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INTRODUCTION 

 

L’étude des différents types d’équations aux dérivées partielles permet de 

maîtriser la résolution des équations différentielles aux classes terminales du Lycée. 

Elle est indispensable à l’étude des mouvements des oscillateurs mécaniques et 

électriques et à la détermination des équations de la chaleur et des ondes. 

Il est donc souhaitable aux futurs enseignants du Lycée de l’Ecole Normale 

Supérieure de Fianarantsoa de se familiariser aux méthodes de résolution des 

équations aux dérivées partielles ou du moins, de se contenter aux mécanismes de 

résolution, pour améliorer la qualité de l’enseignement des sciences physiques et 

des mathématiques aux Lycées. 

La joie et le goût du perfectionnement nous poussent à choisir alors le 

thème : 

METHODES DE RESOLUTION DES EQUATIONS AUX DERIVEES P ARTIELLES 

APPLIQUEES A L’ETUDE DES MOUVEMENTS DES OSCILLATEUR S 

MECANIQUES ET ELECTRIQUES 

 

Elles permettent aussi de déterminer les équations de la chaleur et des ondes sur IR. Les notions des différentes méthodes de résolution exigent la maîtrise des 

notions mathématiques nouvelles : 

• Les transformations de LAPLACE, de FOURIER 

• La diagonalisation et l’exponentielle d’une matrice. 

Il est vrai sans dire que maîtriser c’est mieux transmettre. On essayera donc 

de donner les différentes méthodes par ordre croissant de difficulté, c'est-à-dire on 

entamera l’étude, de la plus facile à la plus compliquée en illustrant par divers 

exemples concrets. 

Les questions de recherche paraissent évidentes : est-ce qu’on peut éviter 

de retenir tout le temps la solution générale d’une équation différentielle aux classes 

terminales ? 

N’est-il pas préférable d’aiguiser la mémoire des élèves pour d’autres 

notions de matières scientifiques que l’on admet sans démonstration ? 
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Si on arrive à maîtriser les diverses méthodes de résolution des équations 

aux dérivées partielles, la réponse aux questions posées semble vraie sans dire. 

Mais il ne faut pas imaginer que l’unique fonction des mathématiques cette 

« servante des sciences » est de servir la science. Les mathématiques au-dessus de 

leur application possible aux sciences possèdent une lumière et une sagesse propre 

et elles récompensent richement tout être humain intelligent qui arrive à saisir une 

lueur de ce qu’elles représentent par elles-mêmes1. 

Le contenu de la recherche est donc constitué de : 

i- Équations différentielles 

ii- Équations aux dérivées partielles 

iii- Applications à la résolution des équations différentielles utilisées aux 

classes terminales du lycée. 

 

  

                                                           
1 D’après E.T. BELL 
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PREMIERE PARTIE 
Dans cette première partie on va voir :  

- Le Rappel des notions relatives aux espaces de Banach ; 

- Les applications linéaires continues 

- Les applications différentielles 

- Les applications différentielles  

Ces notions préliminaires permettent de mieux comprendre les méthodes 

de résolutions des équations aux dérivées partielles. 
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CHAPITRE 1 : RAPPEL DE NOTIONS RELATIVES AUX ESPACE S DE BANACH 

– APPLICATIONS LINEAIRES CONTINUES – APPLICATIONS 

DIFFERENTIABLES 

 

I- ESPACES DE BANACH 
 

I-1- Espace vectoriel 

Désignons par IK le corps réel IR ou le corps complexe �. Un espace 

vectoriel IE sur le corps de base IK est un ensemble muni de deux opérations avec 

les propriétés suivantes : 

 

I-1-1- Addition : 

  �, 	 
  �� on peut faire correspondre x + y   �� 

La loi + est une loi de composition interne 

Tel que :   

i)  x, y 
  
, x + y = y + x (Commutativité de +) 

ii)  x, y, z 
  
, x+ (y + z) = (x + y) + z ;(Associativité de +) 

iii)  0 
 
  tel que � � 
 
  x �  0 �  x; (existence de l’élément neutre pour +) 

iv)  x 
  
  � ���� 
 
  tel que � � ���� � 0 (existence de l’élément neutre pour +) 
 

I-1-2- Multiplication par un scalaire 

 a 
 IK,   x 
 IK on peut faire correspondre a.x 
 IE 

ie la loi . est une loi de composition externe 

Tel que :  i) 1 . x = x   x 
 IE  

  ii)  a, b 
 IK,  x 
 IE , a ( b . x) = (ab) . x ; (Associativité mixte) 

  iii)  a 
 IK,  x , y 
 IE , a (x + y) = ax + ay ; (Distributive mixte) 

  iv)  a, b 
 IK,  x 
 IE, (a + b)) . x = a . x + b . x. (Distributive mixte) 

 

I-2- NORME SUR UN ESPACE VECTORIEL IE 

C’est une application N : IE → IR+ ayant les propriétés suivantes : 

 i) N (0) = 0 ; 
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 ii) (N (x) = 0 ⇒ (x = 0) ;  x 
 IE 

 iii) N (x + y) ≤ N(x) + N (y),   x, y 
 IE ; (Inégalité triangulaire) 

 iv) N (a x) ≤ I a I . N (x),  a 
 IK,  x 
 IE. 

Le couple (IE, N) est un espace vectoriel normé (e. v. n.) 

I-3- DISTANCE DE DEUX POINTS x, y 
 IE 

C’est l’application d : IE x IE → IR+ 

(x, y) → d (x, y) = N (x – y) 

d est une distance sur IE. En effet 

Soient x, y 
 IE ° d (x, y) ≥ 0 car N (x – y) 
 IR+ 

   ° d (x, y)  = N (x – y)  = I-1I N (x – y) 

     = N (y, x) 

     = d (y, x) 

Soient x, y, z 
 IE 

d (x, z) = N (x –z) = N (x – y + y –z) 

≤ N (x – y) + N (y – z) = d (x, y) + d(y, z) 

Soient x, y 
 IE tels que d(x, y) = 0 

d(x, y) = N ((x – y) = 0 ⇒ x – y = 0 ⇒ x = y 

Conclusion : 

 x, y 
 IE i) d(x, y) ≥ 0 

  ii) d(x, y) = 0 ⇒ x = y 

 x, y, z 
 IE iii) d(x, z) ≤ d(x, y) + d(y, z) 

d est effectivement, une distance sur IE et le couple (IE, d) est appelé : espace 

métrique. 
 

I-4- ESPACE DE BANACH 
 

I-4-1- Suite de Cauchy 

Une suite (xn)n
 IN d’éléments de IE est une suite Cauchy si : 

(  � > 0) (� A tel que) (m ≥ A et n ≥ A ⇒ N(xm – xn) ≤ � 

I-4-2- Espace métrique complet 

(IE, d) est un espace métrique complet si toute suite de Cauchy de IE est 

convergente dans IE. 

I-4-3- Espace de Banach 
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On appelle espace de Banach un espace vectoriel normé qui est complet 

pour la distance déduite de la norme. 

 
II- APPLICATIONS LINEAIRES CONTINUES 

 

II-1- APPLICATIONS LINEAIRES 

 

II-1-1- Espaces vectoriels topologiques (E.V.T.) 

Désignons par � une famille d’ensembles appelés ouverts ayant les 

propriétés suivantes : 

i- IE 
 � ; 

ii-  � 
 � ; 

iii-   0�, 0�  
 � 01 � 02 
  �    
iv-  0n 
 � , U 0n 
  � � �  ! 

Le couple (IE, �) est appelé espace vectoriel topologique (e. v. t) 

 

II-1-2- Application linéaire 

Soient IE, IF deux espaces vectoriels topologiques (e. v. t.) et f une application : IE  # IF. 

f est une application linéaire si : 

f (ax + by) = af (x) + b f(y) � a, b 
 IK, �x, y 
 IE 

 

II-2- APPLICATIONS CONTINUES 

Soit f une application linéaire : IE→ IF 

On dit que f est continue en tout point de IE si et seulement si f est continue 

à l’origine. 

Notons par $ (IE, IF) l’ensemble des applications linéaires continues de IE 

dans IF. 

Rappelons que si IF est un espace de Banach alors l’espace vectoriel normé 

de toutes les applications linéaires continues $ (IE, IF) est un espace de Banach en 

posant  

IIfII = sup IIf(x)II  

IIxII ≤ 1 
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On a la relation fondamentale suivante  

IIf(x)II ≤ IIfII  IIxII � x 
 IE 

 

III- APPLICATIONS DIFFERENTIABLES 

Soient IE et IF deux espaces de Banach sur le même corps de base IK 

 

III-1- Définition 

Soit U un ouvert de IE, soit a 
 U. On dit que f et g sont tangentes en a si :  

lim  
%&�'�( )�'�%%'(* %   = 0 

x + a 
x , a 
 

III-2- Notations 

• -.��� –  0���-   �  0 �-� –  1-� au voisinage de a ou 0 désigne le « petit 0 » 

• F(x) – g(x) = IIx – aII 2 (x – a) avec lim 2 (x – a) = 0 

 

III-3- Définition : application différentiable 

Soit U un ouvert de E, soit a 
 U 

On dit que l’application . : 4 → 5 est différentiable en 1  
  4 si i) f est continue en a 

ii) les applications � 6  .��� –  .�1� et x et � 6  7�� –  1�, avec u une application 

linéaire, sont tangentes en a. On note u = f’(a) et f’(a) est appelée dérivée de f en a. 

Une autre écriture de ii) est donnée par : -.��� –  .�1� –  .’��� �� –  1�-  �  0 �-� –  1-� 

On va retenu une proportion usuelle :  

f est différentiable en a si f’(a) existe et f’(a) 
 $ (IE, IF) 
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Chapitre II : EQUATIONS DIFFERENTIELLES  

 

I. Définition   

Soient 
 un espace de Banach et 4 9 : ; 
 . < 4 # 
 application continue  =>=? � .�@ , �� (1) est une équation différentielle 

L’application 2 <  # 
 de classe 2�, avec   un intervalle de : est une solution de 

l’équation différentielle (1) ayant les propriétés suivantes : 

i. A@ , 2�@�B 
 4 pour tout @ 
   

ii. 2′�@� � .A@ , 2�@�B pour tout @ 
   

Remarquons qu’on peut supposer seulement 2 différentiable, 2 est alors 

automatiquement de classe 2� 

Si 
 �  
� x … . . x 
E  un espace de Banach. 4 9 : x 
� x … . . x 
E    �@ , ��, … , �F� 6 .�@ , ��, … , �F� 
 ∏ HIFIJ�     (2) 

Cette  application est détermine par n fonctions .�, .� , … , .F définie sur 4. Une 

solution 2 de (1) est alors définie par n fonctions 2I  ; L 
 M1 , �O de classe 2�ayant 

les propriétés suivantes : 2I <  # HI      ;  1 P L P � 

i. A@ , 2��@�, … , 2F�@�B 
 4 , � @ 
   

ii. 2′I�@� � .IA@ , 2��@�, … , 2F�@�B   ;  1 P L P � 

On obtient alors un système d’équations différentielles  =>Q=? � .I�@ , ��, … . �F� ; 1 P L P � 

  

                                                           
(2

 
) ∏ HIFIJ�  = H�� H�  � … … . � HF   
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II. EQUATIONS DIFFERENTIELLES LINEAIRES DU PREMIER ORDRE 

 

II.1. Définition  

 

Une équation différentielle linéaire du premier ordre est de la forme : R�R@ � 1�@ �. � � S�@� 

Avec 1 <  # T�
 , 
�3       V@  1 <  # 
      continues sur 

l’intervalle   
  : 

On a :    
 

II.2. Solution de l’équation différentielle  : =>=? � 1�@ �. �      (2) 

Notons W A@ , @0B. la solution de l’équation différentielle  

=X=? � 1�@ �. W�@�. La solution de l’équation différentielle  

=>=? � 1�@ �. � qui prend la valeur  �Y pour  @ � @Y est égale à 

W A@ , @0B. �0. avec W A@ , @0B une solution de (2)  

telle que  A@0 , @0B � ZH4 . En effet posons ��@ � � W �@� , @Y�. �Y  
=>=? � W′ �@1 , @0�. �0 �  1�@ �. W�@ , @Y�. �0  

�  1�@ �. ��@�  d’une part 

D’autre part ��@Y� �  W �@Y , @Y�. � �  Z\ . �Y �  �Y 

W A@ , @0B s’appelle la résolvante (ou le noyau résolvant) de (2) 

                                                           
3 Ensemble des applications linéaires continues 

4
 Z\:  R\ <Application identique  
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III. EQUATIONS DIFFERENTIELLES LINIAIRES AVEC SECON D MEMBRE 

 

C’est l’équation différentielle linéaire de la forme : 

(3)   
=>=? � 1�@ �. � � S�@�  

 

III.1. Méthode de variation de la constante  

Soient  @ , @Y , @�   
    . Posons  ��@� � W �@ , @Y�. Y(t)   (4)  à la relation suivante : W �@ , @Y� � W ′ �@� , @Y�  ]W  �@� , @Y� 

 

En effet, posons ^�@� � W �@ , @Y�  ]W  �@� , @Y� 

On a ^ ′�@� � W �@ , @Y�  ]W  �@� , @Y� �  1�@ � ] MW�@ , @�� ] W �@� , @Y�O � 1�@ � ] ^�@�   
Donc ^�@� est la solution de 

=X=? �  1�@ � ] W (4) qui prend pour @ �  @� la valeur 

W�@ , @�� ] W �@� , @Y� �  Z\  ] W �@� , @Y�  �  W �@� , @Y� 

Mais W �@ , @Y� est la solution de (4) prenant la valeur W �@� , @Y� pour @ �  @� donc  W �@ , @Y� �  W �@ , @�� ]  W �@� , @Y� 

Comme  W �@ , @Y� ]  W �@Y , @� � W �@ , @ � � Z\    W �@Y , @� ] W �@ , @Y�  �   W �@Y , @Y � � Z\    
On en déduit que W �@ , @Y� 
  ^]_ �
 ; 
 �  5 et  W �@ , @Y�(� � W �@Y , @�  
  

                                                           
5
 Ensemble des applications linéaires bijectives de 
 sur 
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A propos de la méthode de variation de la constante, posons 

 ��@� �  W A@ , @0B . `�@�  

et prenons comme inconnue `�@� R�R@ � RWR@  ` � W R`R@   
� 1�@�. W �@ , @Y� . ` � W =a=?  

� 1�@�. � �@ �  � W =a=?  

Donc  S�@� �  W �@ , @Y� =a=?  

=a=? �  W �@ , @Y� . b(t) 

(W �@ , @Y� � W �@ , @Y�(�� est  la nouvelle équation à résoudre.  

Soit  �Y � ��@b� �  W �@b , @Y� . `�@Y� � `�@Y�.  
Donc  `�@� � �Y  �  c W �@ , @Y� S���R�??d  

��@� � W �@ , @Y� . `�@�  
� W �@ , @Y� . �Y  �  e W �@ , @Y� S���R�?

?d
  

est la solution générale de 
=>=? � 1�@�. � � S�@� (4) 

passant par �@b , �Y�. Elle n’est autre que la solution générale de 
=>=? � 1�@�. � 

passant par �@b , �Y� ajoutée de la solution particulière de (4) s’annulant pour @ � @Y 
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IV. EQUATION DIFFERENTIELLE LINEAIRE A COEFFICIENTS  

CONSTANTES  

L’application 1 < I #  $ �
 ; 
 �6 R�R@ � 1� � S�@� 

=>=? � 1� On prend I � : 

Comme H�g 1 �  ∑ ij
F!FlY   avec 1Y � ZH  

Notons  W �@ , ]� � W�@� la résolvante telle que W�0� �  ZH 

On a  W�@� � H�g 1 . En effet posons ^�@� � H�g @1 

^ ′�@� � ∑ �F!  @F. 1Fm�.FlY � 1. ∑ �F!  @F. 1F.FlY    7 

� no 1�! @F. 1F FlY p . 1 � 1 . ^�@� 

d’où la solution générale 

��@� � MH�g �@ �  @0�1O. �0 �  eMH�g �@ � 
@

@0
 �� 1O S���R� 

 

V. RÉSOLUTION PRATIQUE D’UNE EQUATION DIFFERENTIELL E  

 

V.1. Définition intuitive  

Une équation différentielle est définie pratiquement par une relation entre une 

fonction, certaines de ses dérivées et la variable, c'est-à-dire . A� , ` , `′ , `′′B � 0 8 

  

                                                           
6
 1 < I #  $ �
 ; 
 �  1�@�  6  1�@�q  est une application linéaire en q de 
 # 
,  @ 6  1�@� 

7
 On tient compte de 0! � 1 

8
 Par extension on peut avoir :  . �� , ` , `r , `rr� � 0  

Où � # ` est une fonction de la variable réelle � 

et � # `F sa dérivée d’ordre n 
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V.2. Exemple concret en mécanique  

Un mobile de masse m se déplace sur un axe  

 

 

 

Désignons par x l’abscisse de m au point t et vo sa vitesse initiale. 

A l’instant t = 0 sa position xo = 0, Supposons qu’à chaque instant t le mobile est 

soumis à deux forces :  

i. .��@� �  � s�� ′�@� avec  s� t 0 ; 

ii. .��@� �  � s�� ′�@� avec  s� t 0 ; 

Essayons de déterminer la fonction ��@� en fonction du temps t 

 

En appliquant le principe fondamental de la dynamique :  

∑ 5u  � _vu ; en projetant sur l’axe (Ox) 

On obtient :  � s�� ′�@� �  s�� ′�@� � _�"�@� 

C'est-à-dire  _�"�@� �  s�� ′�@� � s�� ′�@� � 0 (1) 

C’est bien une équation différentielle avec  .�@, �, � ′, �")= mx�@� � s�� ′�@� �  s�� ′�@�  
Et (1) signifie .�@, �, � ′, �")= 0 

 

V.3. Cas particuliers d’équations différentielles  

 

C1. Équation différentielles linéaires du premier ord re de la forme : x���	′ � y���	 � z��� (1) 

 où a, b, c sont 3 fonctions numériques définies sur un même intervalle I. on 

supposera que pour tout x élément de I,  1���  , 0 
 

C2. Équation différentielles linéaires du second ordr e à coefficients 

constants de la forme : x	′′ �  y	′ � z	 � {��� 

où a, b, c sont des constantes ;  1 , 0 { étant la fonction numérique définie sur un intervalle. Dans tout ce qui suit, on 

supposera 1���, S���, ���� V@ .���  soient des fonctions continues. 

x(t) 
m 0 
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V.3.1. Détermination de toutes les solutions de l’é quation (1) 

1er Cas ���� � 0  (second membre) 

(1) dévient :  1���` ′ �  S���` � 0  

Désignons par E l’ensemble de solution. On peut dire que E est non vide car la 

fonction nulle est une solution.  

E est un espace vectoriel sur IR de dimension 1, si f et g sont des éléments de E,

 ~. �  �0  est aussi un élément de E avec ~ et � des scalaires. 
 

En effet si on a :  ~1���. ′��� � ~ S���.��� � 0  �1���0′��� � � S���0��� � 0  

alors 1����~. ′��� � �0′���� �  S���M~ � � 0���O � 0 

posons  ���� � ~ .��� � � 0���, on a :  

1����′�>� � S�������  � 0   
Remarquons que tout autre solution .� est telle que  . �  ~.�  �RL_��H � 1� 

 

Détermination de la solution  1���` ′ �  S���` � 0  (2) 

 

(2) ⇔ ` ′ �  � ��>�i�>�  ` 

On va déterminer les solutions non nulles ie pour tout x de I, `���  , 0 

⇔ 
a′a �  � ��>�i�>� 

⇔ �ln  |`| �′ �  � ��>�i�>�   (ln : logarithme népérien) 

⇔ ln  |`| �  c � ��>�i�>�  R� 

Soit ^��� une primitive de  � ��>�i�>� 
La continuité est nécessaire pour l’existence de ^���  � ^��� �  s  ln  |`| � ^��� �  s  
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⇔ |`| �  V��>�m �  
⇔ |`| �  V  �  . V��>�   (s ′ � V  �  ) |`| �  s′ . V��>�   s ′ t 0 

Remarquons que y est, pour tout x élément de I soit toujours négative, soit toujours 

positive 

En effet, y est une fonction continue par définition même car elle est dérivable. De 

plus on a fait l’hypothèse que y(x) est non nulle, elle garde donc un signe constant 

du fait du théorème des valeurs intermédiaires donc :  

Ou bien  ` �  s′ . V��>�  s ′ t 0 

Ou bien  ` �  � s′ . V��>�  s ′ t 0 

 

On peut vérifier que ces solutions sont les solutions de l’équation différentielle 

considérée. 

Les solutions non nulles sont :  ` �  q. V��>�  q t 0 

Existe-t-il d’autres solutions ie des solutions autres que la solution nulle ou des 

solutions qui ne s’annulent jamais ? 

 

Soit y une solution quelconque de l’équation considérée 

Considérons l’équation : .���� �   V��>�  est solution de l’équation différentielle. 

Posons 
a�� �  Z  ; .�  � 0 

On a  ` � .� Z ` ′ � .′� Z � .� Z′   
 

D’autre part on sait que : 1���` ′ �  S���` � 0   1���A. ′� Z � .� Z′B �  S���.� Z � 0  

�A1���. ′� � S���.�B � 1���.� Z′  � 0   
1���. ′� � S���.� � 0  car .� est une solution  

donc pour tout x élément de I   1���.� �′ � 0 

comme 1���  , 0 ;  .� , 0 .� �′ � 0 entraine que  �′ � 0  d’où  Z � ~  et  ` � ~.� 



17 

 

 

Toutes les solutions de l’équation différentielle sont donc de la forme  ` � ~.� 

L’ensemble des solutions de l’équation différentielle  1���` ′ �  S���` � 0   est  

~.� ,  ~. V��>�  �  ~ V( c�������� =>
 

 

Il en résulte que si une solution s’annule en un point, elle est identiquement nulle. 

ie  ~ � 0  dès que  ~. V��>�  � 0 

À part la solution nulle on est sûr que toute autre solution ne s’annule jamais. 

Il résulte de ce qui vient d’être démontré que l’ensemble de solution est un espace 

vectoriel de dimension 1, une base est constituée par la solution .� 

 
VI. 3.2. Exemple  : Résolution de l’équation différentielle :  �� � ���	′ � ��	 � �  

Toutes les solutions sont données par : 

	 �  � �( cy���x�����
  

On voit que 1��� � 1 �  ��  , 0 pour tout s de : et S��� �  �� 

On est alors dans l’application du théorème qui vient d’être démontré  

c ��>�i�>�d x  = c >�
>�m �dx 

Or �� � ��� �  1�� � � 

Donc c >�
>�m �dx = cM�>�m��>>�m � � >>�m �O  dx 

�  e � R� �  e �R��2 �  1 

�  ��2 � 12 ln��� � 1� 

 

d’où ` �  ~ V(�� �E�>�m��(���  

` �  ~��� � 1 V(>��  

VI. 4. Cas général  1���` ′ � S���` �  ��� (2) 

  



18 

 

 

VI. 4. 1. Etude de la structure de l’ensemble des s olutions  

Supposons que 	 est une solution quelconque  

Et 	¡ une solution particulière  

On a : x���	′� � y���	� � ¢���  
x���M	′ � 	′�O � y���M	 � 	�O � �  

x���M	 � 	 �O′� y���M	 � 	�O � �  

Donc la fonction 	 � 	�est la solution de l’équation différentielle que l’on notera  x���	′ � y���	 � � (3) 

L’équation (3) s’appelle équation sans second membre de l’équation différentielle (2) 

En résumé on a : 	 � 	� � £            ¤�       	 � 	� �  £ 

Où ¥ est une solution de l’équation (3) 

Toute solution de l’équation (2) s’obtient en ajoutant aux solutions de (3) une solution 

particulière. 

Désignons par E l’ensemble des solutions de (2)  

E n’est pas un espace vectoriel (sinon il contient 0) ���� , 0 

On se donne ¦ ensemble des solutions de (3) et `� solution particulière  

Pour tout y appartenant à     , il existe Y élément de ¦ telle que ` �  `� �  ¥ 

Réciproquement si Z est une solution quelconque de (3) alors § �  `� �  � est une  

solution de (2) 

Autrement dit : 

Pour tout Z élément de ¦ :  `� �  � est élément de 
 

En résumé on a le théorème suivant : 

 

VI. 4. 2. Théorème  

L’ensemble des solutions de l’équation (2) est l’ensemble de fonction y de la 

forme :  ` �  `� �  ¥ 

Où ¥ est une solution quelconque de l’équation (3)  ie  de l’équation sans 

second membre (e.s.s.m.) associée à l’équation différentielle (2) 
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VI. 4. 3. Exemple : Résolution de l’équation différ entielle :  ` ′ � ` � � (1)  `� � 1� � S ;  `�′ � 1 1 � 1� � S � �  1� � �1 � S� � �  pour tout x 1 � 1  1 � S � 0 d’où S �  �1  `� � � � 1 est une solution particulière de l’équation ¥′ � ¥ � 0 (2) 

1� � 1 ; S� � 1  

c � ��>�i�>� R� �  ��  

~V(> est une solution générale de (2). 

Par suite ` � �� � 1� � ~V(> est une solution générale de (1) 

L’ensemble des solutions moyennant les conditions de départ n’est pas vide. 

 

VI. 5. Méthode de recherche de solutions particuliè res dans des cas 

particuliers  x���	′� y���	 � ¢���  x��� �  x , �; y��� �  y 

Donc x£′ �  y£ � � 

En général  

� Cas usuel : ���� � �¡��� ¨��� 

Où s élément de : et ¨��� un polynôme  

� Autres cas usuels : ���� � ¢©¡ ª� ou ���� � ¡¤« ª� 

On a donc à résoudre : 

 

VI. 5. 1. x	′ �  y	 � �¡���¬��� 

s élément de �­  ¨ un polynôme de degré n, élément de ® 

La solution générale de l’équation sans second membre est : ¥ �  ~ V(��> 

Remarquons que ¥ �  ~ V(��> � ~VX>�W �  � �i �  
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West la racine de l’équation : 17 � S � � 

appelée  équation caractéristique de (2)  

Tandis que la solution particulière est : `� � �¡���¯���   
Elle doit vérifier donc : 1`′� �  S`� � �¡���¨���   
`′� �  ^�¡���¯��� � �¡���¯′���   

1`′� �  S`� � x�¡����¡¯��� � ¯′���� � y�¡���¯��� � �¡���¨���    
alors x�¡¯��� � ¯′���� � y¯��� �  ¯���Mx¡ � yO � x¯′��� �  ¨��� (4) 

Il y a deux cas à envisager : 

� x¡ � y , � équivalent à ¡ n(est pas racine de l’équation caractéristique : 17 � S � � degré de ° � � � RV0Wé RV ± 

� x¡ � y � � i.e. ¡ racine de l’équation caractéristique : on a x¯′��� � ¨���alors 

dégré de Q est égale à n+1 et ¯��� �  c ¨���x �� 

Revenons maintenant au premier cas :  x¡ � y , �  

Pour déterminer ¯ on procède par identification 9 ¯��� �  ²«�« � ²«(��«(� �  … … � ²¬  
On remplace ¯���et ¯′��� par ses expressions dans (4) et on identifie: 

 

VI. 5. 2. Exemples : Résolution de l’équation diffé rentielle avec 

second membres  	′ � 	 �  ����� �  � � ��� ¡ � �   ³ � �� ¡ , ³  ¯��� �  ²��� � ²�� � ²�     ¯′��� � �²�� � ²�   	´� � ¡�¡� �  ¯��� � �¡�¯´���   x¡ � y � �  �� ²��� � ²�� � ²�� � �²�� � ²� � �� �  � � �    
D’après l’équation (4) 
                                                           
9
 il s’agit de déterminer les coefficients µ� ; s �  0, … , � en remarquant que 

 °r��� � �µF �F(� �  … . �µ�  
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�²��� � ��²� � ²��� � �²� � ²� � �� �  � � �   
�²� � � entraine que ²� � �� 

��²� � ²�� � � alors ²� � �� �  �²��  

�²� � ²� � � alors ²� �  �(²� �  

²� � �� � �� � �  et ²� � ��  
¯��� �  �� �� � �� �  

• Solution particulière :  `� � ��¯���  
� �� ����� �  ��   

 

• La solution générale va être :  

	 � �� ����� �  �� � ��(�  

 

VI. 5. 3. Résolution de l’équation différentielle d u 1er ordre avec 

second membre : a 	r � y	 �  ¶�¢©¡ ª� � ¶� ¡¤« ª�  
 

On cherche une solution de la forme :  	� � ²�¢©¡ ª� � ²� ¡¤« ª�    	´� � �ª²�¡¤« ª� � ª²� ¢©¡ ª�   ª M�ª²�¡¤« ª� � ª²� ¢©¡ ª�  O �  yM²�¢©¡ ª� � ²� ¡¤« ª�   O � �  xª²� ¢©¡ ª� �  y²�¢©¡ ª��xª²�¡¤« ª� � y²� ¡¤« ª� �   
�xª²� � y²��¢©¡ ª� � �xª²� � y²��¡¤« ª� �  

 ¶�¢©¡ ª� � ¶�¡¤« ª�   
avec · xª²� � y²� � ¶� xª²� � y²� � ¶� ¸ 
Supposons qu’on a : 

a	r � y	 �  ¶�¢©¡ ª� � ¶� ¡¤« ¹� 
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VI. 5. 4. Remarque générale  

Lorsqu’on a : 

a	r � y	 � z���� � z����  (3), on obtient une solution particulière en déterminant les 

solutions particulières des équations différentielles suivantes : 

x	r � y	 � z� ���   (1) 

x	r � y	 � z� ���   (2) 

Et on ajoute les solutions particulières obtenues 

Si f1 est la solution particulière de (1) et si f2 celle de (2) 

Alors f3 = f1 + f2 est une solution de (3) 

Donc :  

x	r � y	 � ¶�¢©¡ ª�  

x	r � y	 �  ¶� ¡¤« ¹�  

Cette méthode permet en particulier de résoudre l’équation : x	r � y	 �  �� �� � ¡¤« �� 

 

VI. 6. Equations différentielles linéaires du secon d ordre à coefficients 

constants  1`" � S`´ �  ` � .��� (1) 

Où a, b et c sont des constantes réelles avec a ≠ 0 . <  #  :  continue  

1er cas : .���  º 0 1`" � S`´ �  ` � 0  

Désignons par 
  l’ensemble des solutions de (1) 
 est un espace vectoriel sur  ». On admettre que  H est de dimension 2. 

 

VI. 6. 1. Détermination d’une base de  H 

On cherche les solutions de la forme ` �  VX> 

� + VX> ;  W 
  » 

Tout revient à déterminer le nombre réel r  
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`´ �  WVX>   ; `´´ �  W�VX> 

(1) dévient  1. W�VX> �  SWVX> �   VX> � 0  

Equivaut à : 1. W� �  SW �    � 0 

C’est l’équation caractéristique de l’équation différentielle (1’) 1. W� �  SW �    est le polynôme caractéristique  

 

VI. 6. 2. Etude de x³� �  y³ �  ¢ � � 

1er Cas ¼ positif  avec ¼ �  ½� � ¾¿À 

On a deux racines r1 et r2 VX�> et VX�> sont des solutions de (1) 

Montrons que VX�> et VX�> forment une base de IE  

Comme RL_��  H � 2 , il suffit de démontrer que VX�> et VX�> sont linéairement 

indépendants 

Posons .� � VX�>   et .� � VX�> 

Pour tout réels ~ et � ~ �  � � 0 dès que  ~.� �  �.� � 0 

~VX�> � �VX�>  � 0 Á Â~ � � � 0  g]7W � � 0          
~VX� � �VX� � 0 g]7W � � 1̧ 

~ � � �  ~VX� � �VX� � 0 entraîne que : ~ �VX� �  VX�� � 0 W� étant différent de W� donc VX� ,  VX� 

Et par suite VX� �  VX� , 0  
On en déduit que ~ � 0 

A cause de ~ � � � 0 on a � � 0 

On vient de montrer qu’effectivement VX�> et VX�> forment une base 

L’ensemble des solutions de (1’) est donc donné par :Ã` � ~VX�> �  �VX�> ;  ~ , � 
 »   
2ème Cas ¼ � � 

Soit s la racine double de l’équation  .Ä��� � V�> est une solution de (1’) 

Montrons que la fonction 
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.´Ä��� � �V�>  � �.Ä��� est également une solution de (1’) .´���� � V�> �  ^V�> � V�> �^ � ^��  .´´���� � ^V�> � ^�1 � ^��V�> � V�> �2^ � ^���  

Comme  1`" � S`´ �  ` � 0  on a : V�> M1�2^ � ^�� � S�1 � ^�� �  �O �   V�> M�1^� � S^ �  �� � 21^ � SO �  0  

 

Car �1^� � S^ �   � 0 et 21^ � S            (¼ � �� 

On a donc prouvé que  .����  est une solution  

Par suite on a deux solutions .���� � V�>  et  .���� � �V�> ~.� �  �.� � 0  ou  ~V�> � ��V�> � 0   
Pour tout nombre réel x 

Pour � �  0 on a ~ � 0 

Pour � �  1   ~V�> � �VY � 0   entraine � � 0   
L’ensemble des solutions est donc : Ã` �  ~V�> � ��V�> � V�>��� � ~�;  �, ~ 
  »Å 
 

3ème Cas ¼ Æ 0 

Comme a, b et c étant des réels, on a deux racines complexes conjuguées W� �  q � LÇ  W� �  q � LÇ  q V@ Ç des réels 

On vérifie que : .���� � VÄ> ]^Ç�  et .���� � VÄ>^L�Ç� sont des solutions de (1’) 

Reste à savoir si elles sont linéairement indépendantes  0 � ~.���� �  �.���� � VÄ>M~ cos�Ç�� � �sin �Ç��O      
Pour � �  0 on a   ~ � 0   �VÄ>sin �Ç�� �  0  

Or Ç est différent de zéro sinon ¼ ne serait pas négatif sin �Ç�� ,  0 ;  VÄ> , 0  donc  � � 0 

par conséquent on a une base de IE 



25 

 

 

L’ensemble des solutions est donc : Ã` �  VÄ>�~ cos Ç� � � sin Ç��Å 
 

VI. 6. 3. Exemple : Résolution de l’équation différentielle du second  

ordre  	’’ �  Ì�	 �  � Ì ,  � 
L’équation caractéristique est ³�� Ì�	 � � 

Les racines sont : W� � LÍ  W� � �LÍ  

Donc la partie réelle de  W�, q est égale à zéro et Ç � Í 

Donc  ` �  VY�~ cos Í� � � sin Í�� ` �  ~ cos Í� � � sin Í�  

VI. 7. Cas général :  

Désignons par ¦ l’ensemble de solutions de (1)  ¦ , 0 et on va étudier sa structure 

Soit `� une solution particulière de (1) 

on a 1`´´� �  S`´� �   `� � .��� (2) 

En soustrayant membre à membre (1) et (2) 

on obtient  1�`" � `´´� � � S�`´ � `´�� � �` � `��� � 0  

Posons ¥ �  ` � `� 

on obtient : 1¥" � S¥´ � �¥ � 0  (3) 

On peut dire que ¥ est une solution de l’équation sans second membre associée à 

l’équation (1) 

Par un raisonnement analogue à celui déjà fait pour le 1er ordre, l’ensemble de 

solution de (1) est ` � ¥ � `� 

Où  `� est la solution particulière de (1) 

Et ¥ une solution quelconque de (3) 
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VI. 8. Détermination d’une solution particulière da ns certains cas 

particuliers  

 

Si .��� �  V�> ±��� k élément de IR  ± polynôme de degré � 
  ! 

Cherchons une solution particulière de la forme : `� �  V�> °��� Calculons ses dérivées premières et secondes `´� et `´´�  

On a  `´� � sV�> °��� � V�> °���  

`´´� �  ��V�>°��� � sV�> °r�>� �  sV�>°r��� � V�>°´r���   
`´� � V�> Ms°��� �  °r���O   
`´´� �  V�>Ms�°��� � 2s °r�>� �  °´r��� O  
On a : 

 1Ms�°��� � 2s °r�>� �  °´r��� O � SMs°��� �  °r���O  �  °����  �  ±��� 

On a : �1s� �  Ss �  �°��� �  �21s � S�°r��� �  1°rr��� �  1°´r��� �  P�x�  1 , 0 

 

Distinguons 2 cas : 

 

1er Cas : 

i. Si k n’est pas racine de l’équation caractéristique, dans ce cas on cherche 

un polynôme Q de degré, tel que degré de Q est égale à degré de P = n 

ii. Si k est racine simple de l’équation caractéristique  

On a �21s � S�°r��� �  1°rr��� �  P�x� 

Et R°° �  1 �  R°± 

 

2ème Cas : 

Si k est racine double de l’équation caractéristique 

On a R°° �  2 �  R°± 
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VI. 8. 1. Exemple : Résolution de l’équation différentielle du second  

ordre avec second membre 	" � 	´ � � 

 

1) Solution générale e.s.s.m. 10 	" � 	´ � � 

L’équation caractéristique associé est :  ³� � ³ � � d’où  ³� � � et   ³� � �� 

 

Donc  ¥ �  ~VX�> �  �VX�> ¥ �  ~ �  �V(> 

 

2) Solution particulière  	" � 	´ � � �  �¶�. ¨��� pour ¶ � � et ¨��� � � �¶�¯��� �  ¨���  

On constate que k est une racine simple de l’équation caractéristique par 

conséquent :  R°° �  1 �  R°± 

Et donc R°° � 2 ¯��� � x��� � y�� � z�   ¯´��� � �x�� � y�  ¯´´��� � �x�  �x� �  ��x�� � y�� � �  Ð �x� � �x�� � y�  � � 

On en déduit par identification :  

�x� � �  Ð          x� � �� 

�x� � y�  � �  y� � ��x�  d’où  y� � �� 

Donc ¯��� � ��  �� � � 

La solution générale est donc :  

¥ � 12 �� � � �  ~ �  �V> 

  

                                                           
10

 Equation sans second membre 
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VI. 8. 2. Le problème de Cauchy :  

Déterminer les solutions de l’équation différentielle qui vérifie certaines conditions 

initiales du type suivant : 

 

a) Si l’équation est du premier ordre, on cherche les solutions pour `��Y� �  q �Y V@ q étant des réels 

 

b) Si l’équation est du second ordre, on cherche les solutions pour `��Y� �  q et `´��Y� �  Ç où �Y, Ç V@ q sont des réels donnés 

 

On peut démontrer que le problème de Cauchy admet une solution unique. 

 

VI. 8. 2.1. Exemple : Résolution de l’équation différentielle du 

2nd degré sans second membre : x	" � y	 � ¢ � � 

Supposons que le polynôme caractéristique admet 2 racines distinctes réelles 

Par conséquent l’ensemble de solution est :   	 �  ��³�� �  Ñ�³�� 

Prénoms comme cas particulier �Y � 0 q � `�0� �  ~ �  �  `´ �  ~W�VX�> �  �W�VX�>  Ç � `r�0� �  W�~ � W��   

On a · ~ � � �  q
W�~ � W�� �  Ç¸(I) 

Ce système d’équation à deux inconnus admet comme déterminant principal : 

Ò 1 1W� W�Ò � W� � W�   
Comme W� , W� on a  W� � W� , 0   

Par suite il existe unique ~ et � vérifiant le système (I) 
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VI. 9. Exercices résolus  

 

VI. 9. 1. Résolution de l’équation différentielle  	r � �	 � ��¢©¡ � 

Il s’agit de résoudre une équation différentielle linéaire du 1er ordre avec 

second membre à coefficients constants. 

Pour la commodité de l’écriture, posons : 

`Ó : La solution générale de l’équation différentielle sans second 

membre 

`Ô : La solution particulière de l’équation (1) 

On va déterminer la solution ` de (1) donné  

par  ` �  `Ó � `Ô 

 

VI. 9. 1.1. Résolution de l’e.s.s.m 11 `r � 2` �  0    Á `r �  2` 

Á   
aÕ
a � 2 

Á  
=aa � 2R� avec  `r �  =a=> 

Á  c =aa � c 2R� 

dd’où `Ó � �V�> 

Avec C une constate  

 
VI. 9. 1.2. Détermination de `Ô 

Une solution particulière `Ô � V>�acos � � S^L� ��   `´Ô � V>��a Sin � � S�]^ �� � V>�acos � � S^L� ��    
= V>M�1 � S� cos � �  �S � 1�ÙL� �O `´Ô � 2`Ô �  V>M�1 � S� cos � �  �S � 1�ÙL� �O �  2V>�acos � � S^L� ��  �  V>M�1 � S � 21� cos � �  �S � 1 � 2S�ÙL� �O  

 �  V>M�S � 1� cos � �  ��S � 1�ÙL� �O  
En identifiant avec V> cos � , on obtient :  

                                                           
11

 Equation sans second membre 
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·  S �  1
�1 � S  ̧  Á Ú1 � S � �1            �1�1 � S � 0               �2�  ̧

Á 21 � �1  1 � � ��  (par addition membre à membre) 

Et (2) Á S � � 1 ie S �  �� 

D’où  `Ô �  V> Û� �� cos � �  �� ÙL� �Ü 
Et la solution finale est donnée par :  

¥ � �V�> � V>  �� �� cos � �  �� ÙL� ��   
avec  � 
  »  

 

VI. 9. 2. Résolution de  �	r � �	 �  �� 

 

VI. 9. 2.1. e.s.s.m.  �`r � 2` � 0   Á  �`r �  �2` 

Á  
aÕ
a �  � �> 

Á  c aÕ
a �  c � �>  R� 

Á  Ý��`� �  �2Ý�|�| �   

Á  |`| �  V(�ÞF|>|mß 

 �  VÞF|>|à�  Vß  

 � �´VÞF|>|à�
  

� �r �|>|� �  ßr>�  d’où ¥ �  ß">�  �" 
  » 

ie  `Ó �  ß">�  avec  `Ó : solution générale 

VI. 9. 2.2. Solution particulière  

Déterminons les réels a et b tels que :  `Ô � 1� � S avec `Ô solution particulière  `Ô � 1� � S  `´Ô � 1 

�`r � 2` � 1� � 2�1� � S� �  31� � 2S �  �2 

On en déduit que 31 � ��   1 � �á  et  S � 0 

D’où  `Ô � >á 
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VI. 9. 2.3. Solution finale  

Comme la solution finale est donnée par :  ¥ � `Ó �  `Ô 

Par suite :  

¥ � ß">� � >á    avec �" 
  » 

 

VI. 10. Autre méthode : Méthode de variation des co nstants  

Posons   ¥ � �>� 

On a  ¥r � �Õ��(�>�>â � �r>�  � ��>� 

Comme  

�`r � 2` � >�    

On en déduit que : 

�r>  �  ��>� �  ��>� � >�  Á sr � >�
�   

En intégrant membre à membre on a :  

c Rs �  c >�
�  R�  avec  sr � =�=> 

D’où s �  >�
á �  � ;  � 
  » 

On retrouve le même résultat  
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VI. 11. Résolution de  : 	" � ¾	´ � �	 �  �� �  �  (1) 

Il s’agit de résoudre une e.d.l. à coefficients constants 

 

VI. 11.1. Résolution de  : 	" � ¾	´ � �	 �  � e.s.s.m. (1) `" � 4`´ � 3` � 0 

L’équation caractéristique est donné par :  W� � 4W � 3 � 0 Á W� � 1  ou W� � 3  `Ó � ãVX�> �  äVX�>  � ãV> �  äV�>  ã , ä 
  » 

 

VI. 11.2. Détermination de 	¨ 

Il s’agit de déterminer les réels a, b et c tels que  `Ô � 1�� �  S� � �    1, S,   
  » `´Ô � 21� �  S  `´´Ô � 21 

(1) dévient : 21 � 4(21� �  S) � 3(1�� �  S� � �) � �� � 1  
 31�� � (3S � 81)� � � � 21 �  �� �  1  

En identifiant terme à terme on obtient :  

31 � 1 ; 3S � 81 � 0  et 21 � 4S � 3  � 1 
 

On trouve 1 � �� ; S � æç  � � �è�é 

d’où  `Ô � �� �� � æç  � �  �è�é   
 

VI.11.3. Solution finale  

Elle est donnée par :  

¥ �  `Ô � `Ó    
d’où ¥ � �� �� � æç  � �  �è�é  � ãV> � äV�> 

avec ã, ä 
  »  
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CONCLUSION PARTIELLE 

 

On vient de voir les méthodes de résolution 

d’une équation différentielle qui vérifie certaines 

conditions initiales et avec second membre dans 

laquelle la solution finale est la somme d’une 

solution particulière et d’une solution générale de 

l’équation différentielle sans second membre. 
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DEUXIÈME PARTIE 
 

Dans cette deuxième partie on va voir  

- Les équations aux dérivées partielles  

- Le système différentiel du premier ordre  

- La transformée de Laplace  

Ce sont des notions de mathématiques indispensables à 

la résolution des équations aux dérivées partielles  
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Chap 3. EQUATIONS AUX DERIVEES PARTIELLES 

 

I. CHANGEMENT DE VARIABLES ET DERIVATION  

 

I.1. Cas d’une variable   

Soient f et g deux fonctions d’une variable réelle, et u la composée de f et g :  

. <  » #  » ;  ` <  » #  » 

7��� �  .M0���O �  .]0 ���  

Posons @ �  0���  on a  7��� �  .�@� 

R7R�  �   R.R@  .  R@R�  �  R.R@  M0���O . R@R�  ��� 

 

C'est-à-dire  

7´��� �  .rM0���O  0r���  

 

I.2. Cas de plusieurs variables   

Soient  Ω� Ω� Ω� trois parties de    »F 

ΩI  9   »F pour 1 P L P 3 

7 < Ω� #  »  

. < Ω� #  »  

0ë < Ω� #  »  ì �  1 , �ííííí 

On pose @ë �  0ë  (x�, … , xF� avec ì �  1 , �ííííí 

La matrice Jacobienne J est donnée par :  

î �  
ïð
ðñ

=ò�=>� ó =ò�=>jô õ ô=òj=>� ó =òj=>jö÷
÷ø  elle doit être inversible, c'est-à-dire RV@ î , 0   
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On la note par 
ù�?�,………………..?j� ù�>�,………………..>j� 

 

Et pour chaque j variant de 1 à n on a :  

R7R�ë  �   ú.ú@�  .  ú@�R�ë �  ú.ú@�  .  ú@�R�ë �  … … … … … . � ú.ú@F  .  ú@FR�ë   
 

I.3. Exemples   

 

EX 1 : Déterminons toutes les fonctions f de classe ϕϕϕϕ� sur IR vérifiant :  

�{�� �  x û{û	 � y{  (1)  x , y 
 �­ 

 

Effectuons un changement de variables 

Pour cela posons  ü7 � 1� � `ý �       �     ¸ 
 

La matrice Jacobienne est donnée par :  

î �   ù �þ ,��ù �> ,a� �  Û1 11 0Ü  
det J � 1. 0 � 1.1 �  �1  

det J  , 0  ⇒ J est inversible  ie  J(� existe (matrice inverse de J) 

Posons . �� , `� �  .� �7 , ý� 

 

On a :  

���> � ����þ  . �þ�> � �����  . ���>  ;  
���a � ����þ  . �þ�a � �����  . ���a  ;  
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Comme 
�þ�> � 1 et  

���> � 1 
�þ�a � 1 

���a � 0 

���> � 1 ����þ  � �����   ;  et  
���a � ����þ 

 

Par suite l’équation aux dérivées partielles (1) devient  

1 ����þ  � ����� � 1 ����þ � S.  

⇒ 
����� � S.�  

⇒.� � �V�� où C est une constante  

Par rapport à v mais en fonction de u  

Posons � � 0�7�  0 
 ϕϕϕϕ�� »�  
Par suite .� �7 , ý� � 0�7�. V��  
D’où .�� , `� � 0�1� � `�V�> où  0 
 ϕϕϕϕ�� »� 

 

Remarque :  

. <   »�  #  » ;  �� , `�  6  �� � `� 

Si  .�� , `� �  �2 � `2 

En posant  7 �  � –  ` et  ý �  � �  ` 

On a  7 . ý � �� –  `� � � �  `� 

�  �� � `�  

 

Donc  .�� , `� �  7 . ý � .	 �7 , ý�   
.� <        »2  #  »   

�7 , ý�  6   7 . ý 
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. �7 , ý� � 7� � ý�    alors que  .� �7 , ý� � 7 . ý     
Déterminons par exemple une solution .�� , `� telle que .�� , 0� � �2VS�  
On en déduit que : 0�1�� � ��  
Posons @ �  1�  on a  � � 

0�@� � ? i�
�
  ;  0 
 ϕϕϕϕ�� »� 

 

Par suite  

.�� , `� �  �1��`�212 VS�  ; 1 , 0 

 

II. ÉQUATION AUX DÉRIVÉES PARTIELLES LINÉAIRES À CO EFFICIENTS 

CONSTANTS 

Nous allons essayer de résoudre une équation de la forme :  

1 ú�7ú�� �  S ú�7ú� ú`  � � ú�7 ú`� �  R ú7ú�  � V ú7ú`  � 
 �� , `�  
Avec  1, S,  , R, V 
  »   

Où    7�� , `� est la fonction à déterminer et ý�� , `� une fonction donnée. 

 

II.1. Étude préliminaire  

Résolution de : 1 �þ�> � �þ�a � �7 �  0  (1) 

1, S,   
  »  

L’équation (1) admet comme équation caractéristique :  

=>i �  =a� �  =þ(ßþ   (2) 

Une intégrale première de (2) est donnée par :  

4���, `, 7� �  S� � 1`  

 Et l’autre intégrale première est donnée par : 
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� �� R` �  =þþ    avec  S , 0 

⇒� �� ` � Ý�|7| � � (3) 

⇒  V(
�a � �´7 

⇒  7V(
�a � �´ 
D’où  4� ��, `, 7� �   7 V(
�a  

Où  4� ��, `, 7� �   7 V 
�> 

La solution de 5 �4� , 4� � � 0 ; en prenant  

5�q , Ç� �  Ç ��q� � 1  donne 

7��, `� � .�S� � 1`� V(
�a  avec . 
 ϕ� 

En effet posons � � 1 ��> � 1 ��a  � �  (Opérateur différentiel linéaire) 

Puis effectuons un changement de variables. 

 

Posons : Ú�� � S� � 1`�� � �             ̧ avec  1 , 0 

 

On a  
��> �  ����  ����> � ����  ����a � ����   . S � ����   
��a �  ����  ����a � ����  ����a � �1 ����   

Comme �7 � 1S �þ��� �  1 �þ��� � 1S �þ���  � �7     
�   1 �þ���  � �7    

�7 �   0  ⇒ 1 �þ ���  �  ��7  

⇒  �þ ���  �  � ßi 7 

Par suite  7���,��� � .����V(����      



40 

 

 

Finalement 7��, `� �  .�S� � 1`�V(��>      . 
 ϕ� 

 
Rappelons une propriété importante : 

Soient �� et  �� deux opérateurs différentielles linéaires à coefficients constants. 

Supposons que ��] ��  � ��]�� � �       avec  ��  ,  �� 

Désignons par °� et  °� les polynômes associés à �� et  �� 

Alors  

i. � est associé au polynôme  ° �  °�. °�  

ii. 7 �  ~� 7� � ~� 7�  ~�, ~�  
  »   
Avec �� 7� � 0 

�� 7� � 0  

En effet : 

~7 � ��~� 7� � ~� 7�� � ~��7� � ~�� 7�      
 � ~���]�� 7� � ~���]��  7�   
� ~������ 7�� � ~������  7��   
� ~�. 0 � ~�. 0 � 0   

Réciproquement si � est un opérateur différentiel associé au polynôme ° et si ° � °� °� , °� ,  °� 

Supposons que �� soit associé à °� 

�� soit associé à °� 

alors  

i.  � �  ��]�� � ��]��  
ii. �� 7� � ~� 7�� � 0  �  ~� ~�  
  »  

dès que  �� 7� �  ��  7� � 0 

  

⇒ �7 � 0 
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II.2. Exemple  

Résolution de :  

���>� � ��þ�>�a  � 2 ��þ�a�  � � �  `�Va   
 

Il s’agit d’une e.d.p. linéaire à coefficients constants avec second membre. 
 

Le polynôme associé à l’équation sans second membre est :  

°�� , `� �  �� � �¥ � 2¥� 

Essayons de factoriser ° 

Pour cela posons @ �  �� 

°�� , `� �  ¥������ � �� � 2�    
���� � �� � 2 � @� � @ � 2   

� �@ � ���� � �� � 2   
� �@ � ���� � ç�   
� �@ � ���� � �����   
� �@ � �� � �� � �@ � �� � �� �   
� �@ � 1� �@ � 1�  en remplaçant @ par  

�� 

� ��� � 1�  ��� � 1�  
°�� , `� �  ¥� ��� � 1�  ��� � 2�    

�  ¥� �� ( �� �  �� m ��� �  
�  �� � ¥� �� �  2¥�  

Comme ° �  °� . °� on a  � �  ��]�� � ��]��  
Avec  �� �  ��> � ��a  
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�� �  ��> � 2 ��a  

La solution générale est 7 � 7� � 7� 

Avec  �� 7� �  ��  7� � 0  

Pour L�  on a  1 � 1 ;  S � �1 ;     � 0  

Par suite 7� � .�S� � 1`�V(��> 0 
  �� 

 � 0�2� � `�  

Finalement  

7�� , `� �  .�� � `� � 0�2� � `�   
Avec ., 0 
  �� 

 

Déterminons maintenant la solution particulière. 

Pour cela cherchons la solution qui ne dépend que de x :  

��þ�>� � � ⇒ 
�þ�> � >�

�  ⇒ 7� �  >�
á � 7�  

Et pour la solution qui ne dépend que de y  

��þ�a� � `� Va  

On en déduit que : 

7 � �1`� �  S`� � � `� �  R` �  q �Va    
Avec 1, S,  , R, q 
  » 

�þ�a � �41`� �  3S`� � 2� ` �  R)Va �  (1`� �  S`� � � `� �  R` �  q )Va   
� M 1`� �  (41 � S)`� � (3S � �)`� � (2� � R)` �  q � ROVa   

Comme c’est trop grand, prenons  1 � S � 0 

Donc  
�þ�a � M�`� � (2� � R)` � q � ROVa    

��þ�a� � M2�` � (2� � R)Va � M�`� � (2q � R)` � q � R OVa     
� M�`� � (2� � 2� � R)` � 2� � R � q � ROVa     
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� M�`� � �4� � R)` � (2� � q � 2R)OVa    (1) 

Or � ���þ�a� � `�Va   ⇒ 
��þ�a� �  � �� `�Va (2) 

En identifiant (1) et (2) on obtient :  

� �  � ��  ; 4� � R � 0 ; 2� � q � 2R � 0 

D’où  R � �4� � �4 �� �� � �  2  

�1 � q � 4 � 0 q �  �3 
 

La solution particulière est donc :  

7��iX? � 7� � (� ��  `� �  2` � 3)Va   
Comme 7�iX? � 7� � 7� � �� ��  `� �  2` � 3� Va � >�á   
 

On en déduit la solution de l’équation différentielle partielle linéaire à coefficients 

constante avec second membre :  

7(� , `) �  .(� �  `) �  0(2� �  `) � ��6  � �� 12 `� �  2` � 3� Va   
Avec . , 0 
  �� 

 

II.3. Résolution de  : 	 û{û� �  � û{û	 � � (2) 

Pour cela posons : ü7 � �� � `�ý � �              ¸ 
La matrice Jacobienne  î �  ù(þ ,�)ù (> ,a) �  Û2� 2`1 0 Ü 
 

Par suite le déterminant de cette matrice notée RV@ î  est égale à  �2` , 0 sur   »� Ã(�, 0); � 
  »Å 
���> � ����þ  . �þ�> � �����  . ���>   
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et  

���a � ����þ  . �þ�a � �����  . ���a   
 

Comme  Â�þ�> � 2�       �þ�a � 2`      ���>  � 1        ���a  � 0        ¸ 
 

On obtient le système d’équations suivant : 

Â���> � 2� ����þ  � ����� ���a � 2` ����þ           ¸  
Soit :  

����>���a
� �  �2� 10 2`� �����þ�����

�  
 

L’équation aux dérivées partielles (2) devient  

` ���> �  � ���a � 0  ⇔ ` Û2� ����þ  � �����Ü �  2�` ����þ � 0  
⇔ 2�` ����þ � ` ����� � 2�` ����þ � 0   
⇔ y  &� ! � 0 

Comme y , 0 on a 
 &� ! � 0 

f� est alors une fonction de u. Posons f��u , v� � g�u� 

0 
  ��  12 

Or  u �  x� � y�  donc 0�u� �  g�x� � y�� 0 
  ��� »� 

On remarque que  . 
 ��� »��  
                                                           
12

 0 continue et dérivable une fois  
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II.4. Exemple :  

Résolution de l’équation aux dérivées partielles av ec 7�  
 ��� »�� 

4 ��þ�>� � ��þ�>�a � ��þ�a�  �  �þ�> � �þ�a  � 2 � 0 (3) 

 

Pour résoudre cette équation, posons : �� � ` � �     V@  �� � ` � >� 
La matrice Jacobienne J est donné par :  

î �  ù(�� , ��)ù (> ,a) �  &�1 1� �� 1'  avec  î �  �����> ����a����> ����a
� 

 

det J �  �1 � �� � (�m��  � � ��   , 0  J est inversible  

Comme  �� � ` � �      ����> �  �1 ; 
����a � 1 

 �� � ` � >�   
����> �  � �� ; 

����a � 1 

 

(�þ�> � �þ)���  . ����> � �þ)���  . ����>  �  � �þ)��� � �� �þ)���  �þ�a � �þ)���  . ����a � �þ)���  . ����a  �  � �þ)��� � �� �þ)���
 ̧ (a) 

 

Or  
��þ�>� �  ��>  ��þ��� � ���>  avec  ý � �þ�> 

Et  ý* � � �þ)��� � �� �þ)���  
���> � ��*��� . ����> �  ��*���  . ����> �  � ��*��� � �� ��*���   

Donc  
��þ�>� �  � ���� Û� �þ)��� � �� �þ)���Ü � �� ���� Û� �þ)��� � �� �þ)���Ü   

�  ��þ)���� � ��  ��þ)������ � ��  ��þ)������ � ��á ��þ)����   
 

Comme 
��þ)������ �  ��þ)������ 
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On a  
��þ�>� �  ��þ)���� � ��  ��þ)������ � ��á ��þ)���� (a’) 

��þ�>�a � ��a  ��þ�>� � ���a   
���a � ��*��� . ����> � ��*���  . ����>    

�  ��*��� �  ��*���   avec  
����a � 1 et  

����a � 1 

�  ���� M� ��*��� �  �� �þ)���O    avec  ý* �  � �þ)��� � �� �þ)��� � ���� M� �þ)��� �  �� �þ)���O    
� � ��þ)���� � ��  ��þ)������ � ��þ)������ � ��  ��þ)����   
� � ��þ)���� � è�  ��þ)������ � ��  ��þ)����   

Donc  
��þ)�>�a � � ��þ)���� � è�  ��þ)������ � ��  ��þ)����  (b) 

��þ)�a� � ��a  ��þ�a� � �+�a � �+)��� � �+)���    avec  Í � �þ�a   
Or 

�+�a � �+)��� . ����a � �+)��� . ����a   
 � �+)��� � �+)���   car  

����a � ����a � 1 

Comme Í � �þ�a � �þ)��� . ����a � �þ)��� . ����a   

Í) � �þ)��� �  �þ)���  

�+)��� �  ����  Û �þ)��� � �þ)���Ü � ��þ)���� � ��þ)������   
�+)��� �  ����  Û �þ)��� � �þ)���Ü � ��þ)���� � ��þ)������   
Et donc  

�+)��� � �+)���  � ��þ)���� � ��þ)������ � ��þ)������ � ��þ)����   
� ��þ)���� � 2 ��þ)������ � ��þ)���� � ��þ)�a�   

Par suite : 
��þ)�a� � ��þ)���� � 2 ��þ)������ � ��þ)����   
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Compte tenue des relations  (a), (a’), (b) et (c) 

On obtient  

�4 � 5 � 1) ú�7*ú��� � �2 � 254 � 2� ú�7*ú��ú�� � �14 � 54 � 1� ú�7*ú��� � (�1 � 1) ú�7*ú�� � 2 � 0   
 

D’après (3) 

� ç� ��þ)������ � �� �þ)���  � 2  

9 ��þ)������ � 3 �þ)���  � �8  

��þ)������ � �� �þ)��� � � æç   
 

Posons 2(��,��) � �þ)���  l’équation aux dérivées partielles devient : 

�.��� � �� 2 �  � æç     
L’équation sans second membre donne :  

�.��� � �� 2  

2(��,��) � /(��). V����    
La solution particulière est 2� � æ�  
D’où 2(��,��) � æ� �  /(��). V���� 

Comme 
�þ)��� �  2(��,��) 

On a  7*(��,��) �  æ��� �  Ý(��)V���� �  0(��) avec Ý 
C -2  

D’où  7(�, `) � æ�  �` � >�� �  Ý �` � >�� V1à�� � 0 �a(>� �  
 

Cherchons par exemple une solution 7(�, `) telle que :  

7(�, �) � ��   � x 
  »  
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7��, �� � æ�  . �� � � Ý ��>�  � � 0�0�   
 �� � 2� �  Ý ��>�  � � 0�0�  

⇒ Ý ��>�  � �  �� � 2� � S  avec  S � �0�0�     
On pose @ �  �>�  donc  � � �� @  
Ý�@ � � ��� @�� �  2 ��� @� � �áç @� � æ� @ � S   
D’où 7��, `� � æ�  �` � >�� ��áç �` � >� �� � æ�  �` � >���  V1à�� �  S 

Avec  S � �0�0�     
On pose @ � �� �  donc  � �  �� @ 

⇒ Ý�@� � ��� @�� �  2 ��� @� �   �áç @� � æ� @ � S  
 

D’où  7��, `� � æ� (` � >�� � ��áç �` � >� �� � æ�  �` � >���  V1à�� �  S   

 avec  S � �0�0�     
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Chapitre 4 : SYSTÈME DIFFÉRENTIEL DU 1 er ORDRE 

 

I. Généralité  

Soit @ 
  », Considérons  �I:  » #  » L � 1, �ííííí 

@ # �I�@�  

Une fonction dérivable pour chaque i variant de 1 à n  

.I:  »Fm�  #  »  

�@, ��, … �F�  # .I�@, ��, … �F�  

Une fonction à � � 1 variables  

Le système différentiel du premier ordre est donné par  

(I) (�r��@� � .��@, ��, … �F��r��@� � .��@, ��, … �F�ô                                �rF�@� � .F�@, ��, … �F�
¸ 

Si (I) admet une solution alors elle représente une courbe paramétrée dans  »Fm�  

(I) est un système différentiel linéaire si toutes les .I sont linéaires  L � 1, �ííííí 

(I) peut s’écrire :  

2�r��@�ô�rF�@�3 � 21���@� … 1�F�@�ô ô1F��@� … 1FF�@�3  2���@�ô�F�@�3 � Δ�@� 2���@�ô�F�@�3   
Si la matrice Δ�@� ne dépend pas de t, alors on obtient un système différentiel 
linéaire à coefficients constants. 

On s’intéresse aux 2 cas suivants 

- Système différentiel linéaire à coefficients constants 

- Système différentiel non linéaire à coefficients constants 

Dans ce cas les .I ne dépendent que de �I et non plus de t 

Dans le cas linéaire : �r�@� �  ∆ ��@� où  ��@� � 2���@�ô�F�@�3    
Et le  cas non linéaire  
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(�r��@� � .��@, ��, … �F��r��@� � .��@, ��, … �F�ô                                �rF�@� � .F�@, ��, … �F�
¸  

 

On pose  �rI�@� � >Q=? 1 P L P � 

Le système (I) dévient : 

=>��� � =>��� � ó �  =>j�j � R@   
 

I.1. Remarque   

Si le système est avec second membre ; dans le cas linéaire, on a : 

�r�@� �  ∆ �@� �  ��@� �  ä�@�  

Où ∆ �@� est une matrice � x � 

��@� , ä�@ et �r�@� sont des matrices � x 1 

II. Système différentielle linéaire à coefficients constants  

 
II.1. Sans second membre  �r�@� � ã ��@�  

 
Pour � �  1 on trouve ��@� � � V?6  , @ 
  » 

En généralisant  ��@� � V?6� ,  
Avec V?6 l’exponentielle de @ã c’est une matrice  � x � 

Et � étant une matrice  � x 1 

 
II.2.Avec second membre  

X’(t)=A(t).X(t)+B(t) 

Désignons par Xg la solution de l’équation sans second membre 

X’(t)=A(t).X(t) 

Xg =CetA et par Xp la solution particulière, donc : X(t)=Xp(t)+CetA 
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II.2.1. Détermination de C 
On utilise la méthode dite : Variation des constantes 

 ��@� � � V?6 

En dérivant on obtient : �´�@� � ã� V?6 � �r�?� � ã��@� �  ä�@�  ⇒ �rV?6 � ä�@�   
⇒ �r �  V(?6 ä�@� 

 
D’où � �  c V(?6 ä�@� R@ c’est une matrice unicolonne à n lignes.  
 
III. Exponentielle d’une matrice A  

L’idée vient de  V> �  ∑ >j
F!FlY   ,     � 
  »     

Et donc V6 �  ∑ 6j
F!FlY  En général c’est difficile à calculer  

Si ãä �  äã on a  V6m7 � V6 � V7 

Et  VY � 0Y � Y�
� � … �   F �  0 � ó 

donc  VY �  F 
si la matrice ã est diagonalisable  
Soit  ~I,  L � 1, nííííí    une valeur propre de ã 
On a ã � RL10 �~�, … , ~F� 

ã �  
ïð
ðð
ñ~� 00 ó 0

ô õ ô
0 ó 00 ~Fö÷

÷÷
ø
  

V6 �  
ïð
ðð
ñV8� 00 ó 0

ô õ ô
0 ó 00 V8�ö÷

÷÷
ø
  

 

Come  
69�! � RL10 �8�9�! , … . , 8j9�! �  

∑ 69�!�lY � RL10 �∑ 8�9�!�lY , … . , ∑ 8j9�!�lY �  

 
Par suite  V6 � �V8� , … , V8j� 

Compte tenue de  V8Q � ∑ 8Q9�!�lY   L � 1, nííííí     
 

III.1. Remarques  

R1. Si ã est diagonalisable alors il existe une matrice ± inversible tq ±(�ã± est 

diagonale. Notons : cette matrice : � ±(�ã±    

On en déduit que  ã � ±:±(� et  : � RL10 �~�, … , ~F� 
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Calculons ã� ã� � ã x ã �  �±:±(���±:±(�� � ±:�±(�    
Supposons que ã� � ±:�±(� 

Calculons ã�m� ã�m� � ã� . ã � ±:�±(�. ã   par hypothèse  � �±:�±(��. �±:±(��  � ±:��±(�±�:±(�  � ±:��±(�� avec ±(�± �   matrice identité  

On vient de montrer par récurrence  

Que  ã� � ±:�±(�    � g 
  !   
Et donc ∑ 69�!�lY � ± �∑ 69�!�lY �±(� 

 � ± RL10�V8� , … , V8j�±(�  

 d’où  V6 � ± RL10�V8� , … , V8j�±(�  
 

R2. Si la matrice ã est nilpotente c’est à dire  � Ý 
  ! tel que  ãÞm� � 0 et  ãÞ � 0 

Avec O la matrice nulle  

V6 �  �  6�! �  … . � 6;Þ!    Ý 
  !  
 
R3. D’après une théorie il existe une matrice D diagonalisable et une matrice 

nilpotente N telles que :  ã � : � !  ,    :! � !: V6 � Vùm< � Vù  �  V<  Vù est connue car : est diagonalisable  V< l’est aussi car ! est nilpotente  

R4. En général V6 est trop longue à calculer tant que possible on évite de la 

calculer. 

 

III.2. Autres méthodes  

Considérons l’équation différentielle  �r�?� �  ã ��@�  
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III.2.1. = : diagonale  

ã �  >~� 0 … 00ô õ 0ô0 0 ó ~F
?  

Le système devient  

·�r��@� � ~����@� ô�rF�@� � ~F�F�@�¸  ⇒ Â���@� � ��V8�?  ô�F�@� � �FV8j? ¸ 
 

III.2.2. = : triangulaire supérieure  

Cette matrice est de la forme : 

ã �  �~� @0 ~F�  
On a  

( �r��@� � ~����@� � S�����@�, … , �F�@��  ô                                                                 �rF(��@� � ~F(��F(��@� �  SF(��@�          �rF�@� � ~F�F�@�                                             ̧ 
 

On résout la dernière équation qui donne comme solution �F�@� � �F V8j�?�, puis on 

remplace �F dans l’avant dernière équation. �rF(��@� � ~F(��F(��@� �  SF(��@�  

C’est une équation avec second membre. On peut trouver �F(��@�, et ainsi de suite, 

on remonte jusqu’à la première équation. 

 

IV. Exemples  

 

IV.1. Exemples Résolution d’un système de 3 équatio ns différentielles  

Résolution du système  Â�r�@� � ��@� �  `�@� �  §�@�`r�@� �  2`�@� �  §�@�          §r�@� � �§�@�                       ¸  
��r�@�`r�@�§r�@�� �  21 �1 10 2 10 0 �13 �

��@�`�@�§�@��  donc  Δ �  21 �1 10 2 10 0 �13 
§r�@� � �§�@�  ⇒  §�@� � �V(? 
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La deuxième équation devient : `r�@� �  2`�@� �  �V(?   
Résolution de l’équation sans second membre (e.s.s.m) `r�@� �  2`�@� � 0 ⇒  `r�@� �  2`�@� 

⇒ 
aÕ�?�a�?� � 2  ⇒ `�@� �  SV�? 

Une solution �̀�@� particulière est donnée par :  

�̀�@� �  ~V(? 
Par suite `r�@� �  2`�@� �  �V(?   

�̀�@� �  ~V(?  ⇒ `´��@� �  �~V(?   
�~V(? � 2~V(? � �V(?   ⇒ ~ �  � ß� 

D’où  �̀�@� � � ß�  V(?  
Donc  `�@� � � ß�  V(? � SV�?  
`�@� et  §�@� étant connus, l’équation  �r�@� � ��@� �  `�@� �  §�@�  

devient   �r�@� � ��@� � �ß�  V(? � SV�?  
c’est une équation différentielle avec second membre qui permet certainement de 

déterminer ��@� 

Remarque  

Si  ã �  ±Ù±(� , avec S diagonale ou triangulaire, la matrice P est inversible 

c'est-à-dire A est diagonalisable ou triangularisable. �r � ΔX   

⇒ �r � ±Ù±(�X   

⇒ ±(��r � Ù±(�X   

On pose   ¥ �  ±(�X   ¥r � �±(�X�r � ±(�X´    car �±(��r � 0 �r � ΔX  devient  ¥r � SY  avec S diagonale ou triangulaire. 

On trouve Y avec l’une des deux méthodes précédents  ¥ �  ±(�X  ⇒ � �  ±¥ Remarquons qu’on n’a pas besoin de calculer  ±(� 
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IV.2. Exemple 

Résolution du système  �r�@� �  2��@� �  2`�@� 

    `r�@� �  ��@� �  `�@� 

avec  x(0) = 1 et y(0) = 0 

 

 

IV.2.1. Méthode 1  (passer par exponentielle) 

��r�@�`r�@�� = Û2    21    1Ü  ���@�`�@�� 
Posons ��@� = ���@�`�@��   A = Û2    21    1Ü 
L’équation différentielle devient �r�@� � A ��@� 

• Calcul des valeurs propres de A  

C2 � ~            21             1 � ~C = ~ �~ � 3) 

Il existe deux valeurs propres simples : ~1 = 0 et ~2 = 3 

A est diagonalisable sur :. Il existe donc une matrice inversible P tel que D = PAP-1 

D = Ò ~�     00     ~� Ò 
La première colonne de la matrice P étant le vecteur propre associé à ~1.  

La deuxième colonne par le vecteur propre associé à ~2. 

• Détermination des vecteurs propres  

Soit E~1 le sous espace associé à ~1 = 0 

On a :     2� � 2` �  0 

     � � ` �  0 

donc 7Du1 = �1, �1� et E~1 = Æ 7Du1t est le sous espace engendre par le vecteur 7Du1. 

Soit E~2 le sous espace associé à ~2 = 3. 

      7Du2 
 E~2  ⇒  A7Du2 = 37Du2 

                    Û2      21       1Ü  Û�̀Ü = �3�3`� ⇒   Ú2� � 2` � 3�� � ` � 3`  ̧

     ⇒    � � 2`     ⇒   7Du2 = (2,1) 

Le sous espace E~2 engendré par 7Du2 est E~2 = Æ 7Du2t 

• Détermination de P -1 : (matrice inverse de P) 

Comme P = Û1         2�1      1Ü 

⇒  ` �  �� 
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tenant compte de Û1       S       R Ü-1 = 
�i=(�� ÛR      � S�       1 Ü 

avec 1R � S  ≠ 0 

On a :   P1 = 
�� Û1    � 21         1Ü 

A = PDP-1  ⇒   @A = P(@D) P-1 

et etA = P etD P-1 tD = Û0      00     3@Ü 
etD = Û 1      00     V�?Ü 
etA = P etD P-1 = 

��  Û 1       2�1     1Ü  Û 1       00     V3@Ü  Û1    � 21         1Ü 
= 

�� �1 � 2V�?          � 2 � 2V�?�1 � V�?               2 � V�? � 
�r(@) � A �(@)    ⇒    �(@) = VtA �3 ��3 ���        C1, C2 sont des constantes.  

            Ú�(@) � �� (1 � 2V�?) � �� (�2 � 2V�?)`(@) � ��(�1 � V�?) � �� (2 � V�?)       ̧
¸�(0) � 1`(0) � 0E  ⇒  

��1J�  ⇒  �1J ��� �2JY  ⇒  �2JY    

Par suite Â �(@) �  ��  (1 � 2V�?)`(@) �  ��  (�1 � 2V�?) ̧
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IV.2.2. Méthode 2  (sans passer par exponentielle) �r�@� � A ��@�     A = P D P-1 

   Y = P-1X  ¥ �  �`1`2� 
   Y’ = DY 

On en déduit que : `´1�@� = 0  X = PY 

   `´1�@� = 3 `2�@� 

⇒ Ú`��@� � ��      `��@� � ��V3@ ̧         ��(@)`(@)�  =  Û1        2�1     1Ü   � ���� V�?� 
⇒ Ú �(@) � �� � 2�� V�?`(@) � ��� � �� V�?  ̧ 
¸�(0) � 1`(0) � 1E  ⇒  Ú�� � 2�� � 1                         ��� � �� � 0  ⇒  �� � �� ¸  
d'où �� � �� = 

��  

On retrouve le résultat précédent.  

 

IV.2.3. Méthode 3   

  Ú�r(@) � 2� � 2``r(@) � � � `     ¸ 
donc �r(@) � 2`r(@)  ⇒   �(@) �  2`(@) � � 

⇒ �(@) � 2`(@) � � 

La deuxième équation : `r(@) � 3`(@) �  � 

L’équation sans second membre donne comme solution générale `g = b V3t et la 

solution particulière : `p = � �3  

d'où la solution  `(@) �  � ß� � S V3t 

     �(@) �  2` � � �  ß� � 2S V3t
 

¸�(0) � 1`(0) � 1E  ⇒  Â ß� � 2S � 1                                    � ß� � S � 0     ⇒    � � 1; S � ��̧
  

On retrouve aussi le même résultat.  
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V. Système différentiel non linéaire à coefficients  constants  

 

V.1. Généralités  

On se ramène à 
=>��� � =>��� � ó � =>F�F   ´ 

Où .i sont fonction de �1,………… �n. Une solution de (I) est une courbe paramétrée 

de vecteur tangent en M(t) : >=>�=?ô=>F=?
? � 2�r1�@�ô�r��@�3   

 

(I’) veut dire que le vecteur ýu est parallèle à   � �  MF�?�O
� j  MF�?�O

 pour tout M(t) de la 

courbe solution.  

On s’intéresse aux cas � � 2, 3. 

Pour le cas � � 1 c’est l’équation différentielle ordinaire d’ordre 1. 

Pour � � 2        
=>Ô�>,a� = 

=aG�>,a� 
Pour � � 3        

=>Ô  = 
=aG  = 

=H�  

On note (S) ce système.  

       

V.2. Intégrale première de (S)  

Cas � � 2      (S) = 
=>Ô  = 

=aG  

Une intégrale première est une fonction de classe C   1 telle que pour toute courbe 

de solution (F) de (S) pour tout point I�@� 
 �F� : 

         4 MI�@�O est constante c'est-à-dire ne dépend pas de @.  

  I Ú� � ��@�` � `�@� ̧        I�@�: M��@�, `�@�O 
Cas � � 3      analogue  

          4 (�, `, §) de classe C   1  4 MI(@)O = constante sur (5) 

Remarque   

Cas � � 2      a fixé 
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          4 ��, `� = a est l’équation d’une courbe.  

Cas � � 3       

          4 (�, `, §) � 1 est l’équation d’une surface.  

 

VI. Fonctions indépendantes  

 

 VI.1. Définitions  

• Cas � � 2       

Soient U et V deux fonctions à 2 variables de classe C   1 

 
VI.1.1. Définitions-1  

U et V sont indépendantes si la matrice Jacobéenne. 

î �  J(K,L)J (',M) �  
ïð
ðñ
NON>          NONa
N�N>           N�Naö÷

÷ø est inversible (det J ≠ 0) (en tant que fonction)  

donc de rang maximal égale à 2 

 

VI.1.2. Définitions-2  

• Cas � � 3       

U et V sont indépendantes si : 

ïð
ðð
ñP4P�          P4P`          P4P§
P
P�         P
P`            P
P§ö÷

÷÷
ø
 

est de rang 2 c'est-à-dire l’un des trois.  

Déterminants extraits est différents de zéro.  

 

VI.1.3. Exemples  

Exemple 1  

4 � �² � `²            NON> � 2�         
NONa � 2` 


 � �`                    
N�N> � `            

N�Na � � 
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donc   �NON>         NONaN�N>          N�Na
� = 22�        2`

`            � 3 
Le déterminant de cette matrice est : 2�² � 2`²≠ 0 donc U et V indépendantes.  

Exemple 2  

      
OJ>aH
�JHm>             �NON>         NONa         NONHN�N>          N�Na         N�NH�  = >`§     �§      �`

1        0        � ? 
Le déterminant  extrait C`§     �§1         0C = � �§ ≠ 0 (en tant que fonction) 

 

VI.2. Méthode pratique  

• Cas � � 2       (S) : 
=>Ô �  =aG  ⇒ ° R� � ±R` � 0 

S’il existe U telle que ° R� � ±R` � R4 

C'est-à-dire ° R� � ±R` est une différentielle exacte alors U est une intégrale 

première.  

En effet R4 = 0 ⇒ 4 est constante  

    ⇒ 4MI�@�O = constante � I�@� 
 �5� 

VI.2.1. Exemples    
=>a �  � =a>  

⇒⇒⇒⇒ � R� � ` R` � 0 

⇒ R �>²ma²� � � 0 ⇒ R��² � `²� � 0 

d'où 4 � �² � `² est une intégrale première 

• Cas � � 3        

(S) : 
=>Ô �  =aG  � =H�  

 Rappel : i� �  �=  ⇒ i� �  �= �  λimγ�
λ�m γ=       ∀ (λ, γ� ≠ �0,0�  

Pour déterminer une intégrale première U il suffirait de trouver ., 0, 0 des fonctions 

telles que: .± � 0° � �» � 0 

et dans ce cas :  
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(S) : 
=>Ô �  =aG  � =H� �  �=>mò=amR=HY   

Ce qui donne par un certain abus.  »�.R� � 0R` � �R§� �  0R§ ⇒ .R� � 0R` � �R§ � 0  

Si .R� � 0R` � �R§ est exacte alors elle est égale à R4 ainsi R4 � 0 ⇒ 4 = 

constante donc 4 est une intégrale première.  

 

 Remarque  

Cette méthode peut s’appliquer aussi pour le cas � � 2  

 

VI.2.2. Exemples     

  Exemples.1  

(S) : 
=>a �  � =a>   

On a vu que 4 � �² � `² est une intégrale première.  

La solution est donnée par :  

(va) a pour équation paramétrique :  

(va) : ü� � 1 cos @` � 1 ^L�@  ̧

(S) est aussi un système différentiel linéaire 

(S) ⇔ Ú �r�@� � `�@�`r�@� � ���@� ̧   ⇒  `" � ��´ � �` 

` � ã sin �@ + 2� vérifie ce système. En effet � � �`r � �ã cos �@ + 2� 

La solution est Ú ��@� � ã cos�S � @ � 2�`�@� � ã sin� �S � @ � 2� ̧

 

  Exemples.2  : Résolution de l' 

(S) : 
=>>�a(H� �  � =aa�H(>� � =HH�>(a�  

On a ici : ± � ��` � §� 

  ° � `�§ � �� 

  » � §�� � `� ± � ° � » � ��` � §� � `�§ � �� � §�� � `� ± � ° � » � �` � §� � `§ � �` � §� � §`� � 0 
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Comme   
=>Ô �  =aG � =H� � =>m=am=HY  

⇒ R� � R` � R§ � 0 

⇒ R�� � ` � §� � 0 

⇒ 4 � � � ` � § est une intégrale première.  

La deuxième intégrale première est donnée par :  `§ ± � �§ ° � �` » � 0 

donc `§ R� � �§ R` � �` R§ � 0 

comme R��`§� � `§ R� � �§ R` � �` R§  

on en déduit que R��`§� � 0 

Par suite 
 � �`§ est une deuxième intégrale première.  

La solution T1, S est la courbe d’équation 

�T1, S� : Ú� � ` � § � 1�`§   �    S ¸ 
 

VII. Comment reconnaître une différentielle exacte  

 

VII.1. Cas à 2 variables  

Soient ±, ° 
 C   1 

±R� � °R` est exacte si et seulement si 
NGN> � NÔNa  

Dans ce cas 4 telle que R4 � ±R� � °R` est donnée par :  

4��, `� � e ±�7, `�R7 � e °��], ý�Rýa
ab

>
>b  

�], `] étant fixés arbitrairement 

 

VII.2. Cas à 3 variables  

Soient ±, °, » 
 C   1  

±R� � °R` � »R§ est exacte si et seulement  

si W]@ DDDDDDDu n±°»p = ]u où W]@ DDDDDDDu désigne le rotationnel 
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W]@ DDDDDDDu n±°»p = UDDu Λ 2±°»3 = 

ïð
ðð
ñ NN>NNaNNHö÷

÷÷
ø
 Λ 2±°»3 

                = 

ïð
ðð
ñN�Na � NGNHNÔNH � N�N>NGN> � NÔNaö÷

÷÷
ø
   Il s’agit ici de la composante du vecteur W]@ DDDDDDDu n±°»p 

Dans ce cas :  

4��, `, §� �  c ±>>b �7, `, §�R7 � c °��], ý, §�]Í �aab c »��], `], Í�RÍHHb   

 

VII.3. Exemples  

 

VII.3.1. Exemple-1  Í � ` R� � � R` 

On a ± � ` ; ° � �              P°P� � P±P`  � 1 

donc Í est exacte 

Í � R4 ]ù 4��, `� � c ±>>b �7, `�R7 � c °��], ý�]Íaab   

    = c `R7 � c �] R7aab>>b  

    = `�� � �]� � �]�` � `]� � �` � �]`] 

On prend 4��, `� � �`      (4 est définie à une côte près)  
 

VII.3.2. Exemple-2  

Í � `§�  R� � § Ý�� R` � ` ln � R§ 

± � `§�                    P±P§ � �̀                         P»P� � �̀   
° � § Ý��                  P°P§ � Ý��                     P°P� � §�   
 

» � ` Ý��                  P»P` � Ý��                     P±P` � §�   
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W]@ DDDDDDDu 2±°»3 = 

ïð
ðð
ñN�Na � NGNH � Ý�� � Ý�� � 0NÔNH � N�N> � a> � a> � 0         NGN> � NÔNa � H> � H> � 0         

 ̧

d'où W]@ DDDDDDDu 2±°»3 =  ] DDDu  ⇒  Í est une différentielle exacte 
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Chapitre 5 : TRANSFORMEE DE LAPLACE 

 

I. Transformée de Laplace  

 

I.1. Définition  

Soit .�@� une fonction à une variable dont le support noté supp . est inclus dans :+ 

c'est-à-dire .�@� � 0 si @ Æ 0. 

La transformée de Laplace de . si elle existe est :  

           �M.�@�O < Ω   :          avec Ω ⊂ ⊄ 

      g  c .�@�V�Y - gt R@ ; g∈⊄ 

 

I.2. Remarque  �g∈⊄      �M.�@�O (g) n’existe pas toujours.  

 

I.3. TABLEAU DE :  �M.�@�O(g) 

Quelques valeurs de �M.�@�O(g) 

{�W� pour W t 0 XM{�W�O(¬) 
Domaine de définition 

de XM{�W�O(¬)  

1 
1g »V�g� t 0 

@ 
1g² »V�g� t 0 

V-at, 1∈⊄   

V-at, cos�Í@� 
g � 1�g � 1�� � Í² »V�g � 1� t 0 

V-at, sin�Í@� 
Í�g � 1�� � Í² »V�g � 1� t 0 

»V signifie : partie réelle �g∈⊄� 

 

I.4. PROPRIETES : 

P1 : L est ⊄ - linéaire  

      ��λ. � 0� � λ ��.� � ��0� 
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P2 : ��@n .�@��g� � ��1�n =j
=�j M.�@��g�O 

P3 : �M.�@ � 1�O�g� � V-pa �M.�@�O�g�  

 

P4 : �M.A�?B�g� = g k �M.�@�O�g� � gk-1 .�]+) 

�gk-2 .´�]+) …………g.(k-2)�]+) - .(k-1) .�]+)  

où .(l)�]+) = ÝL_ .(l)�@� 

                     @→]+ 

 

I.5. Application  

Résolution de l’équation différentielle :  �"�@� � 3�´(@) � 2�(@) � @ 
 

avec     �(]) � 1      ,         �r(]) � �1 

Pour cela, on cherche �(@) telle que �(@) � 0 

si @ Æ 0. On utilise:  �(. (k)(@))(g) � gk A�(.)B(g) � gk-1 .(]+) �(�"(@))(g)  =  g² �A�(@)B(g) � g �(]+) – �r(]+) 

  =  g² �A�(@)B(g) � g � 1 �(�´(@))(g)  =  g �A�(@)B(g) �  �(]+)  
  =  g �A�(@)B(g) � 1 �(�"(@) � 3�´(@) � 2�(@))(g) � �(@)(g)   

⇒ g²� � g � 1 � 3g� � 3 � 2� � ��²  
       �(g� � 3g � 2) � ��² � g � 4 

�A�(@)(g)B � 1g² � g � 4
g² � 3g � 2 � g� � 4g² � 1g�(g � 1)(g � 2) 

On décompose en éléments simples et ensuite consulter les formules.  g� � 4g² � 1g�(g � 1)(g � 2) � 1g² � Sg �  g � 1 � Rg � 2 

�²(��(��²m�)��(�(�)(�(�) � 1 � Sg � ��²�(� � =�(� (1) 
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On prend g � 0 

(1) Devient : 
�� � 1       ⇒          1 � ��  

�²���(��²m������(����(�� � i� � S � ���(� � =��(� 

faisons tendre g vers l’infini g� � 4g² � 1g (g � 1)(g � 2) →�+mY1  

1g � S �  gg � 1 � Rgg � 2    →�+mY S �   � R 

donc S �   � R � 1 

pour  g � �1                g3�4g²�1g2Ag�1B(g�2) � �1�4�1�2(�3) � �46 � � 23  

1g² � Sg �  g � 1 � Rg � 2 � 1 � S �  2 � R3 

                   � �� � S � �� � =�    car 1 � 12 

            � �(á�(��(�=á  

donc � 46 � 3�6S�3 �2R6  

⇒ -7=�6S � 3  � 2R 

⇒ 6S � 3  � 2R � 7 (��) 

 

pour g � �2 �8 � 16 � 14(�3)(�4) � 14 � S2 �  3 � R4 

                         � 31 � 6S � 4  � 3R4.3  

⇒ 
(���   � 31 � 6S � 4  � 3R 

           = 23 �6S � 4  � 3R                 1W (1 � ��) 

    
(��(á�  � �6S � 4  � 3R 

�29 � �24S � 16  � 12R 

⇒ 24S � 16  � 12R � 29 (��) 
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D’après les relations (�),(��),(���) 

on a ·S �   � R � 1                 6S � 3  � 2R � 7          24S � 16  � 12R � 29¸                     ⇒      
�J�   �J�â   
=J([â

 

d’où la solution      ��@� � ü1@ � S �  V@ � RV2@  ^L @ t 00 ^L @ Æ 0                                      ̧
 

En effet :  g� � 4g² � 1g�(g � 1)(g � 2) � 1g² � Sg �  g � 1 � Rg � 2 

        = 1. �(@) � S�(1) �  �(Vt) �R�(V2t)  
        = �M1@ � S �  Vt �RV2t] (g)  
         car � est linéaire 

Comme �A�(@)B(g) � �(1@ � S �  Vt�RV2t) (g)  
On en déduit que :  

 �(@) � 1@ � S �  Vt�RV2t ; @ t 0 

                              � �� @ � �� � 2Vt� é� V2t ; @ t 0 

donc �(@) � Â�� @ � �� � 2V? � é� V�?  g]7W @ t 0 
0 ^L @ Æ 0                                           ¸ 
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CONCLUSION PARTIELLE 

 

On vient de déterminer la solution de l’équation 

différentielle du second ordre avec second membre à l’aide 

de la transformée de Laplace. 

Cette méthode est très efficace pour la résolution 

d’une telle équation différentielle  
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TROISIÈME PARTIE 
 

 

Dans cette troisième partie on va voir  

- L’équation de la Chaleur 

- Les oscillateurs mécaniques et électroniques 

- Les équations des ondes sur IR 

Dans ces chapitres on va utiliser des diverses méthodes pour résoudre des 

équations aux dérivées partielles rencontrées dans les chapitres précédents  
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Chapitre 6  : ÉQUATION DE LA CHALEUR 

 

Position du problème  

On considère une barre de longueur Ý � 1 soumise à une source de chaleur de 

densité .��, @) en un point x 
 ] 0,1[ et à l’instant `. on s’intéresse à l’évolution de la 

température 7��, @� en un point �’ e à l’instant @ lorsqu’on maintient le bord � � 0 et � � 1 à température constante (par exemple à zéro). Grâce à des lois physiques et 

mécaniques on établit l’équation de l’évolution de la température :  

 

�þ�?=\ ]�þ]>� � .��, @� ; x 
 O0,1M , t 
 O0,^M 
Où \> 0 désigne la conductivité du matériel.  

Les conditions aux limites ainsi que les conditions initiales sont données par : 7 �0, @�  �  7 �1, @�  �  0  pour @ 
  O0,^M 7 ��, 0�  �  7Y ���  pour  � 
  O0,1M , c’est la répartition de la température initiale 

 

1. MÉTHODE DE SÉPARATION DES VARIABLES  

Soit à résoudre l’équation aux dérivées partielles :  

(E) : 
�þ�?  = 

��þ�>�  pour x 
 O0,1M et @> 0 

 

On veut déterminer l’évolution de la température 7��, @� c’est une application à deux 

variables en � et @  
La méthode consiste à déterminer deux applications � et ^ de telle sorte  

que 7��, @�  �  ����.^�@� 
On a 

�þ�?  ��, @� � ���� �_�?��?  d’une part, d’autre part 

 
�þ�>  ��, @� � Û���>��> Ü.T��� et en dérivant pour une deuxième fois l’expression par 

rapport à x, on obtient
��> Û���>,?��> Ü � ��>  Û���>��> Ü.^��� 

Ce qui donne 
���>� 7��, @� � ���>� ����.^��� 

L’équation (e) devient : ���� �_�?��? � ����>��>� .^�@� 

Ce qui donne 
`�a���`����>� � `b�c�`c_�?�  
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On a de
f����>��>� � ������1�

 �_�?��?  � �^�@��2� ¸        
On va distinguer 3 cas suivant les valeurs et le signe de K 

 

1.1. Si K=0 

(1)Á ����>��>� � 0 c’est une équation différentielle du second ordre en x, qui admet 

comme solution :  

X��� = ax +b  avec a,b,
  g 

Et (2) Á �_�?��? � 0 c’est une équation différentielle du premier ordre en t qui admet 

comme solution :  

T�@�� = c avec c 
 g  
L’évolution de la température est donc donné par :  

U��, @� � ����.^�@� 

=�1� � S�.   

= �1� � S� 1ýV  1, S,   
  g 

Pour K=0 u��, @� �  �1� � S� � 1 � � S  est une solution de (E) 

 

1.2.Si K=T� t 013 
Supposons maintenant que Kt0 et qu’il existe h � g tel que K=ú� 

La relation (1) devient 
����>��>� � ú����� 

C’est l’équation différentielle du second degré en x admet comme solution  

X(x) = aV]> � SV(]>@avec a,b 
  g 

La relation (2) donne   
�_�?��? � ú�@. Cette équation différentielle du 1e ordre en t admet 

comme solution : T�@� �   exp � T�^� avec c 
  g 

D’où la solution de (e) : 

u��, @� �   exp � T�^�M1 exp�T�� � S exp����O avec a,b,c 
  g 

C’est l’évolution de la température pour K=T� t 0 

                                                           
13

 T : conductivité du matériel 
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1.3.Si K=�T� Æ 0 

Supposons que K soit négatif et qu’il existe T 
  IR tel que K=�T� 

(1) devient : 
����>��? � �δ�X�x� qui admet comme solution X(x)� cos�T�� �

Ssin(T�)  

avec a, b 
  IR 

d’une part, 2t d’autre part : 

(2) Donne : 
��_�?��? � �δ�T�t�qui admet comme solution  

T�@� �   exp ��T�@� avec c 
  IR 

Finalement l’évolution de la température pour ce dernier cas où K=�T�est donnée 

par une famille infinie de solution :  

u��, @� �   exp ��T�@�Ma cos�T�� � S sin(T�)O 
*e et exp désigne la même fonction exponentielle  

Munissons maintenant (H) des conditions aux frontières (5) et des conditions 

initiales (I) fournies par : 

�5�: · 7�0, @� � 0 � @ t 0                   ú7ú� �1, @� � 7�1, @� � 0� @ t 0 ̧ 
 

�5�: Ú7��, 0� � .��� 1ýV  .�0� � 0 V@ .r�1� � .�1� � 0.� ú�, . , 0                                                                          ̧
On cherche encore 7��, @� par la méthode de séparation de variable  

Soit tt 0 �5� devient : 

• 7��, 0� � l ��0� Ð ��0� � 0 

• 
�þ�> �1, @� � 7�1, @� � 0 est équivalent à  

�5�:( ú7ú� �1, @� � ^�@�.�r�1�            7�1, @� � ��1�.^�@�                  M�r�1� � ��1�O^�@� � 0      �3) ̧

La dernière équation (3) nous donne : �r(1) � �(1) � 0 

Les conditions aux frontières (F) s’écrivent alors 
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�5�: Ú��0� � 0                �r�1� � ��1� � 0̧ 

D’autre part les conditions initiales (I) deviennent  

(I): Â7��, 0� � .��� l ����.^�0� � .��� �� 
 O0,1M.�0� � 0 l 7�0,0� � ��0�.^�0� � 0                   .r�1� � .�1� � 0 l M�r�1� � ��1�O.^�0� � 0  ̧

  Comme . , 0 donc ^�0� , 0  

par conséquent M�r�1� � ��1�O.^�@� � 0 Ð �r�1� � ��1� � 0 

Reprenons la résolution des équations différentielles  

Â����>��>� � ��@��_�?��? � ^�@� ¸avec K 
 IR en tenant compte des conditions (F) et (I) 

Distinguons encore 3 cas suivant les valeurs de K 
 : 

 

• Si � � 0 

·ú�����ú��� � 0 ¸ � � ���� Ð ú�����ú�� � 0 Ð ���� � 1� � S 

1ýV  1, S, 
  » 

Comme X(0)=0 alors ^ Ð S � 0 

Par suite ���� � 1� 1ýV  1 
  » 

Considérons �r�1�  et  ��1� �r�1� � ��1� � 1 � 1� 

Pour x=1 on a 1 � 1. 1 � 1 � 1 � 21 

Comme �r�1� � ��1� � 0 on a en déduit que la valeur du nombre réel 1 est aussi 

nulle 

Par conséquent : ���� � 0 � � nous donne .��� � ����.^�0� et ceci pour tout � 
 O0,1M autrement dit 

 . º 0�. LRV�@Lµ7V_V�@ �7ÝÝV�ce qui contredit . � 0 

Finalement la valeur de K égale à 0 est à exclure. Elle ne convient pas. Passons 

maintenant au deuxième cas ie � � T� t 0 

• Si � � T�, T t 0 ú�����ú�� � ú����� Ð ���� � 1 exp�T�� � S exp ��T�� 

��0� � 0 Ð 1 � S � 0 Ð S � �1 
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�r�1� � ��1� � 0 Ð 1 δ exp�δ� � S exp��T� � 1 exp�T� � S exp��T� � 0 Ð 1 úMexp� T� � exp ��T�O � 1 exp� T� � exp��T� � 0 �4 ) V� gWV�1�@ � � 1 

a est différent de zéro sinon b=-a=0 

par suite � º 0 ce qui est impossible (4 )RVýLV�@: T2 �T � 2^�T � 0 g]7W T t 0 c’est impossible car chtm 1 � @ 
  »   
         V@shtt 0 � @ t 0 

Donc K= T� t0 est aussi à exclure. Il reste le dernier cas où K= �T� Æ0, T t 0 

• Si � � �T� Æ 0, T t ú�����ú�� � ú����� Ð ���� � 1 cos T� � S sin T� ; 1, S 
  » 

X�0� � 0 Ð 1 � 0 R]�  S , 0 Xr�1� � X�1� � 0 Ð ST ]^T � S^L�T � 0 Ð T ]^T � � ^L�T Ð T � � tg T 

Ce qui nous donne une famille ���� � S^L��T��1ýV  � T � tg T; T t 0 

Il reste à déterminer T(t) 

Pour K� T� Æ 0 ú^�@�ú@ � �ú�^�@� Ð ^�@� �  V�g��T�@�1ýV    
  » 

Comme X(x).T(0)=f(x) 

On en déduit que : MS sin�T��O  � .��� 

Cette relation permet d’avoir la valeur du nombre réel sur  » 7��, @� est la mesure de 

la température du point d’abscisse � à l’instant @avec conditions initiales. On utilise la 

transformation de Fourier pour résoudre 
�þ�>,?��? =

��þ�>,?��>�  

Fixons alors t ; 7��, @� � .��� 

On a : ��T�=FM.���O�T� � c 7��, @��� . V(�In>R� 

Comme 
�þ�? � ��þ�>� on en déduit que : 

úú@ ��T, @� � 4T�S��(T, @) � 0 

�(T, @) � �(T) exp��4S�T�@) � 5M.?  (�)O(T) 

Pour t fixé et à l’aide du tableau des valeurs de F on obtient : 

exp��4S�T�@) � 5 & 1√4S@ exp p� ��4@q' (T) 
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Si 0��� � 5í ���T��   (transformée inverse) 

Comme : 5�f @ 0� � 5�.� � 5�0� 

On a : 5�fr� � 5�0� � 5 Û �√�n? exp �� >��?�Ü �T� 

= 5 Û0 @ � �√�n? exp � >��?�Ü 
D’où 7�x, t� � fr��� � 0 @ �√�n? exp �� >��?� 

En particulier sur :m 

Âú7ú@ � ú�7ú��   �, @ m 0                7��, 0@� � .�x�; u�0, t� � 0̧ 

7��, @� est donnée par une certaine formule pour f(x)=A où désigne une constante.  

Désignons par VW. la fonction : error fonction définie par : 

VW.�@� � �√n c exp ��s��?Y R^ et par VW.  la fonction d’erreur complémentaire. 

Rappelons que :VW.�@�  �  VW. �@�  �  1�@ m 0 

 

La solution fondamentale de : 

�þ�? � ��þ�>�  est donnée par : 

7��, @� � 1√S exp �� ��4@) 
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CONCLUSION PARTIELLE 

 

On vient de déterminer l’évolution de la température 

7�� , @� �  �√�n? exp�� >�
? � en un point x et à l’instant t lorsqu’on 

maintient le bord x = 0 et x = 1 à température constante 
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CHAPITRE 7 : OSCILLATEURS MECANIQUES ET ELECTRIQUES  

 

Nous allons essayer d’utiliser, d’appliquer les méthodes de résolution d’une 

équation différentielle pour établir l’équation du mouvement et l’expression de 

l’énergie dans le cas suivant : 

- Oscillateurs non amortis ; 

- Oscillateurs amortis par résistance fluide ou électrique. Cela permet 

d’étudier la théorie générale des oscillateurs. Pour cela, nous allons étudier le 

mouvement d’un pendule de torsion, d’un pendule pesant, d’un pendule simple et 

d’un circuit oscillant. En réalité, ces divers systèmes présentent des points communs 

essentiels. Ils font partie des oscillateurs mécaniques et électriques. 

 

I. OSCILLATEURS NON AMORTIS  

 

I.1. Mouvement rectiligne d’une masse ponctuelle 

accrochée à un ressort 
 

On accroche une masse ponctuelle de masse m à un 

ressort de raideur k de masse négligeable. On tire la 

masse négligeable. On tire la masse verticalement vers 

le bas. A l’instant t, le centre de gravité G se trouve à 

l’abscisse x de la position d’équilibre G0 prise comme 

origine de l’axe vertical descendant. On admet que les 

forces de frottement et l’action de l’air sont négligeables. 

L’inventaire des forces appliquées nous donne _0DDDDDDu.et D̂u 
L’équation différentielle régissant le mouvement pris par la masse est : 

_0u � D̂u � _vu (1) 

En projetant sur l’axe vertical descendant, on obtient : 

_s0us � - D̂u- � _svus   avec   - D̂u- � s�� �  ΔÝ� 

(1) devient   _s0us � s�� �  ΔÝ� � _svus   
⇔ _s0us � s� �  sΔÝ � _svus   
⇔ _s0us  �  sΔÝ  � s� � _ =�>=?�    avec svus � =�>=?�     

l 

ΔÝ 
G 

x D̂u 
m0u

+ 



79 

 

 

0 

⇔ _ =�>=?� �  s� � 0 

Comme _ , 0 on a  
=�>=?� �  �t � � 0  (2) 

Posons Í�  �  �t t 0  (car t 0 , _ t 0) 

Comme l’équation horaire du mouvement de la masse m dépend du temps 

t, (2) devient : =�>�?�=?� �  Í���@� � 0 

 

La solution générale de cette équation différentielle est : ��@� � 1 sin �Í@ � 2�  où 1 et 2 sont des constantes déterminés par les conditions initiales. La masse 

m effectue un mouvement oscillatoire de translation autour de �Y.  

 

Remarque Conservation de l’énergie mécanique du système 

Il y a conservation de l’énergie mécanique du système  

En effet :  R���@�R@� � Í���@� � 0 

RR@ R ��@�R@ �  Í���@� � 0 

En multipliant par R@ on obtient  

R �= >�?�=? � �  Í���@�R@ � 0  (1) 

Posons  

�u � ==?  ��@�   
(1) Devient : R�u � Í���@� � 0 � 0. R@   

En intégrant membre à membre on obtient :  c R�u � Í�  c ��@�R@ �  c ] R@  

⇒ 
�� �u�  � Í�  c ��@�R@ � �^@V   (Constante) 

�� �u�  � � t c ��@�R@  ⇒ 
�� _�u�  � s c ��@�R@ � �^@V   

Où H� �  �� _�u� est l’énergie cinétique  

Et s c ��@�R@ l’énergie potentielle  
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Comme l’énergie cinétique ajoutée à l’énergie potentielle est égale à une constante, 

qui n’est autre que l’énergie mécanique du système. 

On en conclut qu’il y a conservation de l’énergie mécanique du système. 

 

. 

I.2. Pendule de Torsion  

Un système pesant par exemple un barreau est suspendu à un 

fil de rotation qui reste vertical. Ce fil constitue l’axe de rotation 

autour duquel s’effectue le mouvement du système. On écarte 

le pendule d’un angle v à partir de sa position d’équilibre.  

Les forces extérieures appliquées au pendule sont _0DDDDDDu et D̂u : 

Soient ItòDDDDDDDu et I_Du  le moment respectif de _0DDDDDDu et D̂u 
 

La somme algébrique des moments des forces appliquées au pendule est :  

∑ 7=7tòDDDDDDDu +7_Du = (3) 

Comme _0DDDDDDu et D̂u sont portées par l’axe de rotation  

(3) devient ∑ 7Du=� v car 7DutòDDDDDDDu=7_Du � 0 

C étant la constante de torsion du fil  

En appliquant la R.D.F (relation fondamentale de la dynamique) du solide 

en rotation on a :  

� v � îvw  où J est le moment d’inertie du pendule par rapport à l’axe 

L’équation différentielle est donnée par : 

(4)  
 =�x�?�

=?� � y�v�@� � 0 avec y� �
ßz 

L’équation horaire du mouvement du système pesant, solution de l’équation 

différentielle (4) est donnée par :  v�@� � vt^L��y@ � 2� 

Où a et 2 sont des constantes déterminées par les conditions initiales. Le système 

effectue un mouvement oscillatoire sinusoïdal de rotation autour de la position 

d’équilibre.  

 
I.3. Pendule de simple  

0 

A 

B 

0’ ̂

Du v 

_0u 
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Un point matériel M de masse m est lié à un point fixe 0 par un 

fil de masse négligeable et de longueur Ý. Le fil restant tendu, 

on écarte le pendule d’un angle v et on l’abandonne sans 

vitesse.  

∑ 7í = 7ítòDu+7í_ DDDu = 7ítò DDDDDDDDu car ^ DDDu rencontre  

            l’axe de rotation ; � � _0Ý^L�  
Pour les petites oscillations ^L� v { v. En appliquant la RFD rotation au point M on 

a :  �_0Ýv � _Ý�vw  
C'est-à-dire 

=�x�?�=?� � y� � 0�è�avec y� � òÞ  
 

L’équation horaire du mouvement est la solution générale de (5) : v�@� � vtsin �y@ �2� où a et 2 sont des constantes déterminées par les conditions initiales 

Le point M effectue un mouvement oscillatoire sinusoïdal  

 

I.4. Circuit oscillant : analogie électrique  

Le circuit oscillant est composé d’une self L et d’un 

condensateur de capacité C préalablement chargé (contact 

ab). Si i désigne le courant de décharge et U la tension aux 

bornes de la self est  

U=� =I=?  
En dérivant on obtient :  R7R@ � � R�LR@�      �6� 

Comme U�
G
ß

Ð
=þ

=?
�

�

ß

=G
=?

� �
I

ß
 1W

=G
=?

� �L  

�6�RVýLV�@        < � R�LR@� � � L� l R�LR@� � L�� � 0 �7� 

Posons y� � �|ß 

(7) devient : =�I=?� � y�L � 0 

Le courant de décharge L�@� est la solution générale de (7). C’est un courant 

sinusoïdal donné par : 

0 v Ý D̂u I � 

(fig 3) 

b 

c 

a 

C 
l 

(fig. 4) 
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L�@� � Lt^L��Í@ � 2�  
I

ß
 Joue le rôle de raideur et L joue le rôle d’inertie 
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II. OSCILLATEURS AMORTIS  

Un mouvement est amorti à cause des frottements : le frottement fluide (gaz, 

liquide) et le frottement, solide 

 

II-1-Oscillateur de translation 

5r � �.
=>

=?
 avec f constante de resistance fluide  

D’après la RDF 5u � _vu ce qui donne: en projetant  

_ R��R@� � �. R�R@ � s� 

C'est-à-dire _ =�>=?� � . =>=? � s� � 0  

 

II-2-Oscillateur de rotation 

7r � �. =x=?  avec f constante de résistance fluide  

D’après la RDF 
z=�x=?� � �. =x=? �  v 

C'est-à-dire 
z=�x=?� � . =x=? �  v � 0 

 

II-3-Circuit oscillant 

Le circuit comporte une capacité C, une résistance R et une self L. La tension aux 

bornes de la capacité est 4 � Gß et aux bornes de la self et de la résistance 4 �
�

=I=? � »L 
On a 

~

�
� �

=I=? � »L 
Comme il y a décharge Rµ Æ 0 V@ L � � =~=? 

D’où
~

�
� ��

=�~=?� � » =~=? 

Par suite �
=�~=?� � » =~=? � �

�
q=0 

Conclusion : 

Pour les oscillateurs amortis les trois équations différentielles sont données par : 

i. _ =�>=? � . =>=? � s� � 0 

ii. î =�x=?� � . =x=? �  v � 0 
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iii. �
=�~

=?� � »
=~

=?
�

�

ß
µ � 0 

 

Qui peuvent s’écrire sous la forme générale :  

=��

=?� � 2~ =�=? � ÍY�^ � 0  

Résolution de  (e) 

L’équation caractéristique de cette équation différentielle du second ordre 

est : 

 (e’) W� � 2~W � ÍY�^ � 0   
Le discriminant de �V’� est : 

Δr �  ~� � ÍY�  (discriminant réduit) 

Distinguons 3 cas suivant les valeurs de Δr 
 

• Si ¼r t 0 �V’� admet 2 racines réelles distinctes données par :  

W� �  �~ � �~� � ÍY�  

W� �  �~ � �~� � ÍY�  

Posons ~r � �~� � ÍY� avec  ~ t  ~r 
Donc W� �  �~ � ~r W� �  �~ � ~r 
La solution générale de �V� est :  ^�@� �  ã�VX�? �  ã�VX�? avec ã� et ã� des constantes à déterminer suivant les 

condition initiales  

^�@� �  ã�V�(8m8Õ�? �  ã�V�(8(8Õ�?  
= ã�V(8?. V8Õ?  � ã�V(8?. V(8Õ?    
� V8Õ? �ã�V(8? � ã�V(8? �  

Comme  ~ t  ~r , V(8? emporte sur V8Õ? quand @ #  �∞ 

Par suite ^�@�  #  0 lorsque @ #  �∞ ^�@� ne présente aucune périodicité. On dit que le mouvement est apériodique non 

critique. 
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• Si ¼r � � 

�V’� admet une racine double W �  �~ �  �ÍY 

La solution générale de �V� s’écrit :  ^�@� � �1@ � S�VX? � �1@ � S�V+�?   
Avec a et b des constantes à déterminer à partir des conditions initiales  

Quand  #  �∞ , ^�@�  #  0 car V(+�? emporte sur 1@ � S. 

Le mouvement amorti est apériodique ou encore non oscillatoire critique. 

• Si ¼r Æ 0 �V’� admet une racine complexes conjuguées  

W� �  �~ � L�ÍY� � ~�  

W� �  �~ � L�ÍY� � ~�  

 

Posons  Í �  �ÍY� � ~� , Í s’appelle pseudo-pulsation ^ �  �n+  pseudo-période  

La solution générale de l’équation différentielle (e) s’écrit  ^�@� � V(8?�1VI+? �  SVI+?� avec 1� et 1� étant déterminés par les conditions initiales ^�@� peut s’écrire : ^�@� � V(8? sin�Í@ �  2�  ^�@� présente alors une périodicité à cause de la fonction ^L�7^, mais son amplitude 

diminue et tend à s’annuler quand t augmente à cause de V(8?. Le mouvement est 

oscillatoire  

 

 

 

 

  

 

(Fig. 5 ) graphe de ^  

 

  

T 
Ù� 

^�@� ÙY Ù� Ù� 

S
4

 
Ù� Ùè 

@ 5S
4

 

Maxima  

Minima  
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Decrement Logarithimique  

Pour 2 � 0 on a ^�@� � Δ V(8? sin Í@. Les extrema (minima ou maxima) s’obtiennent 

par sin Í@ �  ��1 

Soit pour Í@ �  n� �  sS  ⇒ @ � �2s � 1� n�+
� �2s � 1� _�  

Les maxima (ÙY,  Ù�,  Ù� … . . � correspondent aux valeurs paires de s 

Le premier maxima ÙY s’obtient pour s � 0 donc  @ �  _� 
Donc ÙY � Δ V(�8bâ   
Pour deux valeurs paires successives s et s �  2, les maximales Ù� 

correspondantes sont :  

Ù� � Δ V(8 ���m��bâ � Δ V(�8 b�  V(8 bâ  

Ù�m� � Δ V(8 ����m��m��bâ � Δ V(8���mè� bâ    
� Δ V(�8 b�  V(è8 b�  

Considérons les deux maximales consécutives :  

�9���9  �  �à�� bâ
�à� bâ � V(8 _   

Le logarithme népérien du rapport 
�9�9�� noté T s’appelle le décrément logarithmique 

T � ln Ù�Ù�m� � ~ ^  
T mesure le taux de décroissance de l’amplitude  

Remarque :  

Les maximales successives forment une progression géométrique de raison V(8 _ 

En effet 
�9���9 � V(8 _ ;  �9�â�9�� � V(8 _ ;  �9���9�â � V(8 _  

D’où le  

 1er Maxma ÙY 

 2ème maxima ÙYV(8 _ 

 3ème maxima ÙYV(�8 _ 

 

 (k+1)ième maxima ÙYV(�8 _ 
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Chapitre 9 : ÉQUATION DES ONDES SUR �­ 
 

L’équation des ondes sur  » est donné par une équation différentielle partielle de la 

forme:  

(E) : 
��þ
�?� �  �� ��þ

�>� � 0 

Où @ est le temps et � 
  » �@ m 0� 4��, @�  mesure l’amplitude de l’onde au point d’abscisse � à l’instant @  � étant la vitesse de propagation supposée constante.  

C’est une équation aux dérivées partielles linéaire d’ordre 2 à coefficients constants 

dont le polynôme associé est  °�� ,^� �  ^� �  ����  � �^ � ��� �^ � ���      
Posons °��� ,^� �  ^ � �� °��� ,^� �  ^ � ��  

On a   °�� ,^� � °��� ,^�. °��� ,^�    
Désignons par �, �� et �� les opérateurs différentielles associées respectivement à °, °� et °� 

On a : � � ��]�� �  �� ] ��     (*) 
Nous savons que la mesure de l’amplitude de l’onde  

est : 4��, @�  �  5�� �  @�  �  ��� �  @�  avec 5,� 
  2� 

Si (E) est muni des conditions :   

�4��, 0� � .���              � � 
  »�þ�?  ��, 0� � 0���   ., 0 R]��éV^ ̧ 

Elle admet comme solution la formule dite de d’Alembert : 

4��, @� � �� M.�� �  @� � .�� �  @� O � ��ß c 0�`�R`>m�?>(�?    
Avec les conditions initiales :  

(I)  �4��, 0� � sin S ��þ�?  ��, ]� � 0 ¸ 
Et les conditions aux frontières 

 (F)  Ú4�0, @� � 04�1, @� � 0¸ � @ m 0  

La méthode de séparation des variables nous donne  
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4��, @� � sin�S��   �]^�S @�   
 

 

Conclusion partielle  

 

On vient de déterminer u(x, t), l’amplitude de 

l’onde au point d’abscisse x, à l’instant t où C es t la 

vitesse de propagation supposée constante  4��, @� � sin�S��   �]^�S @�   
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CONCLUSION 
 

L’étude des différentes méthodes de résolution des équations aux dérivées 

partielles permet certainement d’améliorer la qualité de l’enseignement des matières 

scientifiques aux classes terminales du Lycée. Elle permet surtout de ne pas retenir 

par cœur les solutions des équations différentielles sur l’étude des mouvements 

d’une masse suspendue à un ressort, un pendule de torsion, d’un pendule simple ou 

des oscillations électriques. 

 

On a insisté surtout aux équations différentielles du premier et second ordre 

à variable séparée et à coefficients constants sans second membre avec des 

conditions supplémentaires : 

i). Conditions initiales ; 

ii). Conditions aux frontières. 

 

Pour le mécanisme de résolution de l’équation différentielle à coefficients 

constants 

1
=�þ

=>� �  S =þ=> �   7 � 0  

 

On s’est limité à chercher les solutions de la forme 7��� � sVX>, k, r sont 

des coefficients inconnus, en utilisant l’équation caractéristique : 1W² �  SW �    �  0 

avec 1, S,  ∈ ». 
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