$$

L'espacement s_t = 16 cm est largement dépassé, donc la condition est vérifiée.

• Armature de peau :

Nous prenons la même section que dans les entretoises d'about.

II.3.3 ETUDE DE L'INFRASTRUCTURE

Les éléments de l'infrastructure sont destinés à transmettre au sol de fondation les charges provenant de la superstructure de l'ouvrage.

La partie infrastructure du pont comporte :

- La fondation;
- Les appuis en élévation (culées).

Pour les dimensions des différents éléments, on retient les valeurs du pré dimensionnement qu'on a effectué dans l'estimation des variantes.

a. Etude géotechnique:

Dans n'importe quel ouvrage en génie civil, il faut faire une étude géotechnique. Elle permet d'établir les critères géotechniques, de connaître la coupe géologique de sous sol et de renseigner sur les caractéristiques des matériaux afin que nous puissions choisir le type de fondation convenable.

Nous distinguons deux types d'essais :

- Les essais en laboratoire ;
- Les essais in situ.

a.1 Les essais en laboratoire

Ce sont:

- Les essais d'identification et de classification des sols, qui sont :
 - L'essai granulométrique ;
 - Les limites d'Atterberg ;
 - L'équivalent de sable.
- Les essais sur les caractéristiques physiques ;
- Les essais sur les caractéristiques mécaniques ;
- Les essais de compactage et de portance CBR;
- Les essais de compressibilité et de perméabilité ;
- Les essais de gonflement sur la présence des matériaux organiques.

a.2 Les essais in situ

La reconnaissance in situ a pour but de déterminer les différents facteurs du terrain à savoir :

- Les paramètres caractérisant la géotechnique du site et les informations paramétriques intrinsèques en place;
- Les caractéristiques physico- mécaniques des couches formant le sous- sol ;
- L'identification des épaisseurs de chaque couche géologique et aussi la localisation des paramètres hydrogéologiques.

Ce sont:

- Les essais pénétrométriques ;
- Les essais pressiométriques ;
- Les essais scissométriques.

a.3 Choix du type de fondation

Le type de fondation dépend de trois facteurs :

- La contrainte de compression admissible sur le sol;
- Les risques d'affouillements dans le cas d'ouvrage en site aquatique ;
- Les phénomènes de tassements qui doivent être compatibles avec l'intégrité des superstructures.

Le type de fondations employées varie en fonction de la proximité ou de l'éloignement du bon sol par rapport au terrain naturel. Généralement on distingue principalement deux types de fondations : Fondations superficielles sur semelles et Fondations profondes sur pieux.

Compte tenu des mauvaises caractéristiques du sol (Extrait du résultat de l'essai pressiomètrique cf.Page 170), de la profondeur du bon et de l'importance des différentes charges pour notre ouvrage, il est indispensable d'adopter une fondation profonde. Donc nous allons recourir à la fondation sur pieux.

b. Calcul de l'appareil d'appui :

Les appareils d'appui sont des pièces en élastomère qui permettent la transmission des charges du tablier vers les appuis et protéger le béton aux effets de vibration de la superstructure dus aux mouvements des surcharges.

b.1 Pré dimensionnement de l'appareil d'appui :

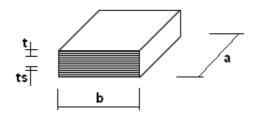


Figure 50: Appareil d'appui en élastomère

Soient les caractéristiques géométriques de l'appareil d'appui :

n : nombre de plaque élémentaire ;

a : côte parallèle à l'axe longitudinale de l'ouvrage ;

b : côte perpendiculaire à l'axe de l'ouvrage ;

t : épaisseur d'une couche élémentaire ;

t_s: épaisseur d'une frette;

T : hauteur nominale totale de l'appareil d'appui.

Prenons les dimensions standard a x b = $(300 \times 600) \text{ mm}^2$

n = 4; t = 10 mm; $t_s = 3 \text{ mm}$; T = 50 mm.

Le coefficient de forme des appareils d'appui est donné par :

$$\beta = \frac{ab}{2t(a+b)}$$

Soit β = 10

b.2 Caractéristiques mécaniques :

 G_K = 0,8 MPa : module de calcul de cisaillement dans le cas d'un effort statique ;

 G_{dyn} = 2 G_K =1,6 MPa : module de calcul dans le cas d'un effort dynamique.

 σ_{lim} = 15 MPa : compression limite.

b.3 Effort horizontaux agissant sur les appareils d'appui :

Efforts dus aux retraits, au fluage et à la variation de température :

Les déformations relatives du tablier sont :

 $\lambda_1 = 3.10^{-4}$: phénomène dû au retrait et au fluage du béton ;

 λ_2 = 3.10 $^{\!\!\!\!\!\!^{-4}}$: phénomène dû à la variation de température à long terme ;

 λ_3 = 2.10 4 : phénomène dû à la variation de température à court terme.

Au total, la déformation unitaire du tablier est égale à :

$$\lambda = \lambda_1 + \lambda_2 + \lambda_3 = 8.10^{-4}$$

Coefficient de souplesse de l'appareil d'appui :

$$\frac{1}{K_{av}} = \frac{T}{n \times G \times a \times b}$$

Avec T: épaisseur totale du néoprène

G : module d'élasticité transversale du néoprène : G = 0,8 MPa

n = 2 on dispose deux appareils d'appui par appui.

Après calcul, on trouve
$$\frac{1}{K_{app}} = 0.00173 \, mt^{-1}$$

Coefficient de souplesse de l'appareil d'appui :

On suppose que la déformation de la culée soit négligeable, seul l'appareil d'appui qui déforme. Donc, le coefficient de souplesse des culées est égal au coefficient de

souplesse des appareils d'appui :
$$\frac{1}{K_c} = \frac{1}{K_{app}} = 0.00173 \, mt^{-1}$$

Soit x le point d'abscisse où la déformation est nulle ($\Delta I=0$), par raison de symétrie x se trouve au milieu de la travée du pont.

Le calcul des efforts dus au retrait, au fluage et à la variation de température se résume comme suit :

Le déplacement de l'appareil d'appui dû à ces trois termes est :

$$\delta l = \lambda \times x$$

Or
$$\delta l = F_d \times \frac{1}{k_c}$$

Ce qui vient : $F_d = \lambda \times x \times k_c$

Application numérique :

$$x = 14,7 \text{ m}$$

$$F_d = 8.10^{-4} \times 14,7 /0,00173 = 6,79 T$$

Efforts de freinage :

 F_f : force de freinage pris au septième de tous les essieux compris sur toute la longueur du tablier. F_f = 140 / 7 = 20 T.

 \Rightarrow Résultante des forces horizontales : $F_h = F_d + F_f = 26,79$ T par appui.

b.4 Vérification des appareils d'appui :

Vérification de la contrainte moyenne de compression :

$$\sigma_{\text{max}} = \frac{N_{\text{max}}}{a \times b} < 15MPa$$

$$N_{max} = 246,365 T$$

$$\sigma_{\text{max}} = \frac{246,365 \times 10^4}{300 \times 600} = 13,68 MPa < 15 MPa$$

Vérification de non cheminement :

$$\sigma_{\min} = \frac{N_{\min}}{a \times b} > 2MPa$$

$$N_{min} = 78,410 T$$

$$\sigma_{\min} = \frac{78,410 \times 10^4}{300 \times 600} = 4,356MPa > 2MPa$$

Donc la condition de non cheminement est vérifiée.

Vérification de la condition de non-glissement :

$$F_h/N \leq f$$

$$f = 0.10 + \frac{0.6}{\sigma_{\text{max}}} = 0.1438$$

$$F_h/N = 26,79/246,365 = 0,108 \le f = 0,1438$$

La condition de non glissement est vérifiée.

Vérification de non flambement :

$$\frac{a}{10} \le T \le \frac{a}{5} \implies 30 \le T \le 60$$

Comme T= 50 mm alors, il ne présent pas un risque de flambement.

Vérification de l'épaisseur des frettes :

$$t_s \ge \max\left(\frac{a\sigma_m}{\beta\sigma_e}; 2mm\right)$$

Avec β : coefficient de forme β = 10

 σ_e : limite d'élasticité en traction de l'acier constitutif de la frette métallique σ_e =245 MPa.

$$t_s \ge \max(1,675mm;2mm)$$

Comme t_s égale à 3 mm la condition est vérifiée.

Vérification des contraintes de cisaillement :

La condition de cisaillement finale doit vérifier la condition suivante :

$$\tau = \tau_{\scriptscriptstyle N} + \tau_{\scriptscriptstyle H} + \tau_{\scriptscriptstyle d} < 5G$$

◊ Contrainte de cisaillement due à l'effort vertical :

$$\tau_{N} = \frac{1,5N}{\beta ab} = 2,05MPa$$

 Contrainte de cisaillement due au retrait, fluage et à la variation de température :

$$\tau_{H} = \frac{G\delta l}{e_{t}} = 0.018MPa$$

◊ Contrainte de cisaillement due à la rotation de l'appareil d'appui :

$$\tau_d = \frac{G}{2} \left(\frac{a}{t}\right)^2 \frac{\alpha_T}{n} = 1,188MPa$$

 $lpha_{\scriptscriptstyle T}/n\,$: Angle de rotation, exprimé en radian, d'un feuillet élémentaire d'élastomère.

Due aux charges d'exploitation maximale $\alpha_T/n = 3.3.10^{-3} rd$

$$\Rightarrow \tau = \tau_N + \tau_H + \tau_d = 3{,}256MPa < 5G = 4MPa$$

Conclusion:

Toutes les conditions pour la vérification des appareils d'appui sont satisfaites, alors nous prendrons comme dimension de chacun des appareils d'appui : $300 \times 600 \text{ mm}^2$ avec une épaisseur de 50 mm.

c. Calcul de la culée :

c.1 Hypothèse:

On considère la même culée que nous avons pré dimensionnée dans le choix de variante.

On suppose que le sol de remblai d'accès est un sol pulvérulent dont les caractéristiques géotechniques sont les suivantes :

- Angle de frottement interne $\varphi = 30^{\circ}$;
- Cohésion c = 0;
- Poids volumique humide $\gamma = 1.8 \text{ T/m}^3$.

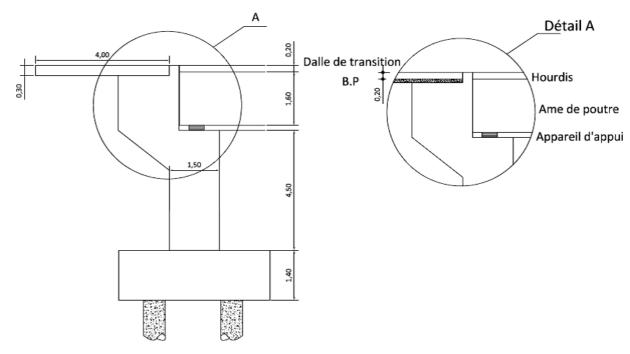


Figure 51: Culée

c.2 Mur garde grève :

Le mur garde grève est soumis aux poussées de terre dues au poids propre du remblai, la poussée due aux surcharges du remblai et la force de freinage

Coefficient de poussée du poids de terre :

$$k_{\alpha\gamma} = \frac{\sin \beta . \cos(\lambda - \beta)}{\cos \delta \sin \varphi \sin(\omega + \beta)} [1 - \sin \varphi \cos(2\lambda + \omega - \beta)] \qquad o\dot{u} \quad \sin \omega = \frac{\sin \beta}{\sin \varphi}$$

On suppose que l'écran soit parfaitement lisse. D'où la valeur de δ = 0. Les inclinaisons de la surface par rapport à l'horizontale et la verticale sont tous nulle (β =0 et λ = 0).

Pour $\phi = 30$ °.

$$k_{a\gamma} = \frac{1 - \sin \varphi}{1 + \sin \varphi} = 0.333$$

Coefficient de poussée de la surcharge :

$$k_{aq} = \frac{\cos \delta - \sin \varphi \cos \omega_{\delta}}{1 + \sin \varphi} e^{-2\epsilon i g \varphi} \quad et \quad \varepsilon = \frac{\omega_{\delta} - \delta}{2} \quad ; \omega_{\delta} = \arcsin \frac{\sin \delta}{\sin \varphi}$$

En remplaçant λ, β, δ et $\, \phi$ par leurs valeurs correspondantes, on obtient la même valeur que précédemment :

$$k_{a\gamma} = k_{aq} = 0.333$$

c.2.1 Sollicitations:

- Poussée des terres

La poussée des terres suit une distribution linéaire d'intensité : $q_i = k_{a\gamma} \gamma h + q k_{aq}$

q : Surcharge réglementaire du remblai qui provoque une poussée complémentaire ;

Superstructure de la voie : 0,769 T/m²

Dalle de transition : 0.75 T/m^2

$$q = 1.519 T/m^2$$

$$\Rightarrow q_i = 0.6h + 0.51$$

La force de poussée est donnée par l'intégration suivante :

$$Q_p = \int_0^{1.95} (0.6h + 0.51) dh = 2.135 T/ml$$

La poussée de terre sur le mur garde grève crée un moment maximale de :

$$M_p = Q_p \frac{h}{3} = 2,135 \times \frac{1,95}{3} = 1,387 Tm / ml$$

L'effort tranchant :

$$T_n = Q_n \times L = 9,927T$$

Surcharges des remblais :

La surcharge ferroviaire de l'essieu de 20 T transmise aux ballasts, engendre une poussée sur la paroi verticale du mur garde grève. Cette surcharge est repartie sur une surface de 0,70m x 2,50m. On admet comme hypothèse que la distribution de charge est de 45°.

Le moment est obtenu par la formule :

$$M_{c} = \frac{20K}{2.5 + 2h} \int_{0}^{h} \frac{h - x}{0.7 + x} dx$$

Avec K = q x k_{aq} x δ x μ

 δ : Coefficient de majoration dynamique pour charge sur remblai, δ = 1

 μ = coefficient de pondération, μ = 1,4

On a K= 0,71

D'où $M_c = 3.5 \text{ Tm/ml}$

L'effort tranchant est nul car la force est perpendiculaire à la section.

- Moment du à la force de freinage :

En ne considérant qu'un essieu du convoi type, le moment fléchissant du au freinage d'écrit :

$$M_f = \frac{Ph_g}{2.5 + 2h_g}$$

Après calcul, on a $M_f = 6,094 \text{ Tm/ml}$.

L'effort tranchant V_f = 0 car la modélisation de direction de la charge est perpendiculaire à la section.

Récapitulation des résultats

En récapitulant à l'aide de tableau ci-dessus les sollicitations appliquées au mur garde grève et leur combinaison d'action :

- A I'E.L.U:

$$M_u = 1,35 M_p + 1,5 (M_c + M_f)$$

 $V_u = 1,35 V_p + 1,5 (V_c + V_f)$
- A I'E.L.S:
 $M_u = M_p + (M_c + M_f)$
 $V_u = V_p + (V_c + V_f)$

	Effort tranchant [T]	Moment fléchissant [Tm]
E.L.S	9,927	10,981
E.L.U	13,402	16,260

Tableau 69: Valeurs des sollicitations mur garde grève

c.2.2 Calcul des armatures

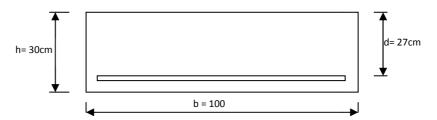


Figure 52: Section de calcul mur garde grève

On va rappeler un peu les caractéristiques des matériaux :

- Béton dosé à 350kg
- $F_{c28} = 25 MPa$
- d= 27 cm et b = 100 cm.
- Fissuration préjudiciable

On a une fissuration préjudiciable, donc le calcul se fait à l'E.L.S car c'est le plus déterminant.

Calcul à l'E.L.S:

$$M_s = 9,927 \text{ Tm}$$

$$A_s = 22,59 \text{ cm}^2$$

Armature de répartition :

$$A_r = \frac{A_s}{3} = 7,53cm^2$$

On prend $10T10 = 7,85 \text{ cm}^2$

Vérification effort tranchant :

$$\tau_u = \frac{V_u}{bd} = 0,496$$

$$\tau_{u. max} = 2.5 MPa$$

 $au_{U} < au_{U, max}$. La contrainte de cisaillement est vérifiée. Les armatures transversales ne sont pas nécessaires.

c.3 Mur en retour

Le mur en retour a pour rôle de soutenir les remblais d'accès, il fonctionne comme un mur de soutènement. Ce mur est sollicité par :

- son poids propre;
- la poussée du remblai
- deux forces concentrées l'une verticale $F_V = 6$ T et l'autre horizontale $H_V = 3$ T appliqué à 1 m de l'extrémité théorique du mur.

Les valeurs retenues pour ces charges sont conventionnelles et permettent de représenter les différentes forces suivantes :

- les poussées sur le mur à des charges locales sur le remblai;
- les actions appliquées en cours de construction ;
- les charges accidentelles appliquées au mur en retour en service.

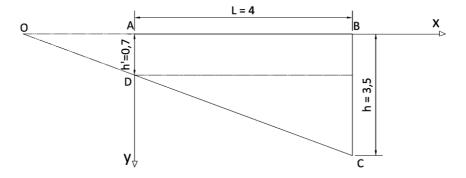


Figure 53: Schéma de calcul

Caractéristique du mur :

L=4m; h=3,50 m; e=30 cm et h'=0,7 m afin que la longueur théorique soit égale à $L_{th}=5$ m.

L'équation du mur en retour s'écrit (Droite DC) : y = 0.7x + 0.7

c.3.1 Sollicitation:

i. Sollicitation dues aux charges verticales:

Poids propre:
$$P_r = P_r = 4 \times \frac{(3,5+0,7)}{2} \times 0,3 \times 2,5 = 6,3T$$

Poids de la superstructure : $P_s = q \times S = 1,519 \times 4 \times 0,3 = 1,82T$

Charge concentrée à l'extrémité : $F_V = 6 T$.

Æ Effort tranchant

$$T_V = P_r + P_s + F_V$$

Après calcul, on trouve : T = 14,12 T

Moment fléchissant d'axe horizontal, à l'extrémité du mur de garde grève :

$$M_V = P_r \frac{L}{3} + P_s \frac{L}{2} + F_V L$$

 $D'où : M_v = 36,04 \text{ Tm}.$

ii. Sollicitation dues aux charges horizontales :

Soit I le centre de poussée de remblai, de coordonnées (x, y) ; la poussée due au

remblai est :
$$q_h = (q_b + \gamma y)k_{a\gamma}$$

Soit
$$q_h = 3,206 + 0,6y$$

Effort tranchant

On appliquant l'intégral double suivant : $T_h = \iint_{(ABCD)} q_h.dx.dy$

Ce domaine (ABCD) étant définit par :
$$\begin{cases} 0 \le x \le 4 & [m] \\ 0 \le y \le 0.7x + 0.7 & [m] \end{cases}$$

Les variables x et y sont liés, alors le calcul se fait en deux étapes :

$$T_h = \int_0^4 \int_0^{0.7x + 0.7} (3,206 + 0.6y) dx.dy$$

On a $T_h = 33,01 T$.

Le point d'application de T_h est donné par la formule suivant :

$$x_{T_h} = \frac{1}{T_h} \int_{0}^{4} \int_{0}^{0.7x + 0.7} (3,206x + 0.6y) .x. dx. dy$$

D'où $x_{Th} = 2,505 \text{ m}$.

Moment fléchissant

$$M_{h} = T_{h} \left(l - x_{T_{h}} \right)$$

Après calcul, on a : M_h = 49,345 Tm ou M_h = 12,336 Tm/ml de hauteur du mur.

Pour la force de poussée, on obtient les sollicitations à la section d'encastrement :

Effort tranchant : $T_h = F_h = 3T$.

Moment fléchissant : $M_h = F_h (I - 1) = 9 \text{ Tm}$.

Récapitulation

Actions	Due aux charges horizontales				Due aux	charges
	Poussée de terre Concentrée		verticales			
Combinaison d'action	E.L.S	E.L.U	E.L.S	E.L.U	E.L.S	E.L.U
Effort tranchant [T]	33,01	44,56	3	4,05	14,12	19,062
Moment fléchissant [Tm]	12,336	16,653	9	12,15	36,04	48,654

Tableau 70: Valeurs sollicitation mur en retour

c.3.2 Calculs des armatures du mur en retour

Les hypothèses de calcul des éléments précédents restent valables pour le mur en retour.

Armatures destinées à contrer les efforts verticaux :

Section de calcul :

$$d = 346 \text{ cm}$$
; $h = 350 \text{ cm}$; $b = 30 \text{cm}$.

 $M_s = 36,04Tm$.

 $A_s = 5,80 \text{ cm}^2$

Prenons $A_s = 6,28 \text{ cm}^2 \text{ ou } 8T10.$

Armature de répartition :

$$A_r = \frac{A_s}{3} = 2,64 \, \text{cm}^2$$
. Soit 4T10 avec $A_r = 3,14 \, \text{cm}^2$.

Vérification de l'effort tranchant :

$$V_u = 19,062 T.$$

$$\tau_{u} = \frac{V_{u}}{bd} = 0.184MPa < \tau_{u,\text{max}} = 2.5MPa$$

Donc les armatures transversales ne sont plus nécessaires.

Armatures destinée à contrer les efforts horizontaux :

Section de calcul :

$$M_s = 21,336 \text{ Tm}.$$

$$A_s = 51,14 \text{ cm}^2$$
.

Prenons A = 53,38 ou 17T20.

Armatures de répartition :

$$A_r = \frac{A}{3} = 17,05 cm^2$$

Soit $A_r = 9T16 = 18,15 \text{ cm}^2$.

Vérification de l'effort tranchant :

$$V_u = 48,61 T.$$

$$\tau_{u} = \frac{V_{u}}{hd} = 1,8MPa < \tau_{u,\text{max}} = 2,5MPa$$

Les armatures transversales ne sont pas nécessaires.

c.4 Mur de front

Les charges sollicitant le mur de front sont :

- Son poids propre ; poids propre du mur en retour et du mur garde en grève ;
- La réaction du au freinage;
- La réaction du tablier sous les charges permanentes et les surcharges d'exploitation;
- La poussée de terre ;
- La poussée due à la surcharge de remblai.

H: hauteur du mur garde grève + hauteur du mur de front.

Calcul des poussées de terres :

Notons : Q_{sr} poussée due à la surcharge de remblai

Qt poussée de la terre

Soit Q la somme des poussées dues aux poids des terres et à la surcharge de remblai agissant sur le mur.

$$Q_t = \frac{1}{2} K_{a\gamma} \cdot \gamma \cdot H^2 = \frac{1}{2} \cdot 0.333 \cdot 1.8 \cdot 6.45^2 = 12.46T / ml$$

$$Q_{sr} = K_{aq}.q.H = 0.333 \times 6.45 \times 1.519 = 3.26T / ml$$

Les moments sont calculés par rapport au point bas de la semelle :

$$M_{Q_t} = \frac{1}{3} H.Q_t = \frac{1}{3} \times 6,45 \times 12,46 = 26,789 Tm / ml$$

$$M_{Q_{sr}} = \frac{1}{2} H.Q_{sr} = \frac{1}{2} \times 6,45 \times 3,26 = 10,52 Tm / ml$$

Réaction due au freinage

La force de freinage est de 20 T soit 4,30 T/ml.

Le moment du à ce force :

$$M_{freinage}$$
= 4,30 x H = 4,30 x 6,45 = 27,735 Tm/ml.

c.4.1 Stabilité de la culée

Les valeurs des sollicitations agissant sur le mur de front sont répertoriées dans le

tableau suivant:

DESIGNATION	Sollicitation dues aux forces verticales								
	Volume [m3]	Poids [T]	Bras de levier [m]	Moment [Tm]					
Mur garde grève	2,720	6,80	1,35	9,18					
Mur en retour	5,040	12,60	3,50	44,10					
Mur de front	31,390	78,48	0,75	58,86					
Semelle de liaison	33,075	82,69	2,25	186,05					
Dalle de transition	5,580	13,95	4	55,80					
Réaction de la superstructure		358,3	0,75	268,73					
Total				622,72					

Tableau 71: Valeurs des sollicitations dues aux forces verticales sur le mur de front

Soit
$$M_S = 133,92 \text{ Tm/ml}$$

Il faut vérifier que
$$\frac{M_s}{M_R} \ge 1,5$$

M_s: moment stabilisateur, M_R: moment résistant

$$\frac{133,92}{(26,789+10,52+27,735)} = 2,058 \ge 1,5$$

La culée est stable vis à vis du renversement.

c.4.2 Sollicitation

Le mur de front est soumis à une flexion composée à savoir :

- Moment de flexion du aux forces horizontales ;
- Effort normal de compression ;
- Efforts tranchants.

Efforts normal de compression :

Charges permanentes: 234,4 T soit 50,41 T/ml (cf. Page 83)

Surcharge de la superstructure : 123,9 T soit 26,65T/ml (cf. page83)

Combinaison	Moment fléchissant [Tm/ml]	Effort de compression [T/ml]	Effort tranchants [T]		
E.L.S	65,044	77,06	92,498		
E.L.U	93,548	108,029	130,97		

Tableau 72: Sollicitation du mur de front

c.4.3 Détermination des armatures du mur de front

– Section de calcul :

b= 100 cm; h= 1,50 m; d=1,46 m.

calcul effort de compression maximale supportée par le béton :

$$N_{c,\text{max}} = bhf_{bc} = 2068,33T$$

Le coefficient de remplissage est donné par la formule suivante :

$$\psi = \frac{N_u}{N_{c.\text{max}}} = \frac{108,029}{2068,33} = 0,052$$

Puisque le coefficient de remplissage est strictement inférieur à 0,81, alors on détermine la valeur de l'excentricité critique relative par la relation suivante:

$$\xi = \frac{1 + \sqrt{9 - 12\psi}}{4(3 + \sqrt{9 - 12\psi})} = 0.165$$

Or:

$$e = \frac{M_u}{N_u} = \frac{93,548}{108,029} = 0,865$$

D'après la règle B.A.E.L 91 modifié 99, si e > e_{NC}, la section est partiellement comprimée et l'état limite ultime peut ne pas être atteint.

Avec
$$e_{NC} = \xi h = 24,75 \text{ cm}.$$

D'où : $e > e_{NC}$ ce qui implique section partiellement comprimées.

Armatures longitudinales :

Tout d'abord, on calcule le moment de flexion fictif par la formule :

$$M_{ser,fictif} = M_{ser} + N_{ser} \left[d - \frac{h}{2} \right] = 119,76Tm$$

$$u = \frac{30M_{ser,fictif}}{bd^2 \overline{\sigma_s}} = 0,0835$$

$$\lambda = 1 + u = 1,0835$$

$$\cos \varphi = \lambda^{-\frac{3}{2}} = 0,886$$
 Où $\varphi = 27,544$

$$\alpha = 1 + 2\sqrt{\lambda} \cos\left(\frac{4\pi}{3} + \frac{\varphi}{3}\right) = 0,260$$

$$\sigma_{bc} = \frac{\alpha}{1-\alpha} \frac{\overline{\sigma_s}}{n} = 4{,}73$$
 avec n = 15 coefficient d'équivalence;

Comme $\sigma_{bc} = 4{,}73MPa < \overline{\sigma_{bc}} = 15MPa$ le béton est surabondant pour absorber les contraintes ; donc la section est simplement armée.

$$A_{s,fictif} = \frac{\alpha^2}{30(1-\alpha)}bd = 44,482cm^2$$

La section réelle d'aciers vaut :

$$A_s = A_{s,fictif} - \frac{N_{ser}}{\sigma_s} = 22,34cm^2$$

Calcul de la section minimale :

Cette section est imposée par la règle du millième et par la règle de non-fragilité :

$$A_s > \max\left\{\frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe}\right\} = \max\left\{15cm^2; 17,6329cm^2\right\} = 17,64cm^2$$

Condition vérifiée, donc on prend A_s = 24,12 cm² où 12T16.

Armature de répartition :

$$A_R = \frac{A_s}{3} = 7,45cm^2$$

Soit $A_r = 5T14 = 7,70 \text{ cm}^2$.

Vérification de la contrainte tangentielle :

Il faut que $\tau_u \leq \overline{\tau_u}$

Avec
$$\tau_u = \frac{V_u}{b.d} = \frac{130,97}{1,46 \times 1} = 0,89MPa$$

$$\overline{\tau_u} = \min\left\{0.15 \frac{f_{c28}}{\gamma_b}; 4MPa\right\} = 2.5MPa$$

La contrainte tangentielle n'est pas à craindre.

c.5 Dimensionnement de la semelle :

Pour calculer la semelle, il faut déterminer le nombre des pieux. Pour cela, il faut déterminer la capacité portante des pieux.

c.5.1 Détermination de la capacité portante des pieux :

Nous avons choisi comme méthode de dimensionnement de la fondation les règles décrites dans Fascicule 62 Titre V, intitulé : « Règles techniques de conception et de calcul des fondations des ouvrages de génie civil ».

D'après l'étude géotechnique, les résultats des différents essais pressiométrique montrent clairement que le sol résistant vers une profondeur supérieur à 18 m.

Calcul de la charge limite d'un pieu :

Dans notre projet, on prévoit des pieux forés caractérisés par :

- Diamètre : $D_p = 0.80m$;

- Section de pointe : $A = 0.503m^2$;

Périmètre : P = 2,513m.

- Fiche ou profondeur D = 18 m.

Dans le cas général, les pieux travaillent en compression. L'expression de la charge limite est $Q_l=Q_{pu}+Q_{su}$ et la charge de fluage en compression Q_c , pour les éléments de fondation mise en œuvre par excavation du sol est donnée par $Q_c=0.50Q_{pu}+0.7Q_{Su}$

Q_{pu}: charge limite de pointe

Q_{SU}: charge limite de frottement latéral.

Calcul de l'effort limite mobilisable sous la pointe de l'élément de fondation:

$$Q_{nu} = A.q_u$$

Avec A: section de pointe

q_u : contrainte de rupture sous la pointe.

$$q_u = k_p \times p_{le}^*$$

k_P: facteur de portance

 p_{le}^* : Pression limite nette équivalent.

Pression limite nette équivalente :

Dans une formation porteuse homogène, la pression limite nette équivalente est calculée par l'expression :

$$p_{le}^* = \frac{1}{b+3a} \int_{D-b}^{D+3a} p_l^*(z) dz$$

a= 0,5 m si B < 1m; où B: largeur de l'élément de fondation. B =∅

b= min (a, h) où h est l'ancrage de l'élément de fondation dans la couche porteuse

D'après les recommandations du rapport géotechnique, $h = 3\emptyset$

D'où b = 0.5 m.

 p_l^* est obtenu en joignant par des segments de droite sur une échelle linéaire les différents p_l^* .

Profondeur [m]	Pl [MPa]
17,5	1,13
18	1,57
19	1,51
19,5	1,28

Tableau 73: Extrait du résultat de l'essai pressiométrique

$$p_{1}^{*} = \frac{1}{(0,5+1,5)} \left[\frac{1,13+1,57}{2} \times 0,5 + \frac{1,57+1,51}{2} \times 1 + \frac{1,51+1,28}{2} \times 0,5 \right] = 1,46MPa$$

Facteur de portance K_P :

La valeur de k_P est donnée par les tableaux ci-dessous :

Classe de sol		Description	Pressiomètre p _i [MPa]
	Α	Argiles et limons mous	<0,7
Argiles, limons	В	Argiles et limons fermes	1,2 à 2,0
	С	Argiles très fermes à dures	> 2,5
	Α	Lâches	< 0,5
Sables, Graves	В	Moyennement compacts	1,0 à 2,0
	С	Compacts	> 2,5
	Α	Molles	< 0,7
Craies	В	Altérées	1,0 à 2,0
	С	Compacts	> 3,0
Marnes Mamo -	Α	Tendres	1,5 à 4,0
calcaires	В	Compacts	> 4,5

Source : Technique de l'ingénieur C 248 -14

Tableau 74: Classification des sols

Nature des terrains		Eléments mis en œuvre sans refoulement du	Eléments mis en œuvre avec refoulement du sol
		sol	
	Α	1,1	1,4
Argiles, limons	В	1,2	1,5
	С	1,3	1,6
	Α	1	4,2
Sables, Graves	В	1,1	3,7
	С	1,2	3,2
	Α	1,1	1,6
	В	1,4	2,2
Craies	С	1,8	2,6
Marnes Mamo-calcaires	Α	1,8	2,6

Source: Technique de l'ingénieur C 248 -14

Tableau 75: Valeurs du coefficient de portance Kp

Puisque le sol est constitué de sable fin micacé grisâtre peu compact entre la profondeur 14,5 m et 21m, alors k_p = 1,1.

D'où
$$Q_{pu} = 80,52 \text{ T}.$$

- Calcul de l'effort limite mobilisable par frottement latéral :

Il est défini par la formule suivante :

$$Q_{su} = P \int_{0}^{h} q_{s}(z) dz$$

Où P: périmètre de l'élément de fondation P = 2,513m.

q(z): Frottement latéral unitaire à la cote z.

Le frottement latéral unitaire limite est donné en fonction de la pression limite nette p_l^* (qui exprime la compacité ou le serrage du sol) par les courbes en Annexe B, le choix de la courbe se fait en fonction de la nature du sol et de l'élément de la fondation.

Profondeur [m]		P _I [MPa]	Classe du sol	Abaque	q _s [MPa]			
De	à							
0	4	Sol compress	ibles (frottemer	nt latéral à négligé)	0			
4	8	0,5-1	0,5-1 A Q1					
8	10,5	0,5-1	А	Q1	0,035			
10,5	14,5	1-2,0	В	Q2	0,06			
14,5	18	1-2,4	В	Q2	0,08			

Tableau 76: Termes de frottement

Nous obtenons $Q_{su} = 2,513 \times [0,024 \times 4 + 0,035 \times 2,5 + 0,06 \times 1,5 + 0,08 \times 6] \times 10^2 = 189,35T$

- Charge limite d'un élément de fondation profonde : $Q_l = Q_{pu} + Q_{su} = 269,87T$

– Charges de fluages pour les éléments de fondation mis en œuvre par excavation : $Q_C = 0.5Q_{pu} + 0.7Q_{Su} = 172.81T$

c.5.2 Descente des charges :

Charges transmises par la superstructure :

Charge permanente : 234,4 T

Surcharge d'exploitation: 123,9 T

Poids propre:

- Dalle de transition: 13,95 T

Culée: 97,87 T

La charge à prendre en compte est :

A l'E.L.S $N_s = 470,12T$;

A $1'E.L.U N_u = 653,25T.$

b.5.3 Disposition constructive des pieux :

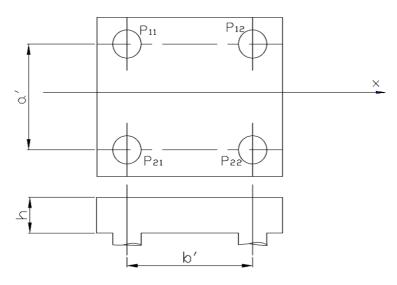


Figure 54: Semelle

Nombre des pieux sous culée :

Le nombre de pieux sous culée est donné par la formule suivante :

$$n \ge \frac{N_u}{Q_l} \times k = \frac{653,25}{269,87} \times 1,4 = 3,38$$

K= 1,4 coefficient de sécurité.

Etudes de la variante Principale

Nous avons n = 4 pieux.

– Entre axe des pieux :

L'ente axe des pieux doit être a' \geq (2,1 à 3) D_P

$$b' = \frac{D_f}{2} + \frac{2h}{\tan \theta}$$

D_p = 0,8 m; diamètre d'un pieu;

 $D_f = 1,50 \text{ m}$: épaisseur du mur de front;

h= 1,40 m: hauteur de la semelle;

Pour un bon fonctionnement de la bielle, la valeur de son angle d'inclinaison est comprise entre $45^{\circ} \le \theta \le 55^{\circ}$. Nous prendrons que $\theta = 45^{\circ}$.

Après calcul, on a : a'=3 m et b'=3,55 m.

Hauteur utile des armatures tendues :

$$0.5 \left(b' - \frac{D_f}{2} \right) \le d \le 0.7 \left(b' - \frac{D_f}{2} \right)$$

Soit $1,4 \le d \le 1,96$

Prenons d = 1,4 m.

Vérification à l'état limite de la compression de la bielle :

Au niveau de base de la culée :

On doit vérifier la relation suivante :

$$\frac{N_u}{S_f \sin^2 \theta} \le 0.9 f_{c28}$$

 S_p : section du mur de front sur la culée $S_P = 1,50 \times 4,65 = 6,975 \text{ m}^2$;

Après calcul, nous avons : $1,87MPa \le 22,5MPa$

D'où la condition est vérifiée.

Au niveau de la tête du pieu :

$$\frac{1}{3S_{p}} \left(1,35G_{semelle} + \frac{N_{u}}{\sin^{2}\theta} \right) \le 0.9f_{c28}$$

 S_P : section du pieu S_P = 0,503 m².

 G_{semelle} : poids propre de la semelle, G_{semelle} = 5,25 x 4,5 x 1,4 x 2,5 = 82,687T

Après calcul, nous avons : $9,39MPa \le 22,5MPa$

Condition vérifiée.

Vérification à l'état limite de cisaillement du béton :

On doit vérifier la condition suivante :

$$\tau_{uo} \le 1.5 f_{t28} = 3.15 MPa$$

$$\tau_{uo} = \frac{P_u}{2bd} = \frac{653,25}{2 \times 4,5 \times 1,4 \times 10^2} = 0,52MPa$$

La condition est vérifiée, le cisaillement du béton n'est pas à craindre.

c.5.3 <u>Détermination des armatures de la semelle de répartition :</u>

Armatures principales inférieures :

- La fissuration est préjudiciable.
- La section d'armature doit être équilibrée de 50% afin de respecter

l'état limite d'ouverture des fissures qui est donnée par la relation :

$$A = \frac{1.5N_u \gamma_S}{2f_e \tan \theta}$$

Après calcul, nous avons A = 70,43 cm². Soit A = 10T32 = 72,38cm².

Armatures supérieures :

$$A' \ge 10 \% A = 7,043 \text{ cm}^2$$

Soit A' =
$$10T10 = 7.85 \text{ cm}^2$$
.

Armatures transversales:

Ces armatures sont constituées par des cadres ou étriers intérieurs répandant sur une longueur égale d.

$$\begin{cases} \frac{A_{t}}{db} = \frac{1}{4} \times \frac{\tau_{uo}}{f_{t28}} \times \frac{A}{db} \\ A_{t} \ge 0.20 \frac{A}{bd} \end{cases}$$

Après calcul, nous avons $A_t = 4,47 \text{ cm}^2 \text{ et } A_t > 2,29 \text{ cm}^2$.

On prend $A_t = 10T8 = 5,03 \text{ cm}^2$.

Armatures horizontales:

Les armatures horizontales sont données par la relation suivante :

$$A_h = \left[\frac{1}{4} \frac{\tau_{uo}}{f_{t28}}\right] A - A'$$

Avec une section minimale à respecter qui est égale À 10%A.

Après calcul, on a : $A_h = -2,77 \text{ cm}^2 \text{ et } 10\% A = 7,238 \text{ cm}^2$

Soit $A_h = 10T10 = 7,85 \text{ cm}^2$.

Armatures de peau :

Les armatures de peau sont réparties et disposées parallèlement à la fibre moyenne de la semelle. Leur section est d'au moins égale à 3 cm²/ml du parement. Prenons 3T12=3,39 cm².

c.6 Pieux

b.6.1 Justification aux états limites :

Elles consistent à vérifier que la charge transmise par un pieu reste inférieure à la charge maximale Q_{max} déterminée dans les deux états limites (ELU et ELS).

A l'E.L.U:
$$\frac{Q_l}{1,40} = \frac{269,87}{1,40} = 192,76T$$

A I'E.L.S:
$$\frac{Q_c}{1,40} = \frac{172,81}{1,40} = 123,44T$$

			Charge transmise par un pieu Q [T]	Q _{max} [T]	Vérification
E.L.U	653,25	4	163,31	192,76	ok
E.L.S	470,12	4	117,53	123,44	ok

Tableau 77: Justification aux états limites des pieux

c.6.2 Ferraillage des pieux :

On suppose que la semelle de liaison est rigide et que les pieux sont soumis à la compression simple.

Calcul de la longueur de flambement :

$$l_f = \frac{l_o}{\sqrt{2}} = 12,72 \, m$$
 ; $où$ $l_0 = 18 \, m$: Longueur libre du pieu.

$$\lambda = \frac{4l_f}{\phi} = 63.6$$
; ϕ : Diamètre de la section égale à 0,80 m.

Comme, $50 < \lambda < 70$ le coefficient de réduction α est donné par la relation :

$$\alpha = 0.60 \left(\frac{50}{\lambda}\right)^2 = 0.37$$

Armature longitudinale:

$$A_{\min} = Max \left[4 \, cm^2 / m \, de \, longueur \, de \, paroi \, ; \frac{0.2B}{100} \right] \le A \le \frac{5B}{100}$$

Où B : section réduit de 1 cm d'épaisseur sur toute la périphérie du pieu :

$$B_r = \frac{\pi (0.80 - 0.02)^2}{4} = 0.4778 \, m^2 = 4778 \, cm^2$$

Périmètre de la colonne : $\pi = \pi \phi = 3.14 \times 0.80 = 2.512 \ m.$

Or:
$$A_{\min} = Max \left[10,048 \ cm^2 \ ; \ 9,556 \ cm^2 \right] = 10,048 \ cm^2 \le A \le 238,9 \ cm^2$$

Soit A = 8 T20 = 25,13 cm².

Vérification à l'effort normal résistant ultime :

$$N_{u} \leq N_{u, \text{lim}} = \alpha \left[\frac{B_{r} f_{c28}}{0.9 \gamma_{b}} + A \frac{f_{e}}{\gamma_{s}} \right]$$

$$N_U = 163,31 T.$$

Après calcul, on a : N_{u, lim}= 360,107 T > N_u. La condition et vérifiée.

Armature transversale:

Diamètre :

Le diamètre des armatures transversales est au moins égal au tiers du diamètre des armatures longitudinales :

$$\phi_t \ge \frac{\phi_l}{3} = 6.67$$
; $où \phi_l = 20$: Diamètre de l'armature longitudinal.

On prend $\phi_t = 10 \, mm$

– Espacement :

Leurs espacement doit être respecter la relation suivante :

$$s_t \le Min\{15\phi_t ; a + 10 \ cm ; 40 \ cm\}$$

a désigne le diamètre du pieu.

$$s_t \le Min\{30 \ cm; 90 \ cm; 40 \ cm\}$$

On prend un espacement de 25 cm.

Chapitre III: Exécutions des travaux de renouvellement de la voie

III.1. Renouvellement de la voie

III.1.1 Objectif du Renouvellement d'une voie ferroviaire

Qu'est ce qu'un renouvellement?

Un renouvellement, ou régénération, de voie ferrée consiste à remplacer tout ou partie des éléments constitutifs de la voie ancienne : ballast, traverses, rails, dispositifs de fixation des rails sur les traverses.

Pourquoi un renouvellement?

La durée de vie moyenne d'une voie sur le réseau ferré est estimée à environ 40 ans. Elle dépend du trafic de la ligne, de sa vitesse et du tonnage supporté. Le vieillissement de la voie dû à l'usure se traduit par une dégradation de la résistance de ses éléments de structure et de ses qualités géométriques, phénomènes qui ne peuvent être endigués de façon ultime que par la substitution d'éléments neufs aux composants en fin de vie.

Pour le moment à Madagascar, le renouvellement de la voie est fait manuellement.

Tous les travaux de pose sont encore accomplis à la main.

III .1.2 Déroulement technique des travaux de renouvellement

Le déroulement technique des travaux de renouvellement de la voie:

- Le désherbage et le débroussaillage de la voie ;
- Le dégarnissage et criblage du ballast ;
- La substitution des éléments de la voie ;
- Le nivellement et dressage de la voie ;
- Les travaux complémentaires.

i. <u>Désherbage et le débroussaillage</u>

Ces travaux consistent à enlever les herbes dans l'emprise de la voie, à débarrasser des broussailles sur une distance de 8 m de part et d'autre de l'axe de la voie, on le fait manuellement avec des pioches et des pelles.

Elle est suivie du ramassage et d'évacuation des détruis hors de la plate forme.

ii. <u>Dégarnissage et criblage du ballast</u>

Les ballasts sont ôtés jusqu'à la sous couche de ballast à l'aide d'un engin compétent ou au moyen des fourches. On distingue deux sortes de nécessités :

- Epuration du ballast sans criblage : il s'agit d'enlever tous les matériaux jusqu'à la sous couche du ballast ;
- Epuration du ballast avec criblage: les matériaux enlevés seront criblés pour en extraire le ballast sain qui sera remis à sa place. Les matériaux non récupérables sont à enlever loin de l'emprise de la voie.

iii. Substitution des éléments de la voie

Cette opération consiste à remplacer l'ensemble des éléments de la voie, les traverses et attaches actuellement en place (métallique) par des traverses en béton armé biblocs et attaches élastiques de type PANDROL, les rails existants sur les tronçons par des rails de 40 kg/ml. En ce qui concerne les rails, il faut tenir compte de la récupération pour pouvoir les réemployer si celles-ci sont encore dans la limite acceptable qui peut assurer la stabilité de la voie.

Le ballastage sera ramené à son taux nominal de 1,00m³/m de voie, avec bourrage par passes successives de bourreuses mécaniques.

iv. Nivellement et dressage de la voie

Ce travail demande beaucoup de soins et précision. Il faut niveler à l'œil nu avec un jeu de nivelette, une file de rails suivant les piquets des nivellements. Après la deuxième file de rail est ensuite nivelé avec la règle combinée (règle pour vérifier l'écartement, le devers). En courbe, les devers et les raccordements de devers sont réalisés à la règle combinée et les piquets topographiques.

Le dressage de la voie s'exécute ordinairement par « la pince à riper ». Cet outil est enfoncé dans le ballast presque verticalement de manière à éviter le soulèvement de la voie. Les têtes de traverse sont dégarnies dans le sens du ripage et les 2 files de rails sont sollicitées simultanément de manière à ne pas altérer l'écartement.

Ces opérations ont pour but de supprimer les légères défectuosités pour avoir un tracé parfait suivant les piquetage des topographes.

v. <u>Travaux complémentaires</u>

- Plateforme : la préparation de la plateforme est la tâche immédiatement avant la pose des éléments de la superstructure de la voie. Cela consiste au terrassement et au compactage des couches ;
- Piquetage topographique : il s'agit en premier lieu de situer l'axe de la voie par des piquetages topographiques ;
- Eclissage provisoire : la continuité des barres élémentaires des rails serait assurée par des éclisses provisoires ;
- Démontage de la voie : les tirefonds, ainsi que les boulons sont à démonter par des machines spéciales ;
- Soudure des rails : dans ce renouvellement, la soudure par aluminothermique serait un des plus importants travaux ;
- Reprise de nivellement et dressage de la voie.

III.2. Exécution des travaux

Suite à la dégradation du tronçon concerné, la remise en état consiste au renouvellement de la voie.

Avant d'entrer à l'exécution des travaux de renouvellement de la voie, il est nécessaire de connaître les spécifications des matériels utilisés sur ce tronçon qui doivent être conformes à la demande du trafic, du tonnage journalière.

a. Les matériels employés

a.1 Les rails

La détermination du poids des rails se fait par les moyennes des $\,$ trois formules suivantes qui sont décrit dans la Partie I $\,\xi$ II.2.1 :

- Conférence de Caire : q = 2.5P

- Yershov: $q = \frac{V_{\text{max}}}{2.2}$

- Jean Allias : q = 2P + 2

Hypothèses de calcul:

P: charge par essieu, P= 18 T;

V_{max}: vitesse d'inscription égale à 80Km/h.

Après calcul, on trouve : q= 39,78

Donc on utilise des rails de 40 Kg/ml car il s'agit tout de même d'un renouvellement de la voie.

Les caractéristiques sont les suivant :

		Dimension	(en mm)		Section	Masse	Module	
Туре	н	H b		S	(en mm²)	linéique (en Kg)	d'inertie (I/V en cm³)	
Rail de 40 Kg	133,35	65,43	117,47	13,1	5065	39,76	2129,44	

Tableau 78: Caractéristique du rail de 40 Kg/ml

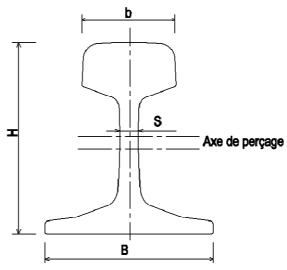


Figure 1:Rail de 40 kg

a.2 Les Traverses

Les traverses sont des traverses en béton armé Bi blocs qui suivent les normes Européennes 13230-3 :2002, elles sont conçues pour recevoir des rails de profil BSB80A de 36 kg et 40kg/ml dont la charge par essieu varie de 16 à 20 T.

i. Dimensions:

- Poids maximum d'une traverse : 120 Kg ;
- Longueur maximale: 1800 mm;
- Hauteur maximale sous le rail: 180 mm;
- Surface minimum d'appui d'un blochet : 500 mm x 250 mm.

ii. **Spécifications**

<u>Béton</u>: la composition du béton est en fonction du volume des blochets.

- Résistance à la compression > 40 MPa à 28 jours d'âge ;
- Résistance à la traction > 3,6 MPa à 28 jours d'âge.

<u>Armatures</u>: sur le lit supérieur et inférieur, il y a un acier à haute adhérence dont la nuance est BE500S.

Les fontes pour les épaulements ont les caractéristiques comme suit :

- Résistance à la traction > 37 daN/mm²;
- Allongement à la rupture > 17 mm;
- Limite d'élasticité > 23 daN/mm².

Entretoise: conforme à la norme Européennes NF.F.51-105 qui est une cornière en acier de 50 x 50 x 5.

Le système de fixation du rail sur la traverse est composé d'attaches élastiques non vissées PANDROL de type Fastclip FD 1303.

En générale, le travelage utilisé à la MADARAIL pour le renouvellement de voie est de 1 500 traverses par kilomètre en pleine voie, mais sur les ouvrages de franchissement, on pose 2 000 traverses par kilomètre.

a.3 Ballast

On utilise les matériaux de pierre concassée de bonne qualité, non schisteux et non friable, exempt d'argile de type granitique.

- Sa granulométrie : 20/60 ;
- Le coefficient Los Angeles (LA): < 40;
- Coefficient d'aplatissement < 14 %;
- Sa masse volumique : ρ = 1.6 T/m³.

L'épaisseur de la couche de ballast est déterminée par la formule décrit dans la Partie I ξ II.2.2 avec l'hypothèse suivante :

```
b: largeur de la traverse, b= 25 cm;
```

B: longueur de bourrage, B=50 cm;

d : entre axe des essieux d'un même boggie, d= 2,2 m ;

 α : Entre axe traverse, α = 66 cm;

P: charge par essieu, P = 18 T;

Contraintes admissibles du sol : 2 kg/cm².

Après calcul, on trouve : h = 25 cm.

Tous les nouveaux matériels sont emportés sur le chantier par wagon plateformes. Ensuite, on les dépose sur le côté de l'ancienne voie.

b. Nettoyage et désherbage :

Le but est d'élargir l'emprise de la voie pour que les wagons puissent s'inscrire facilement dans les courbes, c'est-à-dire déraciner toutes les herbes et les végétations ainsi que les arbustes.

Cette opération consiste par une équipe complète munie des pelles, des pioches, des coupe- coupes et des haches.

c. Démontage de la voie :

Les travaux de démontage consistent à enlever tous les éléments de la voie non utilisés. Les tirefonds et boulons sont à enlever par l'intermédiaire de la tirefonneuse.

Les traverses sont à arracher à main nue après l'extraction à l'aide des pinces ou des pelles. Elles sont ensuite stockées sur le côté de l'ancienne voie en attendant leur chargement sur un wagon ramasseur.

d. Recalage et surfaçage

Le recalage a pour objectif de nettoyer la partie supérieure de la plateforme. Il consiste à gratter une couche d'épaisseur moyenne environ de 20 cm sur la couche de ballast existant par un Bull. Le surfaçage de cette couche se termine par son compactage. L'engin de compactage à utiliser est prescrit par l'accès et l'environnement du site en question.

e. Piquetage topographique:

C'est la mise en position des paquets d'axes et des piquets de nivellement tout au long de la voie à renouveler. Ils sont assurés par un topographe et une porte mire.

f. Substitution des éléments de la voie

Cette substitution consiste à remplacer les traverses usagées, traverses métalliques, par des traverses en béton armée. Les nouvelles traverses déposées sur les côtes de la voie sont transportées manuellement avec des pinces vers le tracé de la voie et sont rangées suivant l'axe.

Pratiquement, l'alignement des traverses se fait à l'aide des cordons qui est placée à quelque distance de l'axe.

Maintenant, on pose les barres élémentaires de rail sur chaque file de blochet des traverses par l'intermédiaire d'une semelle en caoutchouc.

Le tout est fixé par une attache élastique Pandrol Fastclip, composé de : clip et des butées. Pour le serrage, on utilise un levier spécial.

g. Eclissages provisoires:

Les deux abouts de deux rails successifs sont assemblés temporairement par des éclisses provisoires ou C d'éclissage jusqu'à la réalisation de la soudure aluminothermique.

h. Le déchargement du ballast (ballastage préliminaire)

Le ballast est déchargé après le Substitution des éléments de la voie :

- La quantité de ballast mise en voie doit être suffisante pour la réalisation du profil
 prescrit par le plan de pose;

i. La mise à niveau de la voie

La mise en niveau consiste à donner à la voie ses caractéristiques géométriques définitives : altitude des rails et rayon de courbure. Cette opération consiste à faire les bourrages, mettre en place la voie neuve à hauteur définitive.

Les voies sont relevées à l'aide des criques sur les deux files de rail.

j. Ballastage complémentaire

Ce ballastage final est destiné pour la reprise du nivellement définitif des longs rails soudés. Les opérations sont les même que celle du premier.

k. Soudure des rails

Les soudures qu'on réalise avec les rails sont des soudures aluminothermiques La séquence des opérations de la mise en œuvre est la suivante :

- Découpe des rails : les extrémités du rail doivent être coupées en équerre et perpendiculaire à l'axe du rail ;
- Réglage des abouts des rails en plan et en profil;
- Pose des moules:
- ☑ Préchauffage ;
- Coulage (préparation du creuset, préparation de la coulée);
- ☑ Démontage, tranchage ou ébavurage;

r Meulage;

La soudure de joint présente les avantages ci-après :

- Amélioration de la vitesse ;
- Amélioration du confort des voyageurs ;
- Suppressions des coups sur les joints qui détériorent l'assemblage d'éclissage et le matériel roulant.

I. Le nivellement définitif

Il s'agit de la passe finale de nivellement et de dressage qui permet la circulation des trains à la vitesse autorisée sur la ligne.

Dans ce cas, le nivellement longitudinal est corrigé à partir du bourrage manuel. Tandis que le nivellement transversal se réalise à l'aide d'un niveau à bulle, il se corrige aussi par le bourrage manuel et après rectification des dévers dans les courbes et en alignement, on fait le dressage continu avec une pince ripée.

En général, le bourrage manuel est réalisé par quatre bourreurs travaillant en croix simultanément.

m. La libération des contraintes dans les LRS

La libération des contraintes dans le rail consiste à fixer les rails sur les traverses selon un mode opératoire permettant d'obtenir une contrainte mécanique nulle dans le métal à une température de référence située dans une plage moyenne.

Cette plage moyenne a été déterminée pour tenir compte des températures extrêmes auxquelles le rail peut être soumis.

n. <u>Travaux de finition</u>

Réfection éventuelle des pistes de cheminement latérales de la plate forme ;
 Ramassage des matériaux hors de l'emprise.

Chapitre IV: Technologie de construction et recommandation nécessaire

III.1. Introduction:

Les différentes parties précédentes étaient destinées à l'étude théorique d'un projet de construction d'un nouveau pont-rail sur la rivière SAHATANDRA à Andasibe. La partie réalisation pratique d'un projet devrait être parfaitement maîtrisée. Cela exige, en effet, la maîtrise de différentes technologies de construction.

Afin de mieux cerner les différents points concernant ce projet, il a été indispensable de passer auprès de la société MADARAIL dans le cadre de la construction d'un pont définitif sur la rivière SAHATANDRA. Faute de financement, la construction d'un nouveau pont en béton précontrainte a été impossible ; il fallait donc se contenter de l'actuel pont. Cependant, la partie superstructure de l'ouvrage n'a pas été modifiée ; l'objet des travaux consistait à renforcer les éléments du pont pour assurer une durée de service plus prolongée.

III.2 <u>L'entretien du pont métallique</u>

Il faut retenir qu'il y a deux sortes d'entretien, à savoir :

- Entretien courant;
- Entretien spécialisé.

Suite à la situation déjà évoquée auparavant, une partie du pont a été endommagée. Les dégâts nous obligent à choisir l'entretien spécialisé. Ceci consiste à maintenir l'ouvrage dans son état de service, les travaux à faire sont : les réparations, les renforcements et les remplacements des éléments défectueux.

Il faut reconnaître que les avaries sur le pont peuvent diminuer considérablement la force portante du pont lui-même.

Les différentes opérations sont les suivantes :

- Le renforcement : c'est une méthode de réparation du pont métallique. Ceci est à étudier dans chaque cas particulier ; la méthode à envisager est en effet très différente suivant les dispositions et les caractéristiques des éléments à renforcer.

 Avant de procéder au renforcement, il faut dégager la partie endommagée, préparer
 - Avant de procéder au renforcement, il faut dégager la partie endommagée, préparer les pièces à assembler c'est-à-dire les nouvelles pièces, et nettoyer les anciennes ;
- Redressement des éléments déformés : ceci consiste à préchauffer ou à découper l'élément du pliage et à appliquer un effort dans le sens inverse de la déformation.

Des essais de traction doivent être effectués sur l'élément redressé pour s'assurer de sa bonne propriété mécanique.

Il faut remplacer les éléments d'assemblage de la pièce redressée (boulons, rivets...);

- Serrage des boulons et rivets : la procédure et la réparation des boulons desserrés sont le serrage à clef dynamométrique. Les rivets défectueux sont remplacés, leur montage se fait à chaud puis avec pression. Dans le cas de rupture, absence ou corrosion importante des rivets, il faut les remplacer les uns après les autres.
- Protection de toute la surface entière du pont contre la corrosion : celle-ci est assurée par l'application d'une peinture antirouille sur toute la surface du pont.

Avant l'application de la peinture, des opérations de mise en état des surfaces de l'acier sont nécessaires :

- Décapage : ceci a pour but d'obtenir une surface permettant ultérieurement
 l'exécution correcte des travaux d'application, en éliminant :
 - o Les oxydes et autres sels, s'il y a lieu, formés à la surface de l'acier ;
 - Les souillures ;
 - Les peintures inutiles ou même nuisibles : revêtements provisoires,
 revêtements détériorés.

Le décapage est effectué par un procédé mécanique : sablage qui consiste à projeter sur les pièces à traiter, des particules abrasives, comme les sables secs, tamisés, durs et ne contenant pas de silice car celle-ci a l'inconvénient d'éclater en donnant des poussières siliceuses capables de déclencher une intoxication par silicose. L'usage des sables est réglementé sévèrement. En effet, en contact avec l'objet traité, les particules détachent des oxydes et d'autres souillures, les fragmentent et les réduisent en poussière n'adhérant plus à l'acier considéré.

N.B: le décapage peut être effectué manuellement en utilisant une brosse métallique, par grattage, brossage.

■ Dépoussiérage : après exécution du décapage, il est absolument nécessaire d'éliminer toutes traces d'abrasif et de résidus de travail qui peuvent se trouver sur les surfaces à traiter. Il faut donc procéder à un dépoussiérage soit à l'aide d'aspirateur, soit à l'air comprimé exempt d'huile et de l'eau.

Par ailleurs, la surface fraîchement sablée s'oxydera très rapidement. Il faut donc dès que possible, dans un délai maximum de quelques heures, entre 2 à 6 heures après le sablage.

- Peinture : touchant à la fois la protection du support et de la décoration pour des délais parfois longs, il est rare qu'une seule couche de peinture possède les qualités requises. On est donc amené, en général, à utiliser plusieurs couches que l'on superpose :
 - o La couche primaire : c'est la couche de peinture appliquée directement sur le subjectile. Elle doit assurer l'adhérence du revêtement en s'accrochant au subjectile. Le revêtement de peinture ne peut ni protéger si cette condition essentielle n'est pas satisfaite. La couche primaire doit donc épouser sans discontinuité le relief du subjectile.
 - o La couche de finition ou couche finale : c'est la couche de revêtement qui est en contact avec l'atmosphère ou avec le milieu extérieur. Pour cette couche, les considérations esthétiques seront évidemment prises en compte : couleur, aspect mat, satiné ou brillant, etc.... En tout cas la couche finale ne doit pas faire perdre de vue les considérations relatives à la protection, surtout en ce qui concerne l'imperméabilité. Pour cela, on peut utiliser de « l'alu de finition » en bicouche.

ETUDE FINANCIERE

ET ETUDE D'IMPACT ENVIRONEMENTAL DU PROJET

CHAPITRE I ETUDE FINANCIERE

CHAPITRE II
ETUDE D'IMPACT ENVIRONEMENTAL DU PROJET

Chapitre I: Etude financière

C'est la partie dans laquelle on va étudier le coût d'investissement du projet. La question financière prend une place très importante dans le projet avant de prendre une décision pour sa réalisation. Pour connaître alors la valeur de cet investissement, il est nécessaire de faire les devis quantitatifs et estimatifs du projet. Au cours de ce chapitre, on va évaluer les investissements nécessaires pour la réalisation du projet.

I.1. Calcul des coefficients de déboursés

Le coefficient des déboursés K est fonction des différentes facteurs liées à la décomposition interne des différentes catégories des frais.

La valeur de K est obtenue à partir de la formule suivant :

$$K = \frac{(1+A_1) \times (1+A_2)}{1-A_3(1+T)}$$

Pour une entreprise quelconque, les valeurs des Ai sont données par le tableau ci-dessous :

Frais	Décomposition de chaque catégorie de frais	Indice de composition ai de chaque catégorie [%]	Ai=Σ ai [%]
Frais généraux	Frais d'agence et patente Frais de chantier	a1 = 5 a2 = 3	
proportionnels au déboursé	Frais d'étude et laboratoire Assurance	a3 = 3 a4 = 2	A1 = 13
Bénéfice brute et frais financière proportionnel au prix de revient	Bénéfice net et impôt Aléas technique Aléas de révision de prix Frais financier	a5 = 14 a6 = 1,5 a7 = 1,4 a8 = 8	A2 = 24,9
Frais proportionnel au prix de règlement avec le TVA	Frais de siège	a9 = 0 (Entreprise siège à Madagascar)	A3 = 0

Tableau 79: Valeur de Ai

Après calcul, on a:

K = 1,411 soit K = 1,41

Pour le calcul des prix unitaire PU, on utilise la formule suivante : $PU = \frac{K \times D}{R}$

I.2. <u>Calcul des sous détail des prix</u>

i. <u>Béton dosé à 400 Kg/m³</u>

<u>Rendement</u>: 28 m³/jour

Composition des prix				Coûts directs		Dépenses direct			Total
Désignation	U	Qté	J	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	1	J	1	60 000	60 000			
Engin manutention	Fft	1	J	1	525 000	525 000			
Wagon plateforme	Fft	1	J	1	570 000	570 000			1 155 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ouvriers spécialisés	Hj	4	h	8	800		25 600		
Manœuvres	Hj	12	h	8	600		57 600		102 000
Matériaux									
Ciments	Kg	400	Kg	11200	550			6 160 000	
Sables	m ³	0,40	m3	11,2	8 000			89 600	
Granulat	m^3	0,80	m3	22,4	26 500			593 600	6 843 200
							Total des	déboursés	8 100 200
							Prix unitai	re	407 903
							PU arrond	li	408 000

Tableau 80: Sous détails de prix du béton dosé à 400 kg/m³

ii. Béton dosé à 350 Kg/m3

Rendement: 28 m³/jour

Composition des prix			Coûts directs			Dépenses direct			Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	1	J	1	60 000	60 000			
Engin manutention	Fft	1	J	1	525 000	525 000			
Wagon plateforme	Fft	1	J	1	570 000	570 000			1 155 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ouvriers spécialisés	Hj	4	h	8	800		25 600		
Manœuvres	Hj	12	h	8	600		57 600		102 000
Matériaux									
Ciments	Kg	350	Kg	9800	550			5 390 000	
Sables	m3	0,40	m3	11,2	8 000			89 600	
Granulat	m3	0,80	m3	22,4	26 500			593 600	6 073 200
							Total des dé	boursés	7 330 200
							Prix unitaire		369 128
							PU arrondi		369 130

Tableau 81: Sous détail de prix du béton dosé à 350 kg/m³

iii. <u>Béton dosé à 150 kg/m³</u>

Composition des prix			Coûts directs			Dépenses direct			Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	1	J	1	60 000	60 000			
Engin manutention	Fft	1	J	1	525 000	525 000			
Wagon plateforme	Fft	1	J	1	570 000	570 000			1 155 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ouvriers spécialisés	Hj	4	h	8	800		25 600		
Manœuvres	Hj	12	h	8	600		57 600		102 000
Matériaux									
Ciments	Kg	150	Kg	4200	550			2 310 000	
Sables	m3	0,40	m3	11,2	8 000			89 600	
Granulat	m3	0,80	m3	22,4	26 500			593 600	2 993 200
	•						Total des dé	boursés	4 250 200
							Prix unitaire		214 028
							PU arrondi		214 050

Tableau 82: Sous détail de prix du béton dosé à 150 kg/m³

iv. Aciers HA

Rendement: 1250 Kg/jour

		_		-					
Composition des	prix		(Coûts di	rects	l	Dépenses	direct	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	1	Fft	1	35 600	35 600			35 600
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ferrailleurs	Hj	10	h	8	900		72 000		
Manœuvres	Hj	8	h	8	600		38 400		129 200
Matériaux									
Aciers	Kg	1	Kg	1250	2 750			3 437 500	
Fil recuit	Kg	0,07	Kg	81,25	2 500			203 125	
	u	0,03	u	37,5	18 150			680 625	4 321 250
				•			Total des	déboursés	4 486 050
							Prix unita	ire	5 060
							PU arron	di	5 100

Tableau 83: Sous détail de prix de l'acier HA

v. <u>Coffrage</u>

Rendement: 60 m²/jour

Composition de	s prix		C	oûts di	rects	[Dépenses dire	ect	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	1	Fft	1	14 500	14 500			14 500
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Boiseur	Hj	12	h	8	1 200		115 200		
Manœuvres	Hj	12	h	8	700		67 200		185 200
Matériaux									
Bois de coffrage	m²	1	m²	60	7 200			432 000	
Pointes	Kg	0,20	Kg	12	3 150			37 800	469 800
							Total des de	éboursés	669 500
							Prix unitaire	9	15 733
							PU arrondi		15 750

Tableau 84: Sous détail de prix du coffrage

vi. Ballastage, nivellement et dressage continue

Rendement: 104 m³ / jour

Composition de	s prix		C	Coûts d	irects		Dépenses dire	ect	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	U	6	h	8	6 250	300 000			
Wagon trémie	U	2	h	6	72 500	870 000			1 170 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ouvriers spécialisés	Hj	16	h	8	800		102 400		
Manœuvres	Hj	16	h	8	600		76 800		198 000
Matériaux									
Ballast 20/60	m3	1,00	m3	104	20 000			2 080 000	2 080 000
					·		Total des dé	boursés	3 448 000
							Prix u	ınitaire	46 747
							PU a	rrondi	46 750

Tableau 85: Sous détail de prix du ballast

vii. <u>Pose rail de 40 Kg/ml</u>

Rendement: 18 T/jour

Composition des	prix		Co	ûts di	rects		Pépenses dire	ect	Total
Désignation	U	Qté	J	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	U	3	h	8	6 250	150 000			
Wagon plateforme	С	2	h	8	72 500	1 160 000			1 310 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	2	h	8	1 000		16 000		
Ouvriers spécialisés	Hj	9	h	8	800		57 600		
Manœuvres	Hj	14	h	8	600		67 200		143 600
Matériaux									
Rail 40 Kg	Т	1	U	18	680 000			12240000	
Eclisses	U	1	J	22	36250			797500	
Boulons pour éclisse	U	1	m3	94	5 500			517 000	13 554 500
					-		Total des dé	boursés	15 008 100
							Prix unitaire		1 175 635
							PU arrondi		1 175 640

Tableau 86: Sous détail de prix de la pose rail de 40 kg/ml

viii. Pose des traverses en béton armée bi-bloc

Rendement: 185 U/jour

Composition des	prix			Coûts	directs		Dépenses di	rect	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	Fft	2	h	8	6 250	100 000			
Engin de manutention	Fft	1	h	1	70 000	70 000			
Wagon plateforme	U	1	h	8	72 500	580 000			750 000
Main d'œuvre									
Chef de chantier	Hj	1	h	2	1 400		2 800		
Chef d'équipe	Hj	1	h	8	1 000		8 000		
Ouvriers spécialisés	Hj	5	h	8	800		32 000		
Manœuvres	Hj	8	h	8	600		38 400		81 200
Matériaux									
TBA	Fft	1	כ	185	82 000			15170000	
Semelle	Fft	1	כ	185	650			120250	
Buttés	Fft	1	٦	185	1600				
Clips	Fft	2	U	370	1 200			444 000	15 734 250
			•	•	•		Total des d	léboursés	16 565 450
							Prix unitair	e	126 256
							PU arrond	i	126 300

Tableau 87: Sous détail de prix de la pose des traverses en B.A

ix. <u>Dépose voie</u>

Rendement: 225 m/h

Composition des p	rix			Coût	s directs	De	épenses dire	ct	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Lot de petit outillage	U	1	J	1	120 000	120 000			120 000
Main d'œuvre									
Chef d'équipe	Hj	1	h	1	1 000		1 000		
Ouvriers spécialisés	Hj	2	h	1	800		1 600		
Manœuvres	Hj	15	h	1	600		9 000		11 600
							Total des dé	éboursés	131 600
							Prix unitaire	j	825
						_	PU arrondi	(Ar)	825

Tableau 88: Sous détail de prix de la dépose voie

x. Forage du pieu

Rendement: 200 m³/jour

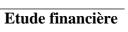

Composition des p	rix		С	oûts di	rects	De	épenses di	rect	Total
Désignation	U	Qté	U	Qté	PU	MTRL	МО	MTRO	
Matériel									
Camion benne	U	2	h	4	55 000	440 000			
Pelles	U	1	h	8	255 000	2 040 000			
pompe trido	Mois	1	Mois	1	610 000	610 000			
Pompe PDM	U	2	h	8	42 000	672 000			
Poste soudure autonome	U	2	h	8	56 250	900 000			
Groupe électrogène	U	1	h	8	2 300	18 400			4 680 400
Main d'œuvre									
Chef de chantier	Hj	1	h	8	1 750		14 000		
Chef d'équipe	Hj	2	h	8	1 200		19 200		
Chauffeurs	Hj	2	h	8	1 500		24 000		
Soudeur	Hj	1	h	3	1 300		3 900		
Foreur	Hj	12	h	8	800		76 800		
Mécaniciens	Hj	1	h	2	1 600		3 200		
Manœuvres	Hj	10	h	8	700		56 000		197 100
Matériaux									
Bentonite	t	0,08	t	16	425000			6 800 000	
Gaz oïl	L	8	L	4650	2 900			13 485 000	
Lubrifiant	L	1	L	72	3 850			277 200	
Baguette ordinaire	Etui	1	Etui	4	14 300			57 200	
Baguette de rechargement	Etui	1	Etui	8	43 600			348 800	
Baguette inox	Etui	1	Etui	3	41 500			124 500	21 092 700
							Total des	déboursés	25 970 200
							Prix	unitaire	172 702
							PU a	arrondi	173 000

Tableau 89: Sous détail de prix pour forage des pieux

I.3. <u>Devis quantitatif</u>

Désignation	Unité	Longueur	largeur	épaisseur ou	Quantité	Nb	Qté
Designation	Omic	[m]	[m]	hauteur [m]	Quantite	140	total
Terrassement	_						
Déblai et évacuation des	m3				292,020	1	292,020
terres excédentaires	1113				,	т	
Remblai en terre meuble	m3				309,390	1	309,390
Superstructure							
Poutre principale							
Béton Q400	m3				33,38	2	66,76
Aciers HA	Kg						4438,87
Aciers de précontrainte	Kg						4199,74
Coffrage	m²				170,96	2	341,92
Dalle + trottoir							
Béton Q350	m3	30	2,95	0,2	17,70	1	17,70
Aciers HA	kg						1763,85
Coffrage	m²						201,00
Entretoise							
About							
Béton Q350	m3	2,1	1,4	0,3	0,88	2	1,764
Aciers HA	kg						131,033
Coffrage	m²				6,98	2	13,950
Médiane							
Béton Q350	m3	2,25	1,4	0,3	0,95	3	2,835
Aciers HA	kg		-				196,549
Coffrage	m ²				6,51	3	19,530
Garde Ballast							
Béton Q350	m3	30	0,175	0,5	2,63	2	5,250
Aciers HA	kg						118,968
Coffrage	m²				24,93	2	49,860
Dalle de transition							
Béton Q350	m3	4,65	4	0,2	3,72	2	7,440
Béton Q150	m3	4,65	4	0,05	0,93	2	1,860
Aciers	kg						488,360
Coffrage	m²				3,46	2	6,920
Equipement							
Parapet	ml				30,00	2	60,00
Gargouille	U				1	24	24,00

Appareil d'appuis	U				1	4	4,00
Infrastructure							
Mur garde grève							
Béton Q350	m3	4,65	0,3	1,95	2,72	2	5,441
Aciers	kg						337,855
Coffrage	m²				19,31	2	38,610
Mur en retour							
Béton Q350	m3	4	0,3	2,1	2,52	4	10,080
Aciers	kg						1288,505
Coffrage	m²				18,61	4	74,424
Mur de front							
Béton Q350	m3	4,65	1,5	4,5	31,39	2	62,775
Aciers	kg						6904,852
Coffrage	m²				55,35	2	110,700
Semelle de répartition							
Béton Q350	m3	5,25	4,5	1,4	33,08	2	66,150
Béton Q150	m3	5,25	4,5	0,05	1,18	2	2,363
Aciers	kg						5702,533
Coffrage	m²				27,30	2	54,600
Pieux							
Forage	m3	18	0,8		9,05	8	72,382
Béton Q350	m3	18	0,8		9,05	8	72,382
Aciers	kg						3763,768
Voie ferrée							
Ballast	m3	530	2,4	0,4	508,8	1	508,80
Traverse en B.A	U				803	1	803,00
Rail	Т	1060					42,40

Tableau 90: Devis quantitatif

I.4. Bordereaux détail estimatif

				Prix unitaire	
N°	Désignation	unité	Quantité	[Ar]	Montant [Ar]
100	Installation et repli de chantier				
101	Installation	Fft	1	52 105 715	52 105 715,00
102	Repli	Fft	1	25 143 240	25 143 240,00
	Total installation et repli de chantier				77 248 955,00
200	Terrassement				
201	Remblais	m3	292,02	13 250	3 869 265,00
202	Déblai	m3	309,39	17 500	5 414 325,00
	Total Terrassement				9 283 590,00
300	Superstructure				
301	Béton Q400	m3	66,7574	408 000	27 237 019,20
302	Béton Q350	m3	34,989	369 130	12 925 490,57
303	BétonQ150	m3	1,86	214 050	398 133,00
304	Aciers HA	kg	7137,63085	5 100	36 401 917,34
305	Aciers de précontrainte	kg	4199,741	18 000	75 595 338,00
306	Coffrage	m²	633,18	15 750	9 972 585,00
307	Mise en tension des câbles	J	12	985 000	11 820 000,00
308	Lancements des poutres	J	2	725 000	1 450 000,00
	Total superstructure				175 790 482,11
400	Infrastructure				
	Culée				
401	Béton Q350	m3	144,446	369 130	53 319 167,24
402	Béton Q150	m3	2,363	214 050	505 693,15
403	Acier HA	kg	14233,745	5 100	72 592 101,40
404	coffrage	m²	278,334	15 750	4 383 761,50
	Pieux				
405	Forage	m3	72,383	183 100	13 253 198,12
406	Béton Q350	m3	72,383	369 130	26 718 476,20
407	Acier HA	kg	3763,7683	5 100	19 195 218,33
	Total infrastructure				189 967 615,94
500	Equipement				
501	Parapet	ml	60	195 000	11 700 000,00
502	Gargouille	U	24	47 500	1 140 000,00
503	Appareils d'appui	U	4	165 000	660 000,00
	Total équipement				13 500 000,00
600	Voie ferrée				
601	Nettoyage et désherbage	ml	250	270	67 500,00
602	Dépose voie	m	250	825	206 250,00
603	Piquetage topographique	ml	500	145 000	72 500 000,00
604	Pose rails	Т	42,4	1 175 640	49 847 136,00
605	T.B.A	U	803	126 300	101 418 900,00
606	Ballastage	m3	508,8	46 750	23 786 400,00
607	Soudure	U	28	130 000	3 640 000,00

				Prix unitaire	
N°	Désignation	unité	Quantité	[Ar]	Montant [Ar]
608	Reprise du nivellement	ml	250	2 800	700 000,00
	Total voie ferrée				252 166 186,00
	TOTA	XUX			717 956 829,05

Tableau 91: Bordereaux détail estimatif

Tableau 92: Récapitulation du coût du projet

Désignation	Montant [Ariary]
Installation et repli de chantier	77 248 955,00
Terrassement	9 283 590,00
Superstructure	175 790 482,11
Infrastructure	189 967 615,94
Equipement	13 500 000,00
Voie ferrée	252 166 186,00
Totales Hors TVA	717 956 829,05
Contrôle et surveillance 10%	71 795 682,90
Imprévu 5%	35 897 841,45
TVA 20%	143 591 365,81
Totaux TTC	969 241 719,21

Arrêté le présent devis estimatif à la somme de NEUF CENTS SOIXANTE NEUF MILLIONS

DEUX CENTS QUARANTE UN MILLE SEPT CENT DIX NEUF Ariary (Ar 969 241 719,21).

Le coût par mètre linéaire du pont est de TRENTE DEUX MILLIONS TROIS CENT HUIT MILLE

CINQUANTE SEPT Ariary (Ar 32 308 057,31)

I.5. Etude de rentabilité

Dans ce chapitre, compte tenu du coût de l'investissement, des ressources disponibles et d'autres aléas, nous analyserons la rentabilité de notre projet. L'analyse financière et l'analyse économique avaient pour objet de déterminer si les recettes d'exploitation permettraient de couvrir les charges d'investissement, les dépenses de gestion, d'entretien et d'exploitation de notre projet. Pour mesurer la rentabilité de l'investissement, il faut voir de près :

- La valeur actuelle nette (V.A.N);
- Le taux de rentabilité interne (T.I.R);
- Le délai de récupération du capital investi (D.R.C.I).

I.5.1 <u>Valeur actuelle nette (V.A.N)</u>

La valeur actuelle nette est la somme des « cash-flows» prévisionnels du projet actualisés au taux de rendement minimum exigé qui est le taux d'actualisation.

$$VAN = \sum F_n (1+i)^{-n} - I$$

 F_p : représente les flux de trésoreries des années 1 à n appelé « Cash-flow ». Il est déterminé par la relation suivante :

$$F_n = (R_n + A)$$

R_n = Recettes – Dépenses

A: Amortissement

 $F_n(1+i)^{-n}$: Cash-flow actualisé

I: investissement initial;

i: Taux d'actualisation.

i. Recettes

On suppose que la recette actuelle total de cet ouvrage est de Ar 221 626 637,52 on a estimé que la recette total va augmenter d'année en année, suivant un taux de $i_R=4\,\%$ selon la formule suivante :

$$R_n = R_a \times (1 + i_R)$$

Où R_n: recette à l'année n;

Ra: recette actuelle;

i_R: taux d'augmentation de la recette;

n: nombre d'année

ii. <u>Dépenses</u>

A part pour le coût d'exécution du projet, pour pouvoir maintenir en bon état un ouvrage, il faut bien les entretenir.

L'entretien commence à partir de l'année 5, et soit E_1 le coût de l'entretien de la première année (n= 5). Nous considérons un taux d'entretien de 8 % du coût d'investissement avec un taux d'accroissement de 10%.

La dépense annuelle est estimée à 4 % de la recette annuelle.

iii. Amortissement

Nous adoptons une durée de 20 ans pour considérer l'ouvrage comme amorti. Ainsi, le taux d'amortissement linéaire est évalué à 5%.

$$A = I \times t = 969\ 241\ 719,21 \times 0,05 = 48\ 462\ 085,93 Ar$$

iv. Taux d'actualisation i

Taux d'actualisation i est compris entre le taux d'infiltration et le taux direct de la banque centrale. Nous allons prendre un taux d'actualisation i = 10%.

n	Recette annuelle	Dépense annuelle	Coût d'entretien	Recette nette
[Années]	[Ar]	[Ar]	[Ar]	[Ar]
1	221 626 637,52	8 865 065,50		212 761 572,02
2	230 491 703,02	9 219 668,12		221 272 034,90
3	239 711 371,14	9 588 454,85		230 122 916,30
4	249 299 825,99	9 971 993,04		239 327 832,95
5	259 271 819,03	10 370 872,76	77 539 337,49	171 361 608,77
6	269 642 691,79	10 785 707,67	85 293 271,24	173 563 712,87
7	280 428 399,46	11 217 135,98	93 822 598,37	175 388 665,11
8	291 645 535,44	11 665 821,42	103 204 858,20	176 774 855,82
9	303 311 356,86	12 132 454,27	113 525 344,02	177 653 558,56
10	315 443 811,13	12 617 752,45	124 877 878,43	177 948 180,26
11	328 061 563,57	13 122 462,54	137 365 666,27	177 573 434,76
12	341 184 026,12	13 647 361,04	151 102 232,90	176 434 432,18
13	354 831 387,16	14 193 255,49	166 212 456,18	174 425 675,49
14	369 024 642,65	14 760 985,71	182 833 701,80	171 429 955,14
15	383 785 628,35	15 351 425,13	201 117 071,98	167 317 131,24
16	399 137 053,49	15 965 482,14	221 228 779,18	161 942 792,17
17	415 102 535,63	16 604 101,43	243 351 657,10	155 146 777,10
18	431 706 637,05	17 268 265,48	267 686 822,81	146 751 548,76
19	448 974 902,54	17 958 996,10	294 455 505,09	136 560 401,34
20	466 933 898,64	18 677 355,95	323 901 055,60	124 355 487,09

Tableau 93: Valeur de la recette nette

n	Recette nette	Amortissement	Cash-flow	(1+i) -n	Valeurs
[Années]	[Ar]	[Ar]	[Ar]		actualisée de
					revenus [Ar]
1	212 761 572,02	48 462 085,93	261 223 657,95	0,909	237 476 052,68
2	221 272 034,90	48 462 085,93	269 734 120,83	0,826	222 920 761,02
3	230 122 916,30	48 462 085,93	278 585 002,23	0,751	209 305 035,48
4	239 327 832,95	48 462 085,93	287 789 918,88	0,683	196 564 386,91
5	171 361 608,77	48 462 085,93	219 823 694,71	0,621	136 493 219,36
6	173 563 712,87	48 462 085,93	222 025 798,81	0,564	125 327 775,23
7	175 388 665,11	48 462 085,93	223 850 751,05	0,513	114 870 830,17
8	176 774 855,82	48 462 085,93	225 236 941,75	0,467	105 074 695,62
9	177 653 558,56	48 462 085,93	226 115 644,49	0,424	95 895 106,31
10	177 948 180,26	48 462 085,93	226 410 266,19	0,386	87 290 958,79
11	177 573 434,76	48 462 085,93	226 035 520,70	0,350	79 224 071,07
12	176 434 432,18	48 462 085,93	224 896 518,11	0,319	71 658 961,47
13	174 425 675,49	48 462 085,93	222 887 761,42	0,290	64 562 645,16

n	Recette nette	Amortissement	Cash-flow	(1+i) -n	Valeurs
[Années]	[Ar]	[Ar]	[Ar]		actualisée de
					revenus [Ar]
14	171 429 955,14	48 462 085,93	219 892 041,07	0,263	57 904 446,99
15	167 317 131,24	48 462 085,93	215 779 217,17	0,239	51 655 829,01
16	161 942 792,17	48 462 085,93	210 404 878,10	0,218	45 790 231,79
17	155 146 777,10	48 462 085,93	203 608 863,04	0,198	40 282 928,09
18	146 751 548,76	48 462 085,93	195 213 634,69	0,180	35 110 888,11
19	136 560 401,34	48 462 085,93	185 022 487,28	0,164	30 252 655,15
20	124 355 487,09	48 462 085,93	172 817 573,02	0,149	25 688 231,04
					2 033 349 709,45

Tableau 94: Valeurs des paramètres pour la détermination de la V.A.N

Tout calcul fait, nous avons:

V.A.N = 2 033 349 709,45 - 969 241 719,21 =1 064 107 990,24 Ar

I.5.2 <u>Taux interne de rentabilité (TIR)</u>

Le taux interne de rentabilité correspond au taux d'actualisation qui rendre nulle la valeur actuelle nette.

Soit X = TIR tel que:

$$TIR = \left\{ \sum_{p=1}^{n} F_{p} (1+x)^{-p} - I = 0 \right\}$$

Le TIR est obtenu soit en résolvant l'équation précédent soit en faisant varier le taux d'actualisation jusqu'à nous aurons de VAN = 0.

En faisant une approximation successives sous Excel, on a le TIR = 25,73%

I.5.3 <u>Le délai de récupération du capital investi « DRCI »</u>

Le DRCI consiste à mesurer le temps que l'investissement met à récupérer sa mise de fond. En faisant le cumul des cash-flows pendant des années, nous avons que le montant de l'investissement est compris entre le cumul du cash- flow de la troisième année et celui de la quatrième année.

D'où, par interpolation linéaire, le délai de récupération du capital investi (DRCI) est de 3,55 ans, soit 3 ans, 6 mois et 21 jours.

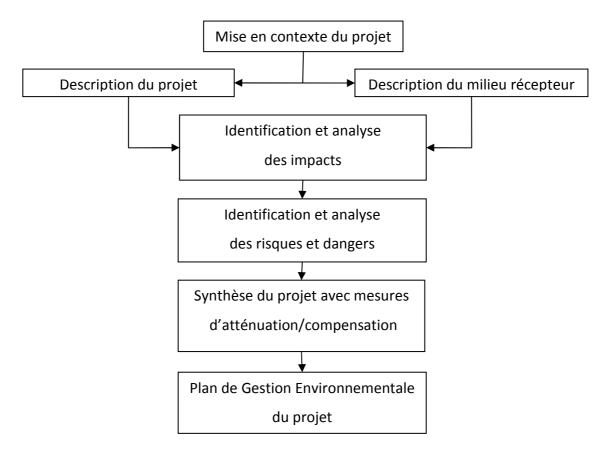
⇒ Nous avons une valeur de VAN positif alors nous pouvons accepter le projet c'est-à-dire il est rentable. En plus selon le critère de TIR, tant que le taux d'actualisation interne12% est inférieur à 25,73%, le projet reste toujours acceptable.

D'où le projet est rentable.

Chapitre II: Impacts environnementaux

L'adoption de la loi portant *Charte de l'Environnement Malagasy* (1) et la promulgation du décret relatif à la *Mise en Comptabilité des Investissements avec l'Environnement* (MECIE) (2) impliquent une obligation pour les projets publics ou privés susceptibles de porter atteinte à l'environnement, d'être soumis soit à un Etude d'Impact Environnemental (EIE), soit à un Programme d'Engagement Environnemental (PREE), selon la nature technique, l'ampleur de ces projets et la sensibilité de leurs milieux d'implantation.

Une telle étude et/ou l'établissement d'un tel programme nécessitent des équipes spécialisées et multidisciplinaires, malgré cela, nous allons évaluer les impacts environnementaux entrant dans la conception et de l'exécution de notre projet. Sachant que les contenus d'une EIE et d'un PREE sont pratiquement les mêmes, ce qui les différencie, c'est la manière dont l'administration traite les dossiers.


Etant donné qu'une EIE est un outil de prise de décision en matière de développement durable, et qu'elle donne des éléments d'amélioration d'un projet, et plus particulièrement, c'est une exigence des bailleurs de fonds, nous vous proposons ainsi quelques notes d'impacts environnementaux dans cette partie.

Avant d'étudier ces impacts, la connaissance de la démarche de réalisation d'une EIE et l'élaboration du rapport d'EIE selon le décret MECIE seront nécessaires et profitables (voir l'organigramme suivante)

¹ Loi n° 90-033 du 21 décembre 1990 portant Charte de l'Environnement, modifiée et complétée par les lois n° 97-012 du 06 Juin 1997 et n° 2004-015 du 19 Août 2004.

Décret MECEI n° 99-954 du 15 décembre 1999, modifié par le décret n°2004-167 du 03 février 2004.

Organigramme 3: Plan d'élaboration du rapport d'EIE

II.1 Description du projet

II.1.1 Type du projet

C'est un projet de reconstruction d'un ouvrage de franchissement : « pont en Béton précontrainte ». (cf. Détails dans la troisième partie).

II.1.2 Nature du projet

Les différentes phases de notre projet et les travaux respectifs à effectuer sont :

- Phase préparatoire (avant travaux)
 - Recrutement des ouvriers ;
 - Installation de chantier (base de vie, aire de stockage,...);
 - Transport et circulation des engins et équipements ;
 - Aménagement des voies d'accès ;
 - Extraction de matière à partir de zones d'emprunt, de gîte et de carrière;
 - Mise en place des panneaux de chantier.
- Phase de construction
 - Terrassement (déblai, remblai, fouille);

- Travaux d'assainissement ;
- Ouvrage;
- Repli de chantier.
- Phase d'exploitation
 - Modalités d'entretien

II.2 Description générale du site

Elle concerne les composantes relatives de l'environnement immédiat susceptibles d'être affectées par le projet, à savoir, le milieu physique (climat, hydrologie, géomorphologie, géologie et pédologie, paysage, ...), le milieu biologique (écosystème aquatique, faune et flore) et le milieu humain (social, culturel, économique,...).

II.3 Analyse des impacts environnementaux

II.3.1 <u>Impacts positifs</u>

a. Impacts positifs pendant travaux

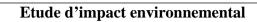
	Impac	t positifs sur le	milieu socio	-économique		
Impacts environnementaux	Source d'impact	Intensité	Durée	Etendue/ Localisation	Fréquence	Optimisation
Recrutement de personnel local pour l'exécution du projet	Travaux de réalisation des ouvrages	faible	Pendant la durée des travaux	Zone Local	A chaque exploitation	
Impacts culturels entre les membres du personnel	Chantier	Moyen	idem		Continu	
Création d'activités génératrices de revenus telles que gargotiers, portages, etc	Installation des bases de chantier et dépôts	Faible	idem	Zone entourage	idem	Eviter de faire les achats ou utiliser les services des autres zones. Utiliser les fournisseurs locaux
La zone sera bien sécurisée par la protection des équipements et des magasins de stockage des matériaux de construction	ldem	Moyen	ldem	Idem	ldem	Travailler avec les forces de l'ordre locales: gendarmes

Tableau 95: Impacts positifs pendant travaux

b. Impacts positifs après travaux

		Imj	pacts positifs sur	le milieu physique		
Amélioration de l'écoulement des eaux dans les cours d'eau	Ponts et ouvrage de franchissement	Fort	Permanent si entretien adéquat	Cours d'eau traversé et le long de projet	Continu	Entretien périodique
		ı	mpacts positifs s	ur le biologique		
facilitation des travaux de contrôle, de surveillance et de suivi par les agents des Eaux et forêts	Transport et circulation	Moyen	Permanent	Région des aires protégées	Tout au long de l'année	Renforcement de surveillance par des structures locales ou régionales
		Impacts	positifs sur le m	ilieu socio-économ	nique	
Développement du tourisme local en général. Implantation des nouvelles infrastructures (hôtelières,). Augmentation en nombre des investisseurs	Amélioration des conditions de transport	Moyen	Permanent	Région des aires protégées	Saisons touristiques	Publicité
Facilitation des échanges commerciaux des régions voisines. Amélioration du niveau de vie des paysans		Fort	Permanent	Régional	Tout au long de l'année	

<u>Tableau 96</u>: Impacts positifs après travaux


II.3.2 Impacts négatifs

		Impacts	négatifs sur le l	milieu physique		
Impacts environnementaux	Source d'impact	Intensité	Durée	Etendue/ Localisation	Fréquence	Atténuations
Destruction/ diminution de la couverture du sol	Bases de chantiers Accès divers	Faible à fort	Permanent	Localisés aux empreintes et abords immédiats	Au début des travaux	Protéger les sols découverts pendant/ au fur et à mesure des travaux de construction: protections provisoires avec une couverture de paille.
Affouillements, érosion de berge	Franchissement des talwegs, cours d'eau	Moyen	Permanent	Talwegs, cours d'eau franchis par la voie	Saison des pluies	Mise en place d'ouvrages de franchissements adéquats et correctement dimensionnés Protection des berges
Rétrécissement des sections des cours d'eau,(y compris lits majeurs) Accroissement des vitesses d'écoulement Accroissement de l'agressivité des crues	Réhabilitation ou remplacement des ouvrages de franchissement Tous travaux de terrassement/ déblaiement	Moyen	Permanent ou temporaire	Dépressions et cours d'eau on aval de la ligne TCE	Continu ou à chaque saison des pluies	Conserver/ stabiliser les pentes des berges Mettre en place des ouvrages provisoires de franchissement dès le début des travaux. Enlever toute installation temporaire ayant servi à franchir des cours d'eau à la fin des travaux Rétablir s'il y a lieu, l'écoulement normal des cours d'eau et remettre à leur état original le lit et les berges; favoriser la reprise de la végétation (gazon)

Etude d'impact environnemental

		Imp	acts négatifs su	ır le milieu biologi	que	
Impacts environnementaux	Source d'impact	Intensité	Durée	Etendue/ Localisation	Fréquence	Atténuations
Augmentation des pressions sur les ressources naturelles environnantes	Prélèvement de bois pour l'installation du chantier, du chauffage et de la cuisson; coupe d'arbres de taille importante pour servir de bois de coffrage.	Fort ou Moyen	Temporaire	Environs des sites	Tous les jours	Ne pas utiliser de bois de forêt utilisé les bois issus des défrichements réalisés pour les travaux, ou de bois venant de plantations. Eviter les campements dans ou à proximité des zones forestières. Fournir le bois ou le charbon aux ouvriers interdire la pêche et le braconnage aux ouvriers
Réduction du nombre d'espèces végétales, de la densité d'individus	Abattage d'arbre Terrassements Site de dépôt	Moyen	Permanent ou temporaire	Approximité des ponts et de la voie	A chaque activité ou continu	Eviter l'abattage des espèces rares, menacées ou en voie d'extinction
Perte de forêts et habitats sensibles, destruction, fragilisation par morcellement de la couverture végétale et des écosystèmes.	Abattage d'arbre Terrassements Site de dépôt Bases de chantier	Moyen	Permanent ou temporaire	Approximité des ponts et de la voie	A chaque activité ou continu	Délimiter au strict minimum et respecter strictement les surfaces perturbées; Respecter strictement les dimensions prescrites par les documents techniques du projet Former le personnel pour le respect de ces habitats sensibles Contrôle et surveillance des délits et infractions, par le service des Eaux et Forêts

		Imp	acts négatifs su	ır le milieu biologic	que	
Impacts environnementaux	Source d'impact	Intensité	Durée	Etendue/ Localisation	Fréquence	Atténuations
Modification de l'esthétique du paysage naturel	Fermeture du chantier	Faible	Temporaire ou permanent	Site d'installation Zones d'emprunt et de carrière Zones situés au bord de la voie	Pendant et après travaux	Effectuer des travaux de réparation et d'aménagement des sites pour conserver l'esthétique du paysage Plan de repli de chantier rigoureux
Perturbation des animaux, fuite et modification de leur comportement Disparition d'espèces rares	bruits des engins, bruits incohérents provoqués par les marteaux et burins des casseurs de pierres; présence des ouvriers	Moyen ou faible	Temporaire ou permanent	les habitats sensibles	Continu	Mesures de protection des habitats sensibles Engins, équipements de chantiers et véhicules insonorisés aux normes internationales et en parfait état de fonctionnement
Source de nuisance ou de maladie respiratoire	Dégagements des poussières produits par l'engin	Moyen	Temporaire ou permanent	Personnel	A chaque activité ou continu	Matériel d'équipement (cache-poussière) suivant les normes prescrits dans le cahier de charge

<u>Tableau 97</u>: Impacts négatifs avec atténuation

CONCLUSION GENERALE

Le pont actuellement en service à Sahatandra ne sera plus adapté au trafic futur de la société MADARAIL. La hauteur d'eau observée lors du passage du cyclone « Geralda » en 1994, confirmée par les calculs hydrologique et hydraulique, recommande la surélévation du côté de l'intrados jusqu'à 0,50 mètre par rapport à sa niveau actuel.

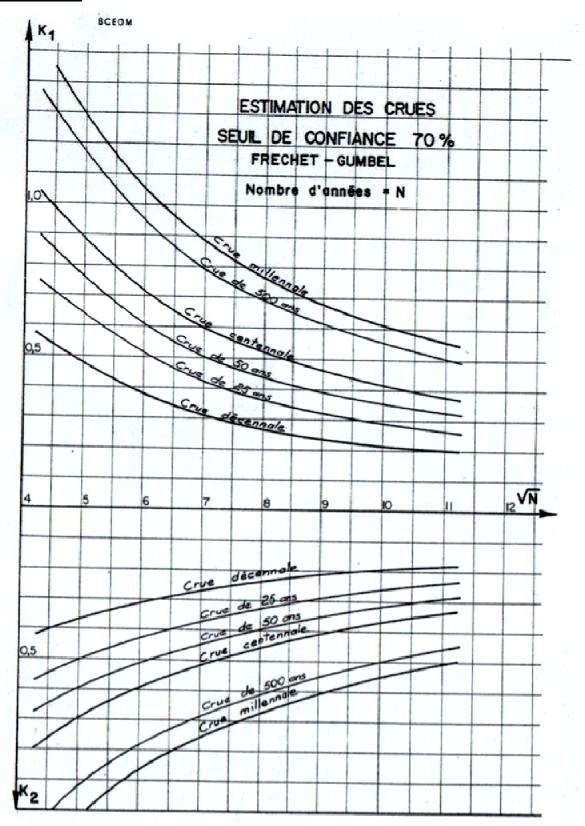
Lorsque des problèmes se posent, des propositions de solution avec perspectives d'avenir y afférentes se présentent. Nous pouvons dire que la reconstruction du pont s'avère une priorité pour assurer la circulation sans interruption toute l'année avec confort et sécurité, et d'autre part, engendre des impacts socio-économiques positifs à la population locale.

Après proposition et comparaison des différentes variantes possibles et techniquement envisageables, nous avons retenu le pont en béton précontraint. Ce choix porte surtout sur ces avantages économiques, sa résistance et d'autant plus qu'il s'agit d'une structure moderne.

Par ailleurs, la réalisation de ce mémoire de fin d'étude nous a permis d'enrichir nos connaissances sur les divers règlements tels que BAEL 91 modifiée 99, BPEL 91 et l'union Internationale de Chemin de fer (U. I. C).

Enfin, nous espérons que le présent mémoire contribue à donner aux concepteurs un outil d'inspiration pour réaliser ce projet.

BIBLIOGRAPHIE


- [01] Chemin de Fer de Madagascar, Règlement général d'exploitation livret n°4
- [02] Monographie de la Région de Toamasina, Juin 2003, 158 pages.
- [03] VAN TUU Nguyen, Hydraulique Routière, 347 pages, Min.Coop; 1980
- [04] Fascicule n°62- Titre I- Section II Règles techniques de conception et de calcul des ouvrages et constructions en béton précontraint suivant la méthode des états limites- BPEL 91 révisé 99, AVRIL 1999, 226 pages.
- [05] Fascicule n° 62 Titre I Section II Règles techniques de conception et de calcul des ouvrages et constructions en béton précontraint suivant la méthode des états limites- BPEL 91 révisé 99, AVRIL 1999, 226 pages.
- [06] Fascicule n°62 Titre V « Règles techniques de conception et de calcul des fondations des ouvrages en Génie Civil », 188 pages.
- [07] Robert CHAUSSIN, Béton précontraint, Technique de l'ingénieur, 78 pages.
- [08] Roger FRANK, Fondation profondes, « Technique de l'ingénieur C-48 », 45 pages
- [09] G Dreux, cours pratique du béton, Règles BPEL, Edition Eyrolles 84
- [10] Jean Pierre Mougin, B.A.E.L 91 modifié 99 et DTU associés. Troisième tirage 2004,287 pages.
- [11] Jean Courbon, Résistance des matériaux Tome 1.
- [12] Jean Courbon, Résistance des matériaux Tome 2.
- [13] SETRA LCPC, conception des ponts, 162 pages.
- [14] SETRA, Appareils d'appuis en élastomère fretté, 50 pages, Min. de l'équipement, Décembre 1974.
- [15] RALAIARISON Moïse, Cours chemin de Fer.
- [16] RANDRIANTSOA Jonas, Cours chemin de fer
- [17] Pierre ANDRIANANTENAINA, Cours et Exercices selon les règles B.A.E.L 91.
- [18] RABENATOANDRO Martin, Cours Mécaniques des sols, Hydraulique et géotechnique routières.
- [19] RAJOELINANTENAINA Solofo, Cours des ponts, béton précontraint.
- [20] RAZAFINJATO Victor, Cours Calculs des structures.
- [21] Tous les cours dispensés à l'Ecole Supérieur Polytechnique d'Antananarivo.

Annexe

ANNEXE I-1 : TABLE DE DISTRIBUTION χ^2 DE PERSON

1/	0,9995	0,999	0,995	0,990	0,975	0,95	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,05	0,025	0/01	0,006	0.001	0,000	5
1	0,09393	0,07157	0,0*393	0,0157	0,0982	0.07393	0,0158	0,0643	0,148	0,275	0,455	0,708	1.60			1007		2000				1
2	0,02100	0.07200		0,0201	0,0506	0,103	0,211	0,446	0,713	84	1.39	1.83	1,07	1000	10.75		100	ALC: UNKNOWN	7,88	-52,657	12,1	
3	0,0153	0,0243	0,0717	0,115	0.216	0,352	0,584	1,00	1,42	1,87	2,37	2,95	3,67		4,61	0.00			10,6	13,8	15,2	1
4	0,0639	0,0968	0,207	0,297	0,484	0.711	1,06	1,65	2,19	2,75	3,36	4,04	4,88	10,000			Control of the Control		12,8	16,3	17,7	L
5	0,158	0,210	0,412	0,554	0,831	1,15	1,61	2,34	3,00	3,66	4,35	5,13	6,06	75/87/65	11 (40.00)			100	14,9	18,5	20,0	1
6	0,299	0,381	0,676	0.872	1,24	1,64	2:20	3,07	2.02	4.07			LENDER	05.00	ubicari					400,0	22,1	1
7	0,485	0,598	0.989	1,24	1,69	2,17	2.83	100000	3,83	4,57	5,35	6,21	7,23	100	10,6	12,6	14,4	16,8	18.5	22,5	24.1	1
8	0,710	0.857	1.34	1,65	2,18	2,73	3,49	3,82	4,67	5,49	6,35	7,28	8,38		T. T. W. J.	14,1	16,0	18,5	20,3	24.3	26.0	
9	0.972	1,15	1,73	2,09	2,70	3,33	100000000000000000000000000000000000000	4,59	5,53	6,42	7,34	8,35	9,52		13,4	15,5	17,5	March 1	22,0	26,1	27.9	L
10	1,26	1,48	2,16	2,56	3.25	3,94	4,17	5,38	6,39	7,36	8,34		10,7		14,7	16,9	19,0	21,7	23,6	27.9	29.7	
	.,	14	0,10	2,50	343	3,34	4,87	6,18	7,27	8,30	9,34	10,5	11,8	13,4	36,0	18,3	20,5	23,2	25,2	29,6	31,4	h
11	1,59	1,83	2,60	3,05	3,82	4,57	5,58	6,59	8,15	9.24	10,3	11.5	12,9	14,6	17.3	19.7	21,9	24.2	20.00			L
12	1,93	2,21	3,07	3,57	4,40	5,23	6,30	7,81	9,03	10.2	Sec. 25.00	1111 2000	100		77.75		CV9 V. 1 A 1	10000	OCCUPATION.	31,3	33,1	П
13	2,31	2,62	3,57	4,11	5,01	5,89	7,04	8,63	1000000	11,1		10000		41.0			ALCOHOL: N			32,9	34,8	
14	2,70	3,04	4,07	4,66	5,63	6,57	7,79	9,47	A CONTRACTOR OF THE PARTY OF TH	12,1			125.7	10 TO A 10			127797	Section 1991	29,8	34.5	36,5	П
15	3,11	3,48	4,60	5,23	6,26	7,26	8,55	10,3	172 (12)	041/051	15.55	100000	100	7.7.40			0.00	20000	31,3	36,1	38,1	
6	3,54	3,94	5,14	5.81	6,93	7.96	9.31	11,2	12,6									7,441	1	-	2000	١.
7	3,98	4,42	5.70	0,41	7,56	100000			O DI KOLON DE					C. O. C. C. C. C.		80 2 TO 0 1	10755	CONT. IN	34,3	39,3	41,3	1
18	4,44	4,90	6,26	7.01	8,23	9,39		17.15.15.2				C. 12/5/2011				19.7			35,7	40,8	42,9	1
9	4,91	5,41	6,84	7,63		71.20	17.61	100000000000000000000000000000000000000	and the second second	CONTRACT OF	100000						31,5			42,3	44,4	1
10	5,40	5,92	7,43	8,26	90504	Tringing.	0.0750031	255500		13,500	0.6557				27,2	30,1	12.9	A 100 CO. LANS	1000	43,8	46,0	1
1	5,90	6,45	8.03	8.90	10.3					10000	COST	10000				"	14,2	17,0	40,0	45,3	47,5	- 2
2	6,40	6.98	8.64	C27012	7.7	0.000190	2000 200	Of Charles and Charles	100						29,6	32,7	35,5	8,9	41.4	46.8	49.0	2
3	6.92	7.53	9.26	(3-55) (5/)	5 PG	10/7/11	1000	0.000	2.53				14,9			33,9	36,8	0,3	11,000	48.3	50,5	2
	7,45	8.08	9,89	240.00	A CONTRACTOR OF THE PARTY OF TH		112422	1000	2.3.72				16,0	28,4	32,0	35,2	38,1 4	1,6	48279253	49.7	52,0	2
5	7:99	C2/11/12/	1000000	2221 (22)	110,000	No. of the last of	100000000000000000000000000000000000000	430000000				25,1 2	17,1				100	100	C427 T911	51,2	53.5	2
	1,000	0,80	10,5	11,5	13,1	14,6	16,5	18,9	20,9	22,6	24,3	26,1 2	8,2	30,7	14,4	37,7	90,6		12/7/12/12	52,5	54.9	2
	8,54		11,2	17,2	13,8	15,4	17.3	9.8	21,8	3,6	25.3	27,2 3	9,2	11.8	5.6	88.9						55
(211)	100000	576,710,13	11.8	12,9	14,6	16,2	ALL CALLS IN LABOR.	0.000	1000		110517		2075711	1.0	60 Tax	2055		55 Ch 25 H	40710	54,1	\$6,4	25
	9,66	10,4	12,5	13,6	15.3	2 MRH.	3371311	10.00	100	10000	0.000	100,000	3000000		111 17 100	CONTRACT OF TAX	STO FIGURE 6	. 100		55,5	57,9	2
9	10,2	11,0	13,1	27.7.2	10,710	12580	100000	25,512,71	0.0000 110	G.14573KI	331 (2.5)			CAMPING TO SERVICE		NOW DO NOT	100		1252 1741	56,9	59,3	21
0	10,8	330 34	100	0.010	5(0,000)	10 PM 335			25351				10.71		130,000	577777		1000	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58,3	60,7	2
1	2045	07500	0.000		10395	10,00	- Marie	10/4	25,5	7,4	9,3	11,3 3	3,5	16,3	0,3	3.8 4	7,0 5	0,9	3.7	59,7	62,2	3

ANNEXE I - 2: ESTIMATIONS DES CRUES. SEUIL DE 90%

ANNEXE I-3 : VALEURS DE $\,\varphi(\gamma)\,$

7	φ(7)	γ	φ(γ)	7	φ(7)
1	0,25068	18	0,01213	35	0,00621
2	0,11741	19	0.01151	36	0,00602
3	0,07634	20	0,01094	37	0,00585
4	0,05654	21	0,01042	38	0,00570
5	0,04487	22	0,00990	39	0,00556
6	0,03719	23	0,00949	40	0,00544
7	0,03174	24	0,00908	41	0,00531
8	0,02767	25	0,00870	42	0.00518
. 9	0,02453	26	0,00836	43	0,00506
10	0,02204	27	0,00807	44	0,00492
11	0,02000	28	0,00776	45	0.00482
12	0,01832	29	0,00749	46	0.00473
13	0,01690	30	0,00723	47	0,00461
14	0,01569	31	0,00701	48	0,00449
15	0,01460	32	0,00681	49	0.00446
16	0,01370	33	0,00658	50	0.00433
17	0,01289	34	0,00639		100

ANNEXE I-4: LOI DE PEARSON III F (x)

F	0,001	0,005	0,01	0,02	0,05	0,1	0,2	0,3	0,5	0,7	0,8	0,9	0,95	0,98	0,99	0,995	0,999
.1	.61-30	.59-23	.61-20	.62-17	.59-13	.61-10	.622-7	.359-5	_593-3	.174-1	.694-1	.266	.580	1.12	1.59	2.09	3.36
.2	.65-15	.20-11	.65-10	.209-8	.204-6	.653-5	.209-3	.159-2	.207-1	.121	:264	,605	1.03	1.67	2.20	2.75	4.10
.3	.70-10	.149-7	.150-6	.151-5	.321-4	.324-3	.327-2	.127-1	.731-1	.257	.460	.885	1.37	2.08	2.64	3.22	4.62
.4	.234-7	.131-5	.742-5	.419-4	.415-3	.235-2	.134-1	.375-1	.145	.397	.646	1.13	1,66	2.41	3.00	3.60	5.04
5	.785-6	.196-4	.785-4	.314-3	.197-2	.790-2	.321-1	.742-1	.227	.537	.821	1.35	1.92	2.71	3.32	3.94	5.41
.6	.829-5	.121-3	.385-3	.122-2	.564-2	.181-1	.588-1	.120	.316	.675	.989	1.56	2.16	2.98	3.61	4.25	5.75
.7	.452-4	.450-3	.121-2	.327-2	.122-1	.331-1	.923-1	.173	.407	.810	1.15	1.76	2.38	3.23	3.88	4.53	6.06
.8	.163-3	.122-2	290-2	.691-2	.219-1	.530-1	.132	230	.501	.943	1.31	1.95	2.60	3.47	4.13	4.80	6.36
.9	.445-3	.266-2	.576-2	.125-1	350-1	.772-1	.179	.292	.597	1.07	1.46	2.13	2.80	3.69	4.37	5.05	6.64
1.0	.100-7	.501-2	.101-1	.202-1	.513-1	.105	.223	357	.693	1.20	1.61	2.30	3.00	3.91	4.61	5.30	6.91
1.1	.195-2	.847-2	.160-1	.302-1	.708-1	.137	.274	.424	,790	1.33	1.76	2.47	3.19	4.12	4.83	5.53	7.17
1.2	.343-2	.132-1	.236-1	.424-1	.931-1	.172	.328	494	.888	1.46	1.90	2.64	3.37	4.33	5.05	5.76	7.42
1.3	.556-2	.193-1	.331-1	.569-1	.118	.210	.384	.965	.986	1.58	2.04	2.81	3.55	4.53	5.26	5.99	7.66
1.4	.843-2	.268-1	.443-1	.736-1	.146	.250	.442	.638	1.08	1.71	2.18	2.97	3.73	4.73	5.47	6.21	7.90
1.5	.121-1	.359-1	.574-1	.924-1	.176	.292	.503	.712	1.18	1.83	2.32	3.13	3.91	4.92	5.67	6.42	8.13
1.6	.168-1	.464-I	.723-1	.113	.208	.337	.564	.787	1.28	1.96	2.46	3.28	4.08	5.11	5.87	6.63	8.36
1.7	.224-1	.585-1	.889-1	.136	.242	.383	.628	.863	1.38	2.08	2.59	3.44	4.25	5.29	6.07	6.83	8.58
1.8	.290-1	.720-1	.107	.161	.278	.431	.692	.941	1.48	2.20	2.73	3,59	4.42	5.48	6.26	7.04	8.80
1.9	.367-1	.870-1	.127	.187	.316	.481	.758	1.02	1.58	2.32	2.86	3.74	4.58	5.66	6.45	7.23	9.02
2.0	.454-1	.103	.149	.215	.355	.532	.824	1.10	1.68	2.44	2.99	3.84	4.74	5.83	6.64	7.43	9.23
2.2	.661-1	.141	.196	.279	.438	.638	.961	1.26	1.88	2.68	3.26	4.18	5.06	6.18	7.01	7.81	9.65
2.4	.910-1	.183	.249	.341	.527	.748	1.10	1.42	2.08	2.91	3.52	4.47	5.38	6.53	7.37	8.19	10.1

.....

LOI DE PEARSON III F(x) suite

7	100,0	0,005	0,01	0,02	0,025	0,1	0,2	0,3	0,5	0,7	0,8	0,9	0,95	0.98	0.99	0,995	0,999
2.6	.120	.230	.307	.412	.620	.863	1.24	1.58	2:28	3.15	3.77	4.76	5.60	6.86	7.72	8.56	10.5
2.8	.153	-282	.369	.488	.717	.981	1.39	1.75	2.47	3.38	4.03	5.04	5.00	7.10	8.07	8.92	10.8
3.0	.191	_338	.436	.567	.818	1.10	1.54	1.91	2.67	3.62	4.28	5.32	6.30	7.52	8.41	9.27	11.2
3.2	.231	.398	.507	.651	.922	1.23	1.68	2.08	2.87	3.65	4.53	5.60	0.39	7.84	8.74	9.62	11.6
3,4	.276	.461	.581	.738	1.103	1:33	1.84	2.25	3.07	4.08	4.78	5.87	6.89	8.15	9.07	9.97	12.0
3.6	.324	_529	.659	HZN	1.14	1.48	1.99	2.42	3.27	4.31	5.02	6.14	7.18	8.47	9.40	10.3	12.3
3.8	.375	.599	.740	.921	1.25	1.61	2.14	2.59	3.47	4.53	5.77	6.41	7,47	8.78	8.72	10.6	12.7
4.0	.429	.672	.823	1.02	1.37	1.74	2.30	2.76	3 67	4.76	5.52	6.68	7.75	9.08	10.0	11.0	13.1
4.2	.485	.748	.910	1.11	1,48	1.188	2.45	2.94	3.87	4.99	5:76	6.93	8.04	9.39	10.4	11.3	13.4
4.4	.545	.827	.999	1.22	1:60	2.62	2.61	3.11	4.07	5.22	6.00	7.21	8.32	9.69	10.7	11.6	13.8
4.6	.607	.908	1.09	1.32	1.72	2.15	2.77	3.28	4.27	5.44	6.24	7.47	8.60	9.99	11.0	12.0	14.1
4.8	.672	.992	1.18	1.42	1.85	2.29	2.93	3.46	4.47	5.67	6.48	7.73	8.88	10.3	11.3	12.3	14.5
5.00	.739	1.08	1.28	1.53	1.97	2.43	3.09	3.63	4.67	5.89	6. 22	7.99	0.15	10.6	11.6	12.6	14.0
5.5	.917	1.30	1.53	1.90	2.20	2.70	3,49	4.07	5.17	6.45	7.32	8.64	9.84	11.3	12.4	0.0000000	
6.0	1.11	1.54	1.79	2.09	2.61	3.15	3.90	4.52	3.67	7.01	7.91	9.27	10.5	12.0	13.1	14.1	15.6
6.5	1.31	1.78	2.05	2.36	2.95	3.52	4.32	4,90	6.17	7.56	8,49	9.91	11.2	12.7	13.8	14.9	16.5
7.0	1.52	2.04	2.33	2.66	3.29	3.89	4.73	5.41	6.67	8.11	9.08	19.5	11.8	13.4	14.6	15.7	18.1
7.5	1.74	2.30	2.61	2.99.	3.63	4.27	5.15	5.86	7.17	8.66	9.66	11.2	12.5	14.1	15.3	16.4	18.8
8.0	1.97	2.57	2.91	3.31	3.98	4.66	5.58	6.31	7.67	9.21	10.2	11.8	13.1	14.8	16.0	17.1	19.6
8.5	2.21	2.85	3.20	3.63	4.34	5.04	6.00	4.77	8.17	9.76	10.6	12.4	13.8	15.5	16.7	17.9	200.4
9.0	2.45	3.13	3.51	3.95	4.70	5.43	6.43	7,22	8.67	10.3	11.4	13.0	14.4	10.2	17.4	18.6	21.2
9.5	2.70	3.42	3.82	4.28	5.06	5,63	6:86	7.68	9.17	10.5	12.0	13.0	15.1	10.8	18.1	19.3	21.9
0.0	2.96	3.72	4.13	4.62	5.43	0.22	7.29	8.13	9.67	11.4	12.5	14.2	15.7	17.5	18.8	20.0	22.7
11.0	3.49	4.32	4.77	5.30	6.17	7.02	8.16	9.05	10.7	12.5	13.7	15.4	17.0	18.8	20.1	21.4	24.1
12.0	4.04	4.94	5.43	6.00	6.92	7.83	9.03	9.97	11.7	13.5	14.8	16.6	18.2	20.1	21.5	22.H	35.6
13.0	4.61	5.58	6.10	6.70	7.69	8.65	9.91	10.9	12.7	14.6	15.0	17.8	19.4	21.4	22.8	24.1	27.0
14.0	5.20	6.23	6.78	7.42	X.4n	9.47	10.8	11.8	13.7	15.7	17.0	19.0	20.7	22.7	24.1	25.5	28.4
15.0	5.79	6.89	7.49	18.1.5	9.25	10.3	11.7	12.6	14.7	16.8	18.1	20.1	21.9	24.0	25.4	20.8	29.9
16.0	6.41	7.57	8.18	8.89	10.0	11.1	12.6	13.7	15.7	17.8	19.2	21.3	23.1	25.2	26.7	28.2	31.2
17.0	7.03	8.25	8.89	9.64	10.8	12.8	13.5	14.6	16.7	18.9	20.3	22.5	24.3	26.5	28.0	20.5	32.6

1	10,001	0,005	0,01	0,02	0,05	0,1	0,2	0,3	0,5	0,7	0,6	0,0	0,95	0,68	0,99	0,995	0,990
18.0	7.06	5.94	9.62	102.4	11.6	12.8	24.4	15.6	17.7	20.0	21.4	23.0	25.5	27.7	29.3	30.8	34.0
19.0	8.31	9.64	10.3	11.2	12.4	13.7	15.5	26.3	18.7	21.0	22.5	24.8	26.7	29.0	30.6	32.1	35,4
20.0	8.96	10.4	11.1	11.9	13.3	14.5	10.2	17.4	19.7	22.1	23.6	25.9	27.9	30.2	31.8	33.4	36.7
22.0	10.3	11.8	12.6	13.5	1-4.9	16.2	18.0	19,3	21.7	24.2	25.8	28.2	30.2	32.7	34.4	35.9	39.4
24.0	11.6	13.3	14.1	15.0	16.5	18.0	19.8	21.2	23.7	26.3	28.0	30.5	32.6	351	36.8	38.5	42.0
26.0	13.0	14.7	15.6	16.6	18.2	19.7	21.6	23.1	25.7	28.4	30.2	32.7	34.9	37.5	39.3	41.0	44.6
78.0	14.4	16.2	17.7	18.2	19.9	21.5	23.5	25 0	27.7	30.5	32.B	35.0	37.2	39.9	41.8	43.5	47.2
30.0	15.0	17.8	19.7	19.8	21.6	23.2	25.3	26.9	29.7	32.6	34.5	17.2	300.5	47.3	44.2	46.0	49.8
32.0	17.3	19.3	20.3	28.5	23.3	25.0	27.2	28.8	31.7	34.7	36.0	39.4	41.5	44.7	40.0	48.4	52.4
34.0	18.8	20.9	21.9	23.1	25.0	25.8	29.0	30.7	33.7	36.8	38.8	41.7	44.1	47.0	49.0	50.9	54.9
36.0	20.3	22.4	23.5	24.8	26.7	28.6	30.9	32.6	35.7	38.9	40.9	43.9	46.4	49.4	51.4	53.3	57.4
38.0	21.8	24.0	25.1	26.4	28.5	30.3	32.7	34.5	37.7	41.0	43.1	46.1	48.7	51.7	53.8	.55.7	59.9
40.0	23.3	25.6	26.8	28.1	30.2	3/2.1	34.6	36.5	30.7	43.1	45.2	48:3	50.0	54.0	56.2	58:2	62.4
42.0	27.2	28.4	29.8	33.9	33.9	36.5	38.4	41.7	45.1	47.3	50.5	53.2	56.4	50.5	60.6	64.9	1200000
44.0	26.3	28.8	30.1	31.5	33.7	35.7	35.3	40.3	43.7	47.2	49.5	32.7	35.4	36-7	60.9	63.0	67.4
44.0	26.3	28.8	30.1	31.5	33.7	35.7	.58.3	40.3	43.7	47.2	49.3	52.7	35.4	587	6039	63.0	67.4
46.0	27.8	30.4	31.7	33.2	35.4	37.6	40.2	42.2	45,7	49.3	51.6	54.9	57.7	61.0	63,2	65.3	69.8
48.0	29.4	32.0	33.4	34.9	37.2	39,4	42.1	44.1	47.7	51.4	53.7	57.1	59.9	63.3	65.6	67.7	72.3
50.0	31.0	33.7	35.0	36.6	39.0	41.2	44.0	46.1	-49.7	53.5	55.8	59.2	62.2	65.6	67.9	70.1	74.2
55.0	34.9	37.8	39.2	40.9	43.4	45.7	48.7	50.9	54.7	58.6	61.1	64.7	67.7	71.3	73.7	76-0	90.9
60.0	38.9	41.9	43.5	45.2	47.9	50,3	53.4	55,7	59.7	63.8	66.4	70.1	73.3	77.0	79.5	81.0	86.8
65.0	42.9	46.1	47.7	49.5	52.3	54.9	58.1	60.5	64.7	-69.0	71.7	75.5	78,8	82.6	85.2	#7.6	92.8
70.0	47.0	50.3	52.0	53.9	50.8	59.5	62.9	65.4	169.7	74.1	76.9	80.9	84.3	55.2	90.9	93.4	98.7
75.0	51.1	54.6	56.3	58.3	61.3	64.1	67,6	70.2	74.7	79.3	82.2	85.3	89.8	93.8	96.6	99.2	105
80.0	55.2	58.8	60.7	62.7	65.9	68.R	77.4	75.1	79.7	84.4	87.4	91.7	95.3	99:4	102.	105	111
85.0	59.3	63.1	65.0	67.2	70.4	73.4	77.2	79.9	84.7	90.4	92.6	97.0	101.	105.	108.	111.	116
90.0	63.5	67.4	69.4	71.6	75.0	76.1	81.9	B4.8	89.7	94.7	97.9	100.	106.	111.	114,	116.	122
95.0	67.7	71.8	73.8	76.1	79.6	82.7	86.7	89.7	94.7	99.9	103	108.	112.	116.	119.	122	128
0.000	71.9	76x.1	78.2	80.6	84.1	87.4	91.5	94.5	99.7	105.	108.	113.	117.	122	125.	128.	134

Les valeurs suivies de -- un sont à multiplier par 10^m

Tableau donnant X = ax

ANNEXE 1-5: VALEURS DE L'INTEGRALES DE GAUSS F(u)

(Probabilités pour que u soit supérieur ou égal à...)

и		0	1	2	3	4 '	5	6	7	8	9
0,0	0,	50 000	49 601	49 202	48 803	48 405	48 006	47 608	47 210	46 812	46 414
0.1		46 017	45 620	45 224	44 828	44 433	44 038	43 644	43 251	42 858	42 465
0,2		42 074	41 683	41 294	40 905	40 517	40 129	39 743	39 358	38 974	38 591
0,3		38 209	37 828	37 448	37 070	36 693	36 317	35 942	35 569	35 197	34 827
0,4		34 458	34 090	33 724	33 360	32 997	32 636	32 276	31 918	31 561	31 207
0,5		30 854	30 503	30 153	29 806	29 460	29 116	28 774	28 434	28 096	27 760
0,6	1	27 425	27 093	26 763	26 435	26 109	25 785	25 463	25 143	24 825	24 510
0,7		24 196	23 885	23 576	23 270	22 965	22 663	22 363	22 065	21 770	21 476
0,8		21 186	20 897	20 611	20 327	20 045	19 766	19 489	19 215	18 943	18 673
0,9	-	18 406	18 141	17 879	17 619	17 361	17 106	16 853	16 602	16 354	16 109
1,0											13 786
1,1		13 567	13 350	13 136	12 924	12 714	12 507	12 302	12 100	11 900	11 702
1,2											98 525
1,3	0,0										82 264
1.4		80 757	79 270	77 804	76 359	74 934	73 529	72 145	70 781	69 437	68 112
1,5											55 917
1.6											45 514
1.7											36 727
1,8											29 379
1,9		28 717	28 067	27 429	26 803	26 190	25 588	24 998	24 419	23 852	23 295
2,0						20 675					
2,1											14 262
2,2											11 011
2,3						96 419					
2,4	0,02					73 436					
2,5						55 426					
2,6						41 453					
2,7											26 354
2,8											19 262
2,9		18 658	18 071	17 502	16 948	16 411	15 889	15 382	14 890	14 412	13 949

и		0	1	2	3	4	5	6	7	8	9
3,0		13 499	13 062	12 639	12 228	11 829	11 442	11 067	10 703	10 350	10 008
3,1	0,03	96 760	93 544	90 426	87 403	84 474	81 635	78 885	76 219	73 638	71 136
3,2	1	68 714	66 367	64 095	61 895	59 765	57 703	55 706	53 774	51 904	50 094
3,3	1	48 342	46 648	45 009	43 323	41 889	40 406	38 971	37 584	36.243	34 946
3,4		33 693	32 481	31 311	30 179	29 086	28 029	27 009	26 023	25 071	24 151
3,5	1	23 263	22 405	21 577	20 778	20 006	19 262	18 543	17 849	17 180	16 534
3,6	1	15 911	15 310	14 730	14 171	13 632	13 112	12 611	12 128	11 662	11 213
3,7	1	10 780	10 363	99 611	95 740	92 010	88 417	84 957	81 624	78 414	75 324
3,8	0,04	72 348	69 483	66 726	64 072	61 517	59 059	56 694	54 418	52 228	50 122
3,9		48 096	46 148	44 274	42 473	40 741	39 076	37 475	35 936	34 458	33 037
4,0	1	31 67	30 359	29 099	27 888	26 726	25 609	24 536	23 507	22 518	21 560
4,1	1	20 65	19 783	18 944	18 138	17 365	16 624	15 912	15 230	14 575	13 948
4,2		13 346	12 769	12 215	11 685	11 176	10 689	10 221	97 736	93 447	89 337
4,3	0,05	85 399	81 627	78 015	74 555	71 241	68 069	65 031	62 123	59 340	56 675
4,4		54 125	51 685	49 350	47 117	44 979	42 935	40 980	39 110	37 322	35 612
4,5	1	33 977	32 414	30 920	29 492	28 127	26 823	25 577	24 386	23 249	22 162
4,6		21 125	20 133	19 187	18 283	17 420	16 597	15 810	15 060	14 344	13 660
4,7		13 008	12 386	11 792	11 226	10 686	10 171	96 796	92 113	87 648	83 391
4,8	0,0	79 833	75 465	71 779	68 267	64 920	61 731	58 693	55 799	53 043	50 418
4,9		47 918	45 538	43 272	41 115	39 061	37 107	35 247	33 476	31 792	30 100

Pour u < 0, il suffit de prendre le complément à 1 des valeurs contenues dans le tableau, les nombres de la première colonne désignant alors les valeurs absolues de u.

$$F(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t/2u^2} du$$

<u>ANNEXE I-6</u> : Tableau donnant les valeurs de $\delta(\pm\,2\,\sigma.a\,/\,\gamma)$ pour la détermination des intervalles de confiance dans la loi de PEARSON III

P	0,50	0,80	0,90	0,95	0,98	0,99
= 2 o.a/; T	2	5	10	20	50	100
- 2.0	0.7581	0.8083	0.9008	0.9501	0.9800	0.9901
- 1.8	0.7932	0.8102	0.9113	0.9735	1.0173	1.0343
- 1.6	0.8292	0.8170	0.9233	0.9980	1.0578	1.0848
- 1.4	0.8644	0.8308	0.9388	1.0247	1.1018	1.1404
- 1.2	0.8974	0.8531	0.9610	1.0561	1.1504	1.2023
- 1.0	0.9271	0.8849	0.9924	1.0956	1.2065	1.2725
- 0.8	0.9525	0.9260	1.0359	1.1472	1.2743	1.3548
- 0.6	0.9729	0.9758	1.0930	1.2143	1.3591	1.4549
- 0.4	0.9879	1.0332	1.1646	1.3002	1.4661	1.5794
- 0.2	0.9970	1.0964	1.2505	1.4065	1.5998	1.7344
0.0	1.0000	1.1637	1.3495	1.5339	1.7632	1.9251
0.2	0.9970	1.2334	1.4602	1.6816	1.9579	2.1546
0.4	0.9879	1.3038	1.5804	1.8433	2.1836	2.4242
0.6	0.9729	1.3732	1.7082	2.0319	2.4393	2.7337
0.8	0.9525	1.4401	1.8414	2.2304	2.7231	3.0818
1.0	0.9271	1.5032	1.9780	2.4411	_ 3.0326 _	3.4665
1.2	0.8974	1.5612	2.1160	2.6619	3.3652	3.8852
1.4	0.8644	1.6128	2.2534	2.8904	3.7186	4.3354
1.6	0.8292	1.6572	2.3885	3.1241	4.0399	4.8145
1.8	0.7932	1.6935	2.5197	3.3612	4.4769	5.3198
2.0	0.7580	1.7209	2.6455	3.5996	4.8768	5.8485

ANNEXE II-1: PERTE DE TENSION INSTANTANEE

Tension obtenue avec un câble de précontrainte après pertes de tension dues aux frottements

x câble n°	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
1	1413,212	1408,979	1403,355	1400,551	1396,355	1392,172	1388,002	1381,080	1372,269
2	1392,636	1388,464	1382,921	1380,158	1376,024	1371,902	1367,792	1360,971	1352,288
3	1372,844	1368,732	1363,268	1360,544	1356,469	1352,405	1348,354	1341,629	1333,070
4	1354,030	1349,974	1344,585	1341,899	1337,879	1333,871	1329,876	1323,243	1314,801
5	1336,327	1332,324	1327,006	1324,354	1320,387	1316,432	1312,489	1305,943	1297,611
6	-	-	1344,320	1341,634	1337,615	1333,608	1329,613	1322,982	1314,542
7	-	-	-	1	1337,615	1333,608	1329,613	1322,982	1314,542
8	-	-	-	-	-	1333,608	1329,613	1322,982	1314,542

Pertes par frottement

x Câble n°	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
1	17,788	22,021	27,645	30,449	34,645	38,828	42,998	49,920	58,731
2	38,364	42,536	48,079	50,842	54,976	59,098	63,208	70,029	78,712
3	58,156	62,268	67,732	70,456	74,531	78,595	82,646	89,371	97,930
4	76,970	81,026	86,415	89,101	93,121	97,129	101,124	107,757	116,199
5	94,673	98,676	103,994	106,646	110,613	114,568	118,511	125,057	133,389
6	-	ı	86,680	89,366	93,385	97,392	101,387	108,018	116,458
7	-	-	-	-	93,385	97,392	101,387	108,018	116,458
8		-	1	1	-	97,392	101,387	108,018	116,458

Perte de tension à l'ancrage

N° de câble	1	2	3	4	5	6	7	8
Δl1 + Δl2 [m]	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
li [m]	30,017	30,059	30,126	30,216	30,331	29,197	26,875	24,027
$\Delta\sigma$ anc	12,659493	12,6418045	12,6136892	12,5761186	12,5284363	13,0150358	14,1395349	15,8155408

Perte de tension par déformation instantanées du béton

<u>Câble n°1</u>

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°1 % CDG poutre [m]	-	-0,767	-0,858	-0,890	-0,919	-0,926	-0,926	-0,926	-0,926
Variation de contrainte ($\Delta\sigma$) due à Mg [MPa]	-	-1,415	-3,431	-4,395	-5,687	-6,707	-7,499	-8,408	-8,826
$(\Delta\sigma)$ due à la mise en tension de la 2è famille [MPa]	-	-1,987	4,428	7,282	10,321	11,736	11,911	11,939	11,861
perte de contrainte due à Mg [MPa]	-	-7,531	-18,256	-23,389	-30,263	-35,691	-39,907	-44,743	-46,969
perte due à la mise en tension de la 2è famille [MPa]	-	-10,034	22,366	36,778	52,126	59,273	60,158	60,299	59,906

Câble n°2

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°2 % CDG poutre [m]	ı	-0,578	-0,778	-0,846	-0,909	-0,926	-0,926	-0,926	-0,926
Variation de contrainte (Δσ) due à Mg [MPa]	1	-1,067	-3,108	-4,180	-5,630	-6,705	-7,499	-8,408	-8,826
$(\Delta\sigma)$ due à la mise en tension de la 2è famille [MPa]	1	-0,336	4,446	7,151	10,263	11,733	11,911	11,939	11,861
perte de contrainte due à Mg [MPa]	-	-5,676	-16,540	-22,244	-29,961	-35,680	-39,907	-44,743	-46,969
perte due à la mise en tension de la 2è famille [MPa]	-	-1,697	22,457	36,118	51,833	59,261	60,158	60,299	59,906

<u>Câble n°3</u>

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°3 % CDG poutre [m]	1	-0,389	-0,697	-0,802	-0,900	-0,925	-0,926	-0,926	-0,926
Variation de contrainte ($\Delta \sigma$) due à Mg [MPa]	1	-0,718	-2,786	-3,965	-5,574	-6,703	-7,499	-8,408	-8,826
$(\Delta\sigma)$ due à la mise en tension de la 2è famille [MPa]	-	1,315	4,465	7,020	10,205	11,731	11,911	11,939	11,861
perte de contrainte due à Mg [MPa]	-	-3,820	-14,824	-21,099	-29,660	-35,668	-39,907	-44,743	-46,969
perte due à la mise en tension de la 2è famille [MPa]	-	6,641	22,549	35,458	51,540	59,249	60,158	60,299	59,906

<u>Câble n°4</u>

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°4 % CDG poutre [m]	-	-0,200	-0,616	-0,759	-0,891	-0,925	-0,926	-0,926	-0,926
Variation de contrainte (Δσ) due à Mg [MPa]	-	-0,369	-2,463	-3,750	-5,517	-6,701	-7,499	-8,408	-8,826
$(\Delta\sigma)$ due à la mise en tension de la 2è famille [MPa]	-	2,966	4,483	6,890	10,147	11,729	11,911	11,939	11,861
perte de contrainte due à Mg [MPa]	-	-1,964	-13,108	-19,954	-29,358	-35,657	-39,907	-44,743	-46,969
perte due à la mise en tension de la 2è famille [MPa]	-	14,978	22,641	34,798	51,247	59,237	60,158	60,299	59,906

<u>Câble n°5</u>

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°4 % CDG poutre [m]	1	-0,011	-0,536	-0,715	-0,882	-0,925	-0,926	-0,926	-0,926
Variation de contrainte ($\Delta\sigma$) due à Mg [MPa]	1	-0,020	-2,141	-3,535	-5,460	-6,698	-7,499	-8,408	-8,826
$(\Delta\sigma)$ due à la mise en tension de la 2è famille [MPa]	-	4,616	4,501	6,759	10,089	11,726	11,911	11,939	11,861
perte de contrainte due à Mg [MPa]	-	-0,108	-11,392	-18,809	-29,056	-35,645	-39,907	-44,743	-46,969
perte due à la mise en tension de la 2è famille [MPa]	-	23,316	22,733	34,138	50,955	59,225	60,158	60,299	59,906

<u>Câble n°6</u>

Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°6 % CDG poutre [m]	-	0,772	0,007	-0,279	-0,589	-0,754	-0,775	-0,784	-0,784
Variation de contrainte ($\Delta \sigma$) due à Mg [MPa]	-	-	0,028	-1,117	-2,354	-3,015	-3,099	-3,135	-3,135
perte de contrainte due à Mg [MPa]	-	-	0,140	-5,641	-11,889	-15,226	-15,652	-15,834	-15,834

<u>Câble n°7</u>

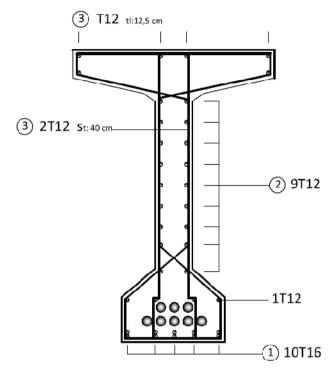
Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°7 % CDG poutre [m]	-	-	0,020	-0,271	-0,586	-0,754	-0,775	-0,784	-0,784
Variation de contrainte (Δσ) due à Mg [MPa]	-	-	0,081	-1,083	-2,341	-3,013	-3,099	-3,135	-3,135
perte de contrainte due à Mg [MPa]	-	-	0,407	-5,471	-11,823	-15,215	-15,649	-15,834	-15,834

<u>Câble n°8</u>

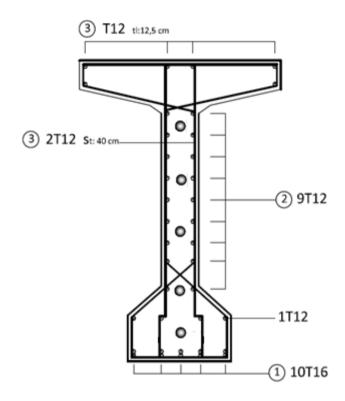
Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
excentricité du câble n°8 % CDG poutre [m]	-	-	0,0337	-0,2623	-0,5822	-0,7531	-0,7750	-0,7843	-0,7843
Variation de contrainte (Δσ) due à Mg [MPa]	-	-	0,1349	-1,0486	-2,3274	-3,0105	-3,0979	-3,1351	-3,1351
perte de contrainte due à Mg [MPa]	-	-	0,6812	-5,2962	-11,7550	-15,2050	-15,6463	-15,8341	-15,8341

Annexe II-2: PERTE DE TENSION DIFFEREE

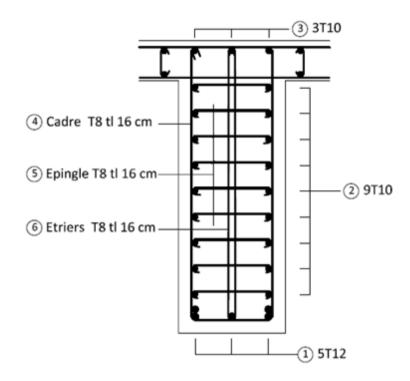
Perte de tension due à la relaxation des armatures


Abscisse x[m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
1	3,179	3,055	2,916	2,758	2,612	2,521	2,472	2,409	2,353
2	3,058	2,995	2,809	2,655	2,505	2,414	2,365	2,304	2,251
3	2,943	2,864	2,708	2,558	2,405	2,313	2,265	2,206	2,154
4	2,835	2,722	2,614	2,468	2,312	2,218	2,172	2,114	2,064
5	2,736	2,589	2,527	2,385	2,226	2,131	2,086	2,030	1,981
6	-	3,284	2,807	2,731	2,674	2,634	2,610	2,573	2,527
7	-	-	3,275	3,244	2,669	2,628	2,604	2,567	2,521
8	-	-	3,263	3,235	3,197	2,619	2,595	2,558	2,512

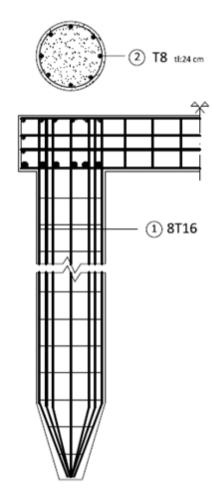
Perte de tension due aux fluages de béton


Abscisses [m]	0	1,5	3,5	4,5	6	7,5	9	11,5	14,7
σ_{M}	0,008714	0,349527	1,691088	2,954935	4,810733	6,200563	7,004582	7,889043	8,283540
$\Sigma\Delta\sigma_{fl}$	0,073350	2,942227	14,235123	24,873852	40,495464	52,194682	-58,962697	-66,407853	69,728622
$\Delta\sigma_{fl}$	0,014670	0,490371	1,779390	3,109232	5,061933	6,524335	7,370337	8,300982	8,716078

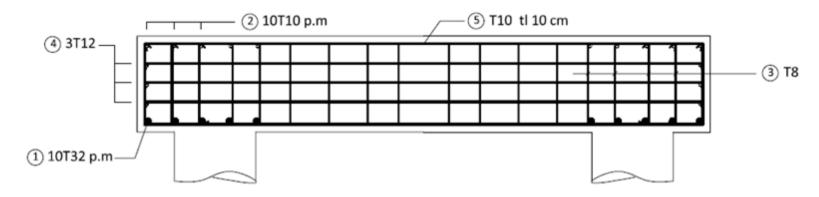
Annexe III : Divers plan de ferraillage


<u>Plan de ferraillage de la poutre principale</u> (section médiane)

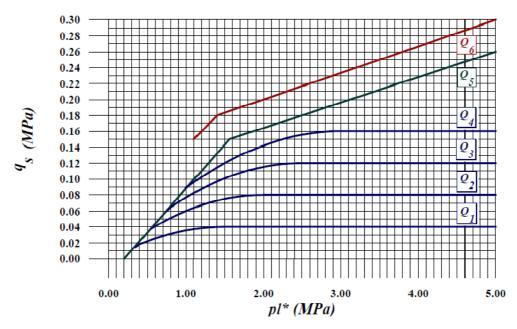
				Po	outre princ	ipale				
Dásimostian	N10	Diamètre	Longueur		Nombre		Longueur	Poids	Daida tatal [la]	Facenbage
Désignation	N°	[mm]	[m]	/pièces	Pièces	Total	total [m]	[kg/ml]	Poids total [kg]	Façonnage
Armature tendue	1	16	30,32	10	2	20	606,40	1,578	956,899	2029,9220
Armature de peau	2	12	30,28	24	2	48	1453,44	0,887	1289,210	18 29,92 18
Armature transversale	3	12	4,35	75	2	150	652,50	0,887	578,767	46,44
Armature de montage	4	12	30,12	13	2	26	783,12	0,887	694,627	29,96 _{69,97}
Cadre 1	5	12	2,23	75	2	150	334,50	0,887	296,701	144,92
cadre 2	6	12	4,68	75	2	150	702,00	0,887	622,674	29,92
									4438,870	



Plan de ferraillage Entretoise


					Eı	ntretoise				
Décionation		Diamètre	Longueur		Nombre		Longueur	Poids	Daida 4-4-1 [[]	F
Désignation	N°	[mm]	[m]	/pièces	Pièces	Total	total [m]	[kg/ml]	Poids total [kg]	Façonnage
Armature principale	1	12	2,55	5	5	25	63,75	0,887	56,546	1818
Armature de peau	2	10	2,55	9	5	45	114,75	0,616	70,686	0,24
Armature de montage	3	10	2,55	3	5	15	38,25	0,616	23,562	1,34
Cadres	4	8	3,21	14	5	70	224,70	0,394	88,532	0,24
Epingles	5	8	0,44	56	5	280	123,20	0,394	48,541	10 A
Etriers	6	8	1,44	14	5	70	100,80	0,394	39,715	1,34
									327,582	IJ

Plan de ferraillage pieux


					Pieu	х				
Désignation	A10	Diamètre	Longueur		Nombre		Longueur	Poids	Doids total [kg]	Escoppage
Désignation	N°	[mm]	[m]	/pièces	Pièces	Total	total [m]	[kg/ml]	Poids total [kg]	Façonnage
Armature principale	1	20	18,16	8	8	64	1162,24	2,466	2866,080	1816
Cerces	2	10	2,53	72	8	576	1457,28	0,616	897,684	2,53
									3763,768	\bigcirc

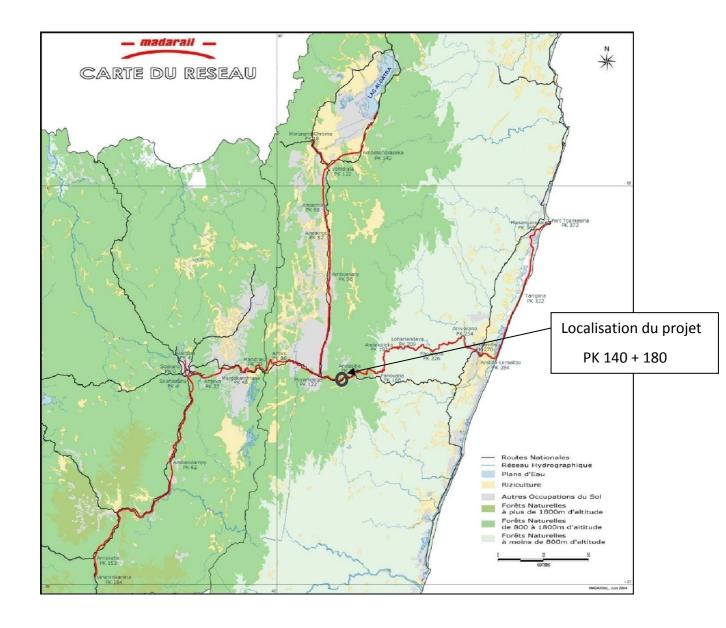
Plan de ferraillage semelle

					Seme	lle					
Désignation	A 10	Diamètre	Longueur		Nombre		Longueur	Poids	Daids total [lea]	F2400000	
Désignation	N°	[mm]	[m]	/pièces	Pièces	Total	total [m]	[kg/ml]	Poids total [kg]	Façonnage	
Armature principale inf	1	32	5,83	45	2	90	524,70	6,313	3312,431	325,1932	
Armature supérieures	2	10	5,39	45	2	90	485,10	0,616	298,822	10 5,19 10	
Epingle	3	8	1,60	676	2	1352	2163,20	0,384	830,668	1,44	
Armature de peau	4	12	5,19	6	2	12	62,28	0,887	55,243	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		12	4,64	6	2	12	55,68	0,887	49,388	5,19	
Cadre 1	5	10	11,96	52	2	104	1243,84	0,616	766,205	1,00	
Cadre 2	6	8	5,08	52	2	104	528,32	0,384	202,874	1,44	
Cadre 3	7	8	4,68	52	2	104	486,72	0,384	186,900		
									5702,532		

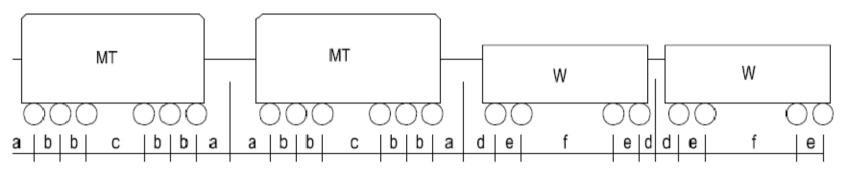
<u>ANNEXE IV</u>: Détermination du frottement latéral unitaire q_s pour un élément de fondation

Valeur du frottement latéral unitaire

		Argiles, li	mons		Sables, g	raves		Crai	es	N	Iarnes
	A	В	C	A	В	C	A	В	С	A	В
Foré simple	Q_1	$Q_1,Q_2^{(1)}$	$Q_2,Q_3^{(1)}$		'		Q_1	Q_3	$Q_{4},Q_{5}^{(1)}$	Q_3	$Q_4,Q_5^{(1)}$
Foré boue	Q_1	Q_{I}	$Q_2^{(2)}$	Q_1	$Q_2Q_1^{(2)}$	$Q_{3}Q_{2}^{(2)}$	Q_1	Q_3	$Q_4,Q_5^{(1)}$	Q_3	$Q_4,Q_5^{(1)}$
Foré tubé (tube récupéré)	Q_1	Q_{I}	$Q_2^{(3)}$	Q_1	$Q_2,Q_1^{(2)}$	$Q_{3},Q_{2}^{(2)}$	Q_1	Q_2	$Q_3,Q_4^{(3)}$	Q_3	Q ₄
Foré tubé (tube perdu)		Q_{1}			Q_1	Q_2		(4)		Q_2	Q_3
Puits (5)	Q_1	Q_2	Q_3				Q_1	Q_2	Q_3	Q_4	Q_5
Métal battu fermé	Q_1	Q	0,2		Q_2	Q_3		(4)		Q_3	Q4
Battu préfabriqué béton	Q_{I}	Q)2		Q_3			(4)		<i>Q</i> ₃	Q_4
Battu moulé	Q_1	Q)2		Q_2	Q_3	Q_{1}	Q_2	Q_3	Q ₃	Q_4
Battu enrobé	Q_I	Q)2		Q_3	Q ₄		(4)		Q_3	Q ₄
Injecté basse pression	Q_I	Q)2		Q_3		Q_2	Q_3	Q₄		Q_5
Injecté haute pression ⁽⁶⁾		Q ₄	Q_5		Q_5	Q_6		Q_5	Q_6		Q_6

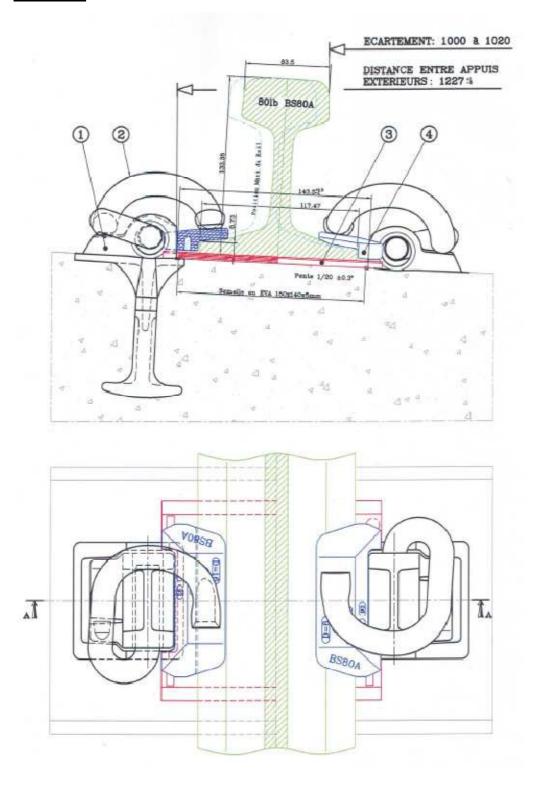

Source : Technique de l'Ingénieur C248-15

Détermination des abaques

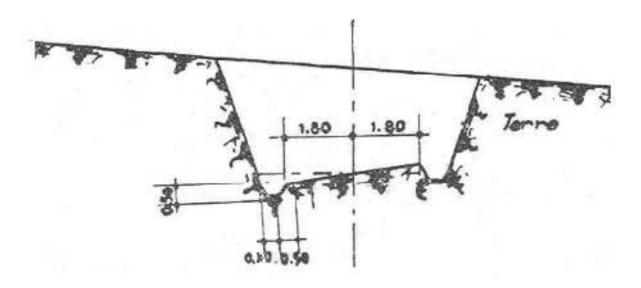

- (1) Réalésage et rainurage en fin de forage.
- (2) Pieux de grandes longueurs (supérieure à 30m).
- (3) Forage à sec, tube non louvoyé.
- (4) Dans le cas des craies, le frottement latéral peut être très faible pour certains types de pieux. Il convient d'effectuer une étude spécifique dans chaque cas.
- (5) Sans tubage ni virole foncé perdu (parois rugueuses).

(6) Injection sélective et répétitive à faible débit.

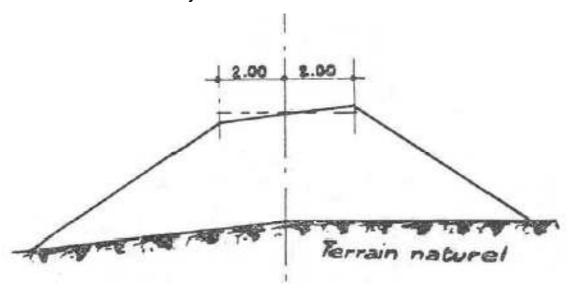
ANNEXE V: Carte du réseau nord (Madarail)



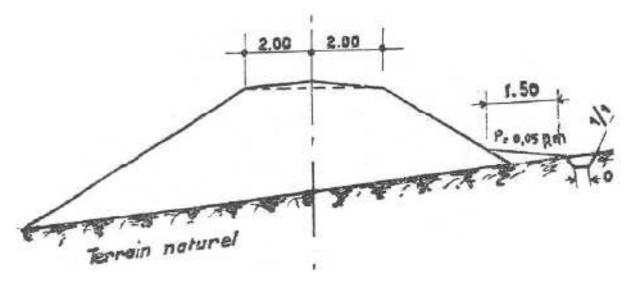
ANNEXE VI: Convoi type

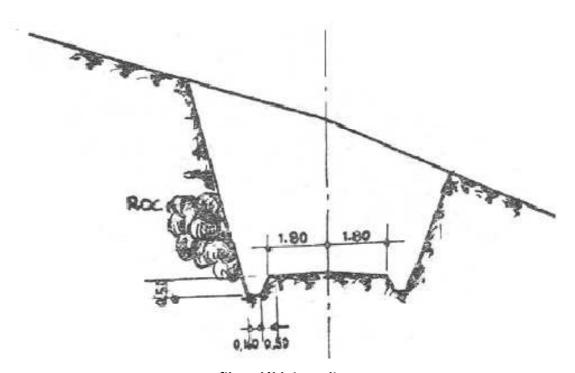

Désignation	Machine tender	Wagon chargé
Longueur total	16 m	12 m
Nombre d'essieux	6	4
Ecartement des deux essieux consécutifs b, e	1,2 m	1,6 m
Distance d'un tampon à l'essieu voisin a , d	2,6 m	1,3 m
Distance entre deux essieux intérieurs c , f	6 m	6,2 m
Charge par essieux	20 T	20 T
Poids total	120 T	48 T
Poids moyen par mètre de longueur	7,5 T	4 T

Annexe VII : Fixation du rail sur la traverse en Béton Armé

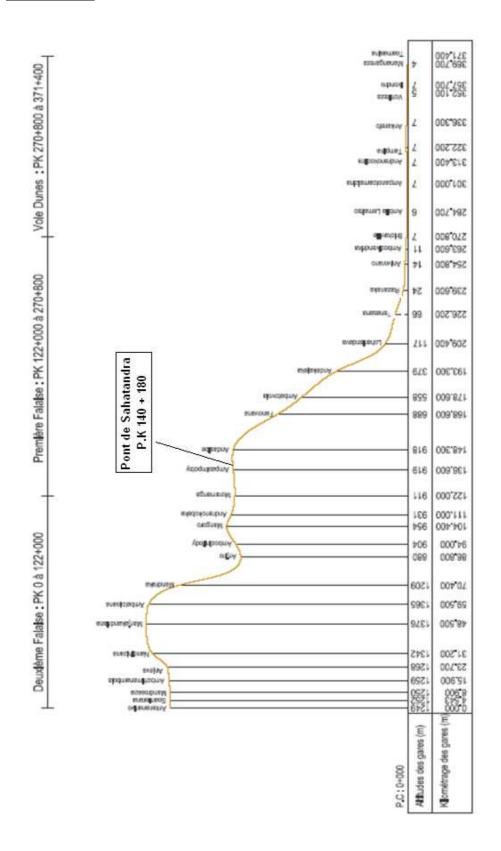


<u>Annexe VIII</u>: Profil Type


<u>Profil en travers</u>


Profil en déblai dans les courbes

Profil en remblai dans les courbes



Profil en remblai en alignement

Profil en déblai en alignement

Profil en long

TABLES DES MATIERES

LISTE DES ABREVIATIONS	11
LISTE DES TABLEAUX	
LISTE DES FIGURES	VII
LISTE DES PHOTOS	IX
LISTE DES ANNEXES	X
INTRODUCTION	1
PARTIE I GENERALITE SUR LE TRANSPORT FERROVIAIRE	2
CHAPITRE I: HISTORIQUE DE LA VOIE FERREE	2
I.1. Histoire du transport ferroviaire dans le monde	2
I.2. Histoire du transport ferroviaire à Madagascar	4
I.2.1 Choix de la variante	4
I.2.2 Mise en concession du réseau de chemin de Fer Nord	6
CHAPITRE II: NOTION DE LA VOIE FERREE	7
II.1. Généralité	7
II.1.1 La superstructure de la voie ferrée	7
a. Les rails	7
a.1 Historique du rail	8
a.2 Caractéristique des rails	9
a.2.1. Acier du rail	9
a.2.2 Poids du rail	9
a.2.3 Longueur du rail	10
a.3 Long rail soudé ou LRS	10
a.3.1 Historique	10
a.3.2 Avantages et inconvénients	11
a.4 La libération des contraintes	11
a.5 Notion de température	12
a.6 Soudure aluminothermique	12
b. Les organes de liaison entre barres élémentaires des rails	13
b.1 Les joints	13
h 2 Les éclisses	15

c. Les organes de fixation des rails sur les traverses	16
c.1 Fixation sur les traverses en Bois	16
c.2 Fixation sur les traverses métalliques	17
c.3 Fixation sur les traverses en Béton Armé	18
d. Les traverses	18
d.1 Rôles des traverses	18
d.2 Types de traverses	18
d.2.1 Traverses en Bois	19
i. Avantages	19
ii. Inconvénients	19
iii. Condition d'exploitation et traitement du bois pour traverse	19
d.2.2 Les traverses métalliques	20
i. Avantages	20
ii. Inconvénient	20
d.2.3 Les traverses en Béton Armé	21
i. Avantages	21
ii. Inconvénients	21
iii. Caractéristiques	21
e. Travelage	22
f. Ballast	22
f.1 Historique	22
f.2 Rôle	22
f.3 Matériaux	23
f.4 Contrainte	23
II.1.2 Les appareils de voie	23
II.1.3 La plate forme	24
II.1.4 Caractéristiques géométriques d'une voie ferrée	25
a. Système de bogie	25
b. Géométrie de la voie dans les alignements droits	26
c. Géométrie de la voie dans les courbes	26
c.1 Le sur écartement de la voie	27
c.2 Les devers	27
c.3 Pose des rails dans la file intérieure	29

Ó	c.4 Le raccordement des courbes	29
d.	Déclivités dans les voies ferrées	30
II.2 Din	nensionnement de la voie	31
II.2.1	Determination du poids des rails	31
II.2.2	Dimensionnement du Ballast	32
II .3. Gé	néralité sur l'entretien des voies	33
II.3.1	But de l'entretien de voie :	33
a.	L'entretien des voies :	33
b.	Renouvellement de la voie :	34
с.	la grande réparation de voie :	34
d.	Entretien courant :	35
(d.1. Révision partielle :	35
C	d.2.Révision réduite :	35
(d.3 Révision intégrale :	35
	i. Nettoyage de la voie :	35
	ii. Révision des matériels des voies :	35
	iii. Nivellement et dressage de la voie :	35
PARTIE II. E	TUDE SOCIO-ECONOMIQUE ET ENVIRONNEMENT DU PROJET	36
CHAPITRE I	: LOCALISATION ET DELIMITATION DE LA ZONE D'INFLUENCE	36
I.1. Loc	alisation	36
I.2. Zor	ne d'influence	36
1.1.1	Définition	36
1.1.2	Zone d'influence directe	36
1.1.3	Zone d'influence indirecte	36
CHAPITRE I	I:Potentialite socio-economique de la zone d'influence	37
II.1 Pop	ulation et Démographie :	37
	Effectif de la population	
	Croissance démographique	
	rentialité économique de la zone d'influence	
	L'agriculture	
	L'élevage	
a.	Elevage bovin, porcin, ovin, caprin	

b.	L'aviculture	41
с.	Autres élevages	41
11.2.3	Pêche	42
11.2.4	L'Industrie et artisanat	42
11.2.5	Tourisme	44
CHAPITRE I	II:ETUDE TRAFIC	46
III.1 Gér	néralité	46
III.2 Ar	nalyse des données statistiques	46
III.2.1	L'infrastructure	46
III.2.2	Disponibilité en matériels roulants	46
III.2.3	La potentialité des marchandises transportables	47
a.	Trafic voyageurs	47
b.	Trafic marchandise:	48
CHAPITRE I	V:DIAGNOSTIC DE LA ZONE	50
IV.1. De	escription des Problèmes de la voie	50
IV.2 Le	Pont de Sahatandra	52
IV.2.1	Description technique	52
IV.2.2	Analyse de dégradation	52
PARTIE III. E	TUDE TECHNIQUE	55
CHAPITRE I	: ETUDE PRELIMINAIRE	55
I.1. BAS	SSIN VERSANT	55
1.1.1	Définition Bassin versant	55
1.1.2	Caractéristique du bassin versant	55
a.	Surface	55
b.	Périmètre	55
С.	Forme	55
d.	Longueur du rectangle équivalent	55
e.	Dénivelée du bassin versant (ΔH)	56
f.	Pente moyenne	56
I.2. HYL	DROLOGIQUE STATISTIQUE	56
1.2.1	Lois statistiques principales	56
a.	Loi de GUMBEL	57

	C	a.1 Hauteur de pluie H $_{ extsf{ iny T}}$:	57
	C	a.2 Test de validité de l'ajustement :	58
	C	a.3 Les intervalles de confiance	59
	b.	Loi de FRECHET :	60
	L	b.1 Hauteur de pluie H $_{ extstyle au}$	60
	L	b.2 Test de validité de l'ajustement :	61
	L	b.3 Les intervalles de confiance pour le degré de confiance de 70% :	63
	c.	Loi de PEARSON III	64
	C	C.1 Hauteur de pluie H _T :	64
	C	c.2 Test de validité de l'ajustement	65
	C	c.2 Intervalle de confiance	66
	1.2.2	Conclusion	67
	1.3. EST	TIMATION DES DEBITS DE CRUES	68
	1.3.1	Détermination de la hauteur d'eau naturelle	68
	1.3.2	Détermination de la surélévation de l'eau	70
	d.	Perte de charge due aux caractéristiques hydrauliques du pont	70
	e.	Calcul de la hauteur d'eau correspond à la pression dynamique à l'amont .	72
	f.	Perte de charge par frottement	72
	g.	Côte des plus hautes eaux cycloniques	72
	1.3.3	Le tirant d'air :	73
	1.3.4	Cote minimum de l'intrados	73
C	CHAPITRE I	II: ETUDE DE LA VARIANTE PRINCIPAL	74
	II.1 Cho	ix de la variante principale	74
	II.1.1	Caractéristiques générales	74
	a.	Critère de comparaison	74
	b.	Proposition des variantes	74
	II.1.2	Comparaison des variantes	75
	a.	Hypothèses et données de base	75
	b.	Etude des variantes et comparaisons	76
	Ł	b.1 Variante n°1 (Pont en béton armé à deux travées indépendantes)	76
		b.1.1 Pré dimensionnement de la superstructure	76
		i. Poutres principales	76

	ii.	Dalle en BA	. 77
	iii.	Entretoise	. 77
	iv.	Garde ballast	. 78
	b.1.2	Descentes des charges :	. 78
	b.1.3	Etude de l'infrastructure	. 78
	i.	Pile	. 78
	ii.	Culée	. 79
	iii.	Pieux :	. 80
L	b.2 Va	ariante n°2 (Pont en béton précontraint, une seule travée de 30 m	
ı	reposar	nt sur deux culées en béton armé.)	. 81
	b.2.1	Pré dimensionnement de la superstructure	. 81
	i.	Poutres principales:	. 81
	ii.	Dalle:	. 82
	iii.	Entretoise:	. 82
	iv.	Garde ballast	. 82
	b.2.2	Descentes des charges :	. 82
	b.2.3	Etude de l'infrastructure	. 83
	i.	Culée	. 83
	ii.	Pieux sous culées :	. 84
c.	Estim	nation du coût de la variante	. 84
II.1.3	Conclu	usion	. 87
II. 2 Ou	vrage p	provisoire	. 88
II.2.1	Gabio	n :	. 89
	i.	Spécification technique :	. 89
	ii.	Caractéristique d'un gabion	. 90
11.2.2	Mise e	en œuvre	. 90
II.3 Etud	de de la	a variante principale	. 91
II.3.1	Base a	le calcul	. 91
a.	Нуро	thèses et règlements	. 91
b.	Comb	binaisons des actions :	. 91
c.	Carac	ctéristiques mécaniques des matériaux :	. 92
d.	Pré d	limensionnement de l'ouvrage	. 94
II.3.2	ETUDE	E DE LA SUPERSTRUCTURE	. 95

a.1	Vérification des caractéristiques dimensionnelles des poutres princi	
a.2	Calculs des sollicitations :	
a.2	2.1 Charges permanentes :	97
a.2	2.2 Charges d'exploitation :	97
	i. Calcul de la charge sous ballast	97
	ii. Détermination des coefficients de répartition transversale [CRT]	98
	iii. Coefficient de majoration dynamique δ	100
	iv. Surcharge due à l'essieu	100
	v. Surcharge de trottoir	101
a.2	2.3 Construction des lignes d'influences	101
	i. Détermination des efforts tranchants	102
	ii. Détermination des moments fléchissant	105
a.3	Calcul de la précontrainte	107
a.3	3.1 Vérification de la section	107
a.3	3.2 Calcul de la force de précontrainte minimale :	108
a.3	3.4 Calcul de l'armature de précontrainte :	108
a.3	3.5 Trace des câbles	111
	i. Dispositions constructives	111
	ii. Tracé des câbles de la première famille :	112
	iii. Tracé des câbles de la deuxième famille :	113
a.3	3.6 Trace des fuseaux limites	114
	i. Premier fuseau limite :	114
	ii. Deuxième fuseau limite :	115
a.4	Calcul des pertes de tension :	116
a.4	4.1 Pertes de tension instantanées :	116
a.4	4.2 Pertes de tension différées :	118
a.5	Justification des sections vis-à-vis des contraintes normales à l'E.L.S	: 120
a.5	5.1 Définition des phases de justification :	120
a.5	5.2 Section de référence pour le calcul des contraintes normales :	121
a.	5.3 Calcul des contraintes limites :	122

	a.6.1	! Vérification de la section d'about	125
	a.6.2	? Armatures passives	126
	i.	Armature de peau :	126
	ii.	Armature tendue :	126
	iii.	Armature transversale :	126
	iv.	Armature de frettage :	127
		iv.1 Effet de surface :	127
		iv.2 Effet d'éclatement :	128
		iv.3 Câble arrêté en travée :	129
	a.7 Vé	érifications de section à l'état ultime de résistance :	130
	a.7.1	Calcul de résistance de la section médiane soumise à la flexion :	130
	a.7.2	? Justification des armatures transversales :	131
	a.7.3	3 Justification du béton de l'âme :	131
	a.8 Et	at limite de service vis-à-vis des déformations :	131
	i.	Données de calcul :	131
	ii.	Flèche et contre flèche:	132
	iii.	Calcul et vérification des rotations :	132
b.	Calcu	ul de la dalle :	134
	b.1 Pri	ncipe de répartition de la charge appliquée à la dalle	134
	b.2 Car	lcul des sollicitations :	135
	b.2.1	! Charge permanente	135
	b.2.2	? Détermination de coefficient de majoration dynamique	135
	b.2.3	B Moments fléchissants	135
	b.2.4	Ffforts tranchants	137
	b.3 Ca	ılcul des armatures	137
с.	Gara	le Ballast	140
	c.1 Hy	pothèse de calcul	140
	c.2 Ca	lcul de la sollicitation	140
	c.3 Ca	alcul des armatures	141
d.	Calcu	ul des entretoises	142
	d.1 Ca	ractéristiques de la section considérée	142
	d.2 M	léthode de distribution des charges appliquées et détermination de c	es
	valeurs	·	142

d.3 Détermination des sollicitations	144
d.4 Détermination des armatures et vérification	149
II.3.3 ETUDE DE L'INFRASTRUCTURE	153
a. Etude géotechnique :	153
a.1 Les essais en laboratoire	153
a.2 Les essais in situ	153
a.3 Choix du type de fondation	154
b. Calcul de l'appareil d'appui :	154
b.1 Pré dimensionnement de l'appareil d'appui :	155
b.2 Caractéristiques mécaniques :	155
b.3 Effort horizontaux agissant sur les appareils d'appui :	155
b.4 Vérification des appareils d'appui :	157
c. Calcul de la culée :	158
c.1 Hypothèse:	158
c.2 Mur garde grève :	159
c.2.1 Sollicitations :	160
c.2.2 Calcul des armatures	161
c.3 Mur en retour	162
c.3.1 Sollicitation :	163
i. Sollicitation dues aux charges verticales :	163
ii. Sollicitation dues aux charges horizontales :	163
c.3.2 Calculs des armatures du mur en retour	164
c.4 Mur de front	165
c.4.1 Stabilité de la culée	166
c.4.2 Sollicitation	166
c.4.3 Détermination des armatures du mur de front	167
c.5 Dimensionnement de la semelle :	169
c.5.1 Détermination de la capacité portante des pieux :	169
c.5.2 Descente des charges :	172
b.5.3 Disposition constructive des pieux :	172
c.5.3 Détermination des armatures de la semelle de répartition :	174
c.6 Pieux	175
h 6.1 Lustification aux états limites :	175

	c.6.2 Ferraillage des pieux :	175
CHAPITRE I	II:Executions des travaux de renouvellement de la voie	177
III.1. Ren	ouvellement de la voie	177
III.1.1	Objectif du Renouvellement d'une voie ferroviaire	177
III .1.2	Déroulement technique des travaux de renouvellement	177
	i. Désherbage et le débroussaillage	177
	ii. Dégarnissage et criblage du ballast	178
	iii. Substitution des éléments de la voie	178
	iv. Nivellement et dressage de la voie	178
	v. Travaux complémentaires	179
III.2. Exé	cution des travaux	179
a.	Les matériels employés	179
a	.1 Les rails	179
a	.2 Les Traverses	180
	i. Dimensions :	180
	ii. Spécifications	180
a	.3 Ballast	181
b.	Nettoyage et désherbage :	182
с.	Démontage de la voie :	182
d.	Recalage et surfaçage	182
e.	Piquetage topographique :	182
f.	Substitution des éléments de la voie	182
g.	Eclissages provisoires :	183
h.	Le déchargement du ballast (ballastage préliminaire)	183
i.	La mise à niveau de la voie	183
j.	Ballastage complémentaire	183
k.	Soudure des rails	183
I.	Le nivellement définitif	184
	La libération des contraintes dans les LRS	184
m.		

III.2 L'entretien du pont métallique	. 185
PARTIE IV. EVALUATION FINANCIERE ET IMPACT ENVIRONNEMENTAL DU PROJET	. 188
CHAPITRE I: ETUDE FINANCIERE	. 188
I.1. Calcul des coefficients de déboursés	. 188
I.2. Calcul des sous détail des prix	. 189
i. Béton dosé à 400 Kg/m³	. 189
ii. Béton dosé à 350 Kg/m3	. 189
iii. Béton dosé à 150 kg/m³	. 190
iv. Aciers HA	. 190
v. Coffrage	. 191
vi. Ballastage, nivellement et dressage continue	. 191
vii. Pose rail de 40 Kg/ml	192
viii. Pose des traverses en béton armée bi-bloc	. 192
ix. Dépose voie	. 193
x. Forage du pieu	193
I.3. Devis quantitatif	. 194
I.4. Bordereaux détail estimatif	. 196
I.5. Etude de rentabilité	. 197
I.5.1 Valeur actuelle nette (V.A.N)	. 197
i. Recettes	. 198
ii. Dépenses	. 198
iii. Amortissement	198
iv. Taux d'actualisation i	199
I.5.2 Taux interne de rentabilité (TIR)	. 200
I.5.3 Le délai de récupération du capital investi « DRCI »	. 200
CHAPITRE II: IMPACTS ENVIRONNEMENTAUX	. 201
II.1 Description du projet	. 202
II.1.1 Type du projet	. 202
II.1.2 Nature du projet	. 202
II.2 Description générale du site	. 203
II.3 Analyse des impacts environnementaux	. 203
II.3.1 Impacts positifs	. 203

a.	Impacts positifs pendant travaux203	
b.	Impacts positifs après travaux	
II.3.2	Impacts négatifs	
CONCLUSION GENERALE		
BIBLIOGRAPHIE		
ANNEXE		
TABLES DES MATIERES		

Nom : RANDRIANATOANDRO

Prénoms: Tanteliniaina Nambinintsoa

Adresse : Lot II E 2 B bis B Ambatokaranana/ Ampasampito

Email : Zoktantely@yahoo.fr

Tél : 033 73 514 81

Nombre de pages : 208

Nombre de tableaux : 97

Nombre de figures : 51

Nombre de photo : 6

Titre: ETUDE DE LA RECONSTRUCTION DU PONT FERROVIAIRE AU P.K 140 +

180 DE LA LIGNE T.C.E

Résume:

La présente étude a été menée dans le cadre de l'obtention du diplôme d'Ingénieur en Bâtiment et Travaux Publics. Elle s'intitule : « Etude de la reconstruction du pont ferroviaire au P.K 140 +180 sur la ligne T.C.E ».

La reconstruction du pont de SAHATANDRA est indispensable, car e répond plus aux exigences des usagers. Pour cela, nous avons opté la solution pont en béton précontraint. La conception et les calculs suivent les règles de l'art et les normes de nos jours.

Comme tout projet susceptible d'engendrer des impacts sur l'environnement, la présente étude permet d'analyser et traiter les impacts du projet sur le milieu récepteur, ainsi que d'apporter des mesures d'atténuations visant à diminuer, réduire, ou supprimer les impacts néfastes, tout en valorisant les impacts positifs.

Rubrique: Pont rail

Mots clés : Pont, béton Armé, Béton précontraint, chemin de fer.

Encadreur: Monsieur RANDRIANTSOA Jonas

