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INTRODUCTION

L’étude des differents types d’équations aux dérivées partielles permet de
maitriser la résolution des équations différentielles aux classes terminales du Lycée.
Elle est indispensable a I'étude des mouvements des oscillateurs mécaniques et
électriques et a la détermination des équations de la chaleur et des ondes.

Il est donc souhaitable aux futurs enseignants du Lycée de I'Ecole Normale
Supérieure de Fianarantsoa de se familiariser aux méthodes de résolution des
équations aux dérivées partielles ou du moins, de se contenter aux mécanismes de
résolution, pour améliorer la qualité de I'enseignement des sciences physiques et
des mathématiques aux Lycées.

La joie et le golt du perfectionnement nous poussent a choisir alors le

théme :

METHODES DE RESOLUTION DES EQUATIONS AUX DERIVEES P ARTIELLES
APPLIQUEES A L'ETUDE DES MOUVEMENTS DES OSCILLATEUR S
MECANIQUES ET ELECTRIQUES

Elles permettent aussi de déterminer les équations de la chaleur et des ondes sur
IR. Les notions des difféerentes méthodes de résolution exigent la maitrise des
notions mathématiques nouvelles :

» Les transformations de LAPLACE, de FOURIER

» La diagonalisation et I'exponentielle d’'une matrice.

Il est vrai sans dire que maitriser c’est mieux transmettre. On essayera donc
de donner les différentes méthodes par ordre croissant de difficulté, c'est-a-dire on
entamera I'étude, de la plus facile a la plus compliquée en illustrant par divers
exemples concrets.

Les questions de recherche paraissent évidentes : est-ce qu'on peut éviter
de retenir tout le temps la solution générale d’une équation différentielle aux classes
terminales ?

N'est-il pas préférable d'aiguiser la mémoire des éleves pour d’autres

notions de matiéres scientifiques que I'on admet sans démonstration ?




Si on arrive a maitriser les diverses méthodes de résolution des équations
aux dérivées partielles, la réponse aux questions posées semble vraie sans dire.

Mais il ne faut pas imaginer que l'unique fonction des mathématiques cette
« servante des sciences » est de servir la science. Les mathématiques au-dessus de
leur application possible aux sciences possedent une lumiére et une sagesse propre
et elles réecompensent richement tout étre humain intelligent qui arrive a saisir une
lueur de ce qu’elles représentent par elles-mémes?.

Le contenu de la recherche est donc constitué de :

i- Equations différentielles

ii- Equations aux dérivées partielles

iii- Applications a la résolution des équations différentielles utilisées aux

classes terminales du lycée.

! D'aprés E.T. BELL



PREMIERE PARTIE

Dans cette premiére partie on va voir :

- Le Rappel des notions relatives aux espaces de Banach ;
- Les applications linéaires continues
- Les applications différentielles

- Les applications différentielles

Ces notions préliminaires permettent de mieux comprendre les méthodes

de résolutions des équations aux dérivées partielles.
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CHAPITRE 1 : RAPPEL DE NOTIONS RELATIVES AUX ESPACE S DE BANACH
— APPLICATIONS LINEAIRES CONTINUES — APPLICATIONS
DIFFERENTIABLES

- ESPACES DE BANACH

I-1- Espace vectoriel
Désignons par IK le corps réel IR ou le corps complexe C. Un espace
vectoriel IE sur le corps de base IK est un ensemble muni de deux opérations avec

les propriétés suivantes :

[-1-1- Addition :
v X,y € IE on peut faire correspondre x +y < IE

La loi + est une loi de composition interne
Tel que :
i) wX, Y€ E, x+y=y+x (Commutativité de +)

i) wx, Yy, z€ E, x+(y+2z)=(x+Yy) + z ;(Associativité de +)
ii)30€E telquevx €E x + 0 = x; (existence de I'élément neutre pour +)

iv)wx € E 3 (—x) € E tel que x + (—x) = 0 (existence de I'élément neutre pour +)

[-1-2- Multiplication par un scalaire

v a € lK, v x €lIK on peut faire correspondre a.x € IE
ie la loi . est une loi de composition externe
Telque: i)1.x=x wxEe€ElE
iva belK,vx€lE,a(b.x)=(ab).x; (Associativité mixte)

i vacelK,vx,y€lE,a((x+y)=ax+ay; (Distributive mixte)

iv) v a, b €K, 7x€lE, (a+b)).x=a.x+b.x. (Distributive mixte)

I-2- NORME SUR UN ESPACE VECTORIEL IE
C’est une application N : IE — IR ayant les propriétés suivantes :
)N (©)=0;




NINX)=0=(x=0);vx€lE

i) N (x+y)<N(X) + N (y), ¥x,Y €IE; (Inégalité triangulaire)

V)N(@x)<lal.N(x),va€lK, vxe€IE.

Le couple (IE, N) est un espace vectoriel normé (e. v. n.)
[-3- DISTANCE DE DEUX POINTS X,y € IE
C'est l'applicationd : IE x IE - IR"
X, y) - d(xy)=N(Xx-y)
d est une distance sur IE. En effet
Soient x, y € IE °d(x,y) 20carN (x—y) €IR"
dxy)  =N({x-y) =I1INKX-yY)
=N (y, x)
=d(y, x)
Soientx,y,z€lE
dX, z2)=N(XxX-2)=NX-y+y-2)
SNXx=y)+N({y-2)=d(x,y) +d(y, 2)
Soient x, y € IE tels que d(x, y) =0
dX,Y)=N(Xx-y)=0=>x-y=0=>x=y
Conclusion :
vX,YEIE i)d(x,y)=0
i dx,y)=0=x=y

v X, Y, Z €IEii) d(X, z) <d(x, y) + d(y, 2)
d est effectivement, une distance sur IE et le couple (IE, d) est appelé : espace
metrique.

I-4- ESPACE DE BANACH

[-4-1- Suite de Cauchy
Une suite (Xn)n€ v d’éléments de IE est une suite Cauchy si :
(ve>0)(3Atelqgue) (m=Aetn=A=NXn—Xn) <€
[-4-2- Espace métrique complet
(IE, d) est un espace métrigue complet si toute suite de Cauchy de IE est
convergente dans IE.

[-4-3- Espace de Banach



On appelle espace de Banach un espace vectoriel normé qui est complet

pour la distance déduite de la norme.

- APPLICATIONS LINEAIRES CONTINUES

[I-1- APPLICATIONS LINEAIRES

lI-1-1- Espaces vectoriels topologiques (E.V.T.)
Désignons par t une famille d’ensembles appelés ouverts ayant les
propriétés suivantes :
i- IEeT;
i- P EeT;
ii- v0,,0, €Et01N0€ 7
iv-vOnet,U0,€ tnelN

Le couple (IE, 1) est appelé espace vectoriel topologique (e. v. t)

[I-1-2- Application linéaire
Soient IE, IF deux espaces vectoriels topologiques (e. v. t.) et f une application :
[E — IF.
f est une application linéaire si :
f(ax+by)=af (x) +bf(y) Va,belK, vx,y€lIE

[1-2- APPLICATIONS CONTINUES

Soit f une application linéaire : IE- IF

On dit que f est continue en tout point de IE si et seulement si f est continue
a l'origine.

Notons par £ (IE, IF) 'ensemble des applications linéaires continues de IE
dans IF.

Rappelons que si IF est un espace de Banach alors I'espace vectoriel normeé
de toutes les applications linéaires continues £ (IE, IF) est un espace de Banach en
posant

lIfIl = sup 1F()II

lIxll <1



On a la relation fondamentale suivante
HEQOI < NIl XNV x € IE

M- APPLICATIONS DIFFERENTIABLES
Soient IE et IF deux espaces de Banach sur le méme corps de base IK

[11-1- Définition

Soit U un ouvert de IE, soit a € U. On dit que f et g sont tangentes en a si :

Ix—al
X—a
X # a
[1I-2- Notations
o |If@x) - g@| = 0(|x- a||) au voisinage de a ou 0 désigne le « petit 0 »

* FX)—g(X)=Illx—allp (x—a)aveclmep (x—a)=0

[11-3- Définition : application différentiable
Soit U un ouvert de E, soitae U
On dit que I'application f: U — F est différentiable en a € U sii) f est continue en a
i) les applications x — f(x)- f(a) et x et x — u(x - a), avec u une application
linéaire, sont tangentes en a. On note u = f'(a) et f'(a) est appelée dérivée de f en a.
Une autre écriture de ii) est donnée par : ||[f(x) - f(a) - f'(x) (x- a)|| = 0 (||x - a|))
On va retenu une proportion usuelle :

f est différentiable en a si f'(a) existe et f'(a) € £ (IE, IF)



Chapitre 1l : EQUATIONS DIFFERENTIELLES

I.  Définition
Soient E un espace de BanachetU c R X E

f : U — E application continue

dx

— = f(t,x) (1) est une équation différentielle

L’application ¢ : I — E de classe ¢!, avec I un intervalle de R est une solution de
I'équation différentielle (1) ayant les propriétés suivantes :

i. (t,go(t)) € U pourtoutt €1

i. @(t)= f(t,go(t)) pour toutt € I

Remarquons qu’'on peut supposer seulement ¢ différentiable, ¢ est alors

automatiqguement de classe ¢!
SiE= E;x ....xE, unespace de Banach.
UcCcRXE;x ....xE,
(t,%g, s X)) = f(E, %9, 00, %) ETILE; @
Cette application est détermine par n fonctions f3, f5, ..., f,, définie sur U. Une
solution ¢ de (1) est alors définie par n fonctions ¢; ;i € [1,n] de classe g'ayant
les propriétés suivantes :
il —E ;1<i<n
i (t, (0, 0n())EU,VE EI
i. @ ) =fi(t,o1(©), ... 0n(®) ;1<i <n

On obtient alors un systéme d’équations différentielles

dx; .
d—tlzfl-(t,xl,....xn) 1<i <n

) ?=1 Ei = Elx Ez X oo innn X En
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II. EQUATIONS DIFFERENTIELLES LINEAIRES DU PREMIER ORDRE

I1.1. Définition

Une équation différentielle linéaire du premier ordre est de la forme :

dx b,
Fri a(t).x + b(t)

Avec a:l —>I(E,E)3 eta:l—E continues sur

I'intervalle I € R

Ona:
I1.2. Solution de I'équation différentielle
dx
—=qal(t).x 2
o = a(t) @

Notons r (t , to). la solution de I'équation différentielle

d . ., : e s ,
d—z = a(t).r(t). La solution de I'équation differentielle

d . p N
d—’: = a(t).x qui prend la valeur x, pour t=t, est égale a

r(t,tg)-xo. AVEC r (t, ty) une solution de (2)

telle que (to,to) = Yg* . En effet posons x(t ) = r (t;, ty). xg

dx

prinid (t1,t0).-xo = a(t).r(t,to). xo

= a(t).x(t) d'une part
D’autre partx(to) = T(to ,to).x = 2)E'x0 = Xp

r(t,ty) S’appelle la résolvante (ou le noyau résolvant) de (2)

3 Ensemble des applications linéaires continues

*9: Id; Application identique
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.  EQUATIONS DIFFERENTIELLES LINIAIRES AVEC SECON D MEMBRE

C’est I'équation différentielle linéaire de la forme :
dx

@ — = a(t).x + b(t)

I11.1. Méthode de variation de la constante

Soient t,t,,t; € I.Posons x(t) =r(t,ty). Y(t) (4) alarelation suivante :

r(t,te) =71 (t1,ty) or (t1,t)

En effet, posons s(t) = r (t,t,) or (t;,ty)
Onas'(t) =7 (t,ty) or (t;,t)
=a(t)o[r(t,t;)or (t;,tg)] =a(t)os(t)

Donc s(t) est la solution de %z a(t)or(4) qui prend pour t = t; la valeur

r(t,ty) or (t1,to) = Ygor (t1,1t0)

= 1 (t1,t0)

Mais r (t,t,) est la solution de (4) prenant la valeur r (t;,t,) pour t = t, donc
r(t,to) = r(t,t1) o r(ty,to)

Comme r (t,ty) o r(ty,t) =r(t,t) =9

r(to,)or(t,ty) = 1 (to,to) =Yg

On en déduit que r (¢, t,) € Isom (E;E) ° et

r(t,to) =1 (ty,t)

> Ensemble des applications linéaires bijectives de [E sur E
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A propos de la méthode de variation de la constante, posons
x@®) = 1 (t,ty)-y(t)
et prenons comme inconnue Y (t)

dx dr dy

a a’t T a

d
= a(t).r (t,to).y+rd—3t/
=a(t).x (t) +12

pone b(t) = 7 (t,t0) =2

dy
dt

= r (t,ty) . b(t)

r (t,ty) =7 (t,ty) 1) est lanouvelle équation a résoudre.
Soit xg = X(t,) = 1 (ty,t0) -y (o) = y(Lo)-

ponc y(t) = x, + fttor (t,to) b(r)dr

x(t) =7 (t,to) . y(0)

t

=r(t,ty).xo + f r(t,ty) b(r)dr
tO
d
est la solution générale ded—i =a(t).x + b(t) (4)
passant par (t,,Xy). Elle nest autre que la solution générale de %z a(t). x

passant par (t, ,x,) ajoutée de la solution particuliere de (4) s’annulant pour t = t,



V. EQUATION DIFFERENTIELLE LINEAIRE A COEFFICIENTS

CONSTANTES

L'applicationa: 1 — L (E;E )®°

* b(t
- Th®

& — ax On prend 1 = R
dt

n

Comme Exp a = ano% avec a® =9
Notons r (t,0) = r(t) larésolvante telle que r(0) = Y

Ona r(t) = Expa.En effet posons s(t) = Exp ta

' 1 1 7
5(6) = Znsogy £".0"0 = @ Tpaoy £ 0"

1

= —t".a").aza.s(t)
|
<n20n'

d’ou la solution générale

t

x(t) = [Exp (t — ty)al.x, + f[Exp (t— 1) a] b(t)dr

to

V. RESOLUTION PRATIQUE D'UNE EQUATION DIFFERENTIELL E

V.1.Définition intuitive

13

Une équation différentielle est définie pratiquement par une relation entre une

fonction, certaines de ses dérivées et la variable, c'est-a-dire f (x,y,y’,y") =0°

®a:l — L(E;E)

a(t) — a(t)a estune application linéaireenade E — E, t — a(t)
7 On tient compte de 0! = 1

® par extension on peut avoir :

fey,y,y")=0

Ou x — yest une fonction de la variable réelle x

etx — y™ sa dérivée d’ordre n
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V.2.Exemple concret en mécanique

Un mobile de masse m se déplace sur un axe

m
| |
1 1

0 -—
x(t)

v

Désignons par x I'abscisse de m au point t et v, sa vitesse initiale.
A linstant t = 0 sa position X, = 0, Supposons qu’a chaque instant t le mobile est
soumis a deux forces :
i. fil®)= —kx'(t) avec k;>0;
i. f,(t)= —kx(t) avec k,>0;
Essayons de déterminer la fonction x(t) en fonction du temps t

En appliguant le principe fondamental de la dynamique :
Y F =my ; en projetant sur I'axe (Ox)
On obtient : — kyx'(t) — kyx'(t) = mx"(t)
C'est-a-dire  mx"(t) + kix'(t) + k,x'(t) =0 (1)
C’est bien une équation différentielle avec
ft,x,x,x")=mx(t) + kyx'(£) + kyx'(t)
Et (1) signifie f(t,x,x,x")=0

V.3.Cas particuliers d’'équations différentielles

Ci:.  Equation différentielles linéaires du premier ord re de la forme: a(x)y +

b(x)y = C(x) (1)
ou a, b, c sont 3 fonctions numériques définies sur un méme intervalle 1. on

supposera que pour tout x élémentde |, a(x) # 0

C,. Equation différentielles linéaires du second ordr e a coefficients

constants de la forme :  ay” + by + Cy = f(x)
ou a, b, c sont des constantes; a # 0
f étant la fonction numérique définie sur un intervalle. Dans tout ce qui suit, on

supposera a(x), b(x), C(x) et f(x) soient des fonctions continues.
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V.3.1. Détermination de toutes les solutions de I'é  guation (1)

1° Cas Cx)=0 (second membre)

(1) dévient :

a(x)y + b(x)y =0

Désignons par E I'ensemble de solution. On peut dire que E est non vide car la
fonction nulle est une solution.

E est un espace vectoriel sur IR de dimension 1, si f et g sont des éléments de E,

Af + ug estaussiun élément de E avec A et u des scalaires.
En effetsiona:
Aa()f (x) + 2 b(x)f (x) = 0
pa(x)g (x) + p b(x)g(x) =0
alors a(x)[lf'(x) + ,ug'(x)] + b)) +ugx)]=0
posons h(x)=A1f(x)+uglx),ona:
a(x)h® 4+ b(x)h(x) =0
Remarquons que tout autre solution f; est telle que
f=1f; (dim;gE = 1)

Détermination de la solution

a(x)y + b(x)y =0 (2)

‘= _b®
@ - y=-57

On va déterminer les solutions non nulles ie pour tout x de I, y(x) # 0

- Y _ _b®
y a(x)
, b(x) . . o
= (In [y|)'= — e (In : logarithme népérien)
— [(_b®
- Inly| = [ pn dx
Soit une primitive de — 2%

La continuité est nécessaire pour I'existence de s(x)
=s(x)+ k
In |y| =s(x)+ k
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- |y| — es(x)+k
- ly| = ek .es®) (k'=e*)
ly| = k'.e5™ k'>0

Remarquons que y est, pour tout x élément de | soit toujours négative, soit toujours
positive

En effet, y est une fonction continue par définition méme car elle est dérivable. De
plus on a fait I'hnypothése que y(x) est non nulle, elle garde donc un signe constant
du fait du théoreme des valeurs intermédiaires donc :

Ou bien y = k' .es™ k'>0

Ou bien y= —k'.es® k'>0

On peut vérifier que ces solutions sont les solutions de I'équation différentielle
considérée.

Les solutions non nulles sont :

y=a.es® a>0

Existe-t-il d’autres solutions ie des solutions autres que la solution nulle ou des

solutions qui ne s’annulent jamais ?

Soit y une solution quelconque de I'équation considérée

Considérons I'équation : f;(x) = 5™ est solution de I'’équation différentielle.

Posons < = Z fi 0
fi

Ona y=fiZ

y=fl+fZ

D’autre part on sait que : a(x)y + b(x)y =0
a@)(fLZ+fZ)+ b(X)ARZ =0

Z(a(x)f'1 + b(x)fl) +alx)fi Z =0

a(x)f'1 +b(x)f; =0 car f; est une solution

donc pour tout x élément de | a(x)f,Z'=0
commea(x) #0; f;#0
f1Z'=0entraineque Z'=0 dou Z =241 et y=A1fi



17

Toutes les solutions de I'équation différentielle sont donc de la forme y =i
L’ensemble des solutions de I'équation différentielle
a(x)y' + b(x)y =0 est

de

A, . Aes® = e taw

Il en résulte que si une solution s’annule en un point, elle est identiquement nulle.

ie 1=0 dés que Les® =0

A part la solution nulle on est siir que toute autre solution ne s’annule jamais.

Il résulte de ce qui vient d’étre démontré que I'ensemble de solution est un espace

vectoriel de dimension 1, une base est constituée par la solution f;

VI. 3.2. Exemple : Résolution de I'équation différentielle :
1+x)y +x3y=0
Toutes les solutions sont données par :

b(x)

y=Ade '@ *
On voit que a(x) =1+ x? # 0 pourtouts de Ret b(x) = x3

On est alors dans l'application du théoréme qui vient d’étre démontré

f@ X =[ "

a(x) x2+1

orx3=(x%*+ Dx—x

x3 _ P+ Dx x
Donc fx2+ 1dX - f[ x2+1 x2+ 1] dx

2
—In@?+1)-=

douy= lez

XZ
y= Ax?+1le 2

VI. 4. Cas général
a()y +b(x)y = c(x) @
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VI.4.1. Etude de la structure de 'ensemble des s olutions

Supposons que y est une solution quelconque
Et y, une solution particuliére
Ona:a(x)y, +b(x)y; = c(x)
a@)[y -y, 1+b@®)[y—y;=0
a)[y-y JI'"+b™®)[y—-yy=0
Donc la fonction y — y,est la solution de I'équation différentielle que I'on notera
a(x)y + b(x)y = 0 (3)
L’équation (3) s’appelle équation sans second membre de I'équation difféerentielle (2)
Enrésuméona:y—y; =Y ie y=y:+7Y
Ou Y est une solution de I'équation (3)
Toute solution de I'équation ® s’obtient en ajoutant aux solutions de ® une solution
particuliére.
Désignons par E I'ensemble des solutions de @
E n’est pas un espace vectoriel (sinon il contient 0) C(x) # 0
On se donne F ensemble des solutions de ® et y, solution particuliére
Pour tout y appartenanta , il existe Y élémentde Ftellequey = y; + Y
Réciproquement si Z est une solution quelconque de ® alors z = y, + Z est une
solution de @
Autrement dit :
Pour tout Z élément de F : y, + Z est élément de E

En résumé on a le théoréme suivant :

VI.4.2. Théoreme
L’ensemble des solutions de I'équation ) est I'ensemble de fonction y de la
forme :
y=ym+7Y
OU Y est une solution quelconque de I'équation @ ie de I'équation sans

second membre (e.s.s.m.) associée a I'équation différentielle



VI. 4. 3. Exemple : Résolution de I'’équation différ  entielle :
1)

y+y=x

I
Q

yi=ax+b; 2
atax+b=x

ax + (a + b) = x pour tout X
a=1

a+b=0doub= -1

y, = x — 1 est une solution particuliére de I'équation Y +Y =0 @

ax=1:bx=1
b 4. — _
f—a(x)dx— x

Ae™* est une solution générale de (2).
Par suite y = (x — 1) + le™* est une solution générale de (1)

L’ensemble des solutions moyennant les conditions de départ n’est pas vide.

VI. 5. Méthode de recherche de solutions particulié res dans des cas

particuliers
a(x)y'+ b(x)y = c(x)
a(x) = a + 0; b(x)=»b
Donc aY + bY =0
En général
v’ Casusuel :C(x)=e® P(x)
Ou s élément de R et P(x) un polynéme
v Autres cas usuels :
C(x) = cos ax ou C(x) = sin ax

On a donc a résoudre :

VI.5.1. ay + by =e’®p(x)

s élément de IR

P un polyndme de degré n, élément de N
b
La solution générale de I'équation sans second membre est:Y = Ae "

b
Remarquons que Y = le a* = 1e™(r = _g)
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rest la racine de I'équation :au+b =0

appelée équation caractéristique de (2)

Tandis que la solution particuliere est :

y1 = e@Q(x)
Elle doit vérifier donc :

ay', + by, = eS@P(x)

y', = se@Q(x) + P Q'(x)

ay’, + by, = aes®[sQ(x) + Q' (x)] + be* P Q(x) = PP (x)

alors a[sQ(x) + Q' (x)] + bQ(x) = Q(x)[as + b] + aQ'(x) = P(x) (4)

Il y a deux cas a envisager :

v

as + b # 0 équivalent a s n(est pas racine de I'équation caractéristique :
au+b =0degré de Q =n = degréde P
as + b = 0 i.e. s racine de I'équation caractéristique : on a aQ '(x) = P(x)alors

dégré de Q est égale an+l et Q(x) = f?dx

Revenons maintenant au premier cas .

as+b +0

Pour déterminer Q on procéde par identification °

Q(X) = quX" + @ x™ T+ @,

On remplace Q(x)et Q'(x) par ses expressions dans (4) et on identifie:

s=1

VI.5.2. Exemples : Résolution de I'équation diffé  rentielle avec

second membres  y +y = e*(x*+ x+1))

r=-1 S #1r

Q(x) = q2x* + q1x +qq
Q'(x) =2q,x + q4
y'1=se*+ Q(x) +e%Q'(x)
as+b=2

2(qx* + qix+qo) +2qx +qy = x* + x+ 1

D’aprés I'équation (4)

%il s’agit de déterminer les coefficients gy, ; k =0,..,nen remarquant que

Q'(x) =ng,x" 1+ ...4+q;



2q,x%2 +2(q1+ q2)x+2qp +q1 = x>+ x+1
2q, = 1 entraine que q, =%

12
2(q1+4qz) =1alorsqy =5~ =2

1-q4

2qp + q1 =1alorsqy =

e Solution particuliére : y, = e*Q(x)

= %e"(x2 + 1)

* La solution générale va étre :

y= %e"(x2 + 1)+ de™™

VI. 5. 3. Résolution de I'équation différentielle d  u 1° ordre avec

second membre:a v' + by = k,cos ax + k, sin ax

On cherche une solution de la forme :

Y1 = q1€0S ax + q; sin ax

y'i1 = —aqysin ax + aq, cos ax

a[—aqsin ax + aq, cos ax |+ b[qicos ax+ q,sinax | =0

aaq, cos ax + bq,cos ax—aaq,sin ax + bq, sinax =
(aaq, + bqgq)cos ax + (aaqq + bq,)sin ax =
kicos ax + k,sin ax
aaq; + bq, = kq
avec

aaqq + bq, =k,

Supposons qu'on a .

ay' + by = kjycos ax + k, sin f3x

21



22

VI.5.4. Remarque générale

Lorsqu'on a:

ay' + by = C1(x) + C,(x) (3), on obtient une solution particuliére en déterminant les
solutions particulieres des équations différentielles suivantes :
ay' + by = €1 (x) (1)

ay’' +by =C; (x) (2)

Et on ajoute les solutions particuliéres obtenues

Si f; est la solution particuliere de (1) et si f, celle de (2)

Alors f3 = f; + f, est une solution de (3)

Donc:

ay' + by = k,cos ax

ay' + by = k, sin fx

Cette méthode permet en particulier de résoudre I'équation : ay’ + by = e* x? +
sin 3x

VI. 6. Equations différentielles linéaires du secon d ordre a coefficients

constants
ay" +by' +cy = f(x) (1)
Ou a, b et ¢ sont des constantes réelles avec a # 0
f:1 — R continue
1 cas: f(x) =0

ay"+by' +cy=0
Désignons par E I'ensemble des solutions de (1)

E est un espace vectoriel sur IR. On admettre que /E est de dimension 2.

VI.6.1. Détermination d’'une base de I[E

On cherche les solutions de la forme y = e™
x »e™*; r €IR

Tout revient a déterminer le nombre réel r



y'= rerx R J A 2,1rx
(1) dévient
a.r’e™ + bre™ + ce™ =0

Equivauta:a.r®?+ br+ ¢c=0

C’est I'équation caractéristique de I'équation différentielle (1)

a.r?> + br + c est le polyndme caractéristique

VI.6.2. Etudede ar’+ br+ c=0

1" Cas A positif avec A = b? — 4ac

On a deux racines ry etrp
e"* et e™2* sont des solutions de (1)
Montrons que e"* et e"2* forment une base de IE
Comme dim; IE = 2, il suffit de démontrer que e™* et e™2* sont linéairement
indépendants
Posons f; = e™* etf, =e™*
Pour tout réels A et u
A= pu=0desque Af; + uf, =0

A+u=0pourx=20
Ae™* + pe* =0 =
Ae"™ + e =0pourx =1

A=—u
Ae™ + ue™ =0entraineque: A (e — e) =0
r, étant différent de r, donc e™ # e
Et par suite e — e"2 = 0
On en déduitque A =0
Acausededl+pu=00onau=0
On vient de montrer qu’effectivement e”* et e™2* forment une base
L’ensemble des solutions de (1) est donc donné par :{y = Ae™* + ue™*; 1,u €
/R
2°™ Cas A =0

Soit s la racine double de I'équation
fo(x) = e%* est une solution de (1)

Montrons que la fonction

23



f'o(x) = xes* = xf,(x) est également une solution de (1)
f'2(x) = e + ses* = e (s + sx)

f5(x) = se5* + s(1 + sx)e’* = e5* (2s + s2x)

Comme ay"+by' +cy=0 ona:

es* [a(2s + s2) + b(1 + sx) + cx] =

es* [(as? +bs+c)x+2as+b] =0

Car (as?+bs+c=0et2as+b (A=0)
On a donc prouvé que f,(x) est une solution
Par suite on a deux solutions
filx) = e>* et fo(x) = xe>*
Afi + uf, =0 ou Ae* + uxes* =
Pour tout nombre réel x
Pourx = 0onal=0
Pourx = 1 AeS* + ue® =0 entraine u =0
L’ensemble des solutions est donc :
{y = 1e5* + uxes* = es*(ux + 1); u,A € IR}

3°M Cas A < 0

Comme a, b et ¢ étant des réels, on a deux racines complexes conjuguées

n=a+if
rn,=a—If
a et B des réels

On vérifie que :
filx) = e®cosfx et f,(x) = e**sinfx sont des solutions de (1)
Reste a savoir si elles sont linéairement indépendantes
0=2fi(x) + ufa(x) =e**[Acos(x) + psin (Bx)]
Pourx = Oona A=0

ue*sin (fx) = 0
Or p est différent de zéro sinon A ne serait pas négatif
sin(fx) = 0; e #0 donc u=0

par conséquent on a une base de IE



L’ensemble des solutions est donc :
{y = e®™(Acos Bx + usinfx)}

VI.6.3. Exemple : Résolution de I'équation différentielle du second
ordre
y ' +wly =0 w=*0

L’équation caractéristique est 7>+ w2y = 0
Les racines sont :

= iw

r, = —iw
Donc la partie réelle de r;, a est égale a zéroet f = w
Donc y = e%(Acoswx + usinwx)

y = Acoswx + pusinwx

VI. 7. Cas général :

Désignons par IF 'ensemble de solutions de (1)

F # 0 et on va étudier sa structure

Soit y; une solution particuliere de (1)

onaay”y + by'1 + cy; =f(x) (2)

En soustrayant membre a membre (1) et (2)

on obtient

a(y"—=y"1)+b(y' =y 1)+ —y)C=0

PosonsY = y—y,

on obtient: a¥Y" + bY' + CY =0 (3)

On peut dire que Y est une solution de I'équation sans second membre associée a
I'équation (1)

Par un raisonnement analogue a celui déja fait pour le 1* ordre, 'ensemble de
solutionde (1) esty =Y + y;

Ou y, est la solution particuliere de (1)

Et Y une solution quelconque de (3)
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VI. 8. Détermination d’'une solution particuliére da ns certains cas

particuliers

Si f(x) = e** P(x) k élément de IR
P polynéme de degré n € IN

Cherchons une solution particuliere de la forme :

y. = e** Q(x) Calculons ses dérivées premiéres et secondes y'; et y'';

On a

y'1 = keM Q(x) + e Q(x)
y' = x%e*Q(x) + ke** Q'™ + ke**Q'(x) + e** Q" (x)

yi=

e’ [kQ(x) + Q' ()]

v = eM*[k2Q(x) + 2k Q"™ + Q" (x) ]

Ona:

alk?Q(x) + 2k Q'™ + Q" () ] + b[kQ(x) + Q'(x)] +¢cQ(x)) = P(x)

Ona:

(ak? + bk +c)Q(x) + (2ak + b)Q'(x) + aQ"(x) + aQ"(x) = P(x) a#0

Distinguons 2 cas :

1% Cas:
Si k n’est pas racine de I'équation caractéristique, dans ce cas on cherche
un polynéme Q de degré, tel que degré de Q est égale a degré de P =n
Si k est racine simple de I'équation caractéristique
Ona (2ak + b)Q'(x) + aQ"(x) = P(x)
Etd°Q = 1 + d°P

2™ Cas :

Si k est racine double de I'équation caractéristique
Onad°Q = 2 + d°P



VI.8.1. Exemple : Résolution de I'équation différentielle du second
ordre avec second membre y"+y' =x

1) Solution générale e.s.s.m. °y"+y' =0

L’équation caractéristique associé est :

r’2+r=0dou ry=0et r, =-1

Donc Y = Ae"* 4+ pe™*
Y=21+4+ pue™

2) Solution particuliere

y'+y =x=e*P(x) pourk=0 etP(x)=x
e Q(x) = P(x)
On constate que k est une racine simple de I'’équation caractéristique par
conséquent :
d°Q =1 + d°P

Etdonc d°Q =2
Q(x) =a;x*+bx+C,

Q'(x) = 2ayx + by

Q"(x) =2a4
2a, + 2a;x+by) =x = 2a; +2a4x+b; =x

On en déduit par identification :

2a1 =1 = aq =%
2a1 + b1 =0 b1 = —2a1 d’Ol] b1 =-1
Donc Q(x) = % x?—x

La solution générale est donc :

1
Y=§x2—x+ A+ ue*

10 .
Equation sans second membre
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VI. 8.2. Le probleme de Cauchy:

Déterminer les solutions de I'équation différentielle qui vérifie certaines conditions

initiales du type suivant :

a) Sil'équation est du premier ordre, on cherche les solutions pour y(x,) = «

X, et a étant des réels

b) Sil'équation est du second ordre, on cherche les solutions pour

y(xy) = aety'(xy) = B 0Ux,, B et a sont des réels donnés
On peut démontrer que le probléme de Cauchy admet une solution unique.

VI. 8. 2.1. Exemple : Résolution de I'équation différentielle du
2" degré sans second membre : ay"+ by +c=0
Supposons que le polyndme caractéristique admet 2 racines distinctes réelles
Par conséquent I'ensemble de solution est :
y = Ae"* + ue"?*
Prénoms comme cas particulier x, = 0

a=y0)= 21+ u

y' = Are"* + ur,e™*
B=y'"(0)=nri+nru
At+u=a«a
Ona ()
ni+nu=p
Ce systeme d’équation & deux inconnus admet comme déterminant principal :
1 1_
rno ol rn—n
Commer, #n; ona nr—nrn*0

Par suite il existe unique A et u vérifiant le systeme (1)



VI. 9. Exercices résolus

!

VI.9. 1. Résolution de I'équation différentielle y -2y =

e*cos x
Il s’agit de résoudre une équation différentielle linéaire du 1* ordre avec
second membre a coefficients constants.
Pour la commodité de I'écriture, posons :
Y¢ . La solution générale de I'équation différentielle sans second
membre
yp . La solution particuliére de I'équation (1)
On va déterminer la solution y de (1) donné

par y= ys+ ¥p

VI. 9. 1.1. Résolution de I'e.s.s.m **

y'—2y= = y' =2y
= y—,=2
y
> = 2dx avec y' = Z—y

y x
= fcz/—y = [ 2dx
dd’'ou y; = Ce?*

Avec C une constate

VI. 9. 1.2. Détermination de _y,

Une solution particuliere
yp = e*(acos x + bsin x)
y'p = e*(—aSinx + bCos x) + e*(acos x + bsin x)
=e*[(a+b)cosx + (b —a)Sin x|
y'p—2yp = e*[(a+ b)cosx + (b — a)Sinx] — 2e*(acosx + bsin x)
= e*[(a+b—2a)cosx+ (b—a—2b)Sin x]
= e*[(b—a)cosx + (—=b—a)Sin x]

En identifiant avec e* cos x , on obtient :

11 .
Equation sans second membre

29



b—a . {a —b=-1 (1)
Ca—b a+b=0 (2)
=2a =-1 a = —% (par addition membre a membre)

Et(2Q = b=—a e b=:

D'ou yp = e* [—%cosx + %Sin x]
Et la solution finale est donnée par :
Y = Ce? + e* (—%cosx + %Sinx)

avec C €IR

VI.9.2. Résolution de xy' +2y= g

VI.9.2.1. e.s.s.m.

xy'+2y=0 = xy' = =2y
O
y x

> [T= -

= In(y) = —2Inlx| + ¢
= |}’| — e—zzn|x|+c
— elnlxl‘z eC
— Clelnlxl‘2

—¢c>2=% dou v=2%< C"€IR
X

|x|2 x2
. c" . sz
ie yo= = avec Yy . solution générale

VI. 9. 2.2. Solution particuliere

Déterminons les réels a et b tels que :
yp = ax + b avec yp solution particuliere

Yyp=ax+b yp=a
X
xy'+2y =ax+2(ax+b) = 3ax+2b = 3
Onendéduitque3a=§ a=% et b=0

D’ou Yp = %
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VI. 9. 2.3. Solution finale

Comme la solution finale est donnée par :

Y=yc+ yp
Par suite :

Y=C—+§ avec C" € IR

2

8

VI. 10. Autre méthode : Méthode de variation des co

nstants

k
Posons Y ==

x2

Ona Y = K*axk _ ko 2k

x* x2 x3

Comme
xy' +2y = g
On en déduit que :
ke 2k | 2k _ x?

X
= - = k':—
2 2

x x2 x2
En intégrant membre a membre on a :

_ (x r_ dk
Jdk = [ dx avec k'=—

3
D’oﬂk=%+C : C €IR

On retrouve le méme résultat
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VI.11. Résolutionde :y"—4y'+3y=x*+1 (1)

Il s’agit de résoudre une e.d.l. a coefficients constants

VI. 11.1. Résolutionde : y"—4y'+ 3y = 0 e.s.s.m.

y'—4y'+3y =0
L’équation caractéristique est donné par :
r2—4r+3=0 > =1 ou 1=3
Y = Ae™* + Be™?*
= Ae* + Be3*
A,B €IR

VI. 11.2. Détermination de _yp

Il s’agit de déterminer les réels a, b et c tels que
yp =ax?+ bx+C a,b,c € IR
y'p=2ax+ b y'p =2a
(1) dévient : 2a — 4(2ax + b) + 3(ax?*+ bx +C) =x%? + 1

3ax3+ Bb+8a)x +C—2a= x>+ 1

En identifiant terme a terme on obtient :

(1)

3a=1 :3b+8a=0 et2a—4b+3c=1

1 8 35
On trouve a = - b =- C ==
3 9 27

. 1 8 35
d’ou yp=§x2+;x+;

VI.11.3. Solution finale

Elle est donnée par :

Y=1yp+ye
douY =2x2 +2 x+ 2 4 ge* 4 Be3*
3 9 27

avec A,B € IR

32



CONCLUSION PARTIELLE

On vient de voir les méthodes de résolution
d’'une équation difféerentielle qui vérifie certaines
conditions initiales et avec second membre dans
laquelle la solution finale est la somme d'une
solution particuliere et d’une solution générale de

I'équation différentielle sans second membre.
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DEUXIEME PARTIE

Dans cette deuxieme partie on va voir

- Les éguations aux dérivées partielles
- Le systeme différentiel du premier ordre
- Latransformée de Laplace
Ce sont des notions de mathématiques indispensables a

la résolution des équations aux dérivées partielles
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Chap 3. EQUATIONS AUX DERIVEES PARTIELLES

. CHANGEMENT DE VARIABLES ET DERIVATION

[.1. Cas d’une variable

Soient f et g deux fonctions d’'une variable réelle, et u la composée de fet g :
f:IR — IR ,; y:IR — IR

u(x) = flg(x)l = fog (x)

Posonst = g(x) ona u(x)= f(t)

du _ df dt _ df

dt
dx _ dt dx _ dt [g(x)]-a (%)

C'est-a-dire

u'(x) = f'lg] g'(x)

|.2. Cas de plusieurs variables

Soient Q;  Q, Q3 trois parties de IR"

Q; c IR"pourl <i <3

u :Q; — IR
f :Q, —> IR
gj Q3 — IR j=1,n
Onpose t; = g; (X1, ..., Xy) avecj= 1,n

La matrice Jacobienne J est donnée par :

[29: .. 261
dxq dxn
J=11%t = i | elledoitétre inversible, c'est-a-dire det ] + 0
9n  2n
dxq dxn




D(t
On la note par
D(x

Et pour chaque jvariantde 1anona:

du  9f 9t Of ot of ot
dxj - atl . dxj atz . dxj EEs EEE EEE EEE mEE oW atn . dxj

[.3. Exemples

36

EX 1 : Déterminons toutes les fonctions  f de classe ¢! sur IR vérifiant :

af of _
E—aa—bf (1) a,b €IR

Effectuons un changement de variables

u=ax+
Pour cela posons {v — y

La matrice Jacobienne est donnée par :

D(u,v): a 1]
D (x,y) 1 0

] =
det]=a.0—-11= -1
det] #0 = ] est inversible ie J=1 existe (matrice inverse de J)

Posons f (x, y) = f (u,v)

Ona:

of of ou , of ov .
ox Odu odx oV ox '
of of ou , df ov
dy du ‘dy oV 'ady




Commea—=a et 5_1 % 5—0
of _ g2 L or _of
ax Yo +av ' et dy  ou

Par suite I'équation aux dérivées partielles (1) devient

of | of of
a5 +av aau_bf

= Z—I]: = bf
=f = Ce® o0 C est une constante
Par rapport a v mais en fonction de u
Posons C = g(u) g € ¢'(IR)
Par suite f (u,v) = g(u).e?”

D’ou f(x,y) = g(ax + y)e?* ou g € ¢'(IR)

Remarque :

f:IR* > IR; (x,y) — x%—y?

Si fl,y=xt-y

Enposant u=x-y et v=x+Yy

Ona u.vz(x—y)(x+ y)

Donc f(x,y) = u.vzf(u,v)
f: IR? - IR

(u,v) » u.v
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f(u,v)=u?—-v? alorsque f (u,v) =u.v

Déterminons par exemple une solution f(x ,y) telle que f(x,0) = x2ebx
On en déduit que : g(ax) = x?

Posonst= ax ona x =

¢ 2
2

g == ; g € ¢'(IR)

a

Par suite

2
Floo,y)= & obx g 20

a?

II. EQUATION AUX DERIVEES PARTIELLES LINEAIRES A CO EFFICIENTS
CONSTANTS

Nous allons essayer de résoudre une équation de la forme :

62u+ 5 0%u +Cazu+ dau N ou _v
0x? dx dy 0y? ox eay =V&.y)

a

Avec a,b,c,d,e €IR

ou u(x,y) est la fonction a déterminer et v(x,y) une fonction donnée.

I.1. Etude préliminaire
Résolutionde : a2+ 4 cu = 0 (2)
dx dy

a,b,c € IR

L’équation (1) admet comme équation caractéristique :

R

b —Cu
Une intégrale premiere de (2) est donnée par :
Ui(x,y,u) = bx —ay

Et l'autre intégrale premiére est donnée par :



—=dy = ‘;—u avec b #0

:>—%y = Inlu|l + K (3)

— % =K'u

— ue ¥ =K'

Dou U,(x,y,u)= u e
ou U, (x,y,u) = ued

La solution de F (U;,U,) = 0; en prenant

F(a,B) = B G(a) —1 donne

u(x,y) = f(bx — ay) e 7 avec f € ¢t

En effet posons L = aaa—x + a% + C (Opérateur différentiel linéaire)

Puis effectuons un changement de variables.

X, =bx —ay

Posons : { avec a 0
Xz =X
a9 axg o X, 0 d
Ona ax 98X, 0x +axz dy  8x, 'b+axz
a 9 x4 9 90X, _ aa
dy  9X, 0y 08X, 8y X,
ou ou ou
Commelu=ab—+ a——ab— + Cu
X1 09X, X1
ou
= a— +Cu
X,
ou
Lu= 0 = a— = —Cu
X,
ou Cc
= — = —-u
6X2 a
_Cx,

Par suite u(Xy,X,) = f(X1)e a



Cc
Finalement u(x,y) = f(bx —ay)e @ f € ¢!

Rappelons une propriété importante :

Soient L, et L, deux opérateurs différentielles linéaires a coefficients constants.
Supposons que L0 L, =L,oLy =L avec L, # L,

Désignons par Q, et Q, les polyndbmes associés a L, et L,

Alors

i. L estassocié au polynébme Q= 04.0,
" u= 2’1 u1+lz u2\

A2, €IR
> =>Lu=0

AVGC Ll u1 == 0

Lyu,=0 "~
En effet :
Au= LAy uy + A, uy) = 4Luy + A,L u,
= A L,0L uy + A,L0L, u,
=MLy (Lyug) + ;L1 (Ly up)
=21.04+21,,0=0

Réciproquement si L est un opérateur différentiel associé au polynédme Q et si
Q=0:0Q2,0;# Q;

Supposons que L, soit associé a Q,
L, soit associé a Q,
alors

i. L = L10L2 = L20L1
" L(u1+/12u2)=0 V/11/12 EIR

déS que L1 Uu, = Lz U, = 0



1.2. Exemple
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Résolution de :

02 0%u 0%u
—2— =x+ y%e”
dx2 = 0xdy dy? Ty

Il s’agit d’une e.d.p. linéaire a coefficients constants avec second membre.

Le polyndme associé a I'équation sans second membre est :
Q(X,y) = X?+ XY —2Y?
Essayons de factoriser Q
Pour cela posons t = é
X% X
QX y) =Y (z-7—-2)
Xz X 2
S _2=t*+t-2
Yz v
=(t+)+;-2
1 9
=+
1 3
=(t+3)°-)*
1 3 1 3
= (t+5—5)(t+z+z)
={t-1({t+1) en remplacant t par %
X X
=(F-1) G+
X X
e .»=r*(;-1) (5+2)
o2 (X-Y\ [X+2Y
=Y ( Y )( Y )

= (X—Y) (X + 2Y)

Comme Q = Ql .onn a L == L10L2 == LZOLl

i} i}
Avec L1 = a 5




d d
Lz— 5_25

La solution générale est u = u; + u,
AVGC Ll u1 = LZ uz = O
PourL; onaa=1; b=-1, c=0

Cc
Par suite u; = f(bx —ay)e < g € G2

=gQ2x—y)

Finalement
u(x,y) = f(x+y)+g2x-y)

Avec f,g € G*

Déterminons maintenant la solution particuliere.

Pour cela cherchons la solution qui ne dépend que de X :

AN o _ = U ==—=u
0x2 ax 2 17 ¢ ™M

Et pour la solution qui ne dépend que de y

azu 2
-~ = y
ayz y-e

On en déduit que :
u=(ay*+ by> +Cy*+ dy + a)e”
Avec a,b,c,d,a € IR

Z—§=(4ay3+ 3by? +2Cy+ d)e¥ + (ay*+ by® +Cy*+ dy + a)e?

=[ay*+ (4a+b)y> + Bb+O)y*+ (2C+d)y + a + d]e”

Comme c’est trop grand, prenons a=b=0
Donc Z—; =[Cy*+ C+ d)y + a + d]e”
2
a_;z‘: [2Cy + 2C + d)eY + [Cy* + Qa+d)y+a+d ]e”

=[Cy’+2C+2C+d)y+2C+d+a+d]e”
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=[Cy*+ (4C+d)y + (2C + a + 2d)]e¥ (1)

_20%u_ 2y u_ 1.2,y
Or oy — Ve = a2 =~ Ve (2)
En identifiant (1) et (2) on obtient :
C=—-> ;4C+d=0; 2C+a+2d=0

D'otl d = —4C = —4(—%) =2

—-1+a+4=0 a= -3

La solution particuliere est donc :

1
Uzpart = Uz = (—E y*+ 2y —3)e”

1 2 y X3
Comme uyqre = Uy + Uy =(—5y + 2y—3)e t 5

On en déduit la solution de I'équation différentielle partielle linéaire a coefficients

constante avec second membre :

3

u(x = — X _1l — y
Y= flot+ y)+ gCx—y)+- +( 5 Y+ 2y 3)3

Avec f,g € G*

[1.3. Résolution de_: y%— xZ—; =0 (2)

— 22 2
Pour cela posons : {u =Xty
v=X

La matrice Jacobienne ] = _g((’;’;)) — [2196 Z(ﬂ

Par suite le déterminant de cette matrice notée det /] estégalea -2y #0 sur
IR? {(x,0); x € IR}

of _of ou , of ov
dx odu "9x = v “ox



et
af 6f au+af av
6y du dy Ov 6y
Ju Ju
—=2x —=2
ox ady
Comme
w_ 4w _g,
ax dy -

On obtient le systeme d’équations suivant :

O _ 9y L0
ax 2x ou + av

of _ .. of

ay =2 u

Soit :

o Ji
or1— L0 2y]faf
oy ov

L’équation aux dérivées partielles (2) devient

Z—i—xg—izo = y[Zx—+af]—2

of
6u =0

- 2xya +y Zyau 0

af
Yoy v

of
Commey # 0 onagzo

f est alors une fonction de u. Posons f(u,v) = g(u)

g € Gt 12

Or u= x?+y? donc g(u) = g(x* +y?)

On remarque que f € G1(IR?)

12 . - .
g continue et dérivable une fois

g € G'(IR)
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I1.4. Exemple :
0%u 0%u 0%u ou = ou
— +— + —+ =
dx2 dxdy  9y? dx  dy

Résolution de I'équation aux dérivées partielles av

—2=0(3)

ec u? € G2(IR?)

Pour résoudre cette équation, posons : X;

La matrice Jacobienne J est donné par :

=y—x et X2=y—f

J= D(Xy,X3) _ _11 1 avec | = x E
IEEICE N 9%z 9%
dx dy
1 —4+1 3 . .
det] = —1 to=—F =—. 7 0 J est inversible
X, X,
mm Xi=y—x —= - — =
Co e 1=y ox ! oy
X 1 X
XZ = —_— =2 = ; =2 =
4 ox 4 dy
du _ W 09X,  OW 9X, _ AW 10T
dx 98X, dx = 98X, ~ ox X, 40X,
a
ou _ 90U 09X, , 0U 90X, _ ou 1 0% (2)
dy 98X, 0y = 98X, 9y 80X, 40X,
Or ?u _ 0 (6u) v avec __ou
ax2 ~ ax \av/)  ox T ax
ou 1 0u
Et V=
X, 40X,
v v 9x, v 93X, 9P 19
dx 90Xy dx = 98X, Ax 90Xy 40Xy
0%u ] ou 10U 10 o 101
Donc = ——|-——-—-—|—-—"-" |- -
6x2 6X1 6X1 4—6X2 4—6X2 6X1 4—6X2
021 n 1 9%u 1 9%u 1 9%u
T 8X.2 | 4 0X,0X, 4 0X,0X, 16 0Xy°
Comme ofu__ ok
0X10X,  0X.0X;




0%2u _ 9%uw |, 1 8%u 1 0%%U

n — - Halihdiadl 1)
Ona ax2  8X1? 2 0X10X,  160X,° (@)
9%u _ 9 (Ou) _ v
axdy 9y \ox) oy
v _ 9v 09X, , OV 0X;
dy 98X, 9x = 98X,  ox
v v X1
= —4+ — avec —=1 et
aXl aXZ ay
2 _617_1617] avec 5o _0u _
T axy b 8x, 40X, T ax
. 9%m 1 9%m KD 1 9%%
T 8Xy% 4 0X,0Xz 0X10Xy 4 9X,°
_ 9% 5 9% 1 9%
T 0X12 4 0X10X, 4 8X,°
921 9%u 5 9% 1 92w
Donc = - —= —= b
dxdy 0X1% 4 0X10X, 4 90Xy’ (b)
22w _ @ (au)_aw_ oW L OW ey O
ay2 oy \ay) ay 84X, 09Xy T oy
ow 9w 9X, , oW 0X
or—=—.—2+—.=>%
dy  0X, 0y 0X, 0dy
ow | ow X, 0x
=—+— car —=—2=1
0X, 09Xy oy oy
mmew=—=—.—+—.=2
Co € dy dX, 0y 0X, 0y
o on ou
T ax, | 9Xy
ow a ou

ow o [ou
ax,  9x, lox,

6ﬁ] LED LED
X, 0X12  0X,0X;

6ﬁ] _9%m LED
0X,l — 8x,%2 ' 9X,0X;

Et donc
ow | aw _ 9%*u 921 92% 921
X1 090X,  0X,2  0X,0X, 0X10X; 90X’
_o%u 924 02T 9%W
T X, 2 0X10X,  0X,2  9y2
. 92w 9w FEb FEb
Par suite : — = + 2
ayz  9x,° 0X10X,  0Xp°

=1
ay
1 04 d [ ot
40X, 09X, - 98X,
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Compte tenue des relations (a), ("), (b) et (c)

On obtient

2~

]
4-5+1
( )ax12

4 0X,0X, \4 4

D’aprés (3)

9 9% 3 90U

40X,0X, | 40X,

=2

%1 ou

9X10X, aX,

= -8

021 1 0u 8

80X10X, 30X, 9

ii 25 02 1 5
+@———+ﬁ +(———+1

a7

)62ﬁ+( 1+1)62ﬁ 2=0
OXZZ aXZ B

ou ' . L. . .
Posons ¢(X;1,X,) = % I'équation aux dérivées partielles devient :
2

0] 1 8
89X, 39 = 7%

L’équation sans second membre donne :

dp 1

X, 3

P(X1, X5) = h(Xy). €3

La solution particuliere est ¢, = g
[P 8 le
Dol @ (X1, X;) =S+ P(X2). €3

Comme 2Z = (X1, X5)
aX,

1
Ona @(Xy,Xy) = 2X; + I(Xp)ex™ + &(X;) avecleC?

o0 =3 (=) 1= +5(5)

Cherchons par exemple une solution u(x, y) telle que :

u(x,x) =x* vyxelIr



8 3 3x
u(x,x)=§.zx+l(7)+€(0)
3
x2=2x+l(7x)+§(0)
3x 2
:>l(—)=x —2x+b avec b =-&(0)
4
Onposetz%x donc x=§t
— (2 _ (%) =1642_8
l(t)—(gt) 2(3t)—9t 3t+b
. 8 x\ [16 x\% 8 x y-x
Dou “0@”—;(%2)[?(%2) —g(y—z)]“ + b
Avec b = —&(0)
3 4
On pose t=_x donc x =zt
= 1(0) = G2 — Z(ft)z 222t 4p
3 3 9 3
. 8 x 16 x\% 8
Dou uCey) =30 -+ [2(r-1) -

avec b = —¢&(0)

w
Veumm
<
|
AR
N——
e—
Q
<
w|]
X
+
S
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Chapitre 4 : SYSTEME DIFFERENTIEL DU 1 * ORDRE

.  Geénéralité

Soitt € IR, Considérons x;:IR — IR i=1,n
t — x;(t)
Une fonction dérivable pour chaque i variant de 1 a n
fiIR"*! — IR
(t, %1, .o Xn) — fi(t, %1, ... Xn)
Une fonction a n + 1 variables
Le systeme différentiel du premier ordre est donné par

x'1(t) = fi(t, x1, . Xp)

() xIZ-(t) = f2(t, x1, ... xp)

X' () = fult, Xy, o)

Si () admet une solution alors elle représente une courbe paramétrée dans IR"™*1

(I) est un systeme différentiel linéaire si toutes les f; sont linéaires i =1,n
(I) peut s’écrire :
x'1(t) a11(t) o ap(t)] [x1(0) x1(t)
: = : : Pol=A0)]|
x'n(O1 lani(®) .. ana (1 Ly (0) xn(t)

Si la matrice A(t) ne dépend pas de t, alors on obtient un systeme différentiel
linéaire a coefficients constants.

On s'intéresse aux 2 cas suivants

- Systéme différentiel linéaire a coefficients constants

- Systéme différentiel non linéaire a coefficients constants
Dans ce cas les f; ne dépendent que de x; et non plus de t
X1 (t)]

Dans le cas linéaire : X'(t) = AX(t) ou X(t) = [
xn (£)

Et le cas non linéaire




x'1(t) = fi(t, x1, . Xp)
x’z'(t) = fo(t, x1, ... X)

X' () = fot, X, o)

On pose x'i(t) = o 1sisn

Le systeme () dévient :

R
f f2 In
[.1. Remarque

Si le systéme est avec second membre ; dans le cas linéaire, on a :

X'@t) =A@+ X))+ B(t)
Ou A (t) est une matrice nxn
X(t), B(t et X'(t) sont des matricesnx 1

II. Systéeme différentielle linéaire a coefficients constants

I1.1. Sans second membre
X'(t) =AX(t)

Pourn = 1 ontrouve X(t) =C et .t €IR
En généralisant X(t) = ecC,
Avec e I'exponentielle de tA c’est une matrice nxn

Et ¢ étant une matrice nx 1

I1.2.Avec second membre
X'(H)=A(t).X(t)+B(t)

Désignons par Xq la solution de I'équation sans second membre
X'()=A(t).X(t)

Xg =Ce" et par Xp la solution particuliére, donc : X(t)=Xp(t)+Ce"
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[1.2.1. Détermination de C
On utilise la méthode dite : Variation des constantes

X(t) =Ce*
En dérivant on obtient : X'(t) = AC e*4 +
X'® = AX(t) + B(t) =  C'e" = B(t)

= C' = e " B(t)
Dol C = [e " B(t)dt c’est une matrice unicolonne a n lignes.

[1l. Exponentielle d’'une matrice A

Lidée vientde e = Ym0l , x €IR

Etdonc e/ = anoi—T En général c’est difficile a calculer
SiAB = BAona eAtE = eA 4 ef

Et 60:00+0T1+"':1n+ 0+

donc e =1,
si la matrice A est diagonalisable
Soit 4, i =1,n une valeur propre de 4
Ona A =diag (A4, ..., A,)

Al 0 cee O
A= :

| )
0 .. 0 An
[elr 0 0
E |
et=1": :
| H
0 0 eh
k k
Come % = dlag ( R ,%

Zk_ = diag (Zk>0 PTI Zk>0 )

Par suite et = (e’ll, ., )

k
Compte tenue de e = ¥, Ak,

-
Il
=
=)

[11.1. Remargues
Ri.  Si A est diagonalisable alors il existe une matrice P inversible tq P~1AP est

diagonale. Notons D cette matrice D =P AP
On en déduitque A =PDP™! et D =diag (A, ..., 4,)
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Calculons A?
A2 = AxA= (PDP~Y)(PDP1) = pp2p-1
Supposons que A¥ = ppkp-1
Calculons A**1
AR+l = Ak A = pDkP~1. A par hypothése
= (pDkP~Y.(PDP™Y)
= pD*(p~1p)pDpP~?
= PD¥(P~1) avec PP = | matrice identité
On vient de montrer par récurrence
Que A% =PD*P~' vpe€EIN

Ak Ak
Et donc Zkzoﬁ = P(ZkZOF)P !
= P diag(e™, ...,e*n)p~1

d'ol e4 = P diag(e™, ...,e*)P~1

R,.  Sila matrice A est nilpotente c’est a dire
Jl€eINtelque AY*1=0 et At=0

Avec O la matrice nulle

eA=I+%+....+— 1 €IN

Rs.  D’aprés une théorie il existe une matrice D diagonalisable et une matrice
nilpotente N tellesque: A=D+ N, DN =ND
eA — €D+N — eD + eN
el est connue car D est diagonalisable
e I'est aussi car N est nilpotente
Rs.  Engénéral e/ est trop longue a calculer tant que possible on évite de la

calculer.

I11.2. Autres méthodes

Considérons I'équation différentielle
X'® = AX(t)



[11.2.1. A : diagonale

Ay 0 .. O
a= |7 w8
0 0 - A,

Le systeme devient

{x’1 () = A1 (8)

X' 0 (6) = Aptn (0)

x1(t) = Crett

Xn (t) = Cne)lnt

[11.2.2. A : triangulaire supérieure

Cette matrice est de la forme :

_ Ao
A= [0 An]

Ona
x'1(8) = A3x1(E) + by (22 (D), ..., x5 (1))

x,r;—l(t) = Ap-1Xn—1(t) + bp_1(t)
x,n(t) = Anxn(t)
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On résout la derniére équation qui donne comme solution x,,(t) = C,, e*® | puis on

remplace x,, dans I'avant derniére équation.

X' 1 (6) = A1 X1 (6) + by (8)

C’est une équation avec second membre. On peut trouver x,_,(t), et ainsi de suite,

on remonte jusqu’a la premiére équation.

IV. Exemples

IV.1. Exemples Résolution d’un systeme de 3 équatio

ns différentielles

x'(t) = x(6) — y(t) + z(t)
Résolution du systeme < y'(t) = 2y(t) + z(t)

z'(t) = —z(t)
x'(t) 1 -1 17]|x@®)
y'(®)|= [0 2 1
z'(t) 0 0 —=11|z(t)

zZ(t) =—z(t) = z(t) = Ce™t

y(t)| donc A = [
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La deuxieme équation devient :
y'(©) = 2y(0) + Ce™*

Résolution de I'équation sans second membre (e.s.s.m)
y)-2y®=0 = y'@® =2y

Yo _ — pet
= S0 2 = y(t) = be

Une solution y,(t) particuliere est donnee par :
yp(t) = et
Par suite y'(t) = 2y(t) + Ce™*
() = et = y () = —2e7t

—let=2le Tt +Cet = A= —g

Dot y,(t) = —g et
Donc y(t) = —% e t + be?t
y(t) et z(t) étant connus, I'équation
x'(t) =x() + y(t) + z(t)
devient x'(t) = x(t) + % e t — be?t
c’est une équation différentielle avec second membre qui permet certainement de
déterminer x(t)

Remargue
Si A = PSP~!  avec S diagonale ou triangulaire, la matrice P est inversible
c'est-a-dire A est diagonalisable ou triangularisable.
X' =AX
= X' = PSP™'X
= P71X’' = SP7X
On pose Y =P 1X
Y'=(P X)) =P X car(P}) =0
X' = AX devient
Y' = SY avec S diagonale ou triangulaire.
On trouve Y avec l'une des deux méthodes précédents

Y=PX = X = PY Remarquons qu’on n’a pas besoin de calculer P!
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IV.2. Exemple
Résolution du systeme | x'(t) = 2x(t) + 2y(t)
{y’(t) = x(t) + y(@®)
avec x(0)=1lety(0)=0

IV.2.1. Méthode 1 (passer par exponentielle)
[x’(t)] _ [2 2] [x(t)]
y' @l 1 1l Ly
_ x(t)] _[2 2
PosonsX(t)—[y(t) A—[1 1
L’équation différentielle devient X'(t) = AX(t)

e Calcul des valeurs propres de A

2—2 2 |
1 1-1
Il existe deux valeurs propres simples : 1; =0et A, =3

=1(1-13)

A est diagonalisable sur R. Il existe donc une matrice inversible P tel que D = PAP™

A0
0 1

La premiere colonne de la matrice P étant le vecteur propre associé a A;.

D=

La deuxieme colonne par le vecteur propre associé a As.

+ Détermination des vecteurs propres

Soit EA; le sous espace associé al1; =0

Ona:| 2x+2y=0

{x +y =0 =ry==

donc 1y = (1,—1) et EA; = < 11> est le sous espace engendre par le vecteur ;.
Soit EA; le sous espace associé a 1, = 3.

ﬁzEEAz = Al_l,)2:3l_l,)2
2 271 *1_[3x 2x + 2y = 3x
- [y]_[?w - {x+y=3y
= x=2y = U=(21)

Le sous espace EA, engendré par i, est EA; = < 1>

« Détermination de P_*: (matrice inverse de P)

Comme P = [il ﬂ



a_ 1 [d —ab]

tenant compte de [Cé 5] = e |l —¢

avec ad — bc #0

. 1l -2
Ona: P1—3[1 1]
A=PDP' = tA=P(tD)P*

ete®=pe®Pt  w=[) ]

o_[1 O
€ _[0 e3t]
2 171 2 1 0 1 -2
tA _ tD 1_ =
e =Pen P =3 5 Ul esd 1 7
_ 1714 2e% —2+2e3t]
31-1+e3 2+ et
! tA 361
X)) =AX(t) = X(@t)=e [SC] C., C, sont des constantes.
2

{x(t) =C; (1+2e3)+ C, (-2 + 2e3H)
y() = Ci(—1+e3) +C, (2 + e3)

x(0) = 1} 3c,=1 = C1=§
y(0) =0 3¢,=0 = ¢,=0
x(t) = < (1+2e)

Par suite )
y(t) = 3 (-1 +2¢%)
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IV.2.2. Méthode 2 (sans passer par exponentielle)
X'(t) = AX() A=PDP?

Y = P y= [ 1]
y2
Y' =DY
On en déduit que [ y'1(t) =0 X =PY
y'1(t) = 3 y2(t)
N {)ﬁ(t) = [x(t) _ [1 2] [ Gy ]
y2(t) = Cre3t y(t) -1 1l |c,e3

{x(t) = Cl + 262 e3t

y(t) = _Cl + CZ €3t

x(0) = 1} {cl +2C,=1

y(0)=1 _C1+C2:O:>C1:C2
. 1

d'OU Cl = Cz = g

On retrouve le résultat précédent.

IV.2.3. Méthode 3
{x’(t) = 2x + 2y
y(®)=x+y
donc x'(t) = 2y'(t) = x(t)+ 2y(t) =C
=x(t)=2y@t)+C
La deuxieme équation : y'(t) = 3y(t) + C

L’équation sans second membre donne comme solution générale y, = b e> et la

, o C
solution particuliere : y, = -3

d'odi la solution y(t) = —%+be™
x(t)=2y+C = §+2be3t
1

~S4bh=0 = C=1Lb=x
3 3

x(0)=1} §+2b=1
y(0)=1

On retrouve aussi le méme résultat.
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V. Systeme différentiel non linéaire a coefficients constants

V.1. Généralités

58

. dx1 dx2 dxn
Onseraménea—=—=+-=—1]
f1 f2 fn
Ou f; sont fonction de xy,............ xn. Une solution de (1) est une courbe paramétrée

E x 1(t)
de vecteur tangent en M(t) : | :
X n(t)

(I") veut dire que le vecteur ¥ est paralléle a f1 [M(£)]] pour tout M(t) de la

n [M(D)]
courbe solution.
On s’intéresse aux cas n = 2, 3.

Pour le cas n = 1 c’est I'équation différentielle ordinaire d’ordre 1.

dx dy
Pourn =2 =
P(xy) Q(xYy)
d d d
Pourn=3 Z=2=Z

P Q R

On note (S) ce systeme.

V.2. Intégrale premiére de (S)

Casn=2 (S):%z%y

Une intégrale premiére est une fonction de classe C * telle que pour toute courbe
de solution (F) de (S) pour tout point M(t) € (F) :
U [M(t)] est constante c'est-a-dire ne dépend pas de t.

x = x(t)
M§=ﬂo

Casn=3 analogue

M(8): [x(0), y(8)]

U (x,y,z) declasse C * U [M(t)] = constante sur (F)

Remarque
Casn=2 a fixé



U (x,y) = a est I'équation d’'une courbe.
Casn=3

U (x,y,z) = a est I'équation d’'une surface.

VI. Fonctions indépendantes

VI.1. Définitions
e Casn=2

Soient U et V deux fonctions a 2 variables de classe C *

VI.1.1. Définitions-1

U et V sont indépendantes si la matrice Jacobéenne.

LU

DY) Ix Jy
J=—== est inversible (det J # 0) (en tant que fonction)

D (%) IV IV

o Oy

donc de rang maximal égale a 2

VI.1.2. Définitions-2

e Casn=3
U et V sont indépendantes si :
U U U

9x Y9y @ Oz
IV IV IV
Yx Jy 9z
est de rang 2 c'est-a-dire I'un des trois.

Déterminants extraits est différents de zéro.

VI.1.3. Exemples

Exemple 1
U VU
— A2 2 I _— =
U=x*+y ox 2x oy 2y
oV 1%
V = Xy = —_—=

E y Iy
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o Ul r2x 2y
donc |%* 9|z ]

v o

9x 9y y x

Le déterminant de cette matrice est : 2x*> — 2y*#0 donc U et V indépendantes.

Exemple 2
9U 9U 9U yZ XZ Xy
U=xyz E E E‘ B l
V=z+x IV A% A%
9x @ 9z 1 0 X

. . . X .
Le déterminant extrait |)1/Z g| = —xz #0 (en tant que fonction)

VI.2. Méthode pratique

. Casn=2 (S):%xz%y:de—dezo

S'’il existe U telle que Q dx — Pdy = dU

C'est-a-dire Q dx — Pdy est une différentielle exacte alors U est une intégrale
premiere.

En effet dU = 0 = U est constante

= U[M(t)] = constante V M(t) € (F)

d d
VI.2.1. Exemples 7" - 4

X

=>xdx+ydy=0

=d (xz_;_yz) =0=dx*+y*) =0

d'oli U = x* + y* est une intégrale premiére

e Casn=3

dx dy  dz
(S):?— —_— = —
Q R
Rappel:
a_c a c Aa+yc

prag 0 (4, ) =(0,0)

Pour déterminer une intégrale premiere U il suffirait de trouver f, g, g des fonctions
telles que: fP + gQ+hR =0

et dans ce cas :
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(S): dx dy _dz _ fdx+gdy+hdz
P Q@ R 0

Ce qui donne par un certain abus.
R(fdx + gdy + hdz) = 0dz = fdx + gdy + hdz =0
Si fdx + gdy + hdz est exacte alors elle est égale a dU ainsidU = 0 = U =

constante donc U est une intégrale premiere.

Remarque
Cette méthode peut s’appliquer aussi pour le cas n = 2

VI.2.2. Exemples

Exemples.1

dx _d_y
)= -3
On avu que U = x* + y* est une intégrale premiére.
La solution est donnée par :

(ya) @ pour équation paramétrique :

X =a cost
(va) {y = a sint

(S) est aussi un systeme différentiel linéaire

YO=y®) .,
R e

y = Assin (t + @) Vvérifie ce systeme. En effet x = —y' = —A cos (t + @)
x(t) =Acos(m—t — @)

La solution est {y(t) = Asin((mr—t — @)

Exemples.2 : Résolution de I

odx _ dy _ dz
S): x(y-z)  y(z-x)  z(x-Y)
Onaici: P=x(y—2)
Q=y(Z—x)
R=z(x-y)

P+Q+R=x(y—2)+y(z—x)+z(x—y)
P+Q+R=xy—zx+yz—xy+zx—2zy)=0



dx dy dz dx+dy+dz
Comme —= —=— = ———
P Q R 0

=dx+dy+dz=0

=dx+y+2z)=0

= U = x + y + z est une intégrale premiere.

La deuxieme intégrale premiere est donnée par :
yZP+xzQ+xyR=0

doncyzdx+xzdy +xydz=0

comme d(xyz) = yzdx + xzdy + xy dz

on en déduit que d(xyz) =0

Par suite V = xyz est une deuxieme intégrale premiere.

La solution éa, b est la courbe d’équation

ty+z=
((Sa,b):{x yrz=a

xyz = b

VIl. Comment reconnaitre une différentielle exacte

VIl.1. Cas a 2 variables

SoientP,Q € C *

est exacte si et seuilement Sl — = —
redy 9x Dy

Dans ce cas U telle que dU = Pdx + Qdy est donnée par :

x y
Ulx,y) = J- P(u,y)du +j Q(xo,v)dv
xo yo

xo0,yo étant fixés arbitrairement

VII.2. Cas a 3 variables

SoientP,Q,R e C *!

Pdx + Qdy + Rdz est exacte si et seulement

P
si rot <Q> = 0 ol rot désigne le rotationnel
R
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_i_
N T B sl Y
rot | Q =V/\Q=$/\Q
R Rl 51 IR
[ 92-
_19_R_19_Q_
dy 9z
- |22 _ 2R Il s’agit ici de la composante du vecteur rot
=15, " ox g p u urro
ve 9P
L9x vy

Dans ce cas :

U(x,y,z) = f;o P (u,y,z)du + f;o Q(xo,v,z)ow + fZZoR(xO, Yo, w)dw
VII.3. Exemples

VII.3.1. Exemple-1
w=ydx+xdy

v — 9Q _ 9P _
OnaP=y;Q=x 19x—19y—1
donc w est exacte

_ X _(x y
w=dUouU(x,y) = fxoP(u,y)du + fon(xo, v)ow

_ (X y

= [, ydu+ fyoxo du

=y(x —x0) + xo(y — yo) = xy — xo0yo
Onprend U(x,y) =xy (U est définie a une cbte pres)

VII.3.2. Exemple-2

yz
W=7dx+zlnxdy+ylnxdz

P_yz vP y JR vy
X 9z x I9x  x
90 90 =z
Q=zlnx E—lnx S %
R=vl YR ] 19P_z
=ylnx ﬁy—nx 9y x

P

Q
R

)

63



P

Q
R

e
rot

d'ou rot

9R  9Q
@—E—lnx—lnx—

IR _Y_Y_

9z 9%  x  x

9Q 9P _ z z

lox 9y x  x

P

Q| = o = w estune différentielle exacte
R
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Chapitre 5 : TRANSFORMEE DE LAPLACE

I. Transformée de Laplace

[.1. Définition

Soit £(t) une fonction a une variable dont le support noté supp f est inclus dans R*

c'est-a-dire f(t) =0sit < 0.
La transformée de Laplace de f si elle existe est :

LIf®O)]: Q—> R avec Q 0 [

P — » folf(t)e' pldt;pez

|.2. Remargue
Vpez  LIf(t)] (p) n'existe pas toujours.

I.3. TABLEAU DE : L[f(t)](p)
Quelques valeurs de L[f (t)](p)

f@® 0 LIF(O]®) Domaine de définition
t) pour t > Ol
de L[f(®)](p)
1
. n Re(p) >0
p (»)
t : Re() > 0
"2 e
p* p
e—at’ acz
o __pta
e®, cos(wt) D+ a)?+w Re(p+a) >0
e, sin(wt) v Re(p+ ) > 0
’ (@ +a)?+w? p

Re signifie : partie réelle (p e

l.4. PROPRIETES :
P.: L estO - linéaire
L(Af +g) = AL(f) + L(g)




Po: L(t" F(D(P) = (-1 [ () (p)]

dp™

P31 L[f(t — a)](p) = e™ LIf (D](p)

Pa: LIF(5) (@) =p “LIF (D](p) — p** f(0")

—2F' 0" ..o pf 20N - FEY F 0N
ot V0" = lim fO()

t—o"

1.5. Application
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Résolution de I'équation différentielle :
x"(t) = 3x'(t) + 2x(t) =t

avec x(o)=1 , x'(0) = -1

Pour cela, on cherche x(t) telle que x(t) =0

sit < 0. On utilise:

L(F ) ®) = p* (LIO) @) = P £(07)

L") = p* L(x(®)®) —p x(0") -x'(0")
= p? L(x(®)() —p+1

p L(x([®) (@) — x(0")

pL(x(®)(p) -1

L(x"(t) = 3x'(t) + 2x(©)(p) = L(O)(P)

:»pZL—p+1—3pL+3+2L=§

L' () (p)

L('pz—3p+2)=§+p—4
lz+p—4

7 B pd—4p*+1
L(X(t)(p)) = p?—3p + 2 - p?’(p—D(p—2)

On décompose en éléments simples et ensuite consulter les formules.

p?—4p*+1 —i+é+ c d
p!p-DP-2) p* p
A @3-ap*+1) cp’ d @

=a+bp+—+—=0
Prp-1)(p-2) P o™ =

p—1 p-2




Onprendp =0

(2) Devient:%za = a=%

3 4.2
PP+ e | dp
Po-D@-2) p-1  p-2

faisons tendre p vers l'infini

p3—4p*+1

%
p(@—1D{—2) prtew
a c d
Stb+— v pic+d
p pr—1 p—2 poto

doncb+c+d=1

1

p3—4p*+1  _ —1-4+1 _
p’(p-1(p-2) —2(=3)

-4 _ 2
pour p = —1 ==—3

a b
—+-=-+
p p

1
=-—b—-—= cara =

N
N
w
N

donc — & = 3-=6b=3c—2d
6 6

— -7=—6b — 3¢ — 2d
— 6b + 3¢ +2d = 7 (% %)

pourp = —2

—-8—-16+1 a b ¢ d

4(=3)(-4) 4 2 3 4
3a—6b—4c—3d
- 43

-23
:>T =3a—6b—4c—3d

2
=§—6b—4c—3d car(a=§)

—23-6
4
—29 = —24b — 16¢c — 12d

= 24b 4+ 16¢c + 12d = 29 (* *)

= —6b — 4c — 3d




D’apres les relations (%), (% %), (% * )

b+c+d=1 c=2
onai{6b+3c+2d=7 - p=3
24b + 16¢ + 12d = 29 47
d=-=
4

at + b + cet + de2t sit >0
Osit<O

d’ou la solution  x(t) = {
En effet :
3 —4p®+1 a b c d
f P _aLhy,
p’p—-D@®-2) p* p p—-1 p-2
= a.L(t) + bL(1) + cL(e") +dL(e?)

= L[at + b + ce' +de*] (p)

car L estlinéaire
Comme L(x(t))(p) =L(at+ b+ cet+de2t) (p)
On en déduit que :
x(t) =at+b+ce'+de®;t >0
=%t+%+2et—£e2t; t>0

Zt+242et —%ez’t pourt >0
donc x(t) =

O0sit<O
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CONCLUSION PARTIELLE

On vient de déterminer la solution de I'équation
différentielle du second ordre avec second membre a l'aide
de la transformée de Laplace.

Cette méthode est tres efficace pour la résolution

d’une telle équation différentielle
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TROISIEME PARTIE

Dans cette troisieme partie on va voir

- L’équation de la Chaleur

- Les oscillateurs mécaniques et électroniques

- Les équations des ondes sur IR
Dans ces chapitres on va utiliser des diverses méthodes pour résoudre des
équations aux dérivées partielles rencontrées dans les chapitres précédents
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Chapitre 6 : EQUATION DE LA CHALEUR

Position du probléme

On considére une barre de longueur [ = 1 soumise a une source de chaleur de
densité f(x,t) en un point x € ] 0,1] et a l'instant y. on s’intéresse a I'évolution de la
température u(x,t) en un point x’ e a l'instant t lorsqu’on maintient le bord x = 0 et
x = 1 a température constante (par exemple a zéro). Grace a des lois physiques et

meécaniqgues on établit 'équation de I'évolution de la température :
au
6x2+f(x t); x€]0,1[,te]0,T[

Ou g >0 désigne la conductivité du matériel.
Les conditions aux limites ainsi que les conditions initiales sont données par :
u(0,t) =u(l,t) =0 pourt € ]0,T[

u(x,0) = uy(x) pour x € ]0,1[, c’estla répartition de la température initiale

1. METHODE DE SEPARATION DES VARIABLES

Soit a résoudre I'équation aux dérivées partielles :

6u 2u
(E) : e az pour x € 10,1[ et t>0

On veut déterminer I'évolution de la température u(x, t) c’est une application & deux
variablesenx et t

La méthode consiste a déterminer deux applications X et T de telle sorte
que u(x,t) = X(x).T(t)

On a% (x,t) = X(x)? d’une part, d’autre part

Z—z (x,t) = [a);ix)].T(x) et en dérivant pour une deuxiéme fois I'expression par

. : dX(x,t) aX(x)

rapport a x, on obtlentax[ ] = [ o ] T(x)
2

Ce qui donne %u(x, t) = —ZX(x).T(x)

L'équation (e) devient : X(x) —— aT(t) aa)i(zx) T(t)

3%X(x) aT(t)

ax2 at
Ce qui donne —=— X = TE
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02X (x)
0x2

= KX(x)(1)
Ona
| 22 = KT(1)(2)

On va distinguer 3 cas suivant les valeurs et le signe de K

1.1. Si K=0

2
(1):%= 0 c’est une équation différentielle du second ordre en X, qui admet

comme solution :

X(x) =ax +b avec a,b,e R

aT(t)
ot

Et (2)= = 0 c’est une équation différentielle du premier ordre en t qui admet
comme solution :
T(tx) =cavecce R
L’évolution de la température est donc donné par :
U(x, t) = X(x).T(t)
=(ax + b).c
=c(ax + b) avec a,b,c € R

Pour K=0 u(x,t) = c(ax + b) = acx + bc est une solution de (E)

1.2.SiK=62% > 013

Supposons maintenant que K>0 et qu'’il existe o € R tel que K=92

ax2(x) _
axz

La relation (1) devient 02X (x)

C’est I'équation différentielle du second degré en x admet comme solution

X(X) = ae®* + be~%*"avec a,b € R

La relation (2) donne % = 92%t. Cette équation différentielle du 1° ordre en t admet

comme solution : T(t) = cexp ( 6°T) avecc € R
D’ou la solution de (e) :
u(x, t) = cexp ( 6°T)[a exp(6x) + b exp(—x)] avec a,b,c € R

C’est I'évolution de la température pour K=§% > 0

13§ : conductivité du matériel
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1.3.SiK==§%2<0

Supposons que K soit négatif et qu'il existe § € IR tel que K=—§2

%X (x) _

(1) devient : —82X(x) qui admet comme solution X(X)= cos(6x) +

osin (8x)
aveca,b e IR

d’une part, 2t d’autre part :

92T(t) _
at

(2) Donne : —82T(t)qui admet comme solution

T(t) = cexp (—6%t) avec c € IR
Finalement I'évolution de la température pour ce dernier cas ol K=—§2%est donnée
par une famille infinie de solution :
u(x, t) = c exp (—6%t)[a cos(6x) + b sin(5x)]
*e et exp désigne la méme fonction exponentielle
Munissons maintenant (E) des conditions aux frontieres (F) et des conditions
initiales (1) fournies par :
u(0,t)=0vt>0
(F ):{

Jdu
— (L) +ull,t)=0vt>0
Oox

u(x,0) = f(x)avec f(0)=0et f'(D+f(1)=0
fedl, f#0

On cherche encore u(x, t) par la méthode de séparation de variable
Soitt> 0
(F) devient :

(F):{

« u(x,0) == X(0)=Xx(0)=0
* 3—2(1, t) + u(1,t) = 0 est équivalent a

3_1; (1,t) =T(t).X'(1)
(F):

u(1,t) = X(1).T(t)
X' (D +XDIT@®) =0 (3)

La derniere équation (3) nous donne :
XD+Xx(1)=0

Les conditions aux frontieres (F) s’écrivent alors



(X(0)=0
(F )'{X’(l) +X(1) =0

D’autre part les conditions initiales (I) deviennent
u(x,0) = f(x) © X(x).T(0) = f(x) vx € ]0,1]

(1):{ £(0) = 0 = u(0,0) = X(0).T(0) = 0
FfO+fD=0=[X'1D)+XD].TO)=0

Comme f #0doncT(0) #0
par conséquent [X'(1) + X(D].T®) =0=X'(1)+X(1) =0
Reprenons la résolution des équations différentielles

02X (x)
dx2

aT(t)
ZEKT(L)

K X(® i
avec K € IR en tenant compte des conditions (F) et (I)

Distinguons encore 3 cas suivant les valeurs de K € R

e SiK=0
OZX(x) aZX
axz =KX= ax(zx)=0=>X(x)=ax+b
K=0

avec a,b,€ IR
Comme X(0)=Oalorss = b =0
Par suite X(x) = ax aveca € IR
Considérons X'(1) et X(1)
X(1D)+XA)=a+ax

Pourx=1lonaa+a.l=a+a=2a
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Comme X'(1) + X(1) = 0 on a en déduit que la valeur du nombre réel a est aussi

nulle

Par conséquent : X(x) =0

(I) nous donne f(x) =X(x).T(0) et ceci pour tout x €]0,1[ autrement dit

f = 0(f identiquement nulle)ce qui contredit f # 0

Finalement la valeur de K égale a 0 est a exclure. Elle ne convient pas. Passons

maintenant au deuxiéme casie K = 82 >0
e SiK=6% 6>0

02X (x)
0x?

X0)=0=a+b=0=b=-a

= 02X(x) = X(x) = aexp(dx) + b exp (—bx)



X(D)+XA)=0=adexp(d) —bexp(—6) +a exp(d) + bexp(—5) =0
= a d[exp(d) + exp (—6)] + aexp(d) —exp(—6) =0(4) enprenant x = 1
a est différent de zéro sinon b=-a=0
par suite X = 0 ce qui est impossible
(4 )devient: 62chS + 2shé = 0 pour § > 0 c’est impossible car cht> 1Vt € IR
etsht>0vt>0
Donc K= 62 >0 est aussi a exclure. Il reste le dernier cas ol K= —-§2? <0, > 0
e SiK=-6%2<0, 6>
92X (x)
0x?

X(0)=0=a=0donchb#0
X'(1) + X(1) = 0 = bbcosd + bsind = 0 = Scosd = — sind

—9%X(x) = X(x) = acoséx + bsindx;a,b € IR

=6 =—1gd

Ce qui nous donne une famille X(x) = bsin(dx)avec — 8 =tg6;6 > 0

Il reste a déterminer T(t)

Pour K= 6% <0

oT(t)
ot

Comme X(x).T(0)=f(x)

On en déduit que : [bsin(dx)]c = f(x)

= —03%T(t) = T(t) = cexp(—5%t)avec c € IR
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Cette relation permet d’avoir la valeur du nombre réel sur IR u(x, t) est la mesure de

la température du point d’abscisse x a l'instant tavec conditions initiales. On utilise la

2
transformation de Fourier pour résoudre %=%
Fixons alors t ; u(x,t) = f(x)

Ona: B(8)=F[f(x)]1(8) = [, u(x,t).e > dx

ou 9%*u P
Comme — = — on en déduit que :
ot dx2

0
a(b(&, t) +45°m?@(5,t) =0

B(6,t) = G(6) exp(—4m?6%t) = F[f; (x)](6)
Pour t fixé et a I'aide du tableau des valeurs de F on obtient :

202 — 1 _ﬁ
exp(—4m°6“t) = F L/mexp< 4t>l ()



Sig(x) =F (G(8)) (transformée inverse)
Comme :F(fxg) =F(f) —F(g)

1 X

Ona:F(f) = F(g) — F [ exp (- 5] (&)

=F[g+ (=exp— D)

s 1 2
Douu(x,t) = f(x) = g * 7= exp (- %)

En particulier sur R*

ou 0%u
Ezﬁ x,t=0

u(x,0t) = f(x);u(0,t) =0

u(x, t) est donnée par une certaine formule pour f(x)=A ou désigne une constante.

Désignons par erf la fonction : error fonction définie par :
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erf(t):%f;exp (-s®)ds et par erfc la fonction derreur complémentaire.

Rappelons que :erf(t) + erfc(t) = 1vt >0

La solution fondamentale de :

u_ 0%u est donnée par :
at  9x2 par-

1 x?
u(x,t) = ﬁexp (- E)



CONCLUSION PARTIELLE

On vient de déterminer I'évolution de la température

2
u(x,t) = \/%exp(— xT) en un point x et a linstant t lorsqu’on

maintient le bord x = 0 et x = 1 a température constante
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CHAPITRE 7 : OSCILLATEURS MECANIQUES ET ELECTRIQUES

Nous allons essayer d'utiliser, d’appliquer les méthodes de résolution d’'une
équation différentielle pour établir I'équation du mouvement et I'expression de
I'énergie dans le cas suivant :

- Oscillateurs non amortis ;

- Oscillateurs amortis par résistance fluide ou électrique. Cela permet
d’étudier la théorie générale des oscillateurs. Pour cela, nous allons étudier le
mouvement d'un pendule de torsion, d’'un pendule pesant, d’'un pendule simple et
d’un circuit oscillant. En réalité, ces divers systemes présentent des points communs

essentiels. lls font partie des oscillateurs mécaniques et électriques.

|. OSCILLATEURS NON AMORTIS

[.1. Mouvement rectiligne dune masse ponctuelle

accrochée a un ressort

On accroche une masse ponctuelle de masse m a un
ressort de raideur k de masse négligeable. On tire la
masse négligeable. On tire la masse verticalement vers

lJ’ le bas. A l'instant t, le centre de gravité G se trouve a
A(D I'abscisse x de la position d’équilibre GO prise comme
origine de l'axe vertical descendant. On admet que les

X$ forces de frottement et I'action de l'air sont négligeables.

-

™I Linventaire des forces appliquées nous donne mg.et T
L’équation différentielle régissant le mouvement pris par la masse est :
mg +T = my (1)
En projetant sur I'axe vertical descendant, on obtient :
mllgll = ||T]| = mlI7 avec ||T| =k(x+ Al
(1) devient m||g|| — k(x + Al) = m||y||
< m|lgll — kx — kAL =m||¥||

d?x

- _ dzx - _ax
= ml|lgll — kAl —kx = m— avec ||y|| = 2

dt?
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0
m&+ kx=20
dt? -

d?x k
Commem # 0 ona —+—x=0 (2)
dt m

Posons w? =%>0(car>0,m>0)

Comme I'équation horaire du mouvement de la masse m dépend du temps

d?x(t)
tZ

t, (2) devient : -

+ w2x(t) =0

La solution générale de cette équation différentielle est: x(t) = a sin (wt +
@) ou a et sont des constantes déterminés par les conditions initiales. La masse

m effectue un mouvement oscillatoire de translation autour de G,.

Remargue Conservation de I'énergie mécanique du systeme
Il y a conservation de I'énergie mécanique du systeme
En effet :

d?x(t)
dt?
d dx(t)

dt dt
En multipliant par dt on obtient

d (22) + wix(tdt =0 (1)

+ w2x(t) =0

+ wix(t) =0

Posons
. d
X =— x(t)
(1) Devient :
dx + w?x(t) = 0=0.dt
En intégrant membre a membre on obtient :
[dx+w? [x(t)dt= [odt
= %a‘cz +w? [x(t)dt = Cste (Constante)
1. k 1 .
Exz +;fx(t)dt :mez + k [ x(t)dt = Cste
OuE, = %mp‘cz est I'énergie cinétique

Et k [ x(t)dt I'énergie potentielle
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Comme |'énergie cinétique ajoutée a I'énergie potentielle est égale a une constante,
qui n’est autre que I'énergie mécanique du systeme.

On en conclut qu'il y a conservation de I'énergie mécanigue du systeme.

[.2. Pendule de Torsion

Un systeme pesant par exemple un barreau est suspendu a un

“ree fil de rotation qui reste vertical. Ce fil constitue I'axe de rotation
~ A autour duquel s’effectue le mouvement du systéme. On écarte
07'w <0 le pendule d’'un angle 6 a partir de sa position d’équilibre.

mg Les forces extérieures appliquées au pendule sont mg et T:

Soient Mz et Mz le moment respectif de mg et T

La somme algébrique des moments des forces appliquées au pendule est :

Y U=Upg +uz = (3)

Comme mg et T sont portées par I'axe de rotation

(3) devient ¥, u=—ch car Uyz=uz = 0

C étant la constante de torsion du fil

En appliquant la R.D.F (relation fondamentale de la dynamique) du solide
en rotation on a:

—ch = J6 ol J est le moment d'inertie du pendule par rapport a l'axe

L’équation différentielle est donnée par :

d?e(t) 2 . 2 _C
4) — tw 0(t) = 0 avec w* = ;

L’équation horaire du mouvement du systéme pesant, solution de [I'équation
différentielle (4) est donnée par :

0(t) = O sin(wt + @)

Ou a et ¢ sont des constantes déterminées par les conditions initiales. Le systeme
effectue un mouvement oscillatoire sinusoidal de rotation autour de la position

d’équilibre.

[.3. Pendule de simple
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Un point matériel M de masse m est lié a un point fixe 0 par un
fil de masse négligeable et de longueur [. Le fil restant tendu,
on écarte le pendule d'un angle 6 et on I'abandonne sans

vitesse.

YU = Upgtily = Umg CAr T rencontre
I'axe de rotation ; = — mglsin
Pour les petites oscillations sin 8 = 6. En appliquant la RFD rotation au point M on

a.

—mglf = ml?6

2
C'est-a-dire ddigt) +w? = 0®avec w? =2

L’équation horaire du mouvement est la solution générale de (5) : 8(t) = 6,,sin (wt +
@) ou a et ¢ sont des constantes déterminées par les conditions initiales

Le point M effectue un mouvement oscillatoire sinusoidal

|.4. Circuit oscillant : analogie électriqgue

|||||, Le circuit oscillant est composé d'une self L et dun
| r

J condensateur de capacité C préalablement chargé (contact
be ,a _ C p .
C' c ab). Si i désigne le courant de décharge et U la tension aux
[ ! % bornes de la self est
_ o di
(fig. 4) U=L—
En dérivant on obtient :
du d?i
=7 6
dt dt? ©)
CommeU=¢=2 1 _ L. ,%_
C dt C dt C dt
d?i [ d?i [
(6)devient i L—=—-—-o—+—=0(7)

dt? c dt? LC
Posons w? = —
LC
SO S PR
(7) devient : mtwi= 0
Le courant de décharge i(t) est la solution générale de (7). C’est un courant

sinusoidal donné par :



i(t) = i sin(wt + @)

%Joue le rble de raideur et L joue le réle d’inertie
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. OSCILLATEURS AMORTIS

Un mouvement est amorti a cause des frottements : le frottement fluide (gaz,

liquide) et le frottement, solide

[I-1-Oscillateur de translation

d . .
F' = —fd—: avec f constante de resistance fluide

D’apres la RDF F= my ce qui donne: en projetant

, < d%x dx _
C'est-a-dire m——+ f; +kx=0

[1-2-Oscillateur de rotation

u' = —fi—(: avec f constante de résistance fluide
apre Ja%6 _ _ cdo _

D’aprés la RDF i fdt ch
' s g Jd%0 dae _

C'est-a-dire —+ f—+ct = 0

[1-3-Circuit oscillant

Le circuit comporte une capacité C, une résistance R et une self L. La tension aux

bornes de la capacité est U =% et aux bornes de la self et de la résistance U =
di .
L E + Ri
onal=L% 4R
c dt

dq

Comme il y a décharge dg <0 eti = ——

N d?q dq
Douc— Ldt2 Rdt

. d%q dq . 1 __
Par suite L — + R—+-0=0
Conclusion :
Pour les oscillateurs amortis les trois équations différentielles sont données par :
. d?x dx
l. mg + fE +kx=0

d%e

dao
dt2+fE+C9_0

i,
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i Lfay gl 1,
. L= +R_-+-q=0

Qui peuvent s’écrire sous la forme générale :

d?s

S +21 T+ wis =0

Résolution de_ (e)

L’équation caractéristique de cette équation différentielle du second ordre
est:
€) r?+42ir+wis=0
Le discriminant de (e’) est :
A = 2?2 —wg (discriminant réduit)

Distinguons 3 cas suivant les valeurs de A’

e SIA'>0
(e") admet 2 racines réelles distinctes données par :
r= A+ =Wl
r, = —A—+J22 —w?
Posons X' =22 —-w¢ avec 1> A
Donc rp, = —A+ A
r,=—-A=-X
La solution générale de (e) est :
s(t) = Ae™t + A,e™! avec A, et A, des constantes a déterminer suivant les
condition initiales
s(0) = A eCAHE 4 g o220t
= Aje M eA't 4 f et oAt
= ¥t (A7 + Aye)
Comme 1 > 1A', e~* emporte sur e?'t quand t — +o
Par suite s(t) — Olorsquet — 4+

s(t) ne présente aucune périodicité. On dit que le mouvement est apériodique non

critique.
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e SIiA=0
(e") admet une racine double r = -1 = —w,
La solution générale de (e) s'écrit :
s(t) = (at + b)e™ = (at + b)eWot
Avec a et b des constantes a déterminer a partir des conditions initiales
Quand — 4w, s(t) — 0 car e""°of emporte sur at + b.
Le mouvement amorti est apériodique ou encore non oscillatoire critique.
e SIA' KO
(e") admet une racine complexes conjuguées
r= At W
ry= —A—ifWE =R

Posons w = w¢ — A2 , w s'appelle pseudo-pulsation

T = 27” pseudo-période

La solution générale de I'équation différentielle (e) s’écrit

s(t) = e *(ae™t + be™?') avec a, et a, étant déterminés par les conditions initiales
s(t) peut s’écrire :

s(t) = e Msin(wt + @)

s(t) présente alors une périodicité a cause de la fonction sinus, mais son amplitude

diminue et tend & s’annuler quand t augmente a cause de e~*t. Le mouvement est

oscillatoire
(t) A Maxi
s axima
So N
. S4
ANVAN t
3 f ] =
Z SE 3\5\5;5
1 : .
'« Minima

(Fig.5) graphe de s
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Decrement Logarithimique

Pour ¢ = 0 on a s(t) = A e * sinwt. Les extrema (minima ou maxima) s'obtiennent
par sinwt = tl

Soit pour wt = §+ kr =t = 2k + 1)%= (2k + 1)%
Les maxima (S,, S;, S4 .....) correspondent aux valeurs paires de k

Le premier maxima S, s’obtient pour k = 0 donc t = 2

T
Donc S, = A e X%

Pour deux valeurs paires successives k et k + 2, les maximales Sy,

Correspondantes sont .
T T T
Sk — Ae—ﬂ.(Zk-l'l)Z — Ae—kﬂ.ze—lz

Spuy = Ae @Kk+2)+1)% _ A e—;t(zzc+5)£

T T
— Ae_kAEE_SAE

Considérons les deux maximales consécutives :

T
Sk+2 _ 3_512__
st T ¢
k e 2

Le logarithme népérien du rapport SS—" noté § s’appelle le décrément logarithmique
k+2

Sk
6 =1In =AT
Sk+2

6 mesure le taux de décroissance de 'amplitude

Remarque :
Les maximales successives forment une progression géométrique de raison e *7
En effet 242 = g=AT ; Skta _ =27 . Skve _ o-AT
Sk Sk+2 Sk+a

D'ou le

1°" Maxma S,

2°™ maxima Spe 47T
Cf.élme maxima S,e AT

(k+1)®™ maxima Sye *AT



87

Chapitre 9 : EQUATION DES ONDES SUR IR

L’équation des ondes sur IR est donné par une equation différentielle partielle de la

forme:

L0%u 5 0%u
B 5m—Coe=0

Outestletempsetx €IR (t =20)
U(x,t) mesure I'amplitude de I'onde au point d’abscisse x a l'instant t
C étant la vitesse de propagation supposée constante.
C’est une équation aux dérivées partielles linéaire d’ordre 2 a coefficients constants
dont le polyndme associé est

Q(X,T)=T? - C*x?

=(T - CX) (T +CX)
Posons Q.X, T)=T-CX
Q,(X,T)=T+CX

Ona QX,T)=0:,(X,T).Q(X,T)
Désignons par L, L, et L, les opérateurs différentielles associées respectivement a
Q) Ql et QZ

Ona:L =Ljol, = LyoL; (%
Nous savons que la mesure de I'amplitude de I'onde
est:U(x,t) = F(x—ct) + G(x—ct) avecF,G € ¢?
Si (E) est muni des conditions :
U(x,0) = f(x) Yx € IR
{2—1: (x,0) = g(x) f,gdonnées

Elle admet comme solution la formule dite de d’Alembert :

x+ct

1 1
Ul t) =-[fGx+et) +flx—ct) ]+ [ " g(dy
Avec les conditions initiales :
U(x,0) =sinmx
(1 { du _
= (x,0)=0
Et les conditions aux frontieres

U0,6) =0
") {U(l,t)=0 Yt >0

La méthode de séparation des variables nous donne




U(x,t) = sin(mx) Cos(mct)

Conclusion partielle

On vient de déterminer u(x, t), I'amplitude de
'onde au point d’abscisse x, al'instanttouCes tla
vitesse de propagation supposée constante

U(x,t) = sin(rx) Cos(mct)
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CONCLUSION

L’étude des différentes méthodes de résolution des équations aux dérivees
partielles permet certainement d’améliorer la qualité de I'enseignement des matieres
scientifiques aux classes terminales du Lycée. Elle permet surtout de ne pas retenir
par cceur les solutions des équations différentielles sur I'étude des mouvements
d’'une masse suspendue a un ressort, un pendule de torsion, d'un pendule simple ou

des oscillations électriques.

On a insisté surtout aux équations différentielles du premier et second ordre
a variable séparée et a coefficients constants sans second membre avec des
conditions supplémentaires :

I). Conditions initiales ;

ii). Conditions aux frontiéres.

Pour le mécanisme de résolution de I'équation différentielle a coefficients

constants

d?u du
a—+ b—+ cu=0
dx? dx

On s’est limité a chercher les solutions de la forme u(x) = ke™, k, r sont
des coefficients inconnus, en utilisant 'équation caractéristique : ar®> + br + ¢ = 0

avec a, b, ceIR.
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